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Abstract It is shown that the Grayson tower for K -theory of smooth algebraic varieties is isomorphic to

the slice tower of S1-spectra. We also extend the Grayson tower to bispectra, and show that the Grayson
motivic spectral sequence is isomorphic to the motivic spectral sequence produced by the Voevodsky

slice tower for the motivic K -theory spectrum KGL. This solves Suslin’s problem about these two spectral

sequences in the affirmative.
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1. Introduction

One of the more significant developments in algebraic K -theory in the 1990s/early 2000s

was the construction of an algebraic analog for the Atiyah–Hirzebruch spectral sequence.

It is a strongly convergent spectral sequence

E pq
2 = H p−q,−q

M (X,Z) H⇒ K−p−q(X)

that relates the motivic cohomology groups of a smooth variety to its algebraic K -groups.

The existence of this spectral sequence was first conjectured by Beilinson [1]. It is also

called the motivic spectral sequence. Its construction is given in various forms:

(MSS1) the Bloch–Lichtenbaum motivic spectral sequence [2] for the spectrum of a field

together with the Friedlander–Suslin and Levine extensions [4, 14] to the global

case for a smooth variety over a field;
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138 G. Garkusha and I. Panin

(MSS2) the Grayson motivic spectral sequence [5, 9, 26, 34];

(MSS3) the Voevodsky motivic spectral sequence [3, p. 171] produced by the slice

filtration of the motivic K -theory spectrum KGL [30, 31].

A problem of Suslin says that the three types of motivic spectral sequence agree with

each other. In [15], Levine solved the Voevodsky problem for the slices of the spectrum

KGL [30, 31] (over a perfect field). As a consequence he shows that (MSS1) agrees with

(MSS3) over perfect fields.

In this paper we show that over perfect fields the Grayson tower for K -theory of

smooth algebraic varieties agrees with the slice tower of S1-spectra (see Theorem 7.7).

The Grayson tower is then extended to bispectra. Thanks to this it is proved that (MSS2)

agrees with (MSS3) (over perfect fields), answering the Suslin problem in the affirmative

for these two spectral sequences (see Theorem 7.12).

To conclude the introduction, we make the following remark, recommended by the

referee. In [21], Podkopaev claims that (MSS1) agrees with (MSS2) by comparing

Friedlander–Suslin’s and Grayson’s towers. He shows in six steps that the entries of

both towers agree, but does not show the agreement of the tower maps, on which the

differentials in both spectral sequences depend. It may be possible to compare the maps

in the future.

Throughout the paper we denote by Sm/k the category of smooth separated schemes

of finite type over the base field k.

2. Preliminaries

In this section we collect basic facts about the K -theory associated with cubes of additive

categories. We mostly follow Grayson [9].

2.1. Bivariant additive categories

Let AddCats denote the category of small additive categories and additive functors. Let

AffSm/k be the full subcategory of Sm/k whose objects are the affine smooth k-schemes.

By a bivariant additive category we mean a functor

A : (Sm/k)op
×AffSm/k → AddCats.

So to any X ∈ Sm/k and Y ∈ AffSm/k we associate an additive category A (X, Y ) which

is contravariant in X and covariant in Y .

We also require that there is an action of AffSm/k on A in the following sense. Given

U ∈ AffSm/k, there is an additive functor

αU : A (X, Y )→ A (X ×U, Y ×U ),

functorial in X and Y , such that for any morphism f : U → V in AffSm/k the following

square of additive functors is strictly commutative:
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On the motivic spectral sequence 139

A (X × V, Y × V )
A (1X× f,1Y×V ) // A (X ×U, Y × V )

A (X, Y )

αV

OO

αU // A (X ×U, Y ×U ).

A (1X×U ,1Y× f )

OO

By the functoriality of αU in X we mean that the following square of additive functors

is strictly commutative for any Y ∈ AffSm/k and any morphism f : X ′→ X in Sm/k:

A (X ×U, Y ×U )
A ( f×1U ,1Y×U ) // A (X ′×U, Y ×U )

A (X, Y )

αU

OO

A ( f,1Y ) // A (X ′, Y ).

αU

OO

By the functoriality of αU in Y we mean that the following square of additive functors is

strictly commutative for any X ∈ Sm/k and any morphism g : Y → Y ′ in AffSm/k:

A (X ×U, Y ×U )
A (1X×U ,g×1U ) // A (X ×U, Y ′×U )

A (X, Y )

αU

OO

A (1X ,g) // A (X, Y ′).

αU

OO

Below, we shall associate an explicitly constructed bispectrum to any bivariant additive

category. For this we need to collect some facts about the algebraic K -theory of additive

categories.

2.2. K -theory for cubes of additive categories

We let Ord denote the category of finite nonempty ordered sets. For A ∈ Ord we define a

category Sub(A) whose objects are the pairs (i, j) with i 6 j ∈ A, and where there is a

(unique) arrow (i ′, j ′)→ (i, j) exactly when i ′ 6 i 6 j 6 j ′. Given an additive category

M , we say that a functor M : Sub(A)→M is additive if M(i, i) = 0 for all i ∈ A, and for

all i 6 j 6 k ∈ A the map M(i, k)→ M(i, j)⊕M( j, k) is an isomorphism. Here 0 denotes

a previously chosen zero object of M . The set of such additive functors is denoted by

Add(Sub(A),M ). Given ordered sets A1, . . . , An , we let Add(Sub(A1)× · · ·× Sub(An),M )

denote the set of multiadditive functors, i.e., functors that are additive in each variable.

The Grayson simplicial set S⊕M [8, 9] is defined as

(S⊕M )(A) = Add(Sub(A),M ).

An n-simplex M ∈ S⊕n M may be thought of as a compatible collection of direct sum

diagrams M(i, j) ∼= M(i, i + 1)⊕ · · ·⊕M( j − 1, j). There is a natural map S⊕M → SM
(see [9, p. 147]) which converts each direct sum diagram M(i, k) ∼= M(i, j)⊕M( j, k) into

the short exact sequence 0→ M(i, j)→ M(i, k)→ M( j, k)→ 0. Here SM stands for

the Waldhausen S-construction [33].

We follow the same constructions as in [24, § 8.7] to define Grayson’s symmetric

spectrum K Gr (M ). Given a positive integer n, one can define the n-fold multisimplicial
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140 G. Garkusha and I. Panin

additive category S⊕,nM := S⊕ n. . . S⊕M . The nth space of Grayson’s K -theory spectrum

is given by

K Gr (M )n = |Ob(S⊕,nM )|,

where the right-hand side is the diagonal of the n-fold multisimplicial set Ob(S⊕,nM ).

The nth symmetric group Σn acts on K Gr (M )n by permuting the order of the

S⊕-constructions. Each structure map σ is the composite

|Ob(S⊕,nM )| ∧ S1 ∼= |Ob(S⊕,n S⊕M )|(1) ⊂ |Ob(S⊕,n S⊕M )| ∼= |Ob(S⊕,n+1M )|,

where the superscript (1) stands for the 1-skeleton with respect to the last simplicial

direction. The k-fold iterated structure map σ k is then defined as the composite

|Ob(S⊕,nM )| ∧ Sk ∼= |Ob(S⊕,n S⊕ k. . . S⊕M )|(1,...,1) ⊂ |Ob(S⊕,n S⊕ k. . . S⊕M )|

∼= |Ob(S⊕,n+kM )|,

where the superscript (1,...,1) indicates the multi-1-skeleton with respect to the k
last simplicial directions. This map is plainly (Σn ×Σk)-equivariant. With these

definitions K Gr (M ) becomes a (semistable) symmetric spectrum. If M happens to

be a multisimplicial additive category, then we define its Grayson K -theory symmetric

spectrum K Gr (M ) by taking diagonals K Gr (M )n := |Ob(S⊕,nM )| of the multisimplicial

sets Ob(S⊕,nM ), n > 0.

In [8, § 4] there is presented a construction called C which can be applied to a cube of

additive categories to convert it into a multisimplicial additive category, the K -theory of

which serves as the iterated cofiber space/spectrum of the corresponding cube of K -theory

spaces/spectra. We start with preparations.

We let [1] denote the ordered set {0 < 1} regarded as a category, and we use ε as

notation for an object of [1]. By an n-dimensional cube in a category C we shall mean

a functor from [1]n to C . An object C in C gives a 0-dimensional cube denoted by

[C], and an arrow C → C ′ in C gives a 1-dimensional cube denoted by [C → C ′]. If

the category C has products, we may define an external product of cubes as follows.

Given an n-dimensional cube X and an n′-dimensional cube Y in C , we let X � Y
denote the n+ n′-dimensional cube defined by (X � Y )(ε1, . . . , εn+n′) = X (ε1, . . . , εn)×

Y (εn+1, . . . , εn+n′). Let G∧n
m denote the external product of n copies of [1→ Gm] in Sm/k.

For example, G∧2
m is the square of schemes

Spec k //

��

Gm

��
Gm // Gm ×Gm .

Let L be a symbol, and consider {L} to be an ordered set. Given an ordered set A,

by {L}A we mean the concatenation ordered set with L declared to be less than every

element of A. Given an n-dimensional cube of additive categories M , we define an n-fold

multisimplicial additive category C⊕M as a functor from (Ordn)op to the category of

additive categories by letting C⊕M (A1, . . . , An) be the additive category whose objects

are the multiadditive natural transformations (we follow here the terminology of [9])

Add([Sub(A1)→ Sub({L}A1)]� · · ·� [Sub(An)→ Sub({L}An)],M ). (1)
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On the motivic spectral sequence 141

More precisely, every object in (1) maps each vertex of the cube of the domain to the

corresponding vertex of the cube M by means of a multiadditive functor. If we regard

each edge of the cube of the domain as a functor between categories, then one has a

commutative diagram of functors, in which one pair of parallel arrows is this edge and

the corresponding edge (which is an additive functor) of the cube M . When n = 0, we

may identify C⊕M with M . We define S⊕M to be S⊕C⊕M , the result of applying the

S⊕-construction of Grayson degreewise. It is an n+ 1-fold multisimplicial set (see [9] for

details).

If we extend the following lemma to Grayson’s K -theory spectra in the obvious way,

then we get that Grayson’s K -theory K Gr (C⊕M ) of C⊕M serves as the iterated cofiber

space/spectrum of the corresponding cube of Grayson’s K -theory spaces/spectra.

Lemma 2.1 [9, 4.3]. Suppose that we are given an additive map M ′
→M of

n-dimensional cubes of additive categories. Let [M ′
→M ] denote the corresponding

n+ 1-dimensional cube of additive categories:

(a) there is a fibration sequence

S⊕[0→M ] → S⊕[M ′
→M ] → S⊕[M ′

→ 0];

(b) the space S⊕[M
1
→M ] is contractible;

(c) S⊕[0→M ] is homotopy equivalent to S⊕M ;

(d) S⊕[M → 0] = S⊕S⊕M is a delooping of S⊕M ;

(e) there is a fibration sequence S⊕M ′
→ S⊕M → S⊕[M ′

→M ].

Let A : (Sm/k)op
×AffSm/k → AddCats be a bivariant additive category. Given X ∈

Sm/k, Y ∈ AffSm/k, and n > 0, the cube of schemes G∧n
m gives rise to a cube of additive

categories A (X, Y ×G∧n
m ). Its vertexes are A (X, Y ×G×`m ), 0 6 ` 6 n. The edges of the

cube are given by the natural additive functors is : A (X, Y ×G×(`−1)
m )→ A (X, Y ×G×`m )

induced by the embeddings is : G×(`−1)
m → G×`m of the form

(x1, . . . , x`−1) 7−→ (x1, . . . , 1, . . . , x`−1),

where 1 is the sth coordinate.

Thus we obtain a cube of bivariant additive categories A 〈G∧n
m 〉. Grayson’s K -theory

of A 〈G∧n
m 〉 produces a functor

K Gr (C⊕A 〈G∧n
m 〉) : (Sm/k)op

×AffSm/k → SpΣ , (X, Y ) 7→ K Gr (C⊕A (X, Y ×G∧n
m )).

Here SpΣ stands for the category of symmetric spectra in the sense of [11]. It is directly

verified that

K Gr
0 (C⊕A (X, Y ×G∧n

m )) = K Gr
0 (A (X, Y ×G×n

m ))

/ n∑
s=1

(is)∗(K Gr
0 (A (X, Y ×G×n−1

m ))).

(2)

Indeed, the case when n = 1 follows from Lemma 2.1(e), and the general case is checked

by induction.
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3. The category of bispectra

In this paper we work with the category PreΣ (Sm/k) of presheaves of symmetric spectra.

It has three model category structures, each of which we discuss separately.

Definition 3.1. A morphism f in PreΣ (Sm/k) is a stable weak equivalence (respectively,

stable projective fibration) if f (X) is a stable weak equivalence (respectively, stable

projective fibration) in SpΣ for all X ∈ Sm/k. It is a stable projective cofibration if f
has the left lifting property with respect to all stable projective acyclic fibrations.

Recall that the Nisnevich topology is generated by elementary distinguished squares,

i.e., pullback squares

U ′

Q

//

��

X ′

ϕ

��
U

ψ
// X.

(3)

where ϕ is etale, ψ is an open embedding, and ϕ−1(X \U )→ (X \U ) is an isomorphism

of schemes (with the reduced structure).

Definition 3.2. (1) A stably fibrant presheaf M ∈ PreΣ (Sm/k) is Nisnevich local if for

each elementary distinguished square Q the square of symmetric spectra M(Q) is

a homotopy pullback.

(2) A Nisnevich local presheaf M ∈ PreΣ (Sm/k) is A1-local if the natural map

M(X)→ M(X ×A1)

is a stable equivalence of symmetric spectra for all X ∈ Sm/k.

(3) A map f : A→ B in PreΣ (Sm/k) is a local weak equivalence (respectively, motivic

equivalence) if the map of spaces

f ∗ : Map(B,M)→ Map(A,M)

is a weak equivalence for any Nisnevich local (respectively, A1-local) presheaf M .

(4) The Nisnevich local model category (respectively, the motivic model category)

on presheaves of symmetric spectra, denoted by PreΣnis(Sm/k) (respectively,

PreΣmot (Sm/k)), is determined by stable projective cofibrations and local weak

equivalences (respectively, motivic equivalences). The fibrations are defined by the

corresponding lifting property. The homotopy category of PreΣmot (Sm/k) will be

denoted by SHS1(k).

We define the mapping cylinder cyl( f ) of a map f : A→ B between cofibrant objects

in a simplicial model category M . Let A⊗∆1 denote the standard cylinder object for A.

https://doi.org/10.1017/S1474748015000419 Published online by Cambridge University Press
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One has a commutative diagram

A t A ∇ //

i=i0ti1
��

A

A⊗∆1

σ

;;

in which i is a cofibration and σ is a weak equivalence. Each iε must be a trivial

cofibration.

Form the pushout diagram

A
f //

i0
��

B

i0∗
��

A⊗∆1 f∗ // Cyl( f ).

Then ( f σ) ◦ i0 = f , and so there is a unique map q : Cyl( f )→ B such that q f∗ = f σ
and qi0∗ = 1B . Put cyl( f ) = f∗i1; then f = q ◦ cyl( f ).

If A, B are cofibrant in M , then so is Cyl( f ). Observe also that q is a weak equivalence.

The map cyl( f ) is a cofibration, since the diagram

A t A
f t1A //

i0ti1
��

B t A

i0∗tcyl( f )
��

A⊗∆1 f∗ // Cyl( f ).

is a pushout.

Consider the category Pre(Sm/k) of presheaves of pointed simplicial sets. We can define

the projective model category structure on it, where the weak equivalences and fibrations

are defined schemewise. Let ι : pt = Spec k → Gm be the embedding ι(pt) = 1 ∈ Gm . The

mapping cylinder yields a factorization of the induced map

Spec k+ ↪→ Cyl(ι)
'
−→ (Gm)+

into a cofibration and a simplicial homotopy equivalence in Pre(Sm/k). Let G denote the

cofibrant pointed presheaf Cyl(ι)/Spec k+.

Let PreΣ,G(Sm/k) denote the category of G-spectra in PreΣ (Sm/k). Its objects are

the sequences (X0, X1, . . .) of presheaves of symmetric spectra X i together with bonding

maps X i → �GX i+1, where �GX i+1 = Hom(G, X i+1). Morphisms are defined levelwise

and must be consistent with bonding maps. This category will also be referred as the

category of (S1,G)-bispectra or just bispectra. We define the stable projective model

structure on PreΣ,G(Sm/k) (respectively, the Nisnevich local and motivic model structure)

as the stable model category of G-spectra in the sense of Hovey [10] associated with

the model category PreΣ (Sm/k) (respectively, PreΣnis(Sm/k) and PreΣmot (Sm/k)). Using

Hovey’s notation [10], it is the model category SpN(PreΣ (Sm/k),G⊗−) (respectively,

SpN(PreΣnis(Sm/k),G⊗−) and SpN(PreΣmot (Sm/k),G⊗−)). In what follows we shall
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denote the homotopy category of SpN(PreΣmot (Sm/k),G⊗−) by SH(k). It is one of

equivalent definitions of the Voevodsky stable motivic category of the field k [29].

The main bispectrum we shall work with is produced by a bivariant additive category

A : (Sm/k)op
×AffSm/k → AddCats.

Namely, let

AY = (AY (0), AY (1), AY (2), . . .)

be the sequence of presheaves of symmetric spectra

AY (n) = K Gr (C⊕A (−, Y ×G∧n
m )), n > 0.

We want to construct bonding maps

an : AY (n)→ �GAY (n+ 1).

Each an is uniquely determined by a map

β : K Gr (C⊕A (−, Y ×G∧n
m ))→ K Gr (C⊕A (−×Gm, Y ×G∧n+1

m )) (4)

and a homotopy

h : K Gr (C⊕A (−, Y ×G∧n
m ))→ K Gr (C⊕A (−×Spec k, Y ×G∧n+1

m ))I (5)

such that d0h = ι∗β and d1h factors trough the zero object levelwise.

We first construct the maps β and h for n = 0. By definition of a bivariant additive

category, there is an additive functor

αGm : A (X, Y )→ A (X ×Gm, Y ×Gm), X ∈ Sm/k.

The map β is induced by the composition

A (X, Y )
αGm
−−→ A (X ×Gm, Y ×Gm)

p
→ C⊕A (X ×Gm, Y ×G∧1

m ),

where p is a natural simplicial functor of simplicial categories (we consider A (X ×
Gm, Y ×Gm) as a simplicial category in a trivial way).

One has a commutative square of additive functors

A (X ×Gm, Y ×Gm)
A (1X×ι,1Y×Gm ) // A (X ×Spec k, Y ×Gm)

A (X, Y )

αGm

OO

αSpec k // A (X ×Spec k, Y ×Spec k).

A (1X×Spec k ,1Spec k×ι)

OO

On the other hand, there is a commutative diagram of simplicial additive categories,

A (X ×Spec k, Y ×Gm)
p // C⊕A (X ×Spec k, Y ×G∧1

m )

A (X ×Spec k, Y ×Spec k)

ι∗

OO

p′ // C⊕[A (X ×Spec k, Y ×Spec k)
id
−→ A (X ×Spec k, Y ×Spec k)].

ι∗

OO
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Recall that the path space P X of a simplicial object X : 1op
→ D in a category D is

defined as the composition of X with the shift functor P : 1→ 1 that takes [n] to [n+ 1]
(by mapping i to i + 1). The right lower corner of the diagram can be identified with the

simplicial path space P(S⊕A (X ×Spec k, Y ×Spec k)). By [33, 1.5.1], there is a canonical

contraction of this simplicial set into the set of its zero simplices regarded as a constant

simplicial set. Since P(S⊕A (X ×Spec k, Y ×Spec k)) has only one zero simplex, it follows

that there is a canonical simplicial homotopy

H : P(S⊕A (X ×Spec k, Y ×Spec k))→ P(S⊕A (X ×Spec k, Y ×Spec k))I

such that d0 H = 1 and d1 H = const.
Now the map h (5) is induced by the composite map

(C⊕A (X ×Spec k, Y ×G∧1
m ))I

P(S⊕A (X ×Spec k, Y ×Spec k)) H // P(S⊕A (X ×Spec k, Y ×Spec k))I

ιI∗

OO

A (X, Y )
αSpec k // A (X ×Spec k, Y ×Spec k).

p′

OO

Since d1 ◦ ι
I
∗ ◦ H = ι∗ ◦ d1 ◦ H = const, d1h factors through the zero object. On the other

hand,

d0 ◦ ι
I
∗ ◦ H ◦ p′ ◦αSpec k = ι∗ ◦ d0 ◦ H ◦ p′ ◦αSpec k = ι∗ ◦ p′ ◦αSpec k

= p ◦ ι∗ ◦αSpec k = p ◦ ι∗ ◦αGm .

Moreover, p ◦ ι∗ ◦αGm = ι
∗
◦ p ◦αGm , and therefore d0h = ι∗β. The bonding map a0 :

AY (0)→ �GAY (1) is now constructed. The definition of each an : AY (n)→ �GAY (n+ 1)
is similar to that of a0. The only difference is that we replace the bivariant additive

category A (X, Y ) by the multisimplicial bivariant additive category C⊕A (X, Y ×G∧n
m ).

Given an abelian monoid (A,+), denote by E M(A) its Eilenberg–Mac Lane symmetric

spectrum in the sense of [5, Appendix A]. It is defined in terms of the σ -construction

and is similar to the definition of the Waldhausen K -theory spectrum that uses the

S-construction [33]. By definition, σ A is a simplicial set whose n-simplices are the

functions

a : Ob Ar[n] → A, (i, j) 7→ a(i, j) = ai, j ,

having the property that, for every j , a j, j = 0 and ai,k = ai, j + a j,k whenever i 6 j 6 k.

Given an n-dimensional cube of abelian monoids M , we define an n-fold multisimplicial

abelian monoid C⊕M similar to formula (1). The only difference is that we consider

functions from objects of the corresponding posets ignoring poset arrows. It is worth

mentioning that Lemma 2.1 is valid for the σ -construction of cubes of abelian monoids.

For this one uses the additivity theorem for the σ -construction, just as in [33, § 1.5].

Applying the σ -construction to the multisimplicial abelian monoid C⊕M , one gets a

symmetric spectrum E M(C⊕M). It serves as the iterated cofiber spectrum of the cube
of Eilenberg–Mac Lane’s spectra E M(M).
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Every n-dimensional cube of additive categories M gives rise to an n-fold cube of

abelian groups K Gr
0 (M ). There is a natural map S⊕M → σK Gr

0 (M ) induced by the map

sending an object of an additive category to its isomorphism class in the Grothendieck

group. This map induces a map of symmetric spectra

τ : K Gr (C⊕M )→ E M(C⊕K Gr
0 (M )).

For each n > 0 we set

A0,Y (n) = E M(C⊕K Gr
0 (A (−, Y ×G∧n

m ))).

Note that π0(A0,Y (n)) is computed by formula (2), and the other homotopy groups are

zero. We have that the sequence of symmetric spectra

A0,Y = (A0,Y (0), A0,Y (1), A0,Y (2), . . .)

forms a bispectrum, in which the bonding maps are defined like those for the bispectrum

AY . Moreover, there is a canonical map of bispectra

τ : AY → A0,Y .

This map consists of the collection of canonical maps of symmetric spectra

τn : AY (n)→ A0,Y (n), n > 0,

defined as above.

4. The Grayson tower of bispectra

In this section we work in the framework of simplicial additive categories M over

contractible simplicial rings R. Given such a pair (M , R), Grayson [9] constructs a tower

of spaces which is also referred to as the Grayson tower. Each space of the Grayson tower

is defined as a K -theory space of some ‘multisimplicial additive category with commuting

automorphisms’ associated with (M , R). In practice, the Grayson tower gives rise to a

motivic spectral sequence (see [5, 9, 26, 34]). The Grayson tower for (M , R) can be

extended to symmetric spectra [5]. We shall mostly adhere to [5] in this section.

In our setting, the contractible ring R is

k[1] : d 7→ k[1d
] = k[t0, t1, . . . , td ]/(t0+ t1+ · · ·+ td − 1).

In what follows, we require

d 7→ A (X ×1d , Y )

to be a k[1]-linear additive category, where A : (Sm/k)op
×AffSm/k → AddCats is a

bivariant additive category.

In order to make Grayson’s machinery applicable to our setting, throughout this section

we work with a bivariant additive category

A : (Sm/k)op
×AffSm/k → AddCats

satisfying the following property.

https://doi.org/10.1017/S1474748015000419 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000419


On the motivic spectral sequence 147

(Aut) For every X ∈ Sm/k, Y ∈ AffSm/k and n > 0, the additive category A (X, Y ×G×n
m )

can be identified with the additive category A (X, Y )(G×n
m ) whose objects are

the tuples (P, θ1, . . . , θn), where P ∈ A (X, Y ) and (θ1, . . . , θn) are commuting

automorphisms of P. More precisely, there is an isomorphism of additive categories

(not only an equivalence of categories)

ρX,Y,n : A (X, Y ×G×n
m )→ A (X, Y )(G×n

m )

such that the diagram of functors

A (X, Y ×G×n−1
m )

is

��

ρX,Y,n−1 // A (X, Y )(G×n−1
m )

js
��

A (X, Y ×G×n
m )

ρX,Y,n // A (X, Y )(G×n
m )

is commutative. Here is (respectively, js) stands for the functor induced by

the map (x1, . . . , xn−1) ∈ G×n−1
m 7→ (x1, . . . , 1, . . . , xn−1) ∈ G×n

m with 1 the sth

coordinate (respectively, (θ1, . . . , θn−1) 7→ (θ1, . . . , 1, . . . , θn−1)). We also require

each identification ρX,Y,n to be functorial in both arguments.

We can form a cube of additive categories A (X, Y )(G∧n
m ) whose vertexes are

A (X, Y )(G×`m ), ` 6 n, and whose edges are given by the functors js . The (Aut) property

implies that the cubes A (X, Y )(G∧n
m ) and A (X, Y ×G∧n

m ) are isomorphic.

Consider the map of bispectra

τ : AY → A0,Y .

For every n > 0 there is a triangle in the homotopy category Ho(PreΣ (Sm/k))
(see [5, § 7] for details)

|d 7→ AY (n+ 1)(−×1d)|
γn
−→ �|d 7→ AY (n)(−×1d)|

�τn
−−→ �|d 7→ A0,Y (n)(−×1d)|.

The map γ1 is induced by a zigzag map of spectra

K Gr (C⊕A (−, Y ×G∧1
m ))

v
−→ �K Gr (S−1SA (−, Y ))

�s
←− �K Gr (A (−, Y )).

Here S−1S stands for Quillen’s construction (see § 6 for more details), s : K Gr (A (−, Y ))
→ K Gr (S−1SA (−, Y )) is a stable equivalence induced by the map sending an object

M ∈ A (−, Y ) to (M, 0) ∈ S−1SA (−, Y ) (see [9, 9.3] and § 6), and v is a natural map

that exists by [9, 9.4] and [34, p. 16]. The map γn is defined as γ1 by replacing A (−, Y )
with A (−, Y ×G∧n

m ). Note that each map in the zigzag agrees with the bonding map in

G-direction.

Since the category Ho(PreΣ (Sm/k)) is triangulated with Σs = −∧ S1 a shift functor,

the latter triangle gives a triangle

Σs |d 7→ AY (n+ 1)(−×1d)| → |d 7→ AY (n)(−×1d)| → |d 7→ A0,Y (n)(−×1d)|.

We shall also call it the Grayson triangle.
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We obtain a tower in Ho(PreΣ (Sm/k)),

· · · → Σn+1
s |d 7→ AY (n+ 1)(−×1d)| → Σn

s |d 7→ AY (n)(−×1d)| → · · ·

→ |d 7→ AY (0)(−×1d)|, (6)

in which successive cones are of the form

Σn
s |d 7→ A0,Y (n)(−×1d)|.

We shall also refer to it as the Grayson tower for A .

Given F,G ∈ PreΣnis(Sm/k) we shall use the following notation:

[F,G] := HomHo PreΣnis (Sm/k)(F,G).

Given X ∈ Sm/k, Y ∈ A f f sm/k and p, q ∈ Z, we also set

H p,q
A (X, Y ) := [X+,Σ

p−q
s |d 7→ A0,Y (q)(−×1d)|]

and

K A
i (X, Y ) := [X+,Σ−i

s |d 7→ AY (0)(−×1d)|], i ∈ Z.

Remark 4.1. Let D(N Sh) be the derived category of Nisnevich sheaves of abelian groups

on Sm/k. The Dold–Kan correspondence yields a complex of presheaves of abelian groups

C∗(A0,Y (q))

which uniquely corresponds to the simplicial presheaf

d 7→ K Gr
0 (C⊕A (−×1d , Y ×G∧q

m )).

After sheafifying C∗(A0,Y (q)) degreewise in the Nisnevich topology, we get a bounded

above complex C∗(A0,Y (q))nis ∈ D(N Sh) (the indexing is cohomological). It is then proved

similarly to [5, 7.8] that

H p,q
A (X, Y ) = H p

nis(X,C∗(A0,Y (q))nis[−q]),

where the right-hand side stands for Nisnevich hypercohomology groups of X with

coefficients in C∗(A0,Y (q))nis[−q] (the shift is cohomological).

Theorem 4.2 (Grayson). The Grayson tower (6) produces a strongly convergent spectral

sequence

E pq
2 = H p−q,−q

A (X, Y ) H⇒ K A
−p−q(X, Y ), X ∈ Sm/k, Y ∈ A f f sm/k, (7)

which will also be referred to as the Grayson spectral sequence for A .

Proof. This is proved similarly to [5, 7.9].

Corollary 4.3. If the groups H p,q
A (X, Y ) are homotopy invariant in the first argument,

then so are the groups K A
i (X, Y ). In particular, every fibrant replacement of |d 7→

AY (0)(−×1d)| in the Nisnevich local model category PreΣnis(Sm/k) is fibrant in the

motivic model category PreΣmot (Sm/k).

https://doi.org/10.1017/S1474748015000419 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000419


On the motivic spectral sequence 149

Below, we shall study conditions when the Grayson spectral sequence (7) is expressed

in terms of bispectra.

Given a bispectrum X = (X0, X1, . . .), the shift in G-direction ΣGX is the bispectrum

(X1, X2, . . .). Similarly, the nth shift Σn
GX is the bispectrum (Xn, Xn+1, . . .). For each

n > 0, we have a triangle in the homotopy category of bispectra Ho(PreΣ,G(Sm/k))

Σn+1
G |d 7→ AY (−×1

d)|
γ
−→ �Σn

G|d 7→ AY (−×1
d)|

�τ
−→ �Σn

G|d 7→ A0,Y (−×1
d)|.

Since the category Ho(PreΣ,G(Sm/k)) is triangulated with Σs = −∧ S1 a shift functor,

the latter triangle gives a triangle

ΣsΣ
n+1
G |d 7→ AY (−×1

d)| → Σn
G|d 7→ AY (−×1

d)|
τ
−→ Σn

G|d 7→ A0,Y (−×1
d)|.

We shall also call it the Grayson triangle of bispectra.

We obtain a tower of bispectra in Ho(PreΣ,G(Sm/k))

· · · → Σn+1
s Σn+1

G |d 7→ AY (−×1
d)| → Σn

s Σ
n
G|d 7→ AY (−×1

d)| → · · ·

→ |d 7→ AY (−×1
d)|, (8)

in which successive cones are of the form

Σn
s Σ

n
G|d 7→ A0,Y (−×1

d)|.

We shall also refer to it as the Grayson tower of bispectra for A .

Given a presheaf F of abelian groups and a scheme X ∈ Sm/k, one sets

F (X ∧Gm) := Ker(ι∗ : F (X ×Gm)→ F (X ×Spec k)).

There is a map of complexes

β : C∗(A0,Y (q))→ C∗(A0,Y (q + 1))(−×Gm),

where the left arrow is induced by map (4). Homotopy (5) implies that β uniquely factors

through C∗(A0,Y (q + 1))(−∧Gm). Therefore one gets maps

β p,q
: H p,q

A (X, Y )→ H p+1,q+1
A (X ∧Gm, Y ).

Definition 4.4. We say that the bigraded presheaves H∗,∗A (−, Y ) satisfy the cancelation

property if all maps β p,q are isomorphisms.

Let X = (X0, X1, . . .) and Y = (Y0, Y1, . . .) be two bispectra. Recall that a map of

bispectra f : X → Y is a level Nisnevich local equivalence if so is each fn : Xn → Yn
in PreΣnis(Sm/k). By common facts for model categories (see, e.g., [10]), there is a level

Nisnevich local equivalence of bispectra

u : X → X̃

such that each map un : Xn → X̃n is a cofibration and each X̃n is fibrant in PreΣnis(Sm/k).
Moreover, the map is functorial in X .
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Consider the bispectrum A0,Y = (A0,Y (0), A0,Y (1), . . .). Denote by A10,Y and Ã10,Y the

bispectra

(|d 7→ A0,Y (0)(−×1d)|, |d 7→ A0,Y (1)(−×1d)|, . . .)

and

((̃A10,Y )0, (̃A
1
0,Y )1

, (̃A10,Y )2, . . .),

respectively. Then there is a map of bispectra (see above)

u : A10,Y → Ã10,Y .

Observe that there is an isomorphism

H p,q
A (X, Y ) ∼= π(X+,Σ

p−q
s ( Ã10,Y )q),

where the right-hand side stands for the usual homotopy equivalence classes of maps.

Lemma 4.5. The bigraded presheaves H∗,∗A (−, Y ) satisfy the cancelation property if and

only if each structure map of the bispectrum Ã10,Y

( Ã10,Y )n → �G( Ã10,Y )n+1

is a stable weak equivalence in PreΣ (Sm/k).

We can also define bispectra A1Y and Ã1Y similar to the bispectra A10,Y and Ã10,Y . There

is a map of towers in Ho(PreΣ (Sm/k))

· · · // Σn+1
s (A1Y )n+1 //

��

Σn
s (A

1
Y )n

��

// · · · // (A1Y )0

��
· · · // Σn+1

s ( Ã1Y )n+1 // Σn
s ( Ã

1
Y )n

// · · · // ( Ã1Y )0,

where the upper tower is the Grayson tower and the vertical morphisms are Nisnevich

local equivalences in PreΣnis(Sm/k). Moreover, we have maps of successive cones of both

towers

Σn
s un : Σ

n
s (A

1
0,Y )n → Σn

s ( Ã
1
0,Y )n .

For every q > 0 and p ∈ Z, one sets

K A
−p(X, Y ∧Gq

m) := [X+,Σ
p−q
s (A1Y )q ].

Observe that there is an isomorphism

K A
−p(X, Y ∧Gq

m) ∼= π(X+,Σ
p−q
s ( Ã1Y )q).

Theorem 4.6 (Cancelation for K -theory). Suppose that the bigraded presheaves

H∗,∗A (−, Y ) satisfy the cancelation property. Then each structure map of the

bispectrum Ã1Y
( Ã1Y )q → �G( Ã1Y )q+1, q > 0, (9)

is a stable weak equivalence of symmetric spectra. In particular, the natural map

K A
−p(X, Y ∧Gq

m)→ K A
−p−1(X ∧Gm, Y ∧Gq+1

m ),

induced by (9), is an isomorphism for all p ∈ Z.
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Proof. We have a map of towers in Ho(PreΣ (Sm/k))

· · · // Σn+1
s ( Ã1Y )n+1 //

��

Σn
s ( Ã

1
Y )n

��

// · · · // ( Ã1Y )0

��
· · · // Σn+1

s �G( Ã1Y )n+2 // Σn
s �G( Ã1Y )n+1 // · · · // �G( Ã1Y )1,

where the upper tower is the Grayson tower and the vertical morphisms are structure

morphisms of the bispectrum Ã1Y . By Lemma 4.5, all maps of successive cones

Σn
s ( Ã

1
0,Y )n → Σn

s �G( Ã10,Y )n+1

are stable weak equivalences in PreΣ (Sm/k).
For every X ∈ Sm/k, Theorem 4.2 implies that the upper tower produces a strongly

convergent spectral sequence

E2
pq = πp+q(Σ

q
s ( Ã10,Y )q(X)) H⇒ πp+q(( Ã1Y )0(X))

and the lower tower produces a strongly convergent spectral sequence

E2
pq = πp+q(Σ

q
s �G( Ã10,Y )q+1(X)) H⇒ πp+q(�G( Ã1Y )1(X)).

Since both spectral sequences are isomorphic, we conclude that the map

(A1Y )0 → �G(A1Y )1

is a stable weak equivalence in PreΣ (Sm/k). It is proved in a similar fashion that all

other vertical maps in the diagram above are stable weak equivalences in PreΣ (Sm/k),
and hence so are their desuspensions.

We are now in a position to prove the main result of the section.

Theorem 4.7. Suppose that the groups H p,q
A (X, Y ) are homotopy invariant in the first

argument and that they satisfy the cancelation property. Then the bispectra Ã1Y and Ã10,Y
are motivically fibrant in PreΣ,Gmot (Sm/k), and the maps

AY → Ã1Y , A0,Y → Ã10,Y

are motivic weak equivalences of bispectra. As a result, one has a tower in SH(k),

· · · → Σ
q+1
s Σ

q+1
G AY → Σ

q
s Σ

q
GAY → · · · → AY , (10)

in which successive cones are of the form Σ
q
s Σ

q
GA0,Y . This tower produces a strongly

convergent spectral sequence

E2
pq = SH(k)(X+,Σ

−p
s Σ

q
GA0,Y ) H⇒ SH(k)(X+,Σ

−p−q
s AY ),

which is isomorphic to the Gayson spectral sequence for A .
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Proof. By Corollary 4.3, ( Ã1Y )0 is fibrant in PreΣmot (Sm/k). It is proved in a similar

way that each ( Ã1Y )q , q > 0, is fibrant in PreΣmot (Sm/k). So the bispectrum Ã1Y is level

motivically fibrant. Theorem 4.6 implies that it is fibrant in PreΣ,Gmot (Sm/k). The fact

that the bispectrum Ã10,Y is fibrant in PreΣ,Gmot (Sm/k) follows from Lemma 4.5 and the

homotopy invariance of the groups H p,q
A (X, Y ) in the first argument.

Let us show that AY → Ã1Y is a motivic weak equivalence of bispectra. This map is the

composition

AY → A1Y → Ã1Y ,

where the right arrow is a Nisnevich local equivalence, and hence a motivic weak

equivalence. The left arrow is a motivic weak equivalence by [18, 3.8]. Similarly, A0,Y →

Ã10,Y is a motivic weak equivalence of bispectra.

The Grayson tower of bispectra (8) in Ho(PreΣ,G)(Sm/k) yields a tower of bispectra

in SH(k)
· · · → Σ

q+1
s Σ

q+1
G AY → Σ

q
s Σ

q
GAY → · · · → AY , (11)

in which successive cones are of the form Σ
q
s Σ

q
GA0,Y . This tower produces a spectral

sequence

E2
pq = SH(k)(X+,Σ

−p
s Σ

q
GA0,Y ) H⇒ SH(k)(X+,Σ

−p−q
s AY ),

which is the same as the spectral sequence

E2
pq = SH(k)(X+,Σ

−p
s Σ

q
G Ã10,Y ) H⇒ SH(k)(X+,Σ

−p−q
s Ã1Y ).

Since all bispectra involved in the latter spectral sequence are motivically fibrant, it

follows that it is isomorphic to the spectral sequence

E2
pq = HomHo(PreΣ (Sm/k))(X+,Σ

−p
s ( Ã10,Y )q) H⇒ HomHo(PreΣ (Sm/k))(X+,Σ

−p−q
s ( Ã1Y )0).

It is plainly isomorphic to the Grayson spectral sequence (7).

5. Postnikov towers in SHS1(k) and SH(k)

Voevodsky [31] has defined a canonical tower on the motivic stable homotopy category

SHS1(k), which is called the motivic Postnikov tower.

Let Σn
GSHS1(k) be the localizing subcategory of SHS1(k) generated by objects of the

form Σn
GE , E ∈ SHS1(k). This gives us the tower of localizing subcategories,

· · · ⊂ Σn+1
G SHS1(k) ⊂ Σn

GSHS1(k) ⊂ · · · ⊂ SHS1(k).

Take E ∈ SHS1(k), and consider the cohomological functor

HomΣn
GSHS1 (k)(−, E) : Σn

GSHS1(k)→ Ab.

By [19], this functor is represented by an object rn E of Σn
GSHS1(k). Sending E to rn E

defines a right adjoint rn : SHS1(k)→ Σn
GSHS1(k) to the inclusion in : Σ

n
GSHS1(k)→

SHS1(k). Let fn := in ◦ rn with counit fn → id. Thus, for each E ∈ SHS1(k), there is a

canonical tower in SHS1(k)

· · · → fn+1 E → fn E → · · · → f0 E = E,
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the motivic Postnikov tower for S1-spectra. We write fn/n+r E for the cofiber of fn+r →

fn E ; we use the notation sn := fn/n+1 to denote the nth slice in the Postnikov tower.

Let E M : Ab→ SpΣ be the Eilenberg–Mac Lane functor in the sense of [5,

Appendix A], and let Z(n), n > 0, be the Suslin–Voevodsky complexes [27].

Proposition 5.1. Suppose that k is a perfect field. Then for every n > 0 we have

E M(Z(n)) = sn(E M(Z(n))).
Proof. By [13, 1.4.3], E M(Z(n)) ∈ Σn

GSHS1(k). The cancellation theorem of Voevodsky

[32] and [31, 4.2] imply that

�n+1
G (E M(Z(n)) f ) ∼= �G(E M(Z(0)) f ) = 0,

where E M(Z(n)) f is a local fibrant replacement of E M(Z(n)). It follows that E M(Z(n))
is right orthogonal to Σn+1

G SHS1(k), and hence E M(Z(n)) = sn(E M(Z(n))).
Given an integer `, call E ∈ SHS1(k) `-connected if, for each n 6 `, the Nisnevich sheaf

πn(Ẽ) is zero, where Ẽ is a fibrant model for E in PreΣmot (Sm/k). We shall also refer to

(−1)-connected spectra as connected.

Lemma 5.2. Suppose that k is a perfect field and that A is a bivariant additive category

with the (Aut) property. Suppose further that each A0,Y (n) ∈ Σn
GSHS1(k). If the presheaves

H p,q
A (−, Y ) are homotopy invariant, then AY (n) ∈ Σn

GSHS1(k) for every n > 0.

Proof. By Corollary 4.3, ( Ã1Y )0 is fibrant in PreΣmot (Sm/k). It is proved in a similar way

that each ( Ã1Y )n , n > 0, is fibrant in PreΣmot (Sm/k). The map AY (n)→ ( Ã1Y )n is a motivic

weak equivalence. It is the composition

AY (n)→ (A1Y )n → ( Ã1Y )n,

where the right arrow is a Nisnevich local equivalence, and hence a motivic weak

equivalence. The left arrow is a motivic weak equivalence by [18, 3.8].

We have A0,Y (m) ∼= fn(A0,Y (m)) ∈ Σn
GSHS1(k) for all m > n. Applying the functor fn

to the Grayson tower (6), we get a map of towers of motivically fibrant presheaves of

spectra,

· · · // Σn+1
s fn(( Ã1Y )n+1) //

��

Σn
s fn(( Ã1Y )n)

��
· · · // Σn+1

s ( Ã1Y )n+1 // Σn
s ( Ã

1
Y )n,

in which successive cones are of the form Σ
n+q
s ( Ã10,Y )n+q .

Every spectrum Σ
n+q
s ( Ã1Y )n+q is (n+ q − 1)-connected. If X ∈ Sm/k is of dimension d,

then Σ
n+q
s ( Ã1Y )n+q(X) is (n+ q − d − 1)-connected in SpΣ , by [17, 4.3.1]. By [4, 6.1.1],

the lower tower produces a strongly convergent spectral sequence

E2
pq = πp+q(Σ

n+q
s ( Ã10,Y )n+q(X)) H⇒ πp+q(( Ã1Y )n(X)).

To show that the spectral sequence produced by the upper tower

E2
pq = πp+q(Σ

n+q
s ( Ã10,Y )n+q(X)) H⇒ πp+q( fn(( Ã1Y )n)(X))
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is strongly convergent, we need to know that each fn(( Ã1Y )n+q) has the same connectivity

properties as ( Ã1Y )n+q . Since Σ
n+q
s ( Ã1Y )n+q is (n+ q − 1)-connected, it follows from

[16, 3.2] and Proposition A.2 that so is Σ
n+q
s fn(( Ã1Y )n+q) = fn(Σ

n+q
s ( Ã1Y )n+q). If X ∈

Sm/k is of dimension d, then Σ
n+q
s fn(( Ã1Y )n+q)(X) is (n+ q − d − 1)-connected in SpΣ ,

by [17, 4.3.1].

It follows from [4, 6.1.1] that the second spectral sequence is strongly convergent. We

conclude that the map in Ho(SpΣ )

fn(( Ã1Y )n)(X)→ ( Ã1Y )n(X)

is an isomorphism. We see that AY (n) is isomorphic in SHS1(k) to fn(( Ã1Y )n) ∈
Σn

GSHS1(k).

The following theorem says that Grayson’s tower of S1-spectra (6) is isomorphic in

SHS1(k) to the motivic Postnikov tower of the K -theory S1-spectrum K Gr (A (−, Y )). In

Theorem 7.10 we shall extend this result to bispectra.

Theorem 5.3. Suppose that k is a perfect field and that A is a bivariant additive category

with the (Aut) property. Suppose further that each A0,Y (q) = sq(A0,Y (q)). If the presheaves

H p,q
A (−, Y ) are homotopy invariant, then the Grayson tower (6) is isomorphic in SHS1(k)

to the motivic Postnikov tower

· · · → fq+1(K Gr (A (−, Y ))) → fq(K Gr (A (−, Y )))→ · · ·

→ f0(K Gr (A (−, Y ))) = K Gr (A (−, Y )).

Proof. We have f0(K Gr (A (−, Y ))) = K Gr (A (−, Y )). Suppose that an isomorphism

θq : Σ
q
s A1Y (q) ∼= fq(K Gr (A (−, Y ))), q > 0, is constructed. Since Σ

q+1
s AY (q + 1) ∈

Σ
q+1
G SHS1(k) by the preceding lemma and sq(K Gr (A (−, Y ))) is right orthogonal to

Σ
q+1
G SHS1(k), it follows that there is a unique morphism

θq+1 : Σ
q+1
s AY (q + 1)→ fq+1(K Gr (A (−, Y )))

making the diagram

Σ
q+1
s AY (q + 1) //

θq+1

��

Σ
q
s AY (q)

θq

��
fq+1(K Gr (A (−, Y ))) // fq(K Gr (A (−, Y )))

commutative. We claim that θq+1 is an isomorphism in SHS1(k).
By assumption, fq+1(Σ

q
s A0,Y (q)) = fq+1(Σ

q
s sq(A0,Y (q))) = Σ

q
s fq+1sq(A0,Y (q)) = 0.

We also have that fq+1sq(K Gr (A (−, Y ))) = 0, and hence the horizontal arrows of the

commutative diagram

fq+1(Σ
q+1
s AY (q + 1)) //

fq+1(θq+1)

��

fq+1(Σ
q
s AY (q))

fq+1(θq )

��
fq+1( fq+1(K Gr (A (−, Y )))) // fq+1( fq(K Gr (A (−, Y ))))
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are isomorphisms. But fq+1(θq) is an isomorphism, and hence so is fq+1(θq+1). By the

previous lemma, Σ
q+1
s AY (q + 1) is in Σ

q+1
G SHS1(k). Since fq+1(K Gr (A (−, Y ))) belongs

to Σ
q+1
G SHS1(k) as well and fq+1(θq+1) is an isomorphism, we conclude that θq+1 is an

isomorphism.

The next result computes the slices of the K -theory S1-spectrum K Gr (A (−, Y )). It

will be extended to bispectra in Theorem 7.11.

Theorem 5.4. Under the assumptions of Theorem 5.3 there are isomorphisms in SHS1(k),

sq(K Gr (A (−, Y ))) ∼= Σq
s A0,Y (q), q > 0.

Proof. The proof of the previous theorem shows that there is a commutative diagram in
SHS1(k),

Σq+1
s AY (q + 1) //

θq+1

��

Σq
s AY (q)

θq

��

// Σq
s A0,Y (q) // Σq+2

s A0,Y (q + 1)

Σs θq+1

��
fq+1(K Gr (A (−, Y ))) // fq(K Gr (A (−, Y ))) // sq(K Gr (A (−, Y ))) // Σs fq+1(K Gr (A (−, Y ))),

where the vertical arrows are isomorphisms. Since SHS1(k) is triangulated, then there

exists an isomorphism

Σ
q
s A0,Y (q) ∼= sq(K Gr (A (−, Y ))),

as required.

Voevodsky [30] defines the slice filtration in SH(k) just as it is defined in SHS1(k).
Let SH e f f (k) be the smallest localizing subcategory of SH(k) containing all suspension

spectraΣ∞G Σ
∞
s X+ with X ∈ Sm/k; this is the same as the smallest localizing subcategory

containing all the G-suspension spectra Σ∞G E for E ∈ SHS1(k). For each integer p,

let Σ
p
GSH e f f (k) denote the smallest localizing subcategory of SH(k) containing the

G-spectra Σ
p
GE for E ∈ SH e f f (k). The inclusion i p : Σ

p
GSH e f f (k)→ SH(k) admits the

right adjoint rp : SH(k)→ Σ
p
GSH e f f (k); setting f p := i p ◦ rp, one has for each E ∈ SH(k)

the functorial slice tower

· · · → fd+1E → fdE → · · · → f0E → f−1E → · · · → E .

As for the slice tower in SHS1(k), the existence of the adjoint follows from [19], and the

map f pE → E is universal for maps F → E , F ∈ Σ
p
GSH e f f (k). The cofiber of fd+1E →

fdE is denoted by sdE .

Lemma 5.5. Under the assumptions of Lemma 5.2, the bispectra AY and A0,Y belong to

SH e f f (k).

Proof. We prove the assertion for AY , because the same arguments will hold for A0,Y .

It is shown similarly to [20, A.33] that every bispectrum E is the colimit of a natural

sequence

T r0E → T r1E → · · · ,
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where T riE stands for the ith truncation. Moreover, T riE is naturally stably equivalent

to �i
G((Σ

∞

G Ei )
f ) (‘ f ’ for fibrant resolution).

Lemma 5.2 implies that (Σ∞G AY (i)) f
∈ Σ i

GSH e f f (k), and hence �i
G((Σ

∞

G AY (i)) f ) ∈

SH e f f (k). We see that AY is the colimit of the sequence

T r0 AY → T r1 AY → · · · ,

where each T ri AY is in SH e f f (k). It follows from [20, A.34] that AY is isomorphic in

SH(k) to the homotopy colimit of T ri AY , which is in SH e f f (k). We conclude that AY ∈

SH e f f (k).

6. The bispectrum KGLA ,Y

Given an additive category M , Quillen defines a new category S−1SM whose objects

are pairs (A, B) of objects of M . A morphism (A, B)→ (C, D) in S−1SM is given by a

pair of split monomorphisms

f : A
�
� C, g : B

�
� D

together with an isomorphism h : Coker f → Coker g. By a split monomorphism we mean

a monomorphism together with a chosen splitting. The nerve of the category S−1SM
which is also denoted by S−1SM is homotopy equivalent to Quillen’s K -theory space of

M by [7].

The set S−1SkM of k-simplices of the category S−1SM can be regarded as the set of

objects of an additive category in the usual way, and we use exactly the same notation

to denote that category. In this way S−1SM becomes a simplicial additive category.

Its symmetric Grayson K -theory spectrum will be denoted by K Gr (S−1SM ). It follows

from the proof of [9, 9.3] that the map Ob M → S−1SM sending M to (M, 0) induces a

homotopy equivalence

S⊕M → S⊕(S−1S)M .

Therefore the induced map of symmetric spectra

K Gr (M )→ K Gr (S−1SM )

is a stable weak equivalence, which is a level weak equivalence in positive degrees.

Let A be a bivariant additive category. Then S−1SA is a simplicial bivariant additive
category. For any Y ∈ AffSm/k we can form a bispectrum

S−1S AY = (S−1S AY (0), S−1S AY (1), . . .),

where each S−1S AY (n) = K Gr (C⊕S−1SA (−, Y ×G∧n
m )), and define a natural map of

bispectra

s : AY → S−1S AY .

This map is a level stable weak equivalence.

In order to construct K -theory spectra with entries being sectionwise fibrant spaces, we

use the category of topological symmetric spectra TopSpΣ (see [25, § I.1]). We can apply

adjoint functors ‘geometric realization’, denoted by | − |, and ‘singular complex’, denoted

https://doi.org/10.1017/S1474748015000419 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000419


On the motivic spectral sequence 157

by S , levelwise to go back and forth between simplicial and topological symmetric spectra

| − | : SpΣ � TopSpΣ : S . (12)

Remark 6.1. By the standard abuse of notation, | − | denotes both the functor from SpΣ

to TopSpΣ and the realization functor from simplicial spectra to spectra. It will always

be clear from the context which of the meanings is used.

Given a (multisimplicial) additive category M , denote by K̂ Gr (M ) the symmetric

spectrum S |K Gr (M )|. The unit of the adjunction induces a map of symmetric spectra

K Gr (M )→ K̂ Gr (M ),

functorial in M . Observe that |K Gr (S−1SM )| is an �-spectrum in TopSpΣ , and hence

so is K̂ Gr (S−1SM ) in SpΣ .

Suppose that A is a bivariant additive category satisfying property (Aut). For any

Y ∈ AffSm/k we can form a bispectrum

S−1S ÂY = (S−1S ÂY (0), S−1S ÂY (1), . . .),

where each S−1S ÂY (n) = K̂ Gr (C⊕S−1SA (−, Y ×G∧n
m )), and define a natural map of

bispectra

t : S−1S AY → S−1S ÂY .

This map is a level stable weak equivalence.

By [9, 9.4] and [34, p. 16], there is a natural map of symmetric topological spectra,

|K Gr (C⊕S−1SA (X, Y ×G∧1
m ))| → �|K Gr ((S−1S)(S−1S)A (X, Y ))|.

It gives a natural map in PreΣ (Sm/k),

v1 : S−1S ÂY (1)→ �K̂ Gr ((S−1S)(S−1S)A (−, Y )).

We can get more generally a map (see [34, p. 16] as well)

vn : S−1S ÂY (n) → �K̂ Gr (C⊕(S−1S)(S−1S)A (−, Y ×G∧n−1
m ))→ · · ·

→ �n K̂ Gr ((S−1S)n+1A (−, Y )).

One sets

~0 := �G(v1) ◦ â0 : K̂ Gr (S−1SA (−, Y ))→ �G�K̂ Gr ((S−1S)2A (−, Y )),

where â0 : ÂY (0)→ �G ÂY (1) is the structure map. Applying the above construction to

the multisimplicial bivariant additive category (S−1S)nA , we get a map

~n : �
n K̂ Gr ((S−1S)n+1A (−, Y ))→ �G�

n+1 K̂ Gr ((S−1S)n+2A (−, Y )).

Definition 6.2. Let A be a bivariant additive category with the (Aut) property, and let

Y ∈ AffSm/k. Then the bispectrum KGLA ,Y is defined by the sequence in PreΣ (Sm/k)

(K̂ Gr ((S−1S)A (−, Y )),�K̂ Gr ((S−1S)2A (−, Y )),�2 K̂ Gr ((S−1S)3A (−, Y )), . . .).

Its structure maps are given by the maps ~n .
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The maps vn determine a map of bispectra

v : S−1S ÂY → KGLA ,Y .

So we have a map of bispectra

χ := v ◦ t ◦ s : AY → KGLA ,Y . (13)

In the next section we shall work with the bispectrum KGLA ,Spec k for a certain bivariant

additive category A . It will be shown that it represents Quillen’s K -theory of algebraic

varieties.

7. Comparing Grayson’s and slice towers for KGL

In this section we prove the main results of the paper. For technical reasons we have

dealt with general bivariant additive categories so far. Below, a concrete example of

such a category A is given. It will lead to solutions for the problems mentioned in the

introduction in § 1. Its definition is extracted from [6]. We start with preparations.

Let U, X ∈ Sm/k. Define Supp(U × X/X) as the set of all closed subsets in U × X of

the form A = ∪Ai , where each Ai is a closed irreducible subset in U × X which is finite

and surjective over U . The empty subset in U × X is also regarded as an element of

Supp(U × X/X).
Given U, X ∈ Sm/k and A ∈ Supp(U × X/X), let IA ⊂ OU×X be the ideal sheaf of

the closed set A ⊂ U × X . Denote by Am the closed subscheme in U × X of the form

(A,OU×X/I m
A ). If m = 0, then Am is the empty subscheme. Define SubSch(U × X/X) as

the set of all closed subschemes in U × X of the form Am .

For any Z ∈ SubSch(U × X/X) we write pZ
U : Z → U to denote p ◦ i , where i : Z ↪→

U × X is the closed embedding and p : U × X → U is the projection. If there is no

likelihood of confusion we shall write pU instead of pZ
U , dropping Z from the notation.

Clearly, for any Z ∈ SubSch(U × X/X) the reduced scheme Zred , regarded as a closed

subset of U × X , belongs to Supp(U × X/X).
For any U, X ∈ Sm/k we define objects of A (U, X) as equivalence classes for the triples

(n, Z , ϕ : pU,∗(OZ )→ Mn(OU )),

where n is a non-negative integer, Z ∈ SubSch(U × X/X), and ϕ is a non-unital

homomorphism of sheaves of OU -algebras. Let p(ϕ) be the idempotent ϕ(1) ∈
Mn(0(U,OU )); then P(ϕ) = Im(p(ϕ)) can be regarded as a pU,∗(OZ )-module by means

of ϕ.
By definition, two triples (n, Z , ϕ), (n′, Z ′, ϕ′) are equivalent if n = n′ and there is a

triple (n′′, Z ′′, ϕ′′) such that n = n′ = n′′, Z , Z ′ ⊂ Z ′′ are closed subschemes in Z ′′, and
the diagrams

pU,∗(OZ )
ϕ // Mn(OU ) p′U,∗(OZ ′)

ϕ′ // Mn(OU )

pU,∗(OZ ′′)

can

ff

ϕ′′

99

pU,∗(OZ ′′)

can

ff

ϕ′′

99
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are commutative. We shall often denote an equivalence class for the triples by 8. Though

Z is not uniquely defined by 8, nevertheless we shall also refer to Z ⊂ U × X as the

support of 8.

Given 8,8′ ∈ A (U, X), we first equalize supports Z , Z ′ of the objects 8,8′ and then

set

HomA (U,X)(8,8
′) = HompU,∗(OZ )(P(ϕ), P(ϕ′)).

Given any three objects 8,8′,8′′ ∈ A (U, X), a composition law

HomA (U,X)(8,8
′) ◦HomA (U,X)(8

′,8′′)→ HomA (U,X)(8,8
′′)

is defined in the obvious way. This therefore makes A (U, X) an additive category. The

zero object is the equivalence class of the triple (0,∅, 0). By definition,

81⊕82 = (n1+ n2, Z1 ∪ Z2, pU,∗(OZ1∪Z2)→ pU,∗(OZ1)× pU,∗(OZ2)

→ Mn1(OU ))×Mn2(OU )) ↪→ Mn1+n2(OU )).

Clearly, P(ϕ1⊕ϕ2) ∼= P(ϕ1)⊕ P(ϕ2).

If f : X ′→ X and g : Y → Y ′ are in Sm/k, then, following [6, 4.13] and [6, 4.14], set

A ( f, g) = f ∗ ◦ g∗ = g∗ ◦ f ∗ : A (X, Y )→ A (X ′, Y ′).

By [6, 4.14; 4.12], the assignments (X, Y ) 7→ A (X, Y ) and ( f, g) 7→ A ( f, g) determine a

functor

(U, X) ∈ (Sm/k)op
× Sm/k 7→ A (U, X) ∈ AddCats.

Throughout this section, by A we shall mean this bivariant additive category.

Next we shall introduce an action of AffSm/k on A in the sense of § 2.1. Following the

notation introduced just below Theorem 4.15 of [6], we set

αU := (1U )
?
: A (X, Y )→ A (X ×U, Y ×U ).

To check that the assignment U 7→ αU defines an action of AffSm/k on A , we need to

check the commutativity of the three squares in § 2.1. Commutativity of the second and

the third squares follows from [6, 4.17; 4.18]. Commutativity of the first square, that is

the equality A (1X×U , 1Y × f ) ◦αU = A (1X×U , g× 1U ) ◦αV , is exactly commutativity of

the diagram from [6, 4.24]. Thus the assignment U 7→ αU defines an action of AffSm/k on

A . Below we shall consider the bivariant category A equipped with this specific action

of AffSm/k.

For any U, X ∈ Sm/k the bivariant category A produces a simplicial additive category

d 7→ A (U ×1d , X).

It is straightforward to check that this simplicial additive category is a k[1]-linear

additive category in the sense of [9, p. 158].

By [6, 4.27; 4.28], the bivariant category A also satisfies the property (Aut) from § 4.

Now we have a spectral category K whose objects are those of Sm/k, i.e., a category

enriched over SpΣ . Its morphism symmetric spectra are of the form

K(U, X) = K Gr (A (U, X)).
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We refer the reader to [6] for details. One can associate a ringoid K0 to it. By definition,

the objects of K0 are those of Sm/k, and

K0(U, X) = π0(K(U, X)), U, X ∈ Sm/k.

In what follows we shall write H p,q
K (U,Z) to denote H p,q

A (U,Spec k). In Remark 4.1 we

defined complexes of presheaves C∗(A0,Y (q)) (indexing is cohomological). We set

ZK(q) := C∗(A0,Spec k(q)[−q])nis.

It follows from Remark 4.1 that

H p,q
K (U,Z) = H p

nis(U,Z
K(q)).

We shall also denote by KGL the bispectrum KGLA ,Spec k .

There is another ringoid which is important in our analysis. Let P̃(U, X), U, X ∈ Sm/k,

be the additive category of big coherent OU×X -modules P such that Supp P is finite over

U and the coherent OU -module (pU )∗(P) is locally free (see [4, 6, 9]). We shall write

P̃(U ) to denote P̃(U,Spec k). Define a ringoid K⊕0 as

K⊕0 (U, X) = K0(P̃(U, X)), U, X ∈ Sm/k.

Here the right-hand side stands for the Grothendieck group of the additive category

P̃(U, X).
If X is affine, then there is a natural additive functor (see [6] for details)

FU,X : A (U, X)→ P̃(U, X)

which is an equivalence of categories whenever U is affine. By [6], FU,X is functorial in

U . These functors can naturally be extended to a map of ringoids

F : K0 → K⊕0 .

Given n > 0, we denote by ZGr (n) (respectively, Z(n)) the Grayson complex [26, 34]

corresponding to the ringoid K⊕0 (respectively, the Suslin–Voevodsky [27] complex

corresponding to the ringoid Cor). The complexes are defined in the same fashion as

ZK(n). Recall that motivic cohomology is defined as

H p,q
M (X,Z) := H p

nis(X,Z(q)).

Theorem 7.1 (Suslin [26]). For any n > 0, the canonical homomorphism of complexes of

Nisnevich sheaves ZGr (n)→ Z(n) is a quasi-isomorphism.

Corollary 7.2. For any n > 0, the canonical homomorphism of complexes of Nisnevich

sheaves ZK(n)→ ZGr (n), induced by the map of ringoids F : K0 → K⊕0 , is an

isomorphism. Hence, for any smooth scheme X ∈ Sm/k, cohomology groups H p,q
K (X,Z)

coincide with motivic cohomology groups H p,q
M (X,Z).
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Proof. As we have mentioned above, the additive functor FU,X : A (U, X)→P(U, X) is

an equivalence whenever U and X are affine. It follows that the map of simplicial abelian

groups

(d 7→ K0(U ×1d ,G×n
m ))→ (d 7→ K⊕0 (U ×1

d ,G×n
m )), n > 0,

is an isomorphism for every smooth affine scheme U . Hence the map of simplicial abelian

sheaves

(d 7→ K0(−×1
d ,G×n

m )nis)→ (d 7→ K⊕0 (−×1
d ,G×n

m )nis)

is an isomorphism of motivic spaces. Our assertion now follows.

Corollary 7.3. The cohomology groups H∗,∗K (X,Z) are homotopy invariant and satisfy the

cancelation property.

Proof. The proof follows from [26, 3.1; 4.13] and Corollary 7.2.

Corollary 7.4. Let k be a perfect field. Then A0,Spec k(n) = sn(A0,Spec k(n)) for each n > 0.

Proof. The proof follows from Proposition 5.1, Theorem 7.1, and Corollary 7.2.

By definition, by the K -theory of X we shall mean the Waldhausen algebraic K -theory

symmetric spectrum of big vector bundles (regarded as an exact category)

K (X) = K (P̃(X)).

We set G X := FX,Spec k . Observe that G X is functorial in X . So we get a map in

PreΣ (Sm/k),
G : K Gr (A (−,Spec k))→ K (−),

where the left-hand side spectrum is defined on p. 140.

Proposition 7.5. G is a Nisnevich local weak equivalence and it induces canonical

isomorphisms

K A
p (X,Spec k) ∼= K p(X),

for any smooth scheme X and any integer p, where the left-hand side group is defined on

p. 148.

Proof. The fact that G is a Nisnevich local weak equivalence follows from the fact that

G X is an equivalence of categories whenever X is affine. So we also have that

K Gr (A (−×1d ,Spec k))→ K (−×1d), d > 0,

is a Nisnevich local weak equivalence in PreΣ (Sm/k).
Consider a commutative diagram in PreΣ (Sm/k),

K Gr (A (−,Spec k)) //

G
��

|K Gr (A (−×1.,Spec k))| //

��

|K Gr (A (−×1.,Spec k))| f

γ

��
K (−) α // |K (−×1.)|

β // |K (−×1.)| f .
(14)
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Here the lower f -symbol refers to a fibrant replacement functor in PreΣnis(Sm/k). The

vertical arrows are Nisnevich local weak equivalences. The left horizontal arrows are

motivic weak equivalences, by [18, 3.8].

Since K (−) is homotopy invariant, α is a stable weak equivalence. By [28], K (−) is

Nisnevich excisive, and hence β, γ are stable weak equivalences. It remains to observe

that

K A
p (X,Spec k) = πp(|K Gr (A (−×1.,Spec k))| f (X))

for any X ∈ Sm/k.

Corollary 7.6. Let K (−)→ K̃ (−) be any fibrant replacement of K (−) in the stable

projective model structure of PreΣ (Sm/k). Then the composite map

K Gr (A (−,Spec k))
G
→ K (−)→ K̃ (−)

is a motivic fibrant replacement of K Gr (A (−,Spec k)) in PreΣmot (Sm/k).

Proof. All maps of diagram (14) are motivic weak equivalences. The proof of the

preceding proposition shows that K̃ (−) is fibrant in PreΣmot (Sm/k).

We are now in a position to prove the following.

Theorem 7.7. Let k be a perfect field. Then the Grayson tower (6) of S1-spectra in SHS1(k)

· · · → Σ
q+1
s A1Spec k(q + 1)→ Σ

q
s A1Spec k(q)→ · · · → A1Spec k

is isomorphic to the tower

· · · → fq+1(K (−))→ fq(K (−))→ · · · → f0(K (−)).

Moreover, sq(K (−)) = E M(Z(q)) for every q > 0.

Proof. This is a consequence of Theorems 5.3, 5.4, and 7.1, Corollaries 7.2–7.4, and

Proposition 7.5.

The next theorem says that the bispectrum KGL represents algebraic K -theory.

Theorem 7.8. For any smooth scheme X , one has canonical isomorphisms

KGLp,q(X+) = SH(k)(Σ∞G Σ
∞
s X+,Σ

p−q
s Σ

q
GKGL) ∼= K2q−p(X),

where K (X) is algebraic K -theory of X .

Proof. Given a bispectrum X , let X1 be the bispectrum (|X0(−×1
.)|, |X1(−×1

.)|, . . .).

Taking a fibrant replacement of X1 in the level Nisnevich local model structure of

PreΣ,G(Sm/k), we get a bispectrum X1f . So one has maps of bispectra

X → X1→ X1f ,

where the left arrow is a level motivic weak equivalence by [18, 3.8] and the right arrow

is a level Nisnevich local weak equivalence.
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Consider the bispectra (S−1S Â1Spec k) f and KGL1f . Note that the first bispectrum is

equivalent to Ã1Spec k . We claim that each structure map

ρn : (KGL1f )n = (KGL1n ) f → �G(KGL1n+1) f

is a stable weak equivalence in PreΣ (Sm/k). Corollary 7.6 and [9, 9.3] imply that each

(KGL1n ) f has homotopy type of �n K̃ (−) ∈ PreΣ (Sm/k).
By construction, the map ρ0 factors as

S−1S ÂSpec k(0)1f → �GS−1S ÂSpec k(1)1f → �G(KGL11 ) f .

Corollary 7.3 and the cancelation theorem for K -theory 4.6 imply that the left arrow is

a stable weak equivalence. It follows from [9, 9.6] that a homotopy cofiber of the right

arrow is �G�( Ã10,Spec k)0. By Corollary 7.2, we have

πp−1(�G�( Ã10,Spec k)0(X)) ∼= H p,0
K (X ∧Gm,Z) ∼= H p,0

M (X ∧Gm,Z), X ∈ Sm/k, p ∈ Z.

The proof of [31, 4.2] implies that H p,0
M (X ∧Gm,Z) = 0. So �G( Ã10,Spec k)0 is zero in

Ho(PreΣ (Sm/k)), and hence ρ0 is a stable weak equivalence. The fact that each ρn is a

stable weak equivalence is proved in a similar fashion. The only difference with ρ0 is that

one iterates the S−1S-construction at each step.

We conclude that KGL1f is a motivically fibrant bispectrum. Therefore,

KGLp,q(X+) = SH(k)(Σ∞G Σ
∞
s X+,Σ

p−q
s Σ

q
GKGL1f )

∼= SHS1(k)(Σ∞s X+,Σ
p−q
s (KGL1f )q)

∼= SHS1(k)(Σ∞s X+,Σ
p−q
s �q K̃ (−)) ∼= K2q−p(X),

as was to be shown.

Lemma 7.9. Let k be a perfect field. Then the bispectrum ASpec k is isomorphic in SH(k)
to f0(KGL).

Proof. It follows from Corollaries 7.3 and 7.4 and Lemma 5.5 that ASpec k is in SH e f f (k).
Then map (13) of bispectra χ : ASpec k → KGL. factors as

ASpec k
θ
−→ f0(KGL)

ζ
−→ KGL.

For any X ∈ Sm/k and any p ∈ Z, the induced map

ζ∗ : SH(k)(Σ∞G Σ
∞
s X+,Σ

p
s f0(KGL))→ SH(k)(Σ∞G Σ

∞
s X+,Σ

p
s KGL)

is an isomorphism by construction of f0(KGL). On the other hand, Theorem 7.8 implies

that the induced map

χ∗ : SH(k)(Σ∞G Σ
∞
s X+,Σ

p
s ASpec k)→ SH(k)(Σ∞G Σ

∞
s X+,Σ

p
s KGL)

is an isomorphism, and hence so is

θ∗ : SH(k)(Σ∞G Σ
∞
s X+,Σ

p
s ASpec k)→ SH(k)(Σ∞G Σ

∞
s X+,Σ

p
s f0(KGL)).

Since Σ∞G Σ
∞
s X+ generate the compactly generated triangulated category SH e f f (k), we

conclude that θ is an isomorphism in SH(k).
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The following result gives an explicit model for the non-negative part of the slice tower

of the bispectrum KGL.

Theorem 7.10. Let k be a perfect field. Then the tower (11) of bispectra in SH(k)

· · · → Σ
q+1
s Σ

q+1
G ASpec k → Σ

q
s Σ

q
GASpec k → · · · → ASpec k

is isomorphic to the tower

· · · → fq+1(KGL)→ fq(KGL)→ · · · → f0(KGL).

Proof. By Lemma 7.9, there is an isomorphism θ : ASpec k → f0(KGL) in SH(k).
Suppose that an isomorphism θq : Σ

q
s Σ

q
GASpec k ∼= fq(KGL), q > 0, is constructed. Since

Σ
q+1
s Σ

q+1
G ASpec k ∈ Σ

q+1
G SH(k) and sq(KGL) is orthogonal to Σ

q+1
G SH(k), it follows that

there is a unique morphism

θq+1 : Σ
q+1
s Σ

q+1
G ASpec k → fq+1(KGL)

making the diagram

Σ
q+1
s Σ

q+1
G ASpec k //

θq+1

��

Σ
q
s Σ

q
GASpec k

θq

��
fq+1(KGL) // fq(KGL)

commutative. We claim that θq+1 is an isomorphism in SH(k).
By Theorem 4.7 and Corollary 7.3, a homotopy cofiber of the upper horizontal arrow

is Σ
q
s Σ

q
GA0,Spec k . Therefore,

SH(k)(Σq+1
G Σ∞G Σ

∞
s X+,Σ

p
s Σ

q
GA0,Spec k) = SH(k)(ΣGΣ

∞

G Σ
∞
s X+,Σ

p
s A0,Spec k)

∼= H p,0
K (X ∧Gm,Z)

for any X ∈ Sm/k and integer p. The proof of Theorem 7.8 shows that H p,0
K (X ∧Gm,Z) =

0, and hence fq+1(Σ
q
s Σ

q
GA0,Spec k)) = 0.

Since fq+1(sq(KGL)) = 0, we see that the horizontal arrows of the commutative diagram

fq+1(Σ
q+1
s Σ

q+1
G ASpec k) //

fq+1(θq+1)

��

fq+1(Σ
q
s Σ

q
GASpec k)

fq+1(θq )

��
fq+1( fq+1(KGL)) // fq+1( fq(KGL))

are isomorphisms. But fq+1(θq) is an isomorphism, and hence so is fq+1(θq+1). Lemma 7.9

implies that Σ
q+1
s Σ

q+1
G ASpec k is in Σ

q+1
G SH(k). Since fq+1(KGL) belongs to Σ

q+1
G SH(k)

as well and fq+1(θq+1) is an isomorphism, we conclude that θq+1 is an isomorphism.

One of the equivalent models for the motivic Eilenberg–Mac Lane bispectrum HZ is as

follows. Let Cor be the ringoid of finite correspondences over Sm/k (see, e.g., [27]). The
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cube of sheaves Cor(−,G∧n
m ) is defined similarly to the cube K Gr

0 (A (−, Y ×G∧n
m )). Its

vertexes are sheaves Cor(−,G×k
m ), k 6 n. By definition,

HZ = (E M(Cor(−,Spec k)), E M(C⊕Cor(−,G∧1
m )), . . .),

where E M stands for the Eilenberg–Mac Lane functor in the sense of [5, Appendix A]

from abelian groups to SpΣ .

The composite map of ringoids

K0
F
−→ K⊕0 → Cor

(see [26, 34] for the definition of the second arrow) yields a map of bispectra

λ : A0,Spec k → HZ.

The proof of Theorem 4.7 and Corollaries 7.2–7.3 shows that λ is an isomorphism in

SH(k).
The next result was first conjectured by Voevodsky [30, 31] and solved by Levine [15]

by using the coniveau tower (over perfect fields).

Theorem 7.11. Let k be a perfect field. Then for every q > 0 we have isomorphisms in

SH(k),
sq(KGL) ∼= Σq

s Σ
q
GHZ.

Proof. The proof of Theorem 7.10 shows that there is a commutative diagram in SH(k),

Σ
q+1
s Σ

q+1
G ASpec k //

θq+1

��

Σ
q
s Σ

q
GASpec k

θq

��

// Σq
s Σ

q
GA0,Spec k // Σq+2

s Σ
q+1
G ASpec k

Σsθq+1

��
fq+1(KGL) // fq(KGL) // sq(KGL) // Σs fq+1(KGL),

where the vertical arrows are isomorphisms. Since SH(k) is triangulated, there exists an

isomorphism

Σ
q
s Σ

q
GA0,Spec k ∼= sq(KGL).

It remains to observe that λ : A0,Spec k → HZ induces an isomorphism Σ
q
s Σ

q
GA0,Spec k ∼=

Σ
q
s Σ

q
GHZ in SH(k).

Let P̃(G×q
m )(X) be the additive category whose objects are the tuples (P, θ1, . . . , θq)

with P ∈ P̃(X) and (θ1, . . . , θq) commuting automorphisms. The cube of affine schemes

G∧q
m gives rise to a cube of additive categories P̃(G∧q

m )(X) with vertexes being

P̃(G×q
m )(X), 0 6 k 6 q. The edges of the cube are given by the additive functors

is : P̃(G×k−1
m )(X)→ P̃(G×k

m )(X),

(P, (θ1, . . . , θk−1)) 7−→ (P, (θ1, . . . , 1, . . . , θk−1)),

where 1 is the sth coordinate.

Grayson’s machinery [9] (see [5, 34] as well) produces a tower in Ho(PreΣnis(Sm/k)),

· · · → Σ
q
s |K Gr (C⊕P̃(G∧q

m )(−×1.))| → · · · → |K Gr (P̃(−×1.))|. (15)
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By [9, 10.5], |K Gr (P̃(−×1.))| = |K (P̃(−×1.))|. This tower produces the Grayson

motivic spectral sequence for P̃(X) (see [5, 9, 26, 34])

E pq
2 = H p−q

nis (X,ZGr (−q)) H⇒ K−p−q(X), X ∈ Sm/k. (16)

In view of Theorem 7.1, it takes the form

E pq
2 = H p−q,−q

M (X,Z) H⇒ K−p−q(X), X ∈ Sm/k.

We are now in a position to prove the following.

Theorem 7.12. Let k be a perfect field. Then the Grayson motivic spectral sequence (16)

is isomorphic to the Voevodsky motivic spectral sequence [3, p. 171]

E pq
2 = SH(k)(Σ∞G Σ

∞
s X+,Σ

p−q
s Σ

q
Gs0(KGL)) H⇒ K−p−q(X),

produced by the slice tower for the bispectrum KGL.

Proof. Recall that there is an additive functor G X : A (X,Spec k)→ P̃(X), functorial

in X , which is an equivalence whenever X is affine. It induces a map of multisimplicial

additive categories,

Gq,X : C⊕A (X,Spec k)(G∧q
m )→ C⊕P̃(G∧q

m )(X),

which is an equivalence whenever X is affine. In view of the (Aut) property for A , we

can identify A (X,Spec k)(G∧q
m ) with A (X,Spec k×G∧q

m ).

It follows that Grayson’s tower (15) for P̃(X) is isomorphic in Ho(PreΣnis(Sm/k)) to

Grayson’s tower (6) for A (X,Spec k). Corollary 7.2 and Proposition 7.5 imply that

Grayson’s motivic spectral sequence (16) is isomorphic to Grayson’s motivic spectral

sequence (7) for A ,

E pq
2 = H p−q,−q

K (X,Z) H⇒ K A
−p−q(X,Spec k), X ∈ Sm/k.

Theorems 4.7, 7.10, and 7.11 now finish the proof.

Appendix A. Some facts on spectra

We prove here a couple of useful facts. First we wish to compare the agreement of the

bispectrum KGL with the classical K -theory P1-spectrum BGL (see, e.g., [18, 20, 29]).

The functor diag : SHS1,G(k)→ SHS1∧G(k) sending a bispectrum to its diagonal S1
∧

G-spectrum is an equivalence of categories. In particular, diag(KGL) is isomorphic to the

following S1
∧G-spectrum:

KGL1 = (K̂ Gr (S−1SA (−,Spec k))(0)f , �K̂ Gr ((S−1S)2A (−,Spec k))(1)f ,

�2 K̂ Gr ((S−1S)3A (−,Spec k))(2)f , . . .),

where f refers to motivic fibrant replacement with respect to the injective model structure

of motivic spaces (see [12]) and the superscript (n) refers to the nth space of the

S1-spectrum �n K̂ Gr ((S−1S)n+1A (−,Spec k)). Let K be a motivic fibrant replacement

of the K -theory presheaf U 7→ K (P̃(U )). Then we can choose homotopy equivalences

αn : �
n K̂ Gr ((S−1S)n+1A (−,Spec k))(n)f → K , n > 0,
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and maps βn : K ∧ (S1
∧G)→ K which are defined as

K ∧ (S1
∧G)

γn∧1
−−−→ �n K̂ Gr ((S−1S)n+1A (−,Spec k))(n)f

∧ (S1
∧G)→ �n+1 K̂ Gr ((S−1S)n+2A (−,Spec k))(n+1)

f
αn+1
−−→ K

with γn being some homotopy inverse of αn . We then get a S1
∧G-spectrum

KGL2 = (K ,K ,K , . . .)

with structure maps given by βn .

It follows from [22, 6.3] that KGL1 and KGL2 are isomorphic in SHS1∧G(k). By the

same result and [23, 1.1.2], KGL2 is isomorphic in SHS1∧G(k) to the spectrum

KGL3 = (K ,K ,K , . . .)

with each structure map given by β0.

There is a zigzag of motivic equivalences,

S1
∧G ∼
←−A1 T̃

∼
−→A1 T

∼
←−A1 P1,

where T̃ is the mapping cylinder for the inclusion (Gm)+→ A1
+. By [12, 2.13], the zigzag

induces an equivalence of categories,

θ : SHS1∧G(k)→ SHP1(k).

Consider a P1-spectrum

KGL4 = (K ,K ,K , . . .),

where each structure map K → �P1K is given by

K → �S1∧GK
∼
−→ �P1K .

Here the left arrow is adjoint to β0 and the right arrow is a chosen homotopy equivalence

induced by the zigzag above (recall that K is a motivically fibrant space).

It follows from [22, 6.3] that θ(KGL3) is isomorphic to KGL4 in SHP1(k). It remains to

apply [23, 1.1.2] to show that KGL4 is isomorphic in SHP1(k) to the P1-spectrum BGL
defined in [20, 1.2.1].

We document the above arguments as follows.

Theorem A.1. The image of the bispectrum KGL under the equivalence of triangulated

categories θ ◦ diag : SHS1,G(k)→ SHP1(k) is isomorphic to the K -theory P1-spectrum

BGL in the sense of [20, 1.2.1].

Although the authors have not found the following result in the literature, they do not

have pretensions to originality. It is used in the proof of Lemma 5.2.

Proposition A.2. If E is a connected motivically fibrant S1-spectrum, then so is �GE.
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Proof. Clearly, �GE is motivically fibrant. To prove that it is connected, it suffices to

check that for any smooth local Henselian scheme U one has πn<0(E(Gm,U )) = 0 (recall

that G is sectionwise equivalent to the pointed motivic space (Gm, 1)). Since �Gm E is

motivically fibrant, by [17, 6.1.6], it is enough to verify that for any k-smooth variety X
one has πn<0(E(Gm,K )) = 0 with K = k(X) its function field.

Sublemma. If F is a strictly homotopy invariant Nisnevich sheaf of Abelian groups on

Sm/k, then Hn
nis(Gm,k(X),F ) = 0 for all n > 0 and X ∈ Sm/k.

Proof. The result is well known for n > 1. One has

H1
nis(Gm,k(X),F )

(1)
= H2

nis(S
1
∧Gm,k(X),F )

(2)
= [S1

∧Gm,k(X), K (F , 2)]HA1 (k)

(3)
= [P1

k(X), K (F , 2)]HA1 (k)
(4)
= H2

nis(P
1,F )

(5)
= 0.

Here (1) is given by the suspension isomorphism, (2) holds because K (F , 2) is an

A1-local motivic space, (3) holds because S1
∧Gm,k(X) ∼= P1

k(X) in HA1(k), (4) holds

because K (F , 2) is an A1-local motivic space, and finally (5) follows from the fact that

dimP1
= 1 < 2.

Now the spectral sequence

H p(Gm,k(X), πq(E)) H⇒ πq−p(E(Gm,k(X)))

together with the sublemma above shows that H0(Gm,k(X), πq(E)) = πq(E(Gm,k(X))) = 0
for q < 0, because πq<0(E) = 0.

To conclude the paper, we remark that all presheaves of symmetric spectra forming the

main bispectra ASpec k, A0,Spec k we work with are K-modules in the sense of [6]. Moreover,

their structure maps are K-module morphisms. Also, Grayson’s tower (6) for A is in

fact a tower in the homotopy category Ho(ModK) of K-modules. It produces a tower

of compact objects in the motivic homotopy category of K-modules in the sense of [5].

This point of view of the motivic spectral sequence motivated the authors to develop the

‘enriched motivic homotopy theory’ of spectral categories and modules over them [5, 6].

As an application, the motivic spectral sequence is realized in associated triangulated

categories. Though we tried to avoid the use of this language here, it is this theory that

led the authors to the main results of this paper.
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