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We investigate a degenerate parabolic variational inequality arising from optimal continu-
ous exercise perpetual executive stock options. It is also shown in Qin et al. (Continuous-
Exercise Model for American Call Options with Hedging Constraints, working paper, avail-
able at SSRN: http://dx.doi.org/10.2139/ssrn.2757541) that to make this problem non-trivial
the stock’s growth rate must be no smaller than the discount rate. Well-posedness of the
problem is established in Lai et al. (2015, Mathematical analysis of a variational inequality
modeling perpetual executive stock options, Euro. J. Appl. Math., 26 (2015), 193–213), Qin
et al. (2015, Regularity free boundary arising from optimal continuous exercise perpetual ex-
ecutive stock options, Interfaces and Free Boundaries, 17 (2015), 69–92), Song & Yu (2011, A
parabolic variational inequality related to the perpetual American executive stock options,
Nonlinear Analysis, 74 (2011), 6583-6600) for the case when the underlying stock’s expected
return rate is smaller than the discount rate. In this paper, we consider the remaining case:
the discount rate is bigger than the growth rate but no bigger than the return rate. The
existence of a unique classical solution as well as a continuous and strictly decreasing free
boundary is proved.

Key words: Variational inequality, free boundary, optimal exercise, perpetual executive
stock option

1 Introduction

In the absence of frictions, if assets are priced by arbitrage, the value per-unit is invariant
to the amount of the asset. In particular, the optimal exercise time is independent of the
amount of American style claims. However, it is not necessarily true in the presence of
portfolio constraints or other frictions. This fact motivates Rogers and Scheinkman [15]
to propose a continuous exercise model (claims can be exercised bit by bit) for American
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style claims with a direct application to executive stock options, which are American call
options granted by a firm to an executive as a form of benefit to his or her salary usually
with long maturity, ranging from 5 to 15 years, and hedge constraint (e.g., no short sell of
the underlying stocks). There is an extensive literature on executive stock options, see, for
example, Lambert, Larcker and Verechia [11], Carpenter [1], Hall and Murphy [7], Jain
and Subramanian [9], Grasselli and Henderson [6], Leung and Sircar [12], and references
therein. More precisely, suppose an executive owns A amount of executive stock options
initially, he or she can exercise any fractions of options with strike price K at any time
before or on the maturity T. We denote an admissible exercise strategy, which describes
the amount of remaining options, by an adapted, non-negative, non-increasing, left-
limit, and right-continuous process {mt}0�t�T with conditions that m0− = A and mT = 0.
And the set of all these admissible exercise strategies is denoted byM0,T(A). Then the
executive’s problem is to choose an optimal exercise strategy to maximize his or her
utility of the present wealth:

V(x, s,A,T) = sup
mt∈M0,T(A)

�
[
U
(
x −
∫ T

0
e−rt[St − K]+dmt

) ∣∣∣∣ S0 = s
]
, (1.1)

where r > 0 is a constant discount rate, U is the executive’s utility function which is
increasing and concave. x ∈ � and s � 0 are the initial wealth of the executive {Xt}t�0

and initial price of the underlying stock price {St}t�0, whose dynamics are given as
follows respectively:

dXt = −e−rt(St − K)+dmt, X0 = x,

dSt = αStdt + σStdWt, S0 = s,

with constant expected return rate α ∈ � and constant volatility σ > 0. {Wt}t�0 is
a standard Brownian motion. As is shown in [14], it is convenient to consider the
discounted number of the remaining options {At}t�0 (i.e., At = e−rtmt), which satisfies

dAt = −rAtdt + e−rtdmt, A0− = A.

In [14], we prove that the value function V defined by (1.1) is a unique viscosity
solution to the following variational inequality:

min
{
∂V
∂T
+ rA

∂V
∂A
− 1

2
σ2s2 ∂

2V
∂s2 − αs

∂V
∂s
,
∂V
∂A
− [s − K]+

∂V
∂x

}

= 0 for (x, s,A,T) ∈ � × (0,∞)3,

with appropriate growth conditions, and the following initial and boundary conditions:

V|sA=0 = U(x), V|T=0 = U(x + [s − K]+A).

Note that besides T, the variable A also plays a role of time. Hence, this variational
inequality is a parabolic type with double time-like variables, which is seldom seen in
the literature.
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On the other hand, the perpetual problem (i.e., the maturity is infinite) is not only easy
to study but also admits some practical meanings. For example, as mentioned before, the
maturity of executive stock options is very long, usually over 10 years, so perpetual one
is not a bad approximation. Besides, this continuous exercise model can also be applied
to real investment decisions where problems are solved usually with an infinite horizon
(see Dixit and Pindyck [4]). In this context, the perpetual problem is naturally defined
as the limit of the finite horizon problem, i.e.,

v(x, s,A) := lim
T→∞

V(x, s,A,T).

However, when α− σ2/2 � r, the probability that the discounted underlying stock price
goes to infinite is one. Thus, the executive will never exercise his or her options until
the stock price goes to infinity. So, for the above definition being well-posed, in [14], we
establish some limit properties of the value function V as maturity goes to infinite. In
particular, under exponential utility, i.e., U(z) = −e−γz with γ > 0, the condition

α − σ
2

2
< r (1.2)

is sufficient and necessary to make the perpetual problem be well-posed. Using dimen-
sionless quantities

z = log
s
K
, a = γKA, R =

2r
σ2 , ν =

2
σ2

[
α − σ

2

2

]
,

the condition (1.2) is equivalent to ν < R. One can further show that v(x, s,A) = e−γxu(z, a)
where u solves

min
{
Raua − uzz − νuz, ua + g+u

}
= 0 in �×(0,∞), u(·, 0) = −1. (1.3)

The dimensionless certainty equivalent is a function ϕ = ϕ(z, a) such that

v = U
(
x + γ−1ϕ

)
.

Then ϕ = − ln(−u) solves the following equation:

min
{
A[ϕ], Bϕ

}
= 0 in � × (0,∞), ϕ(·, 0) = 0, (1.4)

where

A[ϕ] := Raϕa − ϕzz − νϕz + ϕ
2
z , Bϕ := ϕa − g+,

subscripts represent partial derivatives, g+ := max{g, 0}, and g = ez − 1. Setting φ(z, t) :=
ϕ(z, et), the problem can be written as

Rφt = max
{
φzz + νφz − φ2

z , Retg+(z)} in �2, φ(·,−∞) = 0.

This is a fully non-linear degenerate parabolic equation with initial value given at
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t = −∞. When ν < R − 1, Song and Yu [16] show the existence of a strong solution by a
line method. In [10], we use modified penalty method to prove the existence of a unique
classical solution and the existence of a continuous and strictly decreasing function s(·)
defined on [0,∞) such that

A[ϕ] = 0 < Bϕ in N := {(z, a) | a > 0, z < s(a)},
A[ϕ] > 0 = Bϕ in T := {(z, a) | a > 0, z > s(a)},
A[ϕ] = 0 = Bϕ on Γ := {(z, a) | a > 0, z = s(a)}.

(1.5)

We call Γ the free boundary. In its original context, N is called no-exercising region and T
the exercising region and the optimal strategy depends only on the free boundary, which
is explicitly constructed in [14] with the following form:

Aoptimal(t) = min
{
A, min

0�ρ�t

erρ a∗
(

ln S(ρ)
K

)
γK

}
, (1.6)

where a∗(·) is the inverse of s(·), with natural extension a∗(z) = ∞ for z � 0 = s(∞) and
a∗ = 0 for z > s(0+).

Moreover, in [10], we discover that the function ψ := ϕa satisfies the following vari-
ational inequality:

min
{
F [ψ], ψ − g

}
= 0 in �×[0,∞), (1.7)

where F [ψ] := Raψa + Rψ − ψzz +
(
2
∫ a

0
ψz(z, t)dt − ν

)
ψz. It is a great simplification that

g+ in (1.4) is replaced by g (see also [3]), since options are not exercised when stock
price is below strike price. Also, (1.7) at a = 0 provides the equation for the initial value
ψ0 := ψ(·, 0) = ϕa(·, 0):

min
{
Rψ0 − ψ′′0 − νψ′0, ψ0 − g

}
= 0 in �. (1.8)

By establishing a strong solution of (1.7), we obtain a classical solution of (1.4), when
α < r. Furthermore, in [13], we convert (1.4) to a Stefan type free boundary problem for
(ϕ,ψ,w, s) where w = ψa. Under the condition α < r, we prove that s ∈ C3/2([0,∞)) ∩
C∞((0,∞)) and ϕ ∈ C2(� × [0,∞)). The analysis in [10, 13] relies on ϕaa � 0, due to V
concave in (x,A); see [2] for a derivation.

In this paper, we study the remaining case r � α < r+σ2/2 or equivalently R−1 � ν < R.
Our main result is the following:

Theorem 1 Assume that R > 0 and 0 < μ := R − ν � 1. Then (1.4) admits a unique solution
having the following properties: ϕ,ϕz, ϕzz, aϕa ∈ C(� × [0,∞)), ϕaa � 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 � μϕ � max{(aez)μ, aez}, 0 � ϕz � ϕ + a,
0 � aϕa � ϕ, 0 � aϕaz � ϕ + a,
0 � ϕzz � Rϕ − νϕz + ϕ2

z , aϕa ∈ Cμ,μ/2(� × [0,∞)),
(1.9)
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ϕa(z, 0) := lim
a↘0

ϕ(z, a)
a
=

⎧⎪⎪⎨⎪⎪⎩
ez if μ = 1

∞ if μ ∈ (0, 1)
∀ z ∈ �. (1.10)

Also, there exists a strictly decreasing and continuous function s such that (1.5) holds and

π + ln
(
1 +

1 + ν2

2Ra

)
� s(a) �

{
ln[(μ − μ2)/4]1/μ − ln a if μ ∈ (0, 1),
ln(
√

R/2) − ln
√

a if μ = 1.
(1.11)

Remark 1.1 It is very delicate to prove the uniqueness of the solution, due to the singular
behaviour:

lim
a↘0

lim
z→∞

ϕ(z, a) = ∞, lim
z→∞

lim
a↘0

ϕ(z, a) = 0, lim
a↘0

s(a) = ∞.

We prove the uniqueness as follows. It is shown in [14] that the optimal strategy is given
by (1.6) if the solution of (1.5) has the following property: there exist positive constants
M and δ such that

a es(a) � M, ϕ(z, a) =M[aez]δ ∀ z � s(a), a ∈ (0, 1].

Clearly, our upper bounds of s and ϕ validate the above assumptions, so by Theorem 3
in [14],

ϕ(z, a) = − ln
(
− v
(
0,Kez,

a
γK

))
.

Since the value function V is well-defined, we see thatϕ is unique and (1.6) is the optimal
strategy.

Remark 1.2 When μ ∈ (0, 1), the estimate (1.11) implies that

lim
a↘0

s(a)
ln a
= −1.

In a subsequent paper, we shall show that the above limit is − 1
2 when μ = 1.

The semi-discretization scheme of Song and Yu [16] is based on the function u for (1.3).
In terms of (1.4), it can be described as

min{An[ϕn], Bn[ϕn]} = 0, (1.12)

where An and Bn are implicit time-discretization ofA andB, respectively. Different from
Song and Yu [16], here we use a semi-discretization of (1.7):

an = a0 + nh, min{Fn[ψn], ψn − g} = 0, ϕn = ϕn−1 + hψn, (1.13)

where Fn is an implicit time discretization of F at time a = an. For a given discretization
time step h, we choose carefully an initial time a0 = O(

√
h) and initial data (ϕ0, ψ0) at
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time a = a0 such that the solution of (1.13) is actually the solution of (1.12)! Therefore,
the resulting approximation possesses properties of solutions of both discretizations.

The rest of the paper is organized as follows. In Section 2, we construct approximate
solutions of (1.13) and show that they are also solutions of (1.12). In Section 3, we consider
the well-studied case R > ν+1, for the purpose of illustrating the idea of the convergence
routine, as h ↘ 0. In Section 4, we briefly mention the transition case R = ν + 1 and in
Section 5, we consider the case ν < R � ν + 1.

In the sequel, we use the convention that all functions are left continuous, i.e., f (z) =
limx↗z f (x). We use Cm+1(�) to denote functions with locally Lipschitz continuous mth
order derivatives and C to denote a generic constant depending only on R and ν. We
always assume that R > 0.

2 Approximation

Let h > 0 be a given step size for time discretization. For some initial time a0 � 0
and initial data (ϕ0, ψ0) to be determined later, we define {(ϕn, ψn)}∞n=1 iteratively as the
solution of (1.13), where Fn is an implicit time discretization of F in (1.7):

Fn[ζ] := Rh−1[anζ − an−1ψn−1] − ζ′′ − νζ′ + 2ϕ′n−1ζ
′ + hζ′2. (2.1)

We shall construct initial data (a0, ϕ0, ψ0) having the following properties:

(A1) a0 � 0, ϕ0, ψ0 ∈ C1+1(�), min{Rψ0 − ψ′′0 − νψ′0 + 2ϕ′0ψ
′
0 + hψ′0

2, ψ0 − g+} � 0.

(A2) min{Ra0ψ0 − ϕ′′0 − νϕ′0 + ϕ′02, ψ0 − g} = 0.

(A3) ϕ0 � 0, ϕ′0 � 0, ϕ′′0 � 0.

(A4) 0 � ψ′0 � ψ0 + 1.

(A5) There exists a positive b such that ψ0 = g in [b,∞) and ψ0 > g in (−∞, b).

2.1 Existence

Lemma 2.1 Given mesh size h > 0 and initial data (a0, ϕ0, ψ0) satisfying (A1), there exists a
sequence {(ϕn, ψn)}∞n=1 in [C1+1(�)]2 that solves (1.13), where Fn is as in (2.1), and satisfies

ψ0 � ψ1 � ψ2 � · · · � g+.

Proof We use a mathematical induction. Set Fn[ζ] = min{Fn[ζ], ζ − g}.

Hypothesis (Hn−1): ϕn−1, ψn−1 ∈ C1+1(�), ψ0 � ψn−1 � 0, Fn[ψn−1] � 0.

When n = 1, (ϕ0, ψ0) is given and satisfies (H0), by the condition (A1) and the fact that
a1 = a0 + h and ψ0 − g � ψ0 − g+ � 0. Thus, the hypothesis is true when n = 1.

Next, suppose (Hn−1) is true for some n � 1. We construct ψn by solving Fn[ψn] = 0.

(i) Note that Fn[0] = min{−Rh−1an−1ψn−1, −g} � 0. Hence, 0 is a subsolution.

(ii) By the induction hypothesis, Fn[ψn−1] � 0. Hence, ψn−1 is a supersolution.
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(iii) As the supersolution ψn−1 is no smaller than the subsolution 0, by a standard pde
argument (c.f. [5] or Step 1 of the proof of Lemma 2.4 below), there exists a C1+1(�)
solution ψn of Fn[ψn] = 0, satisfying 0 � ψn � ψn−1. We set ϕn = ϕn−1 + hψn. Then
ϕn ∈ C1+1(�).

(iv) Now we verify hypothesis (Hn). We already know 0 � ψn � ψn−1 � ψ0. Also,

Fn+1[ψn] = min{Fn+1[ψn], ψn − g} = min{Fn[ψn] + δn, ψn − g} � Fn[ψn] = 0,

since δn := Rh−1an−1[ψn−1 − ψn] + 2hψ′n
2 � 0. Thus, (ϕn, ψn) satisfies (Hn). This

completes the mathematical induction and also the proof of the lemma.
�

Remark 2.1 We are working on unbounded domain � with unbounded solutions, so
the uniqueness of the solution ψn of Fn[ψn] = 0 does not follow from any classical pde
theory. We can show the uniqueness, but the proof is too technical so we decide to omit
it here. Nevertheless, under the full assumptions (A1)–(A5), we can work on the half
interval (−∞, b] with boundary conditions ψ′n(b) = g′(b) and ψn(−∞) = 0 to establish the
existence and uniqueness (since R > 0) of solutions. The propertyψ0 � ψn � g still holds
soψn(b) = g(b) and we can extendψn to � by settingψn ≡ g on [b,∞). The condition (A1)
implies that Fn[ψn] = Fn[g] � F1[g] � 0 on [b,∞) (since ϕn = ϕ0 + [an − a0]g on [b,∞)), so
the extended function satisfies Fn[ψn] = 0 on �.

In the sequel, {(ϕn, ψn)}∞n=1 is the solution of (1.13) given in Lemma 2.1.

2.2 Variation structure of ϕ

Lemma 2.2 Assume (A1) and (A2). Then the solution of (1.13) satisfies (1.12) where

An[ζ] := Ranh−1[ζ − ϕn−1] − ζ′′ − νζ′ + ζ′2, Bn[ζ] := h−1[ζ − ϕn−1] − g.

Proof For each integer n � 1, using 2ϕ′n−1ψ
′
n + hψ′2n = h−1(ϕ′2n − ϕ′2n−1), we obtain

hFn[ψn] = [Ranψn − ϕ′′n − νϕ′n + ϕ′2n ] − [Ran−1ψn−1 − ϕ′′n−1 − νϕ′n−1 + ϕ
′2
n−1].

Hence, defining γ0 := Ra0ψ0 − ϕ′′0 − νϕ′0 + ϕ′02, we have

An[ϕn] = Ranψn − ϕ′′n − νϕ′n + ϕ′n2 = γ0 +

n∑
i=1

hFi[ψi].

(i) The condition (A2) implies that γ0 � 0. The equation (1.13) implies that Fi[ψi] � 0
for each i � 1. Hence, An[ϕn] � 0 in �. Also, Bn[ϕn] = ψn − g � 0 in �.

(ii) Suppose z ∈ � is a point at which Bn[ϕn](z) = ψn(z) − g(z) > 0. Then ψ0(z) � ψ1(z) �
· · · � ψn(z) > g(z). Consequently, from min{Fi[ψi], ψi− g} = 0 and min{γ0, ψ0− g} = 0,
we have γ0(z) = 0 and Fi[ψi](z) = 0 for i = 1, · · · ,n. Thus, An[ϕn](z) = 0.
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In conclusion, min{An[ϕn], Bn[ϕn]} = 0. �

Remark 2.2 The scheme of Song and Yu [16], based on (1.3), is almost the same as (1.12).
Using (1.13), we can estimate directly ψ = ϕa, retaining the variation structure (1.12).

2.3 Positivity, monotonicity, and convexity of ϕ

Lemma 2.3 Assume (A1)–(A3). Then ϕn � 0, ϕ′n � 0, and ϕ′′n � 0 in � for every n � 1.

Proof We use an induction argument. Assume that n � 1 and ϕn−1 � 0, ϕ′n−1 � 0 and
ϕ′′n−1 � 0.

For each fixed constant ε > 0, we consider the evolution problem, for φ = φ(z, t),

φt − φzz − νφz + φ
2
z + Rh−1an(φ − ϕn−1) + βε(φ − ϕn−1 − hg) = 0 in � × (0,∞), (2.2)

φ(·, 0) = 0 on � × {0}.

Here, βε(s) = β(s/ε) and β is a smooth function satisfying

β = 0 in [0,∞), β′′ < 0 < β′ in (−1, 0), β′′ = 0 in (−∞,−1]. (2.3)

(i) One can apply maximum principle to obtain an a priori estimate φ � 0 in �× (0,∞).
Also, since min{An[ϕn],Bn[ϕn]} = 0, one can use comparison to obtain an a priori
estimate φ � ϕn in � × [0,∞). These upper and lower bounds ensure that the
non-linear parabolic equation admits a unique solution in the function space {φ ∈
C3+1,2(� × [0,∞)) | 0 � φ � ϕn}.

(ii) Differentiating (2.2) with respect to z, we obtain

(φz)t − (φz)zz + [2φz − ν](φz)z + [Rh−1an + β
′
ε]φz

= Rh−1anϕ
′
n−1 + [ϕ′n−1 + hg′]β′ε � 0,

(φzz)t − (φzz)zz + [2φz − ν](φzz)z + [Rh−1an + β
′
ε + 2φzz]φzz

= Rh−1anϕ
′′
n−1 + [ϕ′′n−1 + hg′′]β′ε − [φz − ϕ′n−1 − hg′]2β′′ε � 0.

Hence, by maximum principle, φz � 0 and φzz � 0 in � × [0,∞).

(iii) Since φ � 0, we have φt(·, 0) � 0. We can differentiate (2.2) with respect to t to
obtain a parabolic equation for φt and show by maximum principle that φt � 0
in � × [0,∞). Hence, φε(x) := limt→∞ φ(x, t) exists; the limit satisfies ϕn � φε � 0,
φ′ε � 0 and φ′′ε � 0 in �, and

−φ′′ε − νφ′ε + φ′ε2 + Rh−1an(φε − ϕn−1) + βε(φε − ϕn−1 − hg) = 0 in �. (2.4)

(iv) Finally, sending ε ↘ 0, we obtain ϕn = limε↘0 φε, being the unique solution of the
variational inequality (1.12). The properties φε � 0, φ′ε � 0, and φ′′ε � 0 carry over
to the limit so ϕn � 0, ϕ′n � 0, and ϕ′′n � 0 in �.

This completes the mathematical induction argument and also the proof of the
lemma. �
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Remark 2.3

(1) In step (iv), we need the uniqueness of solutions of (1.12); see Remark 2.1.

(2) The classical approach (e.g. [5]) for the obstacle problem (1.12) uses (2.4) for approx-
imation, where there is a technical difficulty in applying the maximum principle for
φ′′ε , e.g., a priori it is not known if Rh−1an + β′ε + 2φ′′ε is positive. We overcome this
difficulty by the parabolic approximation for which positivity of Rh−1an + β′ε + 2φzz

is not needed for maximum principle.

2.4 Free boundary approximation

At a = an, the approximate free boundary is defined as the boundary of the set

{z | ψn(z) > g(z)} = {z | [ψn(z) + 1]e−z > 1}.

If [ψn(z) + 1]e−z is decreasing, i.e., ψ′n � ψn + 1, the free boundary is at most a singleton.

Lemma 2.4 Assume (A1)–(A4). Then for each n � 1, 0 � ψ′n � ψn + 1 in �.

Proof We use mathematical induction. Assume that n � 1 and 0 � ψ′n−1 � ψn−1 + 1.

(1) For each fixed ε > 0, consider the problem, for ψε(z), that approximates ψn:

Rh−1(anψε − an−1ψn−1) − ψ′′ε + [2ϕ′n−1 + hψ′ε − ν]ψ′ε + βε(ψε − g) = 0 in �, (2.5)

where βε(s) = β(s/ε) and β is as in (2.3). One can show that 0 is a subsolution and
ψn−1 is a supersolution (since Fn[ψn−1] � 0). Hence, there exists a solution satisfying
0 � ψε � ψn−1. Sending ε↘ 0, we obtain a limit ψn ∈ C1+1(�) which is the solution
of Fn[ψn] = 0 satisfying 0 � ψn � ψn−1; see, for example, [5] for the standard ε↘ 0
process.

(2) Differentiating (2.5) with respect to z, we obtain

−ψ′′′ε + (2ϕ′n−1+2hψ′ε−ν)ψ′′ε + (Rh−1an + 2ϕ′′n−1+β
′
ε)ψ

′
ε = Rh−1an−1ψ

′
n−1+β

′
εg′ � 0. (2.6)

It then follows from the maximum principle that ψ′ε � 0 in �. Sending ε ↘ 0, we
obtain ψ′n � 0.

(3) Set ζ = ψε + 1 + ε − ψ′ε. Taking the difference of (2.5) and (2.6), we obtain, using
g′ = g + 1,

−ζ′′ + [2ϕ′n−1 + 2hψ′ε − ν]ζ′ + [Rh−1an + β
′
ε]ζ

= R + Rh−1anε + hψ′ε
2 + 2ϕ′′n−1ψ

′
ε + Rh−1an−1[ψn−1 + 1 − ψ′n−1] + (ψε + ε − g)β′ε − βε

� (s + 1)β′(s) − β(s)
∣∣∣∣
s= ψε−g

ε

� 0;

here we have used the following fact: [(s + 1)β′(s) − β(s)]′ = (s + 1)β′′(s) � 0, so

min
s∈�

{
(s + 1)β′(s) − β(s)

}
= (s + 1)β′(s) − β(s)

∣∣∣∣
s=0
= 0.
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Hence, applying the maximum principle, we obtain ζ � 0 in �. This implies that
ψε + 1 + ε − ψ′ε � 0. Sending ε↘ 0, we obtain ψn + 1 − ψ′n � 0.

Hence, 0 � ψ′n � ψn + 1. This completes the mathematical induction and also the
proof. �

Lemma 2.5 Assume (A1)–(A5). Then for each n � 1, there exists zn ∈ � such that

ψn > g in (−∞, zn), ψn = g in [zn,∞).

In addition, b = z0 > z1 > z2 > · · · > 0.

Proof Suppose that for some n � 1, there exists zn−1 ∈ (0, b] such that ψn−1 > g in
(−∞, zn−1) and ψn−1 = g on [zn−1,∞).

(i) Since ψn−1 � ψn � g in �, ψn ≡ g on [zn−1,∞).

(ii) Consider the function ζn(z) = [ψn(z) + 1]e−z. On [zn−1,∞), ζn ≡ 1. On (−∞, zn−1],
ζ′n = e−z[ψ′n − (ψn + 1)] � 0. Also, since ψn � 0, ζn(−∞) = ∞. Hence, there exists a
unique zn ∈ (−∞, zn−1] such that ζn > 1 in (−∞, zn) and ζn ≡ 1 on [zn,∞); namely,
ψn > g in (−∞, zn) and ψn ≡ g on [zn,∞).

(iii) By strong maximum principle, ψn > 0 on �. This implies that ψ(zn) = g(zn) > 0, so
zn > 0.

(iv) Since ψn ∈ C1(�), that ψn − g attains a global minimum at zn implies that ψ′n(zn) =
g′(zn).

(v) On (−∞, zn], Fn[ψn] = 0 � Fn[ψn−1]. If zn−1 = zn, we would have ψn(zn) = ψn−1(zn),
from which we can apply Hopf’s Lemma to derive that ψ′n(zn) − ψ′n−1(zn) > 0, con-
tradicting ψ(zn)′ = g′(zn) and ψ′n−1(zn−1) = g′(zn−1). Thus, zn < zn−1. This completes
the mathematical induction and also the proof of the lemma. �

2.5 The latent heat

We call η := (A[ϕ])a = F [ψ] the latent heat; see [13].

Lemma 2.6 Assume (A1)–(A5). For n � 1, define

ηn := Fn[ψn], ln := ez(ϕ′n + ϕ
′
n−1 + R − 1 − ν) − R. (2.7)

For each n � 1, the following holds:

(1) ηn = 0 in (−∞, zn], 0 < ηn < ln in [z+n , zn−1), ηn = ln on [zn−1,∞);

(2) ηn(z+n ) − ηn(z−n ) = ψ′′n (zn) − g′′(zn) > 0;

(3) ηn+1 � ηn � 0 and η′n � 0 on �.

Proof

(i) The definition of ψn reads min{ηn, ψn − g} = 0. Hence, ηn � 0 in �. Also, by the
definition of zn, we have ηn = 0 in (−∞, zn] andψn = g in [zn,∞). Sinceψn−1 > g = ψn
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on [zn, zn−1), the first assertion follows by the definition ηn = Rh−1an−1[ψn − ψn−1] +
Rψn − ψ′′n + [ϕ′n + ϕ

′
n−1 − ν]ψ′n.

(ii) Since ψn ∈ C1+1, one sees that ηn(z+n ) − ηn(z−n ) = ψ′′n (z−n ) − ψ′′n (z+n ) = ψ′′n (zn) − g′′(zn) =
ζ′n(zn) > 0, by the Hopf’s Lemma, since ζn := ψ′n − (ψn + 1) is negative in (−∞, zn),
equals to zero at zn, and in (−∞, zn),

Rh−1anζn − ζ′′n + (ϕ′n + ϕ
′
n−1 − ν)ζ′n = −R + Rh−1an−1ζn−1 − (ϕ′′n + ϕ

′′
n−1)ψ′n < −R.

(iii) On [z+n ,∞),ψn = g so ηn = ln+Rh−1an−1(ψn−ψn−1); usingψ′n = g′ = ψn+1, we obtain

η′n = R + ηn + ez[ϕ′′n + ϕ
′′
n−1] + Rh−1an−1[ψn−1 + 1 − ψ′n−1] > R + ηn > 0.

(iv) Assume n � 2. On (zn−1,∞),ψn = g = ψn−1, so ηn = ln. As ηn−1 � ln−1 on [zn−1,∞), we
have ηn − ηn−1 � ln − ln−1 = ez[hψ′n + hψ′n−1] = 2he2z > 0. On (zn, zn−1], ηn > 0 = ηn−1.
On (−∞, zn], ηn = 0 = ηn−1. Thus, ηn − ηn−1 � 0 on �. The assertion of the lemma
thus follows.

�

2.6 Hölder continuity of aψ in a

We write the equation Fn[ψn] = ηn as

Rh−1[anψn − an−1ψn−1] − ψ′′n = fn := ηn + [ν − ϕ′n − ϕ′n−1]ψ′n.

Since ηn = 0 in (−∞, zn] and 0 � ηn � ln = [ϕ′n + ϕ
′
n−1 + R − ν − 1]ψ′n − R on [z+n ,∞), we

have

| fn| � max
{
(R − 1)+, |ν| + 2ϕ′n

}
ψ′n on �.

For integer 0 � m < n and constant δ > 0 to be chosen,

anψn(z) − amψm(z) = an

{
ψn(z) −

� z

z−δ
ψn(y)dy

}
− am

{
ψm(z) −

� z

z−δ
ψm(y)dy

}

+

� z

z−δ

n∑
i=m+1

[aiψi(y) − ai−1ψi−1(y)]dy = I − II + III.

Since ψ′i > 0, both I and II are positive so |I − II| � maxm�i�n ‖aiψ′i‖L∞((−∞,z])δ.
Next, using equation aiψi − ai−1ψi−1 = R−1h[ψ′′i + fi], we have

|III| = h
R

∣∣∣∣
� z

z−δ

n∑
i=m+1

[ψ′′i (y) + fi(y)]dy
∣∣∣∣

�
h

Rδ

n∑
i=m+1

|ψ′i (z) − ψ′i (z − δ)| + h
R

� z

z−δ

n∑
i=m+1

| fi(y)|dy

�
an − am

Rδ
max
m�i�n

‖ψ′i‖L∞((−∞,z]) +
an − am

R
max

m+1�i�n
‖ fi‖L∞((−∞,z]).
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Hence, taking δ =
√

an − am/
√

Ran and using 0 � ψ′i � ψi + 1 � ψm + 1 for i � m, we
obtain the following.

Lemma 2.7 Assume (A1)–(A5). Then for every integer n > m � 0,

|anψn − amψm| �
√

an − am

√
an

R

(
2
√

R +max
{
(R − 1)+, |ν| + 2ϕ′n

})
[1 + ψm]. (2.8)

3 The case μ > 1

In this section, we assume that μ := R−ν > 1, which has been well-studied in [10,13,16].
The purpose that we revisit this studied problem is to illustrate the routine convergence
technique that will be used in subsequent Sections for the case 0 < μ � 1.

3.1 Construction of the initial data

We set a0 = 0, ϕ0 = 0 and

λ :=

√
ν2 + 4R − ν

2
, b := ln

λ
λ − 1

, ψ0(x) :=

⎧⎪⎪⎨⎪⎪⎩
g(b)eλ(x−b) if x � b,

g(x) if x > b.
(3.1)

Here, λ is the positive root of λ2 + νλ = R. Note that λ > 1 since R > 1 + ν.

Lemma 3.1 Assume that R > max{0, 1+ν}. Let a0 = 0,ϕ0 ≡ 0, andψ0 be defined in (3.1). Then
for each h > 0, (a0, ϕ0, ψ0) satisfies (A1)–(A5). In addition, γ0 := a0ψ0 − ϕ′′0 − νϕ′0 + ϕ′02 ≡ 0.

Proof

(i) First, we show that ψ0 is the solution of (1.8).

In the set (−∞, b], Rψ0 − ψ′′0 − νψ′0 = 0 since λ2 + νλ = R. Also, ψ0(b) = g(b) and
ψ′0(b) = λg(b) = g′(b). Moreover, {ψ0(x) − g(x)}′ = g′(b)[eλ(x−b) − ex−b] < 0 for x < b
(since λ > 1). Hence, ψ0 − g > 0 in (−∞, b) and ψ0 ∈ C1+1(�).

In the set (b,∞),ψ0 = g, and Rψ0−ψ′′0 −νψ′0 = (R−1−ν)ez−R > (R−1−ν)eb−R = λ.
Hence, ψ0 satisfies (1.8).

(ii) Since a0 = 0 and ϕ0 ≡ 0, we see that conditions (A1)–(A3) and (A5) are satisfied, and
γ0 ≡ 0. In addition, when x � b, ψ0 = g so ψ′0 = ψ0 + 1; when x � b, ψ′0 − ψ0 − 1 =
[g′(b) − g(b)]eλ(x−b) − 1 = eλ(x−b) − 1 < 0. Hence, (a0, ϕ0, ψ0) satisfies (A1)–(A5).

�

3.2 Convergence routine

For simplicity, we suppress the dependence on h, denoting, for each fixed h > 0, the
solution of (1.13) by {(ϕn, ψn)}∞n=0 and the sequence in Lemma 2.5 by {zn}∞n=0. Also, ηn =
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Fn[ψn]. We denote by 1A the characteristic function of the set A: 1A(a) = 1 if a ∈ A and
1A(a) = 0 if a � A.

We define, for a � 0 and z ∈ �,

sh(a) :=
∞∑

i=1

zi1[ai−1,ai)(a),

ϕh(z, a) :=
∞∑

i=1

(ai − a
h

ϕi−1 +
a − ai−1

h
ϕi

)
1[ai−1,ai)(a),

ηh(z, a) :=
∞∑

i=1

ηi(z)1(ai−1,ai](a),

ξh(z, a) := γ0(z) +
∫ a

0
ηh(z, t)dt.

Then sh(·) is a decreasing function, valued in (0, b]. Also, we have the following L∞

bounds:

0 � ϕh =

∫ a

0

∞∑
i=1

ψi1(ai−1,ai](t)dt � ψ0

∫ a

0

∞∑
i=1

1(ai−1,ai](t)dt = aψ0,

0 � ϕh
a =

∞∑
i=1

ψi1(ai−1,ai](a) � ψ0,

0 � ϕh
z =

∫ a

0

∞∑
i=1

ψ′i 1(ai−1,ai](t)dt � a[ψ0 + 1],

0 � ϕh
za =

∞∑
i=1

ψ′i 1(ai−1,ai](a) � ψ0 + 1,

0 � ϕh
zz � Raψ0 + |ν|a[ψ0 + 1] + (a + h)2[ψ0 + 1]2,

where in the last estimate, we have used An[ϕn] � 0 so ϕ′′n � Ranψn − νϕ′n + ϕ′2n .
Also, we have, in distribution,

ηh � 0, ηh
z � 0, ηh

a � 0, ξh � 0, ξh
z � 0, ξh

a = η
h � 0.

Hence, there exists a decreasing function s : [0,∞)→ [0, b], a locally Lipschitz continuous
function ϕ, and monotonic non-negative functions ξ and η such that along a sequence
h↘ 0,

sh(a) −→ s(a) ∀ a � 0,

(ϕh, ϕh
z) −→ (ϕ,ϕz) in Cα(� × [0,T]) ∀α ∈ [0, 1),T > 0,

(ηh, ξh, ϕh
a , ϕ

h
zz) −⇀ (η, ξ, ϕa, ϕzz) in distribution.

We remark that the following:
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(1) on [b,∞) × [0,∞), ϕh ≡ ag;

(2) the uniform convergence of (ϕh, ϕh
z) in the unbounded region (−∞, 0] × [0,T] is

due to the uniform exponential decay of the solution, as z→ −∞;

(3) by Lemma 2.7, aϕa ∈ C0+1,1/2(� × [0,∞)) and

aϕh
a −→ aϕa uniformly in any compact subset of � × [0,∞);

(4) the convergence of ξh → ξ is indeed pointwise, by the following argument: (i)
since ξh

z � 0, along a sequence of h ↘ 0, ξh(z, a) → ξ(z, a) for every z ∈ � and
every rational a � 0, (ii) since ξh

a = η
h is locally bounded, we have ξh(z, a)→ ξ(z, a)

at every (z, a) ∈ � × [0,∞);

(5) the convergence of ηh → η can be made in L2
loc and a.e., since {ηh} is a bounded

family of bounded variation in any compact subset of � × [0,∞).

The limit (ξ, η) has the following properties:

η = 0 in (−∞, s(a+)), 0 � η � l in [s(a+), s(a−)], η = l in (s(a−),∞),

ξ(z, a) =
∫ a

min{a,a∗(z)}
l(z, t)dt a.e.,

where a∗(·) is the inverse function of s(·), with natural extension a∗(z) = ∞ for z � s(∞)
and a∗(z) = 0 for z � b, and

l(z, a) := ez{2ϕz(z, a) + R − 1 − ν} − R ∈ C(� × [0,∞)).

3.3 The limit equation

Set N = {(z, a) | a > 0, z < s(a+)}, Γ = {(z, a) | a > 0, z ∈ [s(a+), s(a−)]}, and T = {(z, a) | a >
0, z > s(a−)}. Then ϕa = g on Γ∪T since limh→0 ϕh

a = ϕa uniformly in any compact subset
of � × (0,∞). Also, using An[ϕn] = γ0 +

∑n
i=1 hηi = ξh(·, an), we have

A[ϕ] = Raϕa − ϕzz − νϕz + ϕ
2
z = ξ(z, a) a.e. and in L2

loc(� × (0,∞)).

Applying the Hopf’s Lemma to ψ + 1 − ψ′ on the rectangular domain (−∞, s(a−)] ×
(a − ε, a−], we can show as in [10] that the free boundary has neither horizontal part
nor vertical part; that is, s(·) is continuous and strictly decreasing on (0,∞). This implies
that the inverse a∗(·) of s(·) is continuous so ξ(z, a) =

∫ a

min{a,a∗(z)} l(z, t)dt is a continuous

function on � × [0,∞). As aϕa ∈ C(� × [0,∞)), we obtain from A[ϕ] = ξ in L2
loc that

ϕzz = ξ + Raϕa + ϕ2
z − νϕz ∈ C(� × [0,∞)) andA[ϕ] = ξ in C(� × [0,∞)).

Note that ξ(z, a) = 0 for z < s(a); l(s(a), a) � 0; and lz(z, a) > R + l(z, a) > 0 for z > s(a)
(since ϕzz � 0). Hence, ξ(z, a) > 0 for z > s(a). This implies that A[ϕ] = 0 when z � s(a)
andA[ϕ] > 0 when z > s(a).

Using comparison, one can show thatψz < 1+ψ in N. This implies thatBϕ = ψ− g > 0
in N. Hence, we have the following:
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Theorem 2 Assume that R > max{0, 1 + ν}. Let (b, ψ0) be defined as in (3.1). Then (1.4)
admits a classical solution having the following properties: ϕ,ϕz, ϕzz, aϕa ∈ C(� × [0,∞)); on
[b,∞) × [0,∞), ϕ(z, a) = ag(z); on (−∞, b] × [0,∞), ϕaa � 0 and

0 � ϕ � aψ0, 0 � ϕz � a[ψ0 + 1], 0 � ϕzz � Raψ0 − νϕz + ϕ2
z ,

0 � ϕa � ψ0, 0 � ϕaz � ψ0 + 1, aϕa ∈ C0+1,1/2(� × [0,∞)).

There exists a strictly decreasing and continuous function s : [0,∞) → (0, b] such that (1.5)
holds.

Remark 3.1 Set wn = h−1[ψn − ψn−1]. Then wn � 0. Also, since Fn[ψn] = ηn, for n � 2,

0 � h−1[ηn − ηn−1] = Rh−1[anwn − an−2wn−1] − w′′n + [ϕ′n + ϕ
′
n−1 − ν]wn + [ψ′n + ψ

′
n−1]ψ′n−1.

Note that wn ≡ 0 when z � b. Constructing a subsolution, we can show that 0 � wn �
−C[1 + an]. From which, we conclude that ψa = w is locally bounded. Hence, ψ = ϕa is
locally Lipschitz continuous; in particular, ϕa(z, 0) = ψ(z, 0) = g(b)eλ(z−b) for z � b.

4 The case μ ∈ (0, 1]

In the sequel, we assume that R > 0 and 0 < μ := R − ν � 1.

4.1 Construction of initial data

Let h > 0 be fixed. We construct a0 > 0 and (ϕ0, ψ0) by the following steps:

(1) We fix the following relation:

ϕ0(z) := a0

∫ z

−∞
ψ0(x)dx ∀ z ∈ �.

Then ϕ′0 = a0ψ0 and the condition (A2) is equivalent to

min{−ψ′0 + μψ0 + a0ψ
2
0, ψ0 − g} = 0 in �. (4.1)

This leads to the following definition:

ψ0(z) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
a0

μ�eμ(z−z0)

μ + � − �eμ(z−z0)
if z � z0,

g(z) if z > z0,
(4.2)

ϕ0(z) :=
⎧⎪⎨⎪⎩ ln(μ + �) − ln(μ + � − �eμ(z−z0)) if z � z0,

ln(1 + �/μ) + a0

∫ z

z0
g(x)dx if z > z0,

(4.3)

where

z0 := ln
a0 + �

a0
, � :=

1 − μ +
√

(1 − μ)2 + 4a0

2
. (4.4)
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(2) Now we verify that ψ0 defined in (4.2) satisfies (4.1).

Direct differentiation shows that ψ0 satisfies the following:

ψ′0 = [μ + a0ψ0]ψ0 in (−∞, z0], ψ0(−∞) = 0, ψ0(z0) =
�

a0
.

Note that g(z0) = ez0 − 1 = �/a0 and � is the roots of [μ + �]� = a0 + �. Hence,

ψ0(z0) = g(z0), ψ′0(z0) = [μ + a0g(z0)]g(z0) = 1 + g(z0) = g′(z0).

Therefore, ψ0 ∈ C1+1(�) and ϕ0 ∈ C2+1(�). In addition, (A3) holds.

In (−∞, z0], we have ψ′0 − [ψ0 + 1] = [μ+ a0ψ0]ψ0 − [ψ0 + 1] = [ψ0 − g(z0)][a0ψ0 +

1/g(z0)] < 0. Using integrating factor e−z, this also implies that ψ0 > g in (−∞, z0).

In (z0,∞), ψ0 = g, and −ψ′0 + μψ0 + a0ψ2
0 = a0g2 + (μ− 1)g− 1 = [g− g(z0)][a0g+

1/g(z0)] > 0. Thus, ψ0 satisfies (4.1).

Therefore, (A2)–(A5) are all satisfied.

(3) It remains to verify the condition (A1). In (−∞, z0], differentiating ψ′0 = [μ +
a0ψ0]ψ0, one finds that ψ′′0 = [μ + 2a0ψ0]ψ′0 = [R − ν + 2ϕ′0]ψ′0. Hence,

η0 := Rψ0 − ψ′′0 − νψ′0 + 2ϕ′0ψ
′
0 + hψ′0

2

= Rψ0 − Rψ′0 + hψ′0
2

= ψ0{R(1 − μ − a0ψ0) + h(μ + a0ψ0)2ψ0}.

One finds that if 0 < Ra0 � hμ2, then η0 > 0 in (−∞, z0].

For later application, we use a different a0 for the case μ ∈ (0, 1). We consider two
scenarios:

(1) If μ + a0ψ0(z) < 1, we have η0(z) > 0.

(2) If μ + a0ψ0(z) � 1, we have

1 − μ − a0ψ0 � 1 − μ − a0g(z0) = 1 − μ − �

= − 2a0√
(1 − μ)2 + 4a0 + (1 − μ)

� − a0

1 − μ,

h(μ + aψ0)2ψ0 � hψ0 �
h(1 − μ)

a0
.

Thus, η0(z) � 0 if Ra2
0 � h(1 − μ)2.

In conclusion, η0 � 0 in (−∞, z0] if we take

a0 :=
{

R−1h if μ = 1,
(1 − μ)

√
h/R if μ ∈ (0, 1).

(4.5)
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In [z0,∞), ψ0 = g, and ϕ′0 = a0ψ0 = a0g. Using g′ = g′′ = g + 1, we obtain

η0 = Rψ0 − ψ′′0 − νψ′0 + 2ϕ′0ψ
′
0 + hψ′0

2

= 2a0g2 + (2a0 + μ − 1)g − 1 − ν + hg′2.

Then η′0 = [4a0g+ 2a0 +μ− 1+ 2hg′′]g′ > 0 since a0g(z) � a0g(z0) = � > 1−μ. Also,
η0(z+0 ) − η0(z0) = ψ′′0 (z0) − g′′(z0) � 0, since ψ0 � g in (−∞, z0], ψ0(z0) = g(z0), and
ψ′0(z0) = g′(z0). Thus, η0(z) � η0(z+0 ) � η0(z0) � 0.

Hence, η0 � 0 in �, so (A1) holds.

In conclusion, we have the following:

Lemma 4.1 Assume that R > 0 and 0 < μ := R − ν � 1. For each fixed h > 0, define a0 as in
(4.5) and (ϕ0, ψ0) as in (4.2)–(4.4). Then (a0, h, ϕ0, ψ0) satisfies (A1)–(A5).

To end this subsection, we give some remarks on the special case μ = 1 as follows.
For each h > 0, we take a0 = h/R and

ψ0(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ez

[1 +
√

a0]2 − a0ez
, if z � z0 := ln[1 + 1√

a0
],

g(z) if z > z0,

ϕ0(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− ln
(
1 − a0ez

[1 +
√

a0]2

)
, if z � z0,

ln(1 +
√

a0) + a0

∫ z

z0
g(x)dx if z > z0.

Then ψ0 ∈ C1+1(�), ϕ′0 = a0ψ0, ϕ0 ∈ C2+1(�), and

ez

[1 +
√

a0]2
< ψ0(z) � ez,

a0ez

[1 +
√

a0]2
< ϕ0(z) < a0ez ∀ z ∈ �.

As shown in this subsection, such a choice satisfies (A1)–(A5). Since ψ0 is bounded
(independent of h and a0), we can proceed the same proof as that in the case μ > 1 to
show the existence of a solution. We omit the details.

4.2 A few properties of ϕ0

Lemma 4.2 Let a0 ∈ (0, μ/3] and ϕ0 be defined as in (4.3) and (4.4). Then for each z ∈ � and
a > 0,

−a0 � ϕ′0(z) − ϕ′′0 (z) � 1
4 (1 − μ)2, (4.6)

�max{(aez)μ, aez}
(a0 + �)μ(μ + �)

� ϕ0

(
z + ln a

a0

)
� μ−1 max{(aez)μ, aez}, (4.7)

Φ(z, a) := lim
a0↘0

ϕ0

(
z + ln

a
a0

)
=

{
− ln(1 − [1 − μ]1−μ[aez]μ) if aez < 1 − μ,
aez − lnμ − (1 − μ) if aez � 1 − μ. (4.8)

In addition, when z � z0, ϕ′0(z) − ϕ0(z) − a0 � 0.
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Proof

(i) When z > z0, we have ϕ′′0 = a0ψ′0 = a0g′ = a0g + a0 = ϕ′0 + a0, so ϕ′0 − ϕ′′0 = −a0.

When z � z0, we have ϕ′′0 = a0ψ′0 = a0[μ + aψ0]ψ0 = [μ + ϕ′0]ϕ′0 so ϕ′0 − ϕ′′0 =
[1 − μ − ϕ′0]ϕ′0. Since ϕ′′0 > 0 and ϕ′0(z0) = a0g(z0) = � > 1 − μ, we find that

max
z∈(−∞,z0]

{ϕ′0(z) − ϕ′′0 (z)} = max
s∈[0,�]

[1 − μ − s]s =
(1 − μ)2

4
,

min
z∈(−∞,z0]

{ϕ′0(z) − ϕ′′0 (z)} = min
s∈[0,�]

[1 − μ − s]s = [1 − μ − �]� = −a0,

by the definition of �. Hence, (4.6) holds.

(ii) When 0 < a0 � μ, one sees from the definition of � that
√

a0 � � � 1.

When z � z0, by (4.2),

ϕ′0(z) = a0ψ0(z) � �eμ(z−z0) = �1−μeμ(z+ln a0)+μ[ln �−ln(a0+�)] � eμ[z+ln a0].

When z > z0, we have ϕ′0(z) = a0ψ0(z) = a0g(z) � a0ez = ez+ln a0 . Hence, for every
x ∈ �,

ϕ0(x − ln a0) �

∫ x

−∞
max{eμy, ey}dy � μ−1 max{eμx, ex}.

Set x = z + ln a, we obtain upper bound in (4.7).

(iii) When a0 ∈ (0, μ/3], one can check that a0 + � < 1.

When z < z0, by (4.2),

ϕ′0(z) = aψ0(z) �
μ�

μ + �
eμ(z−z0), ϕ0(z) =

∫ z

−∞
ϕ′0(y)dy >

�eμ(z−z0)

μ + �
.

When z > z0, ϕ′0(z) = a0(ez − 1) = [a0 + �]ez−z0 − a0 � �ez−z0 . Since μ + � > 1,

ϕ0(z) = ϕ0(z0) +
∫ z

z0

ϕ′0(y)dy >
�

μ + �
+ �(ez−z0 − 1) �

�

μ + �
ez−z0 .

Since max{eμ(z−z0), ez−z0 } = eμ(z−z0) for z < z0 and max{eμ(z−z0), ez−z0 } = ez−z0 for z > z0

and a0 + � � (a0 + �)μ, we have

ϕ0(z) �
�

μ + �
max{eμ(z−z0), ez−z0} =

�

μ + �
max

{ eμ(z+ln a0)

(a0 + �)μ
,

ez+ln a0

a0 + �

}

�
�max{eμ(z+ln a0), ez+ln a0 }

(a0 + �)μ(μ + �)
.

Replacing z by z + ln a − ln a0, we obtain the lower bound in (4.7).

(iv) The limit (4.8) follows by direct computation.
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(v) When z � z0, using the upper bound of ϕ′0 in (ii) and the lower bound of ϕ0 in (iii),
we obtain

ϕ′0(z) − ϕ0(z) � �eμ(z−z0) −
�

μ + �
eμ(z−z0) �

�[� + μ − 1]
μ + �

=
a0

μ + �
< a0,

since �[� + μ − 1] = a0 and μ + � > 1. This completes the proof of the lemma.

�

4.3 A comparison principle

When 0 < μ < 1, the constructed initial data ψ0 approaches ∞ as a0 ↘ 0; as a con-
sequence, the a priori estimates used in Section 2 cannot be used in the h ↘ 0 limit
process. We need new a priori estimates. We shall first establish a comparison principle,
and then construct sub/supersolutions to find upper and lower bounds.

Lemma 4.3 Let {ϕi}∞i=0 be the solution of (1.12). Assume that {φi}∞i=1 is a sequence such that
φ0 � (�) ϕ0 and for every n � 1,

Ân[φn] := min{Ranh−1[φn−φn−1] − φ′′n − νφ′n + φ′n2, h−1[φn − φn−1] − g} � (�) 0.

Then φn � (�)ϕn for every n.

Proof Consider supersolution case. Suppose n � 1 and ϕn−1 � φn−1. Then

min{An[ϕn],Bn[ϕn]} = 0 � Ân[φn]

= min{Ranh−1[φn − φn−1] − φ′′n − νφ′n + φ′n2, h−1[φn − φn−1] − g}
� min{Ranh−1[φn − ϕn−1] − φ′′n − νφ′n + φ′n2, h−1[φn − ϕn−1] − g}
= min{An[φn],Bn[φn]}.

It then follows from comparison for variational inequality that ϕn � φn. Hence, by
mathematical induction, ϕn � φn for all n � 1. The proof for subsolution is similar. �

Now we consider the sequence {φn}∞n=0 defined by

φn(z) = ϕ0(z + ln an − ln a0) + h[1 − a0a−1
n ].

Set x = z − ln a0. We can calculate, for n � 1,

φn(z) − φn−1(z)
h

=

∫ an

an−1

ϕ′0(x + ln a)
d(a − an−1)

ha
+

∫ an

an−1

a0

a2 da

=
ϕ′0(x + ln an)

an
+

∫ an

an−1

(a − an−1

ha2 [ϕ′0 − ϕ′′0 ] +
a0

a2

)
da

>
ϕ′0(z + ln an − ln a0)

an
,
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since (4.6) ϕ′0 − ϕ′′0 � −a0. Hence, setting y = z + ln an − ln a0,

Ranh−1[φn − φn−1] − φ′′n − νφ′n + φ′n2

� Rϕ′0(y) − ϕ′′0 (y) − νϕ′0(y) + ϕ′0
2(y) = a0{−ψ′0 + μψ0 + a0ψ

2
0} � 0,

h−1[φn − φn−1] − g(z) �
ϕ′0(y)

an
− ez + 1 =

a0

an

(
ψ0(y) − ey +

an

a0

)
� 0.

Thus, Ân[φn] � 0 for all n � 1. It is easy to see that ϕ0 = φ0. Hence, ϕn � φn.
Similarly, we can show that the following is a subsolution:

φn(z) = ϕ0(z + ln an − ln a0) −
(1 − μ)2

4

( h
a0
− h

an

)
− (an − a0).

Hence, we have the following:

Lemma 4.4 Assume that a0 ∈ (0, μ/3]. Then for every integer n � 0,

h
[
1 − a0

an

]
� ϕn(z) − ϕ0

(
z + ln

an

a0

)
� −

(1 − μ)2

4

( h
a0
− h

an

)
− [an − a0]. (4.9)

In particular, using Lemma 4.2, we obtain

ϕn(z) � μ−1 max{(anez)μ, anez} + h,

ϕn(z) �
� max{(anez)μ, anez}

(a0 + �)μ(μ + �)
−

(1 − μ)2

4

( h
an
− h

a0

)
− [an − a0].

4.4 Upper and lower bounds of free boundary

Upper Bound. For each n � 1, in (−∞, zn),

ϕ′′n = ϕ
′
n

2 − νϕn + Ranψn � ϕ′n
2 −

ϕ′n
2 + ν2

2
+ Rang

=
ϕ′2n + 1

2
+ Ran

(
ez − 1 − 1 + ν2

2Ran

)
.

If zn > Zn := ln[1 + 1+ν2

2Ran
], then in [Zn, zn], we have 2ϕ′′n � 1 + ϕ′2n , i.e., 1 � 2ϕ′′n /(1 + ϕ

′2
n ).

After integrating over [Zn, zn], we find that zn−Zn � 2[arctanϕ′n(zn)−arctanϕ′n(Zn)] � π.
Lower bound. In [zn,∞), 0 � ηn � ln, so

0 � [ϕ′n + ϕ
′
n−1 − (1 − μ)]ez − R. (4.10)

For z ∈ �,

ϕ′n = ϕ
′
0 +

n∑
i=1

hψ′i � ϕ′0 +
n∑

i=1

h[ψi + 1] = ϕ′0 + [ϕn − ϕ0] + [an − a0].
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When z � z0, by Lemma 4.2, ϕ′0 − ϕ0 − a0 � 0. Hence, when 0 < z � z0 (and anez � 1 if
μ ∈ (0, 1)),

ϕ′n + ϕ
′
n−1 � ϕn + an + ϕn−1 + an−1 �

aμneμz + aμn−1eμz

μ
+ h + 2an �

4(anez)μ

μ
;

here we have used an � anez � (anez)μ (and � 1 ifμ ∈ (0, 1)) and aμn−1+μh � (an−1+h)μ = aμn .

(i) If μ ∈ (0, 1), then (4.10) gives ϕ′n(zn)+ϕ′n−1(zn) � 1−μ, so zn � ln[(μ−μ2)/4]1/μ− ln an.

(ii) If μ = 1, then (4.10) gives ez[ϕ′n(zn) + ϕ′n−1(zn)] � R, so zn � 1
2 ln R

4an
.

Hence, we have the following:

Lemma 4.5 For every n � 1,

π + ln
(
1 +

1 + ν2

2Ran

)
� zn �

{
ln[(μ − μ2)/4]1/μ − ln an if μ ∈ (0, 1),
ln(
√

R/2) − ln
√

an if μ = 1.

4.5 L∞ estimates

We start from the basic estimate:

0 � ϕn � μ−1 max{[anez]μ, anez} + h.

Using ϕn − ϕ0 =
∑n

i=1 hψi � [an − a0]ψn, we obtain, for each n � 1,

0 � ψn �
ϕn − ϕ0

an − a0
�

ϕn

an − a0
,

0 � ψ′n � ψn + 1,

0 � ϕ′n = ϕ
′
0 +

n∑
i=1

hψ′n � ϕ′0 +
n∑

i=1

h[ψi + 1]

= ϕ′0 + ϕn − ϕ0 + an − a0 � ϕn + an (if z � z0, by Lemma 4.2),

0 � ϕ′′n � Ranψn − νϕ′n + ϕ′n2.

Finally, we derive from (2.8) that for n > m � 1 and β = min{ 12 , μ} �
μ
2 ,

|anψn − amψm|
(an − am)β

�

⎧⎪⎪⎨⎪⎪⎩
Ca1−β

n [1 + ϕ′n]
(
1 + ϕm

am−a0

)
if an − am � an

2 ,

2β
(

a1−β
n ϕn

an−a0
+

a1−β
m ϕm

am−a0

)
if an − am � an

2 .

4.6 Proof of Theorem 1

(1) Define sh =
∑∞

i=1 zi1[ai−1,ai)(a). Then along a sequence h↘ 0,

sh(a) −→ s(a) ∀ a > 0.

In addition, s is decreasing and satisfies (1.11).
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(2) Define ϕh as in §3.2. Then along a (sub)sequence of h↘ 0, we have

(ϕh, ϕh
z , aϕ

h
a) −→ (ϕ,ϕz, aϕa) in Cα,α/2([−T,T] × [0,T]) ∀T > 0, α ∈ (0, μ).

The limit ϕ satisfies the estimates listed in (1.9).

(3) When μ ∈ (0, 1), we have (1.10) since the lower bound in Lemma 4.4 gives us

ϕ(z, a) � (1 − μ)1−μ(aez)μ − a.

When μ = 1, the upper bound ϕ(a, z) � aez gives us lima↘0 a−1ϕ(a, z) � ez.
Since the solution is increasing in ν (which is a scaled growth rate of stock price),
comparing the solution with ϕ̃ associated with ν̃ and using Remark 3.1 or results
in [13] for the case ν̃ < ν = R − 1, we have

lim
a↘0

ϕ(z, a)
a

� lim
a↘0

ϕ̃(z, a)
a
= ϕ̃a(z, 0) = g(b)eλ(z−b) = eλz[1 − e−b]e[1−λ]b,

for z < b, where (b, λ) is as in (3.1) with ν replaced by ν̃. Sending ν̃ ↗ ν = R − 1,
we obtain b→∞ and lima↘0 a−1ϕ(z, a) � ez. Hence, we obtain (1.10).

(4) Following the same proof as that of Theorem 2 (Sections 3.2 and 3.3) and/or
the techniques in [10] (for continuity and strictly decreasing of s and (1.5)), we
complete the proof of Theorem 1.

Remark 4.1

(i) From (4.9), (4.8), and (4.5), we derive that

0 � Φ(z, a) − ϕ(z, a) � a ∀ (z, a) ∈ � × (0,∞). (4.11)

Here,Φ is the solution of the original problem with K = 0, i.e., with g(z) = ez; see [14].

(ii) Once we have the tight estimate near a = 0, uniqueness of solution in the class
satisfying (4.11) follows from the standard technique illustrated in [10]. Indeed, if ϕ̃
is another solution, one can compare ũ = −e−ϕ̃ with u = −e−ϕ ± ε[ea + aeλ+z + aeλ−z] to
show that ũ = −e−ϕ; here λ± are the two roots of λ2 + νλ = R.
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