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In this paper, we provide a new technique for analyzing the nonstationary Erlang loss
queueing model with abandonment. Our method uniquely combines the use of the func-
tional Kolmogorov forward equations with the well-known Gram-Charlier series expansion
from the statistics literature. Using the Gram-Charlier series expansion, we show that we
can estimate salient performance measures of the loss queue such as the mean, variance,
skewness, kurtosis, and blocking probability. Lastly, we provide numerical examples to
illustrate the effectiveness of our approximations.

1. INTRODUCTION

Many real-time service processes can be modeled using nonstationary Erlang loss queueing
models. Some applications of nonstationary loss queues include but are not limited to
telecommunication networks, healthcare systems, call centers, hospitality networks, air-
line reservations, and transportation systems. See, for example, Grier, Massey, McKoy and
Whitt [2], Hampshire et al. [3–5]. Communication networks in particular often are subject
to a multitude of nonstationary dynamics that depend on the time of day and the state
of the system. In fact, buffer overflows, changes in demand, and the availability of service
are just some of the many ways that communication systems can experience transient and
nonstationary dynamics. Moreover, when the arrival process explicitly depends on the time
of day, nonstationary models are inevitable.

The stationary Erlang loss model, which we denote by M/M/c/0, has a Poisson arrival
process, independent and identically distributed service times from an exponential distri-
bution, and c parallel servers with no extra waiting spaces. What makes the Erlang loss
system different from the standard multiserver queue is that if a customer arrives while the
all the servers are busy, then that customer is immediately lost and never receives service.
Although most communication networks experience nonstationary conditions, much of the
literature only considers stationary processes. Moreover, much of the literature for station-
ary processes, does not carry over quite easily to nonstationary models, and requires more
insight and analysis.

Much of the research on the nonstationary Erlang loss model has focused on approxi-
mating the blocking probability, which is perhaps the most important performance measure
of the Erlang loss model. One such approximation method for estimating the blocking
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probability is the well-known modified offered load approximation of Jagerman [6]. It uses
the mean offered load from an infinite server queue and naively substitutes it into the Erlang
blocking formula as the mean offered load. Massey and Whitt [11], rigorously show that the
modified offered load approximation is appropriate when the blocking probability is small
and the loss queue is well approximated by the infinite server queue. Furthermore, they also
provide bounds for the performance of the modified offered load approximation based on
the input parameters, which is quite useful in practice. In another paper, Massey and Whitt
[12] show how to use a non-Poisson, but stationary arrival process with a higher coefficient
of variation to approximate the blocking probability induced by a time-varying arrival rate.
Lastly, in the paper of Davis, Massey and Whitt [1], they show that the nonstationary
loss queue blocking probability is not insensitive to the service distribution and depends
significantly on the variance of the service distribution.

In addition to nonstationary arrivals, the traditional Erlang loss model does not capture
the realistic phenomenon known as abandonment. It is well-known that customers do not
have infinite patience and are likely to renege from the system if the time that they must wait
for service is deemed to be excessive. Thus, in our model, we also add customer abandonment
if customers are forced to spend time in the available waiting spaces of the queue. Without
the features of time-varying arrivals and abandonment, our model is exactly the M/M/c/k
queueing model, which was studied extensively in the dissertation of Wallace [16] where
rigorous asymptotics of the M/M/c/k queue were developed. The dissertation of [16] also
derives many closed-form expressions for blocking and delay probabilities. However, the
nonstationary dynamics precludes us from deriving closed form expressions for the queueing
behavior.

Besides the nonstationary arrivals and the inclusion of abandonment, our model is
quite different from a traditional multiserver queueing model in that the arrival process is
actually state-dependent. Moreover, the state dependence is discontinuous with respect to
the queue length process. Thus, we cannot leverage the fluid and diffusions approximations
for Markovian service networks of Mandelbaum, Massey and Reiman [8]. One way around
this is to incorporate what is known as fast abandonment like in the work of Hampshire
et al. [4]. However, if the fast abandonment parameter is not large enough, one could have
occasional situations where the queue length exceeds the threshold, which is not allowed
and biases the queue length to larger values than expected from the standard loss queue.
Thus, it is imperative that we develop new techniques for analyzing the dynamic behavior
of the nonstationary loss queue with abandonment.

In this paper, we propose using the exact stochastic process via the functional forward
equations and combining it with Gram-Charlier series expansions from the statistics litera-
ture. We should mention that we are not the first to consider using the functional forward
equations to approximate the time-dependent moments of queueing process. Authors such
as Massey and Pender [10] use the functional forward equations with a novel expansion
of the queue length process in terms of Hermite polynomials for multi-server queues with
abandonment. However, a major difference is that [10] expands the queue length process
while we expand the density. Moreover, Pender [13] uses the Gram-Charlier series approach,
however, only applied it to the multiserver queue, which also fits within the Markovian ser-
vice network family. However, we are the first to apply the Gram-Charlier series approach to
queueing processes that do not fit into the Markovian service network framework, and also
are the first to study the time-dependent mean, variance, skewness, kurtosis, and blocking
probability of nonstationary loss queues with abandonment. Moreover, our approximations
for the blocking probability are accurate even when the blocking probability is not small.
This is a significant advance in approximating the loss queue since many approximations
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assume that the loss queue blocking probabilities are small and thus the loss queue is well
approximated by an infinite server queue.

1.1. Contributions

To the best of our knowledge our contributions in this work are the following.

• We combine the functional Kolmogorov forward equations with Gram-Charlier series
expansions to develop novel approximations for nonstationary loss queues.

• We derive accurate approximations for the mean, variance, skewness, and kurtosis
of the nonstationary loss queue with abandonment.

• We illustrate that higher-order moments of the nonstationary loss queue can improve
the estimates of the lower moments.

• We avoid the use of simulation and reduce much of the stochastic dynamics of the
queueing process to the numerical integration of four differential equations, which
is very quick to solve.

1.2. Organization of the Paper

The rest of the paper continues as follows. In Section 2, we review our queueing model
and provide expressions for the functional Kolmogorov forward equations for our queue-
ing model. In Section 3, we apply the Gram-Charlier expansion to the functional forward
equations and show how this combination improves the estimates of first four cumulant
moments of the queue length process. In Section 4, we illustrate that our new techniques
are also relevant for constructing accurate estimates of the blocking probability. In Section 5,
we provide additional numerical examples to illustrate that our approximations are indeed
accurate and good. We also compare the Gram-Charlier method with the method of [10]
and show that the Gram-Charlier method is better than the Hermite expansion in [10]. In
Section 6, we conclude the paper and give final remarks. Lastly, in the Appendix we provide
the proofs of our main theorems and lemmas that are needed in the paper.

2. NONSTATIONARY LOSS QUEUEING MODEL WITH ABANDONMENT

In order to describe the stochastic model for the nonstationary loss queue, we begin with the
functional version of the Kolmogorov forward equations for the queue length process. Since
our queueing process is an example of a birth-death process with state-dependent rates,
we have the following expression for the forward equations of the Mt/Mt/Ct/Kt/+Mt

queueing process:

•
E [f(Q)] = λ · E [(f(Q+ 1) − f(Q)) · {Q < c+ k}]

+ μ · E [(Q ∧ c) · (f(Q− 1) − f(Q))]

+ β · E
[
(Q− c)+ · (f(Q− 1) − f(Q))

]
, (2.1)

for all integrable functions f . We will always assume, for the remainder of the paper, that
quantities such as β and μ are constant. However, the quantities such as β and μ do not
have to be constant and our methods work well when the parameters are also functions of

https://doi.org/10.1017/S0269964814000205 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000205


30 J. Pender

time. To simplify our notation, time-dependent quantities such as Q(t), λ(t), c(t) and k(t)
are denoted in this paper as Q, λ, c, and k, with their time dependence suppressed. For an
expression like E [f(Q(t))] we use the “dot” notation of physics to denote its time derivative
when we do not make time explicit or

•
E [f(Q)] ≡ d

dt
E [f(Q(t))] . (2.2)

Using special cases of f we can then obtain the following set of Kolmogorov forward
equations for the first four cumulant moments

•
E[Q] = λ · E[{Q < c+ k}] − μ · E[Q ∧ c] − β · E[(Q− c)+],

•
Var[Q] = λ · E[{Q < c+ k}] + μ · E[Q ∧ c] + β · E[(Q− c)+]

+ 2
(
λ · Cov[Q, {Q < c+ k}] − μ · Cov[Q,Q ∧ c] − β · Cov[Q, (Q− c)+]

)
,

•
C(3)[Q] = λ · E[{Q < c+ k}] − μ · E[Q ∧ c] − β · E[(Q− c)+]

+ 3
(
λ · Cov[Q, {Q < c+ k}] + μ · Cov[Q,Q ∧ c] + β · Cov[Q, (Q− c)+]

)

+ 3
(
λ · Cov

[
Q

2
, {Q < c+ k}

]
− μ · Cov

[
Q

2
, Q ∧ c

]
− β · Cov

[
Q

2
, (Q− c)+

])
,

•
C [4][Q] = λ · E[{Q < c+ k}] + μ · E [Q ∧ c] + β · E [

(Q− c)+
]

+ 4 · (λ · Cov[Q, {Q < c+ k}] − μ · Cov [Q,Q ∧ c] − β · Cov
[
Q, (Q− c)+

])

+ 6 ·
(
λ · Cov

[
Q

2
, {Q < c+ k}

]
+ μ · Cov

[
Q

2
, Q ∧ c

]
+ β · Cov

[
Q

2
, (Q− c)+

])

+ 4 ·
(
λ · Cov

[
Q

3
, {Q < c+ k}

]
− μ · Cov

[
Q

3
, Q ∧ c

]
− β · Cov

[
Q

3
, (Q− c)+

])

+ 12 · (λ · Cov[Q, {Q<c+ k}] +μ · Cov[Q,Q ∧ c] +β · Cov[Q, (Q− c)+]
) ·Var[Q].

where Q ≡ Q− E[Q].
In developing our approximations for the nonstationary loss queue, we will compare our

estimates with simulations to judge the accuracy of our approximation methods. To this
end, the primary numerical example that we study in this paper to demonstrate the useful-
ness of our approximation methods has an arrival rate of λ(t) = 10 + 5 sin(t), a service rate
of μ = 1, an abandonment rate of β = 0.5, c = 10 servers, and k = 5 waiting spaces. More-
over, we simulate our queueing model over the time interval (0,40] for 40, 000 independent
sample paths.

On the left of Figure 1 is a plot of the simulated mean E[Q(t)] and variance Var[Q(t)]
of our queueing process. On the right side of Figure 1, we plot the simulated values of
the skewness Skew[Q(t)] and kurtosis Kur[Q(t)] of the queueing system. The skewness and
kurtosis are related to the third and fourth cumulant moments and are given by the formulas

Skew[Q(t)] =
E[(Q(t) −E[Q(t)])3]

Var[Q(t)]3/2
and Kur[Q(t)] =

E[(Q(t) − E[Q(t)])4]
Var[Q(t)]2

− 3. (2.3)

As the right of Figure 1 shows, the skewness and kurtosis are non-zero quantities.
Since the skewness and kurtosis for a Gaussian random variable are defined to be zero, on
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Figure 1. (Color online) Simulation of mean and variance of the queueing process (left).
Simulation of skewness and kurtosis of the queueing process (right).

the right of Figure 1 gives us supporting evidence that the queueing process distribution
is non-Gaussian. However, one also observes from Figure 1 that while the skewness and
kurtosis are non-zero, they are also not extremely large quantities either. Since they are not
large, this gives us some confidence that using asymptotic expansions around a Gaussian
distribution might be reasonable. Moreover, the skewness and kurtosis have the potential to
tell us valuable information about the properties of our queueing distribution. In fact, when
comparing to a Gaussian distribution, the skewness can tell us whether the median of the
queueing distribution is to the left or right of the mean of the distribution and the kurtosis
can provide information on the peakedness of the distribution. The skewness is especially
important since, the real queueing process is non-negative, unbounded and asymmetric,
while the Gaussian distribution can realize negative values and is symmetric around the
mean. Thus, the skewness is critical in capturing asymmetries of the queueing distributions.
Although the skewness and kurtosis are important statistical and mathematical quantities,
they also have some practical value because they can help managers adjust or refine the
staffing levels appropriately according the information to the values of the skewness and
kurtosis. In fact when the skewness and kurtosis are near zero, they validate the use of the
Gaussian approximations. However, when they are away from zero, they can serve to refine
Gaussian behavior predicted from rigorous limit theorems.

Unlike the multi-server case with no loss of arrivals, the arrival process of the nonsta-
tionary loss queue is state-dependent. In fact, the state dependence is not only nonlinear, but
it is also discontinuous with respect to the queue length process. This discontinuous nature
of the state-dependent arrival rate function precludes the limit theorems of Mandelbaum
et al. [8] from being exploited. Thus, it is an important area of research to find new methods
for approximating the queue length process, its moment behavior, and various performance
measures such as the probability of blocking all at the same time. In the sequel, we present
four new methods to use for approximating the dynamics of the nonstationary loss queue.

3. NEW APPROXIMATION METHODS

3.1. Deterministic Mean Approximation

In this section, we give the first approximation for our nonstationary loss queue. It is a purely
deterministic method and as a result we define it as the Deterministic mean approximation
(DMA). The DMA is constructed by assuming {q(t)|t ≥ 0} is a deterministic process that
approximates the queueing process. Thus, we assume that Q ≈ q and substitute q for Q in
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Figure 2. (Color online) Simulation of mean and DMA approximation.

the Kolmogorov forward equations for the mean dynamics. As a result, the time derivative
of the mean solves the following autonomous differential equation:

•
q = λ · {q < c+ k} − μ · (q ∧ c) − β · (q − c)+. (3.1)

In Figure 2, we see that the DMA method approximates the mean dynamics of the
queue length process fairly well. Since the DMA method is deterministic method, it does
not recognize the stochastic fluctuations of the queue length process. Thus, there is a large
difference between the DMA and the simulation at the peak of the DMA method. This is
because we implicitly assume that all other cumulant moments of the queueing process are
negligible and the DMA is unable to use other distributional behavior other than the mean
in order to estimate the dynamics of the queue length process. The implicit assumption
that all other cumulant moments are negligible is not realistic in practice and warrants a
refinement to include more information about the distribution of the queueing process.

3.2. Gaussian Variance Approximation

Our first refinement to the DMA is to assume that our queueing process has a finite variance
or second cumulant moment, but all other cumulant moments of order higher than three
are assumed to be negligible. Thus, we assume that our queueing model follows a Gaussian
distribution. We define this new approximation as the Gaussian variance approximation
(GVA). This approximation technique was first developed by Massey and Pender [9,10] and
Pender [13], which was shown to be equivalent to the method of Ko and Gautam [7]. In [10]
and in this paper, we assume that

Q(t) d= q(t) +X ·
√
v(t) (3.2)

for all t ≥ 0, where {q(t), v(t)|t ≥ 0} is some two-dimensional dynamical system where the
v process is always positive and X is a standard Gaussian random variable. We also define
ϕ and Φ to be the density and the cumulative distribution functions, for X respectively,
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where

ϕ(x) ≡ 1√
2π
e−x2/2, Φ(x) ≡

∫ x

−∞
ϕ(y) dy, and Φ(x) ≡ 1 − Φ(x) =

∫ ∞

x

ϕ(y) dy.

(3.3)

Theorem 3.1: Suppose that we substitute Eq. 3.2 for the queue length process into the
functional forward equations as the surrogate distribution, then the forward equations for
the mean and variance of Q are

•
E[Q] = λ · E[{Q < c+ k}] − μ · E[Q ∧ c] − β · E[(Q− c)+], (3.4)
•

Var[Q] = λ · E[{Q < c+ k}] + μ · E[Q ∧ c] + β · E[(Q− c)+]

+ 2
(
λ · Cov[Q, {Q < c+ k}] − μ · Cov[Q,Q ∧ c] − β · Cov[Q, (Q− c)+]

)
, (3.5)

where the unknown expectation and covariance terms have the following values:

E [{Q < c+ k}] = Φ(ψ),

E
[
(X − χ)+

]
= φ(χ) − χ · Φ(χ),

E [(X ∧ χ)] = χ · Φ(χ) − φ(χ),

Cov [X, {Q < c+ k}] = φ(ψ),

Cov
[
X, (X − χ)+

]
= φ(χ) − χ · Φ(χ),

Cov [X, (X ∧ χ)] = Φ(χ),

and where the variable χ and ψ have the values

χ =
c− q√
v
,

ψ =
c+ k − q√

v
.

Unlike the DMA, the GVA forward equations for the mean also depend on the variance
behavior. In this sense the two-dimensional system of the equations for the mean and
variance are fully coupled to one another. Thus, now the dynamics of the mean can capture
information about the queueing distribution from the variance unlike in the DMA method.
Thus, we expect that the dynamics of the mean behavior of the GVA should be different
and better than the DMA method.

On the left of Figure 3, we see that the GVA estimate for the mean dynamics is better
than the DMA method. This is especially true when the mean queue length peaks. Moreover,
on the right of Figure 3, we see that the GVA method is doing a good job of estimating the
variance of the queue length process. Looking more closely, we see that the GVA method
only does not approximate the dynamics of the queueing process well when skewness and
kurtosis reach their local maximums. Thus, one should suspect that the queueing process
is the least Gaussian during those times when the skewness and kurtosis are at their local
maximums.
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Figure 3. (Color online) Simulated, DMA, and GVA means, (left). Simulated and GVA
Variances (right).

3.3. Gram-Charlier Skewness Approximation

In this section, we extend the GVA method to include information about the skewness of
the queue length process. Following the method developed by Pender [13] for multi-server
queues, we assume that the queue length process has the following approximate density:

φSkew(x) = φ(x) ·
(

1 +
κ3

3! ·
√
v3

· h3(x)
)

= φGVA(x) + φGCS(x), (3.6)

where {q, v, κ3} are the mean, variance, and third cumulant moment of the queueing pro-
cess and h3(x) is a Hermite polynomial of order 3. Like in the work of [13], we call this
approximation the Gram-Charlier Skewness Approximation. We shall show that the skew-
ness allows us to better estimate the mean and variance dynamics of the queueing system
with our next theorem:

Theorem 3.2: Suppose that Eq. (3.6) is the density for our nonstationary loss queue, then
we have the following equations for the mean, variance, and third cumulant moment of
nonstationary loss queue with abandonment

•
E[Q] = λ · E[{Q < c+ k}] − μ · E[Q ∧ c] − β · E[(Q− c)+],
•

Var[Q] = λ · E[{Q < c+ k}] + μ · E[Q ∧ c] + β · E[(Q− c)+]

+ 2
(
λ · Cov[Q, {Q < c+ k}] − μ · Cov[Q,Q ∧ c] − β · Cov[Q, (Q− c)+]

)
,

•
C(3)[Q] = λ · E[{Q < c+ k}] − μ · E[Q ∧ c] − β · E[(Q− c)+]

+ 3
(
λ · Cov[Q, {Q < c+ k}] + μ · Cov[Q,Q ∧ c] + β · Cov[Q, (Q− c)+]

)
+ 3

(
λ · Cov

[
Q

2
, {Q < c+ k}

]
− μ · Cov

[
Q

2
, Q ∧ c

]
− β · Cov

[
Q

2
, (Q− c)+

])
,

where we have the following expressions for the unknown expectations and covariances:

E[{Q < c+ k}] = Φ(ψ) − κ3

3! ·
√
v3

· (ψ2 − 1) · φ(ψ),

E [(Q ∧ c)] = q −√
v · φ(χ) + χ · √v · Φ(χ) − χ · φ(χ) · κ3

6 · v ,
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Figure 4. (Color online) Simulated, DMA, GVA, GCS means (left). Simulated, GVA, and
GCS variances (right).

E
[
(Q− c)+

]
=

√
v · φ(χ) − χ · √v · Φ(χ) +

χ · φ(χ) · κ3

6 · v ,

Cov [Q, {Q < c+ k}] = −√
v · φ(ψ) − κ3

6 · v · (h3(ψ) + 3 · h1(ψ)) · φ(ψ),

Cov
[
Q, (Q− c)+

]
= v · Φ(χ) +

(χ2 + 2) · φ(χ) · κ3

6
√
v

,

Cov [Q, (Q ∧ c)] = Cov [Q,Q] − Cov
[
Q, (Q− c)+

]
,

Cov
[
Q

2
, {Q < c+ k}

]
= −v · h1(ψ) · φ(ψ) − κ3

6 · √v · (h4(ψ) + 7 · h2(ψ) + 6) · φ(ψ),

Cov
[
Q

2
, (Q− c)+

]
=

√
v3 · φ(χ) +

κ3

6
· [(χ3 + 4 · χ) · φ(χ) + 6 · Φ(χ)

]
,

Cov
[
Q

2
, (Q ∧ c)

]
= κ3 −

√
v3 · φ(χ) − κ3

6
· [(χ3 + 4 · χ) · φ(χ) + 6 · Φ(χ)

]
.

Proof: See the Appendix. �

On the left of Figure 4, we see that the GCS estimate for the mean dynamics is better
than the GVA and DMA methods. Once again where the queue length peaks, we have
the most improvement of the GCS method over the GVA and DMA methods. Moreover,
on the right of Figure 4, we see that the GCS method does a better job of estimating
the variance of the queue length process than the GVA method. In fact, the places where the
skewness peaks is where there is the most improvement of the variance for the GCS method.
This behavior can be confirmed in Figure 5, where we plot the log-relative error of the various
approximations. On the left of Figure 5 we have the log-relative error of the mean and it is
clear that the GCS method does a better job of estimating the mean dynamics. On the right
side of Figure 5 we see that the GCS method is doing a better job of estimating the variance
as well. Lastly, in Figure 6, we plot the simulated skewness with the approximation from the
GCS method. It is clear that the GCS method doing well at approximating the skewness
dynamics. The quality of the skewness approximation is also given on the right of Figure 6,
where we plot the log-relative error of the GCS approximation. Overall, it is clear that the
GCS method is superior at approximating the time-varying dynamics the nonstationary loss
queue. Perhaps, adding more information about the distributional behavior of the queueing
process, might add more insight and yield even better approximations.
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Figure 5. (Color online) Log-relative error of DMA, GVA, and GCS means (left).
Log-relative error of GVA and GCS variances (right).
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Figure 6. (Color online) Simulated and GCS skewness (left). Log-relative error of GCS
skewness (right).

3.4. Gram-Charlier Kurtosis Approximation

For this section, we again add another term to the our Gram-Charlier expansion to capture
the kurtosis of the nonstationary loss queue. We call this new approximation the Gram-
Charlier kurtosis approximation (GCK). Similar to the GCS method, we hope that adding
another term will further refine our approximations for the mean, variance, skewness of
the queueing model. This will help us attain even better estimates for the mean, variance,
and skewness, which can used for better staffing and optimization purposes. For the GCK
method, we assume that our queueing process has the following approximate density:

φKur(x) = φ(x) ·
(

1 +
κ3

3! ·
√
v3

· h3(x) +
κ4

4! · v2
· h4(x)

)
(3.7)

= φGVA(x) + φGCS(x) + φGCK(x).

Using the GCK approximation as the model for our queueing dynamics allows us to
give our next main approximation result.

Theorem 3.3: Using the approximate density 3.7, we have the following equations for the
mean, variance, third cumulant moment, and fourth cumulant moment of our nonstationary
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loss queue with abandonment
•
E[Q] = λ · E[{Q < c+ k}] − μ · E[Q ∧ c] − β · E[(Q− c)+],

•
Var[Q] = λ · E[{Q < c+ k}] + μ · E[Q ∧ c] + β · E[(Q− c)+]

+ 2
(
λ · Cov[Q, {Q < c+ k}] − μ · Cov[Q,Q ∧ c] − β · Cov[Q, (Q− c)+]

)
,

•
C(3)[Q] = λ · E[{Q < c+ k}] − μ · E[Q ∧ c] − β · E[(Q− c)+]

+ 3
(
λ · Cov[Q, {Q < c+ k}] + μ · Cov[Q,Q ∧ c] + β · Cov[Q, (Q− c)+]

)

+ 3
(
λ · Cov

[
Q

2
, {Q < c+ k}

]
− μ · Cov

[
Q

2
, Q ∧ c

]
− β · Cov

[
Q

2
, (Q− c)+

])
,

•
C [4][Q] = λ · E[{Q < c+ k}] + μ · E [Q ∧ c] + β · E [

(Q− c)+
]

+ 4 · (λ · Cov[Q, {Q < c+ k}] − μ · Cov [Q,Q ∧ c] − β · Cov
[
Q, (Q− c)+

])

+ 6 ·
(
λ · Cov

[
Q

2
, {Q < c+ k}

]
+ μ · Cov

[
Q

2
, Q ∧ c

]
+ β · Cov

[
Q

2
, (Q− c)+

])

+ 4 ·
(
λ · Cov

[
Q

3
, {Q < c+ k}

]
− μ · Cov

[
Q

3
, Q ∧ c

]
− β · Cov

[
Q

3
, (Q− c)+

])

+ 12 · (λ · Cov[Q, {Q<c+ k}] +μ · Cov[Q,Q ∧ c] +β · Cov[Q, (Q− c)+]
) ·Var[Q],

where we have the following expressions for the unknown expectations and covariances

E[{Q < c+ k}] = Φ(ψ) − κ3

6 ·
√
v3

· h2(ψ) · φ(ψ) − κ4

24 · v2
· h3(ψ) · φ(ψ),

E [(Q ∧ c)] = q −√
v · φ(χ) + χ · √v · Φ(χ) − χ · φ(χ) · κ3

6 · v
− (χ2 − 1) · φ(χ) · κ4

6 ·
√
v3

,

E
[
(Q− c)+

]
=

√
v · φ(χ) − χ · √v · Φ(χ) +

χ · φ(χ) · κ3

6 · v +
(χ2 − 1) · φ(χ) · κ4

6 ·
√
v3

,

Cov [Q, {Q < c+ k}] = −√
v · φ(ψ) − κ3

6 · v · (h3(ψ) + 3 · h1(ψ)) · φ(ψ)

− κ4

24 ·
√
v3

· (h4(ψ) + 4 · h2(ψ)) · φ(ψ),

Cov
[
Q, (Q− c)+

]
= v · Φ(χ) +

(χ2 + 2) · φ(χ) · κ3

6
√
v

,

Cov [Q, (Q ∧ c)] = v − Cov
[
Q, (Q− c)+

]
,

Cov
[
Q

2
, {Q < c+ k}

]
= v · h1(ψ) · φ(ψ) − κ3

6 · √v · (h4(ψ) + 7 · h2(ψ) + 6) · φ(ψ)

− κ4

24 · v · (h5(ψ) + 9 · h3(ψ) + 12 · h1(ψ)) · φ(ψ),

Cov
[
Q

2
, (Q− c)+

]
=

√
v3 · φ(χ) +

κ3

6
· [(χ3 + 4 · χ) · φ(χ) + 6 · Φ(χ)

]

+
κ4

24 · √v · (χ4 + 3 · χ2 + 6) · φ(χ),
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Figure 7. (Color online) Simulated, GVA, GCS, and GCK means (left). Simulated, GVA,
GCS, and GCK variances (right).

Cov
[
Q

2
, (Q ∧ c)

]
= κ3 − Cov

[
Q

2
, (Q− c)+

]
,

Cov
[
Q

3
, {Q < c+ k}

]
=

√
v3 · h1(ψ) · φ(ψ) − κ3

6
· (h5(ψ) + 12 · h3(ψ) + 27 · h1(ψ)) · φ(ψ)

− κ2

24 · √v · (h6(ψ) + 15 · h4(ψ) + 48 · h2(ψ) + 24) · φ(ψ),

Cov
[
Q

3
, (Q− c)+

]
= v2 · ((χ2 + 1) · φ(χ)

)
+ 3 · v2 · Φ(χ)

+
κ3 ·

√
v

6
· ((h4(χ) + 12 · h2(χ) + 27) · φ(χ)) +

κ4

24 · v2

·
√
v3 · ((h5(χ) + 15 · h3(χ) + 48 · h1(χ)) · φ(χ) + 24 · Φ(χ)

)
,

Cov
[
Q

3
, (Q ∧ c)

]
= 3 · v2 + κ4 − Cov

[
Q

3
, (Q− c)+

]
.

Proof: See the Appendix. �

In Figures 7 and 9, we see that we can estimate the mean, variance, skewness, and
kurtosis quite well by adding an additional term to approximate the kurtosis of the queueing
distribution. We clearly see that the GCK approximation is doing the best at approximating
the mean, variance, and skewness of the queueing process.

4. ESTIMATING BLOCKING PROBABILITIES

The blocking probability is perhaps the most important performance measure of the non-
stationary loss queue. Unlike its stationary counterpart, the nonstationary loss queue is not
insensitive to the service distribution; see for example Davis et al. [1]. In this section, we
give approximations for the blocking probabilities for the nonstationary loss queue.

4.1. GVA Blocking Probability

Using the GVA approximation for the nonstationary loss queueing process we can also derive
an approximate formula for the probability of blocking or the probability that customer
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Figure 8. (Color online) Log-relative error of GVA, GCS, and GCK means (left).
Log-relative error of GVA, GCS, and GCK variances (right).
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Figure 9. (Color online) Simulated, GCS, and GCK skewness (left). Simulated and GCK
kurtosis (right).

who enters the queue at time t will be turned away for service. For GVA, the probability
of blocking is:

P{Q ≥ c+ k} = P{q +X · √v ≥ c+ k}
= P{X ≥ ψ}
= Φ(ψ).

This formula asserts that we can approximate the probability of blocking with the
Gaussian tail distribution and yields some insight on the dynamics of our queueing system’s
probabilistic behavior.

4.2. GCS Blocking Probability

The GCS approximation like GVA also allows us to calculate the probability of delay. Under
the assumptions of the GCS density, the approximate probability of delay is:

P{Q ≥ c+ k} = ESkew[{X ≥ ψ}]
= EGVA[{X ≥ ψ}] + EGCS[{X ≥ ψ}]
= Φ(ψ) + (ψ2 − 1) · φ(ψ) · κ3

6 ·
√
v3
.
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Like the GCS density 3.6, the GCS approximation for the blocking probability is a pertur-
bation of the probability of blocking of the GVA, which includes the skewness. Thus, if the
skewness is zero, we obtain the GVA blocking probability as a special case. Moreover, if
one looks more closely at the GCS approximation for the blocking probability, one notices
that the skewness correction term provided from the Gram-Charlier expansion is exactly
the second-order Edgeworth expansion term.

4.3. GCK Blocking Probability

The GCK approximation also allows us to calculate many probabilistic quantities of interest
like the the probability of delay. For GCK, the probability of delay is:

P{Q ≥ c+ k} = EKur[{X ≥ ψ}]
= EGVA[{X ≥ ψ}] + EGCS[{X ≥ ψ]} + EGCK[{X ≥ ψ}]
= Φ(χ) + (ψ2 − 1) · φ(ψ) · κ3

6 ·
√
v3

+ (ψ3 − 3 · ψ) · φ(ψ) · κ4

24 · v2
.

Like the density, the GCK approximation for the blocking probability is a perturbation of
the blocking probability of the GCS, which includes the kurtosis. Thus, if the kurtosis is
zero, we get back the GCS probability of blocking. Similar to the GCS approximation for
the blocking probability, the kurtosis correction term provided from the GCK expansion is
exactly the third order Edgeworth expansion term.

On the left of Figure 10, we also simulated the blocking probability for the nonstationary
loss queue and compared it with the GVA, GCS, and GCK approximations. We see that
the GCS method does slightly better than the GVA and GCK approximations. However,
the improvement is very slight. This is confirmed on the right of Figure 10 where we plot the
log-relative error of the various approximations. Once again we see that the GCS method
is superior, but only slightly superior to the GCK method.

4.4. Comparison Against GSA

In this section, we compare the Gram-Charlier expansion with the Gaussian skewness
approximation (GSA) of [10] using the parameters of Table 1. As one can see in Figure 11,
we see that the GCS approximation is much better than the GSA approximation. This is
especially seen in the variance and skewness of the queueing process. Moreover, we see that
the GCS is better at estimating the blocking probability as well.
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Figure 10. (Color online) Simulated, GVA, GCS, and GCK blocking probability (left).
Log-relative error of GVA, GCS, and GCK blocking probability (right).
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Table 1. High Arrival Rate Parameters

Parameter Value

λ(t) 100 + 40 · sin t
μ 1
c(t) 100
k(t) 80
β 2
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Figure 11. (Color online) Comparing the Gram-Charlier and Gaussian skewness methods.

5. ADDITIONAL NUMERICAL EXAMPLES

In this section, we give additional numerical examples of our methods with skewness and
kurtosis corrections. These additional examples give support that our new methods work in
a variety of parameter settings that are important in practice. Software to implement some
of these methods is available on the author’s website.
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5.1. Dynamic Staffing Example

In Figure 12 we give an example of a queueing system, where the number of servers changes
dynamically through time. The parameters we use to simulate the loss queue are given in
Table 2. On the top left of Figure 12, we see that all of the methods approximate the mean
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Figure 12. (Color online) Sinusoidal arrival rate and staffing schedule (dynamic staffing
example).

Table 2. Dynamic Staffing Parameters

Parameter Value

λ(t) 10 + 5 · sin t
μ 1

c(t) �λ(t) · 3
2�

β 0.25
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Table 3. High Arrival Rate Parameters

Parameter Value

λ(t) 100 + 40 · sin t
μ 1
c(t) 100
k(t) 80
β 2

Table 4. High Arrival Rate Parameters

Parameter Value

λ(t) 100 + 40 · sin t
μ 1
c(t) 100
k(t) 80
β 0.5

dynamics well. Even for the variance on the top right of Figure 12 it seems that all of
the approximations doing quite well at approximating the nonstationary behavior. On the
middle left of Figure 12, we see that the GCS method is outperforming the GCK method
for estimating the skewness. However, this can be explained because in this example, the
kurtosis is not well approximated by the GCK method on the middle right of Figure 12.
Moreover, all the methods seem to work well at approximating the blocking probability,
which is an important performance measure. However, the GCK does slightly worse than
the GCS since the GCK does not accurately approximate the kurtosis well. Thus, this
example provides evidence that our Gram-Charlier expansion method is accurate even when
the number of servers dynamically changes throughout time and is not just a fixed constant.

5.2. Large-Scale and Impatient Customers

In Figure 13, we give an example of the dynamics of a queueing system with a high arrival
rate, a large number of servers, and where the customers are very impatient. The parameters
that we use for this example are given in Table 3. We see on the top of Figure 13 that the
mean and variance are approximated very well regardless of the method used. One reason is
that we are very close to operating in the many server heavy traffic regime and distribution
is becoming more Gaussian like. On the middle left of Figure 13, we see that the GCS and
GCK methods are doing very well at approximating the skewness of the queueing process.
Furthermore on the right middle of Figure 13, we see that the GCK method is approxi-
mating the kurtosis very accurately. On the bottom left of Figure 13, we see that GVA,
GCS, and GCK are all doing a good job of estimating the probability of blocking when
there is not much blocking since customers are impatient and abandon the queue quickly
if they are forced to wait. With a high arrival rate and large number of servers, it is not
complete necessary to use the skewness and kurtosis corrections as there is not much room
for correcting the estimates of the mean and variance dynamics since the queueing process
mimics an infinite server queue. However, one other thing to notice is that the skewness has
a local maximum when the queueing process is critically loaded that is, (q = c) where we
expect the queueing system not to behave like a Gaussian process.
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Figure 13. (Color online) Impatient relative to mean service rate example.

5.3. Large-Scale and Patient Customers

In Figure 14, we give an example of the dynamics of a queueing system with a high arrival
rate, a large number of servers, and where the customer are relatively patient and are willing
to wait for service. The parameters that we use for this example are given in Table 4. On the
top of Figure 14 we see that the mean and variance are approximated very well regardless
of the method used. However, we see that the GCS and GCK methods are improvements
over the GVA method, especially for the variance. On the middle left of Figure 14 we see
that the GCS and GCK methods are doing very well at approximating the skewness of the
queueing process. Once again we see that the GCK method is better at approximating the
skewness since it incorporates more information about the queueing process. Furthermore
on the right middle of Figure 14, we see that the GCK method is approximating the kur-
tosis very accurately. On the bottom of Figure 14, we see that the GCK method is the best
at approximating the probability of blocking. In fact, we see consistent improvment of the
Gram-Charlier method as we add more terms in the expansion.
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Figure 14. (Color online) Patient relative to mean service rate example.

5.4. Additional Comparison Against GSA

In this section, we provide an additional example to compare the Gram-Charlier expansion
with the GSA of [10]. Using the parameters of Table 5 one can see in Figure 11 that the
GCS approximation is better than the GSA approximation. This is especially seen in the

Table 5. High Arrival Rate Parameters

Parameter Value

λ(t) 100 + 40 · sin t
μ 1
c(t) 100
k(t) 80
β 0.5
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Figure 15. (Color online) Comparing the Gram-Charlier and Gaussian skewness methods
(second example).

variance and skewness of the queueing process. Moreover, we see that the GCS is better at
estimating the blocking probability as well. Thus, this shows that we should use the Gram-
Charlier method in the nonstationary loss case since it is more accurate and the analysis is
much simpler since it does not use polynomial roots. Moreover, we are also able to capture
higher moments with less effort using the Gram-Charlier method.

6. CONCLUSION

In this paper, we have illustrated that combining the functional Kolmogorov forward equa-
tions with the Gram-Charlier series expansion is a good method for approximating the
dynamics of the nonstationary loss queue with abandonment. Thus, this method can be
applied to other queueing processes that are not a part of the Markovian service network
family. The Gram-Charlier approach generates a finite-dimensional dynamical system that
improves our estimation of both the mean and variance of the original queueing process
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and most of the time also estimates the skewness and kurtosis fairly well. This is especially
needed during the times of critical loading or when the loss queue experiences significant
blocking. Estimation of the blocking probability is perhaps the most important performance
measure of the nonstationary loss queue and our method demonstrates that it can accu-
rately reproduce the simulated results. We hope to extend this method to a network of loss
queues, which would be useful for modeling networks of service systems that mimic the
behavior of the loss queue.

More recently, Pender [14] has used Laguerre polynomials for expanding the queue
length process of multiserver queues with small numbers of servers. A comparison of the
two methods for nonstationary loss queues is a subject of future research.
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APPENDIX A

Proposition A.1: Any L2 function can be written as an infinite sum of Hermite polynomials of
X, that is,

f(X)
L2

=
∞∑

n=0

1

n!
E[f (n)(X)] · hn(X)
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and the expectation of two functions of Hermite polynomials has the following decomposition

E[f(X) · g(X)] =
∞∑

n=0

1

n!
· E[f (n)(X)] · E[g(n)(X)].

The next lemma known as Stein’s lemma [15] is how we calculate many of the expectation and
covariance terms with explicit Hermite expressions.

Lemma A.2 (Stein [15]): The random variable X is Gaussian (0, 1) if and only if

E [X · f(X)] = E

[
d

dX
f(X)

]
, (A.1)

for all generalized functions f . Moreover,

E [hn(X) · f(X)] = E

[
dn

dXn
f(X)

]
, (A.2)

where hn(X) is the nth Hermite polynomial.

A.1. Calculations of Unknown Expectations and Covariance Terms

In this section, we derive explicit formulas for the expectations and covariances needed for construct
our dynamical system approximation for our queueing process.

A.1.1. Computation of Arrival Function Terms Now we compute the arrival rate function
terms using the Stein’s lemma and Hermite polynomials representations and properties. We only
compute the terms for the GCK method since GCS can be obtained by setting κ4 to zero. Moreover,
GVA terms can be obtained by setting both κ3 and κ4 to zero. Thus, it suffices to only compute
the expectation and covariance terms only for the case of the GCK.

E [{Q < c+ k}] = 1 − E [{X ≥ ψ}] − κ3

6 · v · E [h3(X) · {X ≥ ψ}]

− κ4

24 ·
√
v3

· E [h4(X) · {X ≥ ψ}]

= Φ(ψ) − κ3

6 ·
√
v3

· h2(ψ) · φ(ψ) − κ4

24 · v2 · h3(ψ) · φ(ψ),

Cov [Q, {Q < c+ k}] = −Cov [Q, {Q ≥ c+ k}]
= −√

v · Cov [X, {X ≥ ψ}] − κ3

6 · v · Cov [X · h3(X), {X ≥ ψ}]

− κ4

24 ·
√
v3

· Cov [X · h4(X), {X ≥ ψ}]

= −√
v · φ(ψ) − κ3

6 · v · (h3(ψ) + 3 · h1(ψ)) · φ(ψ)

− κ4

24 ·
√
v3

· (h4(ψ) + 4 · h2(ψ)) · φ(ψ),

https://doi.org/10.1017/S0269964814000205 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000205


NONSTATIONARY LOSS QUEUES VIA CUMULANT MOMENT APPROXIMATIONS 49

Cov
[
Q

2
, {Q < c+ k}

]
= −Cov

[
Q

2
, {Q ≥ c+ k}

]

= −v · Cov
[
X2, {X ≥ ψ}

]
− κ3

6 · √v · Cov
[
X2 · h3(X), {X ≥ ψ}

]

− κ4

24 · v · Cov
[
X2 · h4(X), {X ≥ ψ}

]

= −v · h1(ψ) · φ(ψ) − κ3

6 · √v · (h4(ψ) + 7 · h2(ψ) + 6) · φ(ψ)

− κ4

24 · v · (h5(ψ) + 9 · h3(ψ) + 12 · h1(ψ)) · φ(ψ)

Cov
[
Q

3
, {Q < c+ k}

]
= −Cov

[
Q

3
, {Q ≥ c+ k}

]

= −
√
v3 · Cov

[
X3, {X ≥ ψ}

]
− κ3

6
· Cov

[
X3 · h3(X), {X ≥ ψ}

]

− κ4

24 · √v · Cov
[
X3 · h4(X), {X ≥ ψ}

]

= −
√
v3 · (ψ2 + 2) · φ(ψ) − κ3

6
· (h5(ψ) + 12 · h3(ψ) + 27 · h1(ψ)) · φ(ψ)

− κ2

24 · √v · (h6(ψ) + 15 · h4(ψ) + 48 · h2(ψ) + 24) · φ(ψ).

For all the other expectation and covariance terms that are used in calculating the relevant cumulant
moments and performance measures, the derivation of those expressions can be found in [13].
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