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Drops on a conical wire

By ÉLISE LORENCEAU AND DAVID QUÉRÉ
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Collège de France, 75231 Paris Cedex 05, France

(Received 3 June 2003 and in revised form 31 December 2003)

We study experimentally the behaviour of a drop deposited on a conical fibre. It is
shown that for wetting liquids, such a drop spontaneously moves towards the region of
lower curvature. The driving force is measured and shown to be a gradient of Laplace
pressure, which allows us to characterize the dynamics of these self-propelling drops.
We conclude by discussing the efficiency of this device for drying a solid initially
coated with a liquid film.

1. Introduction
Asymmetric droplets often have the property of moving, and different ways for

generating such motions have been described. Bouasse suggested that a slug in a
conical capillary tube should move toward the region of small radius (Bouasse 1924).
Weislogel characterized the motion of a drop deposited across the interface between
two substrates of different chemical nature (Weislogel 1997). Bain, Burnett-Hall &
Montgomerie (1994) and Domingues dos Santos & Ondarçuhu (1995) invented a
dynamic version of that, in which the motion itself keeps alive a contrast in wettability
between the front and the rear of the drop. Bico & Quéré (2002) studied the motion
resulting from an asymmetric slug (made of two juxtaposed droplets) in a tube. The
contrast between the rear and the front of a drop can also arise from a temperature
gradient, and Brochard (1989), Smith (1995) and Mazouchi & Homsy (2000) described
very completely the motion of a drop placed in a temperature gradient. Carroll (1989)
focused on a drop placed on a mammalian hair fibre (which looks like a saw in
profile) and noticed a tendency for it to move in a direction parallel to the fibre axis
until it attains a stable conformation. This transient movement occurs as a result of
differences in the local angle of contact of the liquid with the heterogeneous surface.

Generally, capillary force can be written as the product of surface tension γ and
a characteristic length l. Motion can thus be induced in a drop if it is placed on a
gradient of either surface tension or characteristic length – which is the case in all the
examples detailed above. Here, we show what happens when a droplet is placed on a
conical fibre, which achieves the situation of radius gradient. As can be observed in
figure 1, the drop spontaneously moves toward the region of lower curvature. Since
photographs are taken regularly (here, every 1.6 s), we also notice that the velocity is
not a constant: the drop slows down as it moves. We shall see further that the drop
velocity does not depend only on the conicity (i.e. gradient of radius) of the fibre,
which is constant in figure 1, but also on its local radius.

This result holds at any scale below the capillary length (which compares capillary
effects with gravity). It explains why atomic force microscopy tips can sometimes
present self-cleaning behaviour (the end of the tip remains dry even if it has contacted
a drop). This phenomenon should also be relevant in heterogeneous clusters of fibres,
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Figure 1. Multi-exposed photograph of a millimetric drop of silicone oil on a tapered copper
wire. The time interval between two successive pictures is 1.6 s, and it is observed that the drop
spontaneously moves towards the region of low curvature.

V

z

A

Figure 2. Sketch of the conical wire preparation: a copper wire is withdrawn at a constant
speed V out of a bath of nitric acid.

where it should generate a reorganization of the drops (for example, displacing liquid
drops from fibrous regions towards knots between fibres in glass wool, or in any
non-woven fabric). It could finally be used for driving small amounts of liquid in
micro-fabricated devices, or for keeping dry specific regions of such devices. In this
paper, we first describe our experimental method to produce conical fibres. Then we
present experimental results, and focus on the analysis of the force which drives the
motion. We finally characterize the dynamics of the process and briefly consider the
case of films deposited on conical fibres.

2. Construction of conical fibres
The first step of the experiment consists of making conical fibres. For a quick demon-

stration of the effect, we can elongate glass capillary tubes by heating and quickly
drawing them. A trumpet shape results from this operation, and the effect can be
easily shown – but not studied quantitatively, the shape being neither regular nor
controlled. We therefore chose to develop a method using the chemical etching of a
wire, as for making AFM tips (which are conical shapes of large radius gradient)
(Takahashi 1990; Mononobe & Motoichi 1996; Puygranier & Dawson 2000).

A cylindrical copper wire of initial radius r0 is vertically immersed in a bath of
concentrated nitric acid (see figure 2). Then, the wire is pulled out of the bath at a
controlled speed V . Nitric acid oxidizes copper, which changes the metallic atoms Cu
into cations Cu2+. The solution hence turns to blue. Since the wire is withdrawn, the
top of the fibre spends less time in the bath than the bottom and thus is less etched
by the acid. We denote as z the position along the wire, starting from the bottom. We
assume that the bath is large enough to keep the concentration of the acid constant
during the whole operation. During a time dt , the nitric acid will etch a wire of radius
r to a depth: dr = r(t + dt) − r(t) = − v dt , denoting v as the speed of etching. Since
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Figure 3. Measured mean radius r of a conical fibre as a function of the position
z along the fibre.

we have dz = −V dt , we obtain for the variation of the radius of the wire:

r(z) =
v

V
z, (1a)

taking z = 0 at the edge of the tip. The wire is conical, with a semi-angle α at the top
given by:

tan α =
v

V
. (1b)

It is possible to set the conicity α of the wire by tuning the withdrawal speed V . We
also note that it should be equivalent to draw the wire once at V/2, or twice at V . We
chose to design our conical wires by withdrawing them several times at a high speed
rather than once slowly. This avoids specific effects close to the meniscus (point A in
figure 2), where the chemical reaction is observed to be heterogeneous because of the
presence of the liquid/vapour interface (Bico et al. 2004).

Figure 3 displays the profile of a conical wire of initial radius 1 mm withdrawn
three times at a velocity V =1.5 mm s−1 from a bath of 60% concentrated nitric acid.
High magnification digital photographs of the cone were taken and analysed, from
which we could extract the contour and thus the mean radius as a function of the
position z along the fibre. Except for the first few millimetres, the conicity is observed
to be quite constant. Typically, the radius increases from 150 µm to 350 µm in 3 cm.
Its gradient dr/dz is found in this particular example to be (7 ± 1) × 10−3, but cones
with radius gradients between 4 × 10−3 and 15 × 10−3 could be produced using the
same method.

3. Force measurements
3.1. Rough data

A drop of a wetting liquid placed on such tapered wires moves, and our first measure-
ments consisted of determining the driving force acting on the drop. A given volume
Ω of silicone oil was deposited on the wire, which was slightly inclined, as sketched
in figure 4. For a given tilt angle β , we observed that the drop moves till it reaches
an equilibrium position – which shows that the driving force does not depend only
on α, but also on the local radius. At this point, the drop weight balances the driving
capillary force, which thus provides a measurement of the latter quantity. We report
in figure 5 this equilibrium position z as a function of the tilt angle, for 3 mm3 droplets
of silicone oil (surface tension γ =19.7 mN m−1 and density ρ = 910 kg m−3) and for
the conical wire characterized in figure 3. Note that this wire is made of copper, of
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32 É. Lorenceau and D. Quéré

w f
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Figure 4. If the cone is tilted by an angle β , the drop stops at a position z for which the
capillary force f balances the weight w. This experiment thus provides a measurement of the
driving force acting on the drop.
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Figure 5. Sine of the equilibrium tilt angle β as a function of the position z of the drops on the
tip. The drop, of volume 3 mm3, is made of silicone oil (γ = 19.7 mN m−1 and ρ = 910 kgm−3).
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Figure 6. Shape of a wetting drop on a cylindrical fibre.

high surface energy, which yields a situation of total wetting. This condition will be
fulfilled throughout this study.

It appears that the smaller the position z of the drop on the wire (hence the smaller
the local radius r), the larger the tilt angle needed for the drop to be at rest. This
shows that for a given conicity, the driving force increases as the drop becomes closer
to the tip.

3.2. Drop shape on a cylindrical fibre

In order to be more quantitative, we must first recall different features of the shape
of a drop on a cylindrical fibre, a subject on which a very comprehensive framework
was built, in particular by Carroll (1976, 1983, 1986, 1991) McHale et al. (1997) and
McHale & Newton (2002). Carroll described the equilibrium shape of small droplets
(i.e. smaller than the capillary length) deposited on thin fibres (Carroll 1976, 1986).
He calculated the length L, the liquid/air area A, the volume Ω and the pressure P

of the drop as a function of its maximal thickness h and of the fibre radius r (as
defined in figure 6). If the drop is smaller than the capillary length, its curvature is
constant (gravitational effects are negligible) and proportional to its overpressure �P ,
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Figure 7. Maximum height h of a drop on a fibre, as a function of the fibre radius, for various
drop volumes (increasing from bottom to top). For large radii, h tends towards r (h = r is the
oblique line), indicating a flattening of the drop.

according to Laplace’s law. Carroll showed that this law can be expressed analytically
as (Carroll 1976):

�P =
2γ

r + h
. (2)

This formula is consistent with the geometry of a fibre: when the volume of the drop
tends to zero (i.e. h = r), �P is equal to γ /r , the Laplace pressure inside a cylinder of
radius r . On the other hand, if the radius of the fibre tends to zero for a drop of given
volume, we find �P =2γ /h, the overpressure in a sphere of radius h. Furthermore,
we shall use Carroll’s analytical results on conical fibres: the gradient of curvature
being smaller than 10−2, we can neglect its effect on the shape of the drop.

In contrast with the case of a cylindrical fibre, for which the pressure inside a drop
is a constant, the radius gradient along a conical fibre sets a pressure gradient along
the drop. (This is easy to realize when considering a very thin drop, for which h tends
to r; then, the Laplace pressure, which is γ /r , decreases towards regions of lower
curvature.) According to (2), this pressure gradient along the axis of the fibre can be
written as:

dP

dz

∣∣∣∣
Ω

= − 2γ

(r + h)2

(
dr

dz
+

dh

dz

)
Ω

, (3)

where the subscript reminds us that the derivatives are evaluated keeping the volume
Ω constant.

In order to evaluate the pressure gradient along the drop, it is necessary to know
how, for a drop of given volume, the height h varies as a function of the radius
r . Expressing that the pressure is constant in the drop, and writing the appropriate
boundary conditions (as proposed by Carroll; see the Appendix for details), allows us
to evaluate the gradient dh/dr . The corresponding results are displayed in figure 7.
For each volume, two well-cut regimes can be observed. At small radius r, h is
observed to become constant. The fibre hardly deforms the drop, which is nearly
spherical (Joanny 1985). We thus expect h ≈ R0, (with R0 the volume of the drop to
be deposited: Ω = 4πR3

0/3), which indeed corresponds to the plateau value (note in
particular in figure 7 that it increases with the drop volume). At large r, h is found
to tend towards r (the equation of the oblique straight line in figure 7 is h = r). In
this limit, the drop is expected to be very flat (quasi-cylindrical drop). The transition
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Figure 8. Calculated maximum height of a drop deposited on a fibre of (given) radius
r = 150 µm, as a function of the volume of the drop. The oblique line indicates the slope 1/3.

(a) (b)

r/R0 < 1 r/R0 > 1

Figure 9. Drop of silicone oil (radius R0) on a fibre (radius r), in the limits (a) r < R0 and
(b) r >R0. (a) R0 = 200 µm and r = 12 µm; (b) R0 = 80 µm and r = 100 µm.

between these two regimes takes place for a fibre radius of the order of the drop size
R0, and thus increases with the drop volume.

This discussion can be confirmed by plotting the calculated height h as a function
of the drop volume (for a fibre of a given radius) (figure 8), and illustrated by
photographs (figure 9). In figure 8, we indeed note that for large drops (Ω > r3), h

increases with the drop volume, as Ω1/3 (drawn with a straight line). This corresponds
to the plateau regime in figure 7, and can be observed in figure 9(a). For smaller Ω ,
the height tends towards a plateau, which was found in figure 7 to obey the equation
h = r: this is the flattened drop expected from our discussion, and photographed in
figure 9(b). Although the actual unduloidal shape of a wetting drop on a fibre is
complicated (Caroll 1986; McHale & Newton 2002), it is important to stress these
simple asymptotic pictures (spherical and cylindrical drops), which will allow us to
derive analytical results.

3.3. Force driving a drop on a conical fibre

We can now derive an expression for the force driving a drop on a conical fibre, in
both regimes. For quasi-spherical drops (r <R0), h is close to being constant (equal
to R0), and (3) simplifies into:

dP

dz

∣∣∣∣
Ω

= − 2γ

(r + R0)2
α, (4)

where the local mean radius of the fibre is denoted as r , and the cone hemi-angle as
α (α �1). Equating this gradient of capillary pressure with the gradient of gravitational
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Figure 10. Sine of the equilibrium tilt angle as a function of the local radius of the fibre,
for two (small) drop volumes. The line indicates a slope of −2.

pressure ρg sinβ yields an expression for the equilibrium tilt angle (as defined in
figure 4), as a function of the mean radius of the fibre and its conicity:

sinβ =
2κ−2

(r + R0)2
α, (5)

where the capillary length κ−1 =
√

γ /ρg was introduced.
For thin drops (r >R0), the situation is even simpler. Making h = r in (3) yields as

a pressure gradient driving the motion:

dP

dz

∣∣∣∣
Ω

= − γ

r2
α. (6)

Equation (6) can be directly derived by expressing the Laplace pressure difference
between the rear and the front of the drop (of length L), namely γαL/r2, whose
gradient is indeed given by (6). Balancing this expression with gravity gives the
equilibrium tilt angle in this regime of flat drops:

sinβ =
κ−2

r2
α. (7)

Both equations (5) and (7) are in qualitative agreement with the data displayed in
figure 5; the equilibrium tilt angle quickly decreases with the position of the drop
on the fibre (starting from the tip), i.e. as the fibre radius increases. This explains, in
particular, our observation that decreasing the tilt angle of the conical fibre makes
the drops move upwards, until it reaches the position (i.e. the mean radius) for which
equilibrium between the capillary force and the weight becomes possible.

Finally we can check the model more quantitatively. In figure 10, we plotted the
equilibrium tilt angle β as a function of the (measured) local radius r where the
drop stays, in the limit of small volumes. The data collapse onto the same curve
in a log/log scale. They are fitted well by a power law of exponent minus two,
in agreement with (7). The coefficient deduced from the fit is 7000 ± 1000 µm2, of
the order of magnitude expected from (7) which provides 14 000 ± 2000 µm2 for this
coefficient (the uncertainty coming here from the error bar on α). We also tested
our model for larger drops. Corresponding data are collected in figure 11, where the
equilibrium tilt angle β is plotted as a function of the (measured) quantity r + R0, as
suggested by (5).
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Figure 11. Sine of the equilibrium tilt angle β as a function of r + R0, denoting r as the
local radius of the fibre and R0 as the drop radius. The line indicates a slope of −2.

There again, the representation allows us to make the different data collapse on
the same curve. The scaling law predicted by the model, (5), is found to agree
quite well with the data. On the other hand, the coefficient deduced from the fit,
namely 5500 ± 1500 µm2, underestimates the one which can be deduced from (5)
(28 000 ± 4000 µm2). There may be different causes for this discrepancy:

(i) We are not here fully in the limit of very large drops (for the data in figure 11,
R0 is between 700 µm and 900 µm, while r can be as large as 150 µm). As seen above,
taking into account the finite size of the drop makes the numerical coefficient decrease
by a factor 2 (see (5) and (7)).

(ii) The regimes described by (5) and (7) are not necessarily well defined: for a
drop of given volume, decreasing β makes the drop move towards a region of higher
radius (until equilibrium is reached), which makes the ratio r/R0 change.

(iii) For the largest drops, the implicit condition R0 < κ−1 is not necessarily fulfilled,
so that corrections should be introduced for taking into account the asymmetry that
gravity induces on the drop shape.

4. Dynamics of the motion
4.1. Rough data

In this section, we consider the dynamics of droplets self-propelling on a horizontal
conical fibre. The experiment consisted of placing drops of various volumes (0.2–
1mm3) and viscosities (5–100 mPa s) on copper conical fibres (of mean radii r of
the order of 150 µm) and measuring their position along the motion, from which we
could deduce the drop speed as it progresses. We report such data in figure 12, for a
conical fibre of gradient of curvature of about 7 × 10−3 and drops of silicone oil (of
viscosity η =5 mPa s) of various volumes.

The speed of the drop decreases as the liquid moves. For a given position on the
fibre, it is also found to increase with the drop volume. All these features reveal a
non-trivial dynamic, which deserves a detailed discussion. The first step is to identify
the viscous force opposing the motion, and we chose to characterize this friction by
studying separately the dynamics of a drop placed on a slightly inclined cylindrical
fibre. This device allows us to control the driving force, the drop being set in motion
under the action of its own weight.
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Figure 12. Speed of drops of different volumes as a function of their position along a
conical fibre. All the drops are made of silicone oil of viscosity η = 5 mPa s.
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Figure 13. Terminal speed of oil drops placed on an inclined fibre as a function of the
kinematic viscosity of the oil. The drops are made with silicone oil of various viscosities
(5 mPa s< η < 100mPa s), and all have the same volume Ω = 0.6 mm3. The tilt angle is 7◦.

4.2. Velocity of a drop creeping down an inclined fibre

Our first experiment here consisted of characterizing, for a given known driving
force, the influence of viscosity on the dissipation. We took a cylindrical fibre, of
radius r = 100 µm, and tilted it by an angle β = 7◦. Then, we measured the terminal
speed V of drops (made of silicone oil of various viscosities, and of constant volume
Ω = 0.6 mm3) placed on this fibre. We report our results in figure 13 as a function
of the kinematic viscosity η/ρ of the oil, in a log/log scale. The terminal velocity is
found to decrease with the viscosity in a log/log scale with a slope of −1, a typical
feature in a viscous dissipation process. This can be confirmed considering the typical
Reynolds number Re of the flow, taking R0 as a characteristic length (note that R0

is the largest typical length of the system). For oil viscosity increasing from 5 mPa s
to 100 mPa s, we obtain a Reynolds number decreasing from 0.8 to 2 × 10−3, always
smaller than unity.

Then, we should determine the mechanism of viscous dissipation in the drop. In
many cases, it is observed that the friction for a moving drop arises mainly from what
happens close to the contact line, in the so-called liquid wedge. Denoting θ as the
wedge angle, the dissipation is obtained by integrating the viscous stress ηV/θx (if x

is the distance from the edge, θx is the local thickness of liquid) in the wedge. This
yields ηV rl/θ , where l is a logarithmic factor including the cutoffs in the integration
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Figure 14. Calculated aspect ratio (h − r)/L of a drop deposited on a fibre as
a function of its volume.

and which can often be treated as a constant (De Gennes 1986). Hoffman showed that
this logarithmic factor l is of order the of 15 (Hoffman 1975) for a liquid spreading
on a dry surface, but it is reduced to a value of about 5 if the solid is prewetted by a
micrometric film (Bico & Quéré 2001). The latter case indeed implies a reduction of
the friction (the wedge slips on a film), and will correspond to our experiments.

For a wetting drop moving on a fibre (instead of a planar solid), the drop may
itself be sketched as a global macroscopic wedge, even close to equilibrium (figures 6
and 9b). Hence, the total viscous resistance is the sum of two terms (the friction in
a local Hoffman wedge, and that in this global macroscopic wedge), and it is not
obvious to guess a priori which part of the drop dominates the friction. If the viscous
dissipation is mainly local and for a wetting liquid, θ is dynamic in essence and given
by Tanner’s law (Hoffman 1975; Tanner 1979): θ ∼ (lηV/γ )1/3. Balancing the viscous
friction with the driving force f yields as an expression for the drop velocity:

V ∼ γ

ηl

(
f

γ r

)3/2

. (8)

If the viscous dissipation is global and assuming that the slow motion does not affect
the static shape of the drop, θ is of the order of (h − r)/L, where the different lengths
are defined in figure 2. Hence, we obtain for the velocity:

V ∼
(

h − r

L

)
f

ηrl
. (9)

The dissipations are equal when the velocity is given by the relation:

Vc ∼ γ

ηl

(
h − r

L

)3

. (10)

If the speed V is larger than Vc, the dissipation is global, whereas it is local in the
opposite case. To be more explicit, we must evaluate the ratio (h − r)/L, which can
be done using Carroll’s method (Carroll 1976, 1986). The result of the calculation is
presented in figure 14 as a function of the drop volume, for different fibres.

For small drops (Ω < 1 mm3), this geometrical factor (which can be sketched as
the typical angle made by the drop on the fibre, and thus directly conditions the
law of dissipation) logically increases with volume. For very large drops (Ω >r3), the
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101

10–1 100

sin β

V (mm s–1)

100

Figure 15. Speed of a drop of silicone oil (Ω = 0.5 mm3, η = 20 mPa s) running down along
an inclined wire (r = 110 µm), as a function of the sine of the tilt angle. The fibre is prewetted
by a film of thickness 2.0 ± 0.5 µm. The line indicates a slope of 1.

quantity (h − r)/L tends towards R0/2R0, i.e. 1/2 (as observed in figure 9a) and we
lose the picture of a liquid wedge of small angle for the moving drop.

The velocity Vc in (10) can be estimated using figure 14: the ratio (h − r)/L is found
to be of the order of 0.1. The ratio γ /η is at most 5 m s−1, which gives (for l = 5)
Vc less than 1 mms−1, smaller than the speed of the drop placed on the wire, which
suggests a global viscous dissipation, (9).

This can be tested simply by measuring the velocity of drops creeping down inclined
fibres. The driving force is f = ρgΩ sinβ , denoting β as the tilt angle, and (8) predicts
that V should increase as sin3/2β while we expect from (9) a variation linear in
sin β . Figure 15 shows the descent velocity of a drop of silicone oil (Ω = 0.5 mm3,
η =20 mPa s) on a copper wire (r = 110 µm) prewetted by a thin film (thickness
2.0 ± 0.5 µm) of the same silicone oil, and inclined by an angle β , as a function of
sin β .

The speed of the drop is indeed proportional to the sine of the tilt angle, hence
to the driving force, as expected from (9). The dissipation mainly occurs in the bulk
rather than in the vicinity of the contact line. This is consistent with the data reported
in figure 13; the speed was found to be inversely proportional to the viscosity for a
constant driving force, also in agreement with (9).

Finally, we checked how the drop velocity varies as a function of its volume Ω .
This is a more complicated dependency since h and L in (9) should depend on Ω .
Figure 16 shows such measurements, for a given tilt angle and various viscosities, and
plots the quantity ηV/f (with f = ρgΩ sin β) as a function of Ω .

As expected from (9), the quantity ηV/f is not a constant, but slightly increases with
the drop volume, through the geometric factor (h − r)/L. Describing (for convenience)
the variation in figure 16 with a scaling law provides an exponent of 0.42 ± 0.05. This
weak variation is in fair agreement with the results displayed in figure 14, in the range
of radii and volumes explored in the experiments.

4.3. Velocity of a drop moving along a horizontal conical wire

We successively described the driving force of the motion ((4) or (6), according to the
drop volume) and the viscous friction for a drop moving on a cylindrical fibre, (9).
We can collect these results to understand the dynamics of a drop placed on a
horizontal conical fibre. We shall neglect the distortion created by the gradient of
curvature of the fibre (which is less than 10−2) on the shape of the drop.
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40 É. Lorenceau and D. Quéré
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Figure 16. ηV/f as a function of the drop volume, for oils of different viscosities (+,
η = 5 mPa s; �, η = 10 mPa s; �, η = 20 mPa s; �, η =100 mPa s) moving along the same inclined
fibre (r =150 µm, β = 7◦).

101
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Figure 17. Speed of drops self-propelling on a cone (conicity α =7 × 10−3), as a function of
the drop volume. The velocity is measured at different positions on the wire: +, z = 17 mm; �,
15mm; �, 13mm; �, 10mm; �, 8 mm. The line indicates a slope of 1.

We saw in figures 1 and 12 that the drop velocity decreases as the radius becomes
larger, and increases with the drop volume. Both these facts can be understood by
putting together (6) and (9) (i.e. considering the case of small drops), which yields:

V ∼ γ

ηl

(
h − r

L

) (
Ω

r3

)
α. (11)

Equation (11) can be tested more accurately. The first test consists of plotting the
drop velocity as a function of its volume, for a given position (i.e. local radius) on the
fibre. For each experiment, the fibre was first prewetted with a thin film (of typical
thickness 2 µm), to prevent a drop variation along the motion: a wetting drop leaves
a film behind as it moves, which leads to a decrease of its volume. Because of the
prewetting, the drop volume was observed to remain constant along the motion.

The local velocity was measured and the corresponding results are displayed in
figure 17, for various positions, corresponding to a variation of radius between 150 µm
and 250 µm. For each position, the velocity is found to be nearly proportional to the
drop volume (the thin line indicates a slope of 1 in the log–log plot of figure 17).
More precisely, the quantity (h − r)/L in (11) should increase slightly with the drop
volume, as shown in figure 16, but this variation is very moderate in the range of radii
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Figure 18. Drop speed as a function of the quantity (h − r)/Lr3 for drops (η = 5 mPa s) of
different volumes moving along the same conical fibre. Linear behaviours are observed, as
expected from (11).

explored here (the fibre radius remains around 200 µm). This first test thus appears
to be in fair agreement with (11).

However, the most remarkable feature of this dynamic law is its extreme sensitivity
towards the fibre radius, which explains the rapid deceleration along the motion
reported in figures 1 and 12. The quantity (h − r)/L in (11) decreases with the radius
of the fibre, as can be seen in figure 14 where it was displayed as a function of the
drop volume for different radii. Figure 18 presents the drop velocity as a function
of the quantity (h − r)/Lr3, for three different volumes (where (h − r)/L has been
calculated using Carroll’s method). There again, the results agree with (11) fairly well:
in each case, a strong variation (close to r−4) is observed, as predicted. This explains
the deceleration along the motion, which (as we saw) is due to both a decrease of the
driving force and an increase of the friction force.

5. A note on the films
In many cases, we deal with films rather than drops. This happens, for example, if a

solid is drawn out of a bath, which leaves a film, or if it is exposed to a vapour which
condenses on it. Here, we describe qualitatively what happens considering a film on
a conical fibre, instead of a single drop. The film deposition is achieved by drawing
the fibre out of bath of silicone oil at a constant velocity Vo. In such a case, the
film thickness t results from a balance between viscous effects and capillarity (Quéré
1999), so that:

t ∼ 1.34r

(
ηVo

γ

)2/3

. (12)

On a conical fibre, the film thickness should thus vary at each point, because of the
radius variation. In our experiment, the withdrawal velocity was 1.5 cm s−1, the oil
viscosity and surface tension η = 20 mPa s and γ = 20 mN m−1, and the fibre radius
increased along the cone from, typically, 100 µm to 300 µm, which yields a film
thickness varying between 8 and 25 µm. Figure 19 shows what happens once the
coating is achieved.

We observe that the liquid moves to the region of smallest curvature, as reported
above. However, this motion is coupled here with a destabilization of the film, because
of the Plateau–Rayleigh instability (Rayleigh 1878); the film spontaneously breaks
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Figure 19. Successive snapshots (interval between each picture: 5 s) showing the evolution
of a liquid film (thickness 8–25 µm) made of silicone oil (η = 20 mPa s and γ =20mNm−1)
deposited on a conical fibre (of radius between 100 and 300 µm).

Figure 20. Successive snapshots (interval between each picture: 120 s) showing the evolution
of a thin liquid film (thickness 2–6 µm) (same oil and fibre as in figure 19). A single drop
appears and moves, as shown by the arrows.

into an array of droplets, because of the lowering of the liquid/vapour surface energy
associated with the destabilization. For t � r , the wavelength of the instability scales
as r , and thus the typical flow velocity for making the drops as r/τ , denoting τ as the
characteristic time of the formation of the drop. τ classically comes from a balance
between viscous friction, of the order of ηr/τ t2, and capillary forces, of the order of
γ t/r3 (Dumbleton & Hermans 1970; Carroll & Lucassen 1974). This yields a time
of the order of ηr4/γ t3, where t is given by (12). Thus, the thinner the fibre, the
smaller this time – and drops are indeed observed to appear first on the left-hand side
in figure 19. The very first drop starts moving before the others and creeps quicker
since it is located in the thin part of the fibre. It progressively swallows all the other
droplets, which tends to make it go faster (as shown in figure 17, the drop velocity
increases with the volume). This effect compensates for the slowing down due to an
increase in radius, so that this drop moves at a velocity which is close to being a
constant. However, the sequence displayed in figure 19 mainly shows the efficiency of
this device for drying a solid region without any external action; after a while, most
of the matter has been transferred towards the thickest part of the fibre.

The scenario can be slightly different if the film is thinner. Figure 20 shows the
evolution of a film deposited (same oil and fibre as in figure 19) at a smaller velocity
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(Vo = 0.15 cm s−1), which provides a film of a thickness of 2–6 µm. The main difference
with the sequence displayed in figure 19 is the absence of the Rayleigh instability.
However, the film is driven towards the thickest region of the fibre, as indicated by
the progression (and increase in size) of a single drop. The typical velocity of the flow
is given by balancing the driving gradient of capillary pressure, (6), with the viscous
force (per unit volume), which scales as ηV/t2, denoting V as the mean flow velocity.
This yields for the velocity:

V ∼ γ

η

t2

r2
α. (13)

The typical time τ ∗ for driving the liquid on a length r thus scales as: ηr3/γ αt2, which
means that τ ∗ can be smaller than the Rayleigh time τ (for setting the drops) if we
have: t < αr , i.e. for thin films. In our particular case, the thickness of the deposited
film is proportional to r , (12), so that the latter condition finally corresponds to small
deposition velocities. Note that the efficiency of the drying can finally be evaluated
by comparing the volume of the drop which collects the film (and which can be
deduced from its geometrical characteristics, as shown by Carroll 1976) with the
volume of the film. Such a comparison was made for the experiments of figures 19
and 20 and showed that 85 ± 15% of the volume was collected – a quantity logically
smaller than unity, because of the film deposited by the collecting drop itself, and
of the microscopic film which remains stuck to the fibre in these wetting situations
(Brochard 1986).

6. Conclusion
We showed in this paper that a drop of a wetting liquid placed on a conical fibre

spontaneously moves towards regions of large radius. The force driving the motion
was found to be a gradient of Laplace pressure, and thus be scaled by the liquid
surface tension γ . This can be understood by discussing briefly the energetic origin of
the motion. A drop of wetting liquid progressing on a solid (for example, spreading on
it or penetrating its pores) does not modify the solid surface energy of the substrate,
because of the microscopic wetting film emitted by the drop ahead of the apparent
contact line (De Gennes 1985). Hence, this drop progresses on a wetted solid, and the
gain of energy associated with the motion is just the lowering of the liquid/vapour
interface. On a conical fibre, this lowering physically comes from the flattening of
the drop as it moves towards thick regions, and from the lowering of the ratio
surface/volume in these regions.

If the wetting was only partial, the discussion would be much more complex, in
particular, because the possible conformations of a drop include non-axisymmetric
shapes. For example, drops which are small enough can gain energy if rolling on one
side of the fibre: this is the so-called roll-up process, which was described by Adam
(1937), Carroll (1986) and McHale, Newton & Carroll (2001). In addition, the contact
angle hysteresis generally associated with partial wetting induces a force which resists
the motion, which would suppress, in most cases, the effect reported here.

Thus, we considered only wetting situations. The force acting on the drops was
found to be mainly fixed by the local radius r of the fibre (since it decreases as
1/r2). This fact, together with an increase of the friction as the fibre becomes thicker,
explains why the drops were found to slow down along their progression. This motion
can be exploited for drying a solid, even if forced to be coated with a film (which can
be achieved either by a relative motion between the liquid and the solid, or by exposing
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the latter to a vapour which condenses on it). Films are driven towards regions of
large radius, which shows that such cones could be used as efficient condensers, large
surface areas being coated and ‘pumped’ towards thicker regions where the liquid can
be collected, without using a motor.

We sincerely thank Étienne Reyssat for very stimulating discussions, and Jens
Eggers for pointing out a mistake in a first version of the manuscript.

Appendix
In this Appendix, we detail how (2) is derived. At equilibrium, the free energy of a

drop is minimum. The energy G we must minimize can be written:

G = γA − λΩ,

where A is the liquid/air interface, γ is the liquid/air surface tension, Ω is the volume
of the drop and λ is a Lagrange multiplier related to the condition of a constant
volume. Denoting as z the distance from the fibre axis Ox, the free energy is equal
to:

G = π

∫
[2z

√
1 + ż2 − λ(z2 − r2)] dx, (A 1)

where ż is dz/dx, and r is the fibre radius. We denote f the function such that
G =

∫
f (z, ż) dx. As G is the extremum, the function f satisfies the Euler–Lagrange

equation:

− d

dx

(
∂f

∂ż

)
+

∂f

∂z
= 0.

Hence, we obtain:

γ

[
−z̈

(1 + ż2)3/2
+

1

z(1 + ż2)1/2

]
= λ. (A 2)

This is the Laplace equation, since the quantity inside the brackets expresses the
curvature in axisymmetric coordinates. We deduce that

λ = �P.

The Lagrange multiplier is equal to the pressure inside the drop. Moreover, (A 2) can
be integrated once:

−�P
z2

2
+ γ

z

(1 + ż2)1/2
= K,

where K is a constant that can be evaluated using the boundary condition: ż = 0
when z = r (the liquid wets the solid). Therefore, it becomes:

−�P
z2 − r2

2
+ γ

(
z

(1 + ż2)1/2
− r

)
= 0.

A second integration can be performed with the condition ż =0 for z = h. Hence, we
find that

�P =
2γ

r + h
, (A 3)

which is (2). Note, finally, that (A 2) together with (A 3) and the appropriate boundary
conditions (ż = 0 when z = r and z = h) allows us to compute all the characteristics of
the drop, such as its length and surface area, as shown by Carroll (1976, 1986).
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