
TLP 9 (3): 245–308, 2009. C© 2009 Cambridge University Press

doi:10.1017/S1471068409003767 First published online 28 May 2009 Printed in the United Kingdom

245

CP-logic: A language of causal probabilistic
events and its relation to logic programming

JOOST VENNEKENS, MARC DENECKER and MAURICE BRUYNOOGHE

Department of Computer Science, Katholieke Universiteit Leuven

Celestijnenlaan 200A, B-3001 Leuven, Belgium

(e-mail: {joost, marcd, maurice}@cs.kuleuven.be)

submitted 9 July 2008; revised 6 January 2009; accepted 2 April 2009

Abstract

This paper develops a logical language for representing probabilistic causal laws. Our interest

in such a language is two-fold. First, it can be motivated as a fundamental study of the

representation of causal knowledge. Causality has an inherent dynamic aspect, which has

been studied at the semantical level by Shafer in his framework of probability trees. In such

a dynamic context, where the evolution of a domain over time is considered, the idea of a

causal law as something which guides this evolution is quite natural. In our formalization,

a set of probabilistic causal laws can be used to represent a class of probability trees in

a concise, flexible and modular way. In this way, our work extends Shafer’s by offering a

convenient logical representation for his semantical objects. Second, this language also has

relevance for the area of probabilistic logic programming. In particular, we prove that the

formal semantics of a theory in our language can be equivalently defined as a probability

distribution over the well-founded models of certain logic programs, rendering it formally

quite similar to existing languages such as ICL or PRISM. Because we can motivate and

explain our language in a completely self-contained way as a representation of probabilistic

causal laws, this provides a new way of explaining the intuitions behind such probabilistic

logic programs: we can say precisely which knowledge such a program expresses, in terms

that are equally understandable by a non-logician. Moreover, we also obtain an additional

piece of knowledge representation methodology for probabilistic logic programs, by showing

how they can express probabilistic causal laws.

KEYWORDS: uncertainty, causality, probabilistic logic programming

1 Introduction

Logic-based languages, such as logic programming, play an important role in

knowledge representation. One of the known weaknesses of such languages is that

these are not well suited for representing probabilistic or uncertain knowledge. This

has prompted a significant amount of research into probabilistic logic programming

languages, both in the knowledge representation community itself, as well as in

machine learning, where such languages are developed for the purpose of stochastic

relational learning.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

246 J. Vennekens et al.

Syntactically, such a language typically annotates a logic programming rule,

or some part thereof, with a probability; the formal semantics of the language

then somehow specifies a probability distribution – typically over a set of possible

worlds – in terms of these individual probabilities. This is the way in which these

probabilistic logic programming languages tend to be formally defined. However,

such a formal definition still leaves one important question unanswered, namely that

of how expressions in the language should be understood on the informal level, i.e.

how would one explain their intuitive meaning to a non-logician?

For the two separate components of logic programming and probability, this

question has of course already been addressed at length. For instance, the informal

meaning of logic programs – and in particular its negation-as-failure connective –

has been explained among others in epistemic terms, referring to the beliefs of

a rational agent (Gelfond and Lifschitz 1991), and in terms of the well-known

mathematical concept of an inductive definition (Denecker 1998). The meaning of

statements in probability calculus, on the other hand, has been explained among

others in frequentist terms (e.g. Venn 1866), and in terms of degrees of belief (e.g.

De Finetti 1937).

So far, research on probabilistic logic programming languages has not yet paid a

great deal of attention to this issue of the informal meaning of expressions. It tends

to be assumed that one already has sufficient intuitions about the meaning of logic

programs and that the probabilities can simply be tacked on top of that. This paper

presents an effort to develop a probabilistic logic programming language, whose

informal semantics1 is explained in full detail in a completely self-contained way.

In general, the advantage of such an approach is that it gives more philosophical

insight into the meaning of statements in the language, makes it easier to explain it

to domain experts and can help to provide a better modelling methodology for it.

One of the key tasks that such an effort needs to accomplish is to show

convincingly that the formal semantics of the language indeed correctly captures

the informal meaning that is attributed to its expressions, i.e. that these expressions

indeed mean – formally – what we claim they – intuitively – mean. To ensure that

this is done properly, we will adopt a constructive approach, where we first describe

a particular kind of knowledge that we want to represent, then show how we can

formalise the meaning of this knowledge in a way which is straightforward enough

for its correctness to be intuitively obvious, and finally prove that the language we

have thus defined is actually equivalent to a certain probabilistic logic programming

construction.

The language that we develop will attempt to formalise probabilistic causal laws.

The use of causal laws to compactly represent domains is commonplace in various

action languages, related to logic programming (e.g. Gelfond and Lifschitz 1993).

Here, we will investigate a probabilistic variant of such laws. We will do this in

the semantic context developed by Shafer (1996). In this work, Shafer presents his

1 The informal semantics of a language is commonly also referred to as its ‘intuitive reading’. We prefer
the term ‘informal semantics’, however, because it stresses the close relation that there (should) exist(s)
to the formal semantics.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 247

John and Mary are each holding a rock. With probability 0.5, Mary will throw her rock at a

window. This will break the window with probability 0.8. John will then also throw his rock at

the window. He will hit it with probability 0.6.

Fig. 1. The story of John and Mary.

Fig. 2. Probability tree for the window breaking story.

view on a number of fundamental, causal and probabilistic concepts. His central

hypothesis is that such concepts are best considered in an explicitly dynamic context:

when speaking of probability or causality, we should do so, he says, in the context

of a particular story about how the domain evolves, which he formalises by means

of probability trees. As he himself puts it:

A full understanding of probability and causality requires a language for talking about the

structure of contingency—a language for talking about the step-by-step unfolding of events.

This book develops such a language based on an old and simple yet general and flexible idea:

the probability tree.

Figure 2 depicts a probability tree corresponding to the story shown in Fig-

ure 1. In natural language, we could say that such a tree paints the following

picture. The domain starts out in an initial state. Then, some event happens, which

causes the domain to transition to a new state. However, we do not know up front

precisely which new state this is going to be, exactly; instead, the new state is chosen

probabilistically from a set of alternatives. For instance, in the initial state of the

tree in Figure 2, the event happens that Mary makes up her mind whether to throw

or not, which leads to either a state in which she does or a state in which she does

not. This step is then repeated – that is, in the new state, a different event happens,

which leads to another new state, again chosen probabilistically from some set of

alternatives – until finally this process arrives at a final state, in which no further

events happen.

Throughout this paper, we will continue to talk about probability trees using the

language introduced above. In particular, we will carry on using the word event to

refer to the occurrence that causes a transition from one state to the next. This

use of the term differs from its standard use in probability theory, where it denotes

a set of possible outcome of an experiment. Shafer introduces the terms Humean

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

248 J. Vennekens et al.

event (that which causes a transition between states) and Demoivrian event (a set

of possible outcomes) to distinguish between these two different meanings of the

word. Using the chain rule, the probability of following any particular branch in

this tree can be computed as the product of the probabilities of the individual

edges. For instance, the probability of the left-most branch of the tree in Figure 2 is

0.5×0.8×1×0.6 = 0.24. A Demoivrian event corresponds to a sets of branches of the

tree. For instance, the Demoivrian event of the window being broken corresponds

to the set of all branches in which it breaks, i.e. the first, second, third and fifth

branch. The probability of such a Demoivrian event can be computed as the sum of

the probabilities of all branches that belong to it, e.g. the probability of the window

breaking is 0.24 + 0.16 + 0.06 + 0.3 = 0.76. In the rest of this paper, we reserve the

term ‘event’ for Humean events (i.e. transitions between states) and will therefore

omit the modifier.

This paper will develop a language for describing the causal laws according to

which a probability tree unfolds. In other words, we will assume that each event in

such a tree happens for a reason, i.e. that it is actually caused by some particular

property of the state in which it happens. We then construct a language that allows

to describe these reasons. In the extreme case, it might be that we can say nothing

more than that each state of the tree is in itself the reason for the event that happens

there; in this case, we obtain nothing more than an alternative representation for

the tree itself. However, if the same event can happen in different parts of the tree,

each time caused by the same property of the state in which it happens, we might

end up with a significantly more compact representation.

In the story in Figure 1, we find following four probabilistic causal laws:

• John throwing his rock causes the window to break with probability 0.6;

• Mary throwing her rock causes the window to break with probability 0.8;

• Mary decides to throw with probability 0.5 (this event is vacuously caused);

• John always throws (this event is also vacuously caused and it has only one

possible outcome).

In the language that we will develop in the next section, we will write down such

probabilistic causal laws in the format

possible effects← cause

where the cause can be omitted if the event is vacuously caused. In this syntax, the

above probabilistic causal laws can be written down as

(Break : 0.8)← Throws(Mary). (1)

(Break : 0.6)← Throws(John). (2)

(Throws(Mary) : 0.5). (3)

Throws(John). (4)

In this representation, John and Mary each get their own probabilistic causal law.

This is necessary because they indeed throw differently, causing the window to break

with different probability. However, we can also imagine an example in which both

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 249

hit the window with the same probability. In this case, our language also allows a

more compact representation, using a variable to range over the different persons

that might throw

∀x (Break : 0.8)← Throws(x).

The meaning of such a statement is as one would expect: each particular person

that throws (i.e. each instantiation of x for which Throws(x) holds) hits the window

with 0.8.

If we compare our four probabilistic causal laws to the probability tree in Fig-

ure 2, we see that this tree indeed obeys the causal laws, in the following sense:

• As we go down any branch of the tree, we find that all events which should

happen according to our causal laws actually do so. The two unconditional

causal laws (3) and (4) state that the events that Mary decides whether she

will throw and that John decides that he will throw should always happen;

and indeed, we find that in each branch of the tree, they do. In the left-most

branch of the tree, for instance, the result of these two events is that both

Mary and John decide to throw, so according to causal laws (1) and (2) the

two events by which their respective throws break the window should also

happen; and again, they indeed do.

• The events that happen according to the causal laws are also the only events

that happen. For instance, in the right-most branch, Mary has decided not

to throw, so the event of her rock breaking the window with probability 0.8

does not happen. Moreover, each of the events which should happen happens

precisely once; it is not the case, for instance, that once Mary has decided to

throw, the event of her rock breaking the window with probability 0.8 keeps

on happening ad infinitum.

To define the semantics of our language, we will formalise this idea of a probability

tree obeying a set of probabilistic causal laws. We will call such an obeying

probability tree an execution model of the set of causal laws.

In general, a single set of causal laws might have many such execution models.

Indeed, it is clear that a probability tree contains more information than the causal

laws: events in the tree are totally ordered (for instance, in Figure 2, Mary decides

to throw before John does), whereas the causal laws only provide a partial order

on the events (for instance, the event of Mary’s rock hitting the window can only

happen after the event of Mary deciding to throw, since one causes the other;

however, no order is imposed between e.g. the events of John throwing and Mary

throwing). However, the additional information that is contained in a probability

tree is actually irrelevant for the final outcome that will be reached. Let us consider,

for instance, the alternative tree of Figure 3, in which John throws before Mary does.

This tree also obeys our four causal laws, yet has a different structure than the tree

in Figure 2. However, we see that the probability of the window eventually breaking

is nevertheless precisely the same in this tree as it was in the other one, namely 0.76.

Later in this paper, we will prove that all execution models of a set of causal laws

always generate precisely the same probability distribution. In this sense, causal laws

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

250 J. Vennekens et al.

Fig. 3. Alternate probability tree for the window breaking story.

manage to capture the essence of a probability tree, while allowing irrelevant details

(e.g. does John throw first or does Mary throw first?) to be ignored. This renders

our representation quite succinct.

Shafer’s book also recognizes that the naive graphical representation of probability

trees tends to grow unwieldy rather quickly. In the final chapter of his book, he

therefore briefly examines a number of alternative, more compact representations

for such trees, including Bayesian nets (Pearl 1988) and a representation based on

Martin-Löf type theory (Martin-Löf 1982). In both these representations, new events

are caused by the outcomes of some fixed set of previous events. The description

of an event itself therefore already carries within it certain restrictions of the order

in which events can happen. By contrast, in CP-logic events are not caused directly

by previous events, but rather by properties of the state in which they happen. The

fact that we do not represent any explicit a priori information about the order in

which events happen makes our representation more flexible and allows probabilistic

causal laws to easily be reused in different contexts. Let us suppose, for instance,

that we know a probabilistic causal law that describes one particular way in which

a certain disease can cause certain symptom. This law can then be reused, without

change, regardless of what might cause the disease, which other causes there might

be for the same symptom, or even whether there are still other ways in which the

same disease might also cause the same symptom.

This paper is structured as follows. Section 2 briefly introduces some preliminary

concepts from lattice theory and also logic programming. In Section 3, we formally

define an initial, restricted version of CP-logic. In Section 4, we show how a certain

kind of process can be modelled in this basic language, which also suggests a way of

defining a more general version of CP-logic. This will be done in Section 5. Section 6

then discusses the resulting definitions in more detail. In Section 7, we investigate the

precise relation between CP-logic and Bayesian networks. Section 8 relates CP-logic

to logic programming. Finally, Section 9 discusses some related work. Proof of the

theorems presented in this paper will be given in 10.

Part of the material in this paper was presented at conferences (Vennekens et al.

2004, 2006).

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 251

2 Preliminaries

This section recalls some well-known definitions and results from lattice theory and

logic programming. To a large extent, this material is relevant only for the proofs

of our theorems. It can safely be skipped on a first reading of this paper.

2.1 Some concepts from lattice theory

A binary relation � on a set L is a partial order if it is reflexive, transitive and

anti-symmetric. A partially ordered set 〈L,�〉 is a lattice if every pair (x, y) of

elements of L has a unique least upper bound and greatest lower bound. Such a

lattice 〈L,�〉 is complete if every non-empty subset S ⊆ L has a least upper bound

and greatest lower bound. A complete lattice has a least element ⊥ and a greatest

element 	. An operator O : L → L is monotone if for every x � y, O(x) � O(y).

An element x ∈ L is a prefixpoint of O if x � O(x), a fixpoint if x = O(x) and a

postfixpoint if x � O(x). If O is a monotone operator on a complete lattice, then for

every postfixpoint y, there exists a least element in the set of all prefixpoints x of O

for which x � y. This least prefixpoint greater than y of O is also the least fixpoint

greater than y of O. Moreover, it can be constructed by successively applying O to

y, i.e. as the limit of the sequence (y, O(y), O(O(y)), . . .). In particular, because ⊥ is a

trivial postfixpoint, O has a least prefixpoint which is equal to its least fixpoint and

which can be constructed by successive application of O to ⊥.

2.2 Some concepts from logic programming

We assume familiarity with classical logic. A Herbrand interpretation for a vocab-

ulary Σ is an interpretation, which has as its domain the set HU(Σ) of all ground

terms that can be constructed from Σ and which interprets each constant as itself and

each function symbol f/n as the function mapping a tuple (t1, . . . , tn) to f(t1, . . . , tn).

We can identify a Herbrand interpretation with a set of ground atoms. A partial

Herbrand interpretation is a function ν from the set HB(Σ) of all ground atoms,

also called the Herbrand base, to the set of truth values {f , u, t}. A (total) Herbrand

interpretation corresponds to a partial Herbrand interpretation that does not include

u in its range. On the set of truth values, one defines the precision order

u �p f and u �p t

and the truth order

f �t u �t t.

These orders can be pointwise extended to partial Herbrand interpretations. Each

totally ordered set S of partial Herbrand interpretations has a �p-least upperbound

denoted by lub�p
(S). The three-valued truth function ϕν for sentences ϕ and partial

Herbrand interpretations ν is defined by induction

• pν = ν(p), for p ∈ HB(Σ);

• (ψ ∧ φ)ν = Min�t
(ψν, φν);

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

252 J. Vennekens et al.

• (∀x φ(x))ν = Min�t
({φ(t)ν |t ∈ HU(Σ)}).

• (¬ϕ)ν = (ϕν)−1 where f−1 = t, t−1 = f , u−1 = u.

A crucial monotonicity property of three-valued logic is that ν �p ν
′ implies ϕν �p

ϕν
′
.

The well-founded semantics of logic programs was originally defined in Van

Gelder et al. (1991). We present an equivalent definition that was developed in

Denecker and Vennekens (2007). Formally, a logic program P is a set of rules of

the form p← φ, where p is a ground atom and φ is a first-order sentence.

Definition 1 (Well-founded induction)

We define a well-founded induction of P as a sequence of partial Herbrand interpre-

tations (να)0�α�β satisfying the following conditions:

• ν0 = ⊥�p
, the mapping of all atoms to u;

• νλ = lub�p
({νβ |β < λ}), for each limit ordinal λ;

• να+1 relates to να in one of the following ways:

— να+1 = να[p : t] such that for some rule p← ϕ in P , ϕν
α

= t;

— να+1 = να[U : f] where U is an unfounded set, i.e. a set of ground atoms

such that for each p in U, να(p) = u and for each rule p← ϕ in P , ϕν
α+1

= f .

A well-founded induction is a sequence of increasing precision. We call a well-

founded induction (να)α�β terminal if it cannot be extended with a strictly more

precise interpretation. Each well-founded induction whose limit is a total interpre-

tation is terminal. We now define the well-founded model of P as the limit of any

such terminal well-founded induction. As the following result shows, this definition

coincides with the standard one.

Theorem 1 (Denecker and Vennekens 2007)

Each terminal well-founded induction of P converges to the well-founded model of

P , as it was defined in Van Gelder et al. (1991).

In certain logic programming variants, such as abductive logic programs (Kakas

et al. 1992) and ID-logic (Denecker and Ternovska 2007), a distinction is made

between predicates that are defined by the program and predicates that are left open.

The set of defined predicates must contain at least those predicates that appear in the

heads of rules of the program. This distinction is similar to that between endogenous

and exogenous random variables, which is common in probabilistic modelling. It

is straightforward to generalize the well-founded semantics to this case. Given an

interpretation O of the open predicates, we define a well-founded induction of P

in O by the same inductive definition as for ordinary well-founded inductions, we

now only have as a base case that ν0 should be the least precise partial Herbrand

interpretation that extends O. It is easy to see that each νi in such a well-founded

induction in O in fact extends O and also that if there are no open predicates, this

definition simply coincides with the original one. The well-founded model of P in O

is then the limit of any terminal well-founded induction of P in O.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 253

3 A logic of probabilistic causal laws

Our aim in this section is to define a language for representing probabilistic causal

laws. Before going into the mathematical details, we first outline the general picture.

To represent knowledge in a logical language, the first thing that is needed is

a suitable vocabulary. Usually in logical modelling, this vocabulary is assumed to

be such that each possible state of the domain of discourse corresponds to an

interpretation for it. In Shafer’s probability trees, possible states of the domain are

represented by nodes of the tree. To link these two formal settings, our semantics

will therefore consider probability trees in which each node corresponds to an

interpretation for a given vocabulary.

As we introduced the concept in Section 1, a probabilistic causal law states the

cause and possible effects of a particular event or class of events. The cause specifies

in which nodes of the tree the event might happen, i.e. it is some property of the

domain of discourse such that the event can happen in precisely those states of the

domain in which this property holds. The natural thing, therefore, is to represent

such a cause by a first-order formula φ, whose meaning is that the event might

happen in those states s of a probability tree for which the associated interpretation

I(s) is such that I(s) |= φ.

Each event that happens makes a transition from a node s of a probability tree

to one of the children s′ of s. The description of the effects of such an event should

specify how it will affect the state of the domain, i.e. what the interpretations I(s′)

associated to the children s′ of s should be. There are many conceivable ways of

representing such knowledge, but in this paper we stick to a very simply one: we

assume that each possible effect of an event corresponds to a single ground atom

P (t) of our vocabulary, such that the interpretation I(s′) corresponding to the new

state s′ is identical to the interpretation I(s), apart from the fact that P (t) is now

true. We choose this simple representation for two reasons. First, the aim of our

exercise is to come up with a semantics that formalises probabilistic causal laws in

a way that clearly coincides with our intuitions about the meaning of such laws.

Keeping the representation of effects simple helps to achieve the desired clarity.

Second, we are not just interested in this language for its own sake, but also because

we want to use it to explain the meaning of certain probabilistic logic programming

statements. Our simple representation of effects will also serve to elucidate this link

to logic programming.

3.1 Syntax

In this section, we formally define the language of CP-logic. Let us fix a finite

relational vocabulary consisting of a set of predicate symbols and a set of constants.

We assume that the predicates of our vocabulary are split into a set of endogenous

predicates and a set of exogenous ones. The idea behind this distinction is of course

that the endogenous predicates should describe things that are internal to the causal

process being modelled, while the exogenous predicates describe things external

to it.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

254 J. Vennekens et al.

A causal probabilistic law, or CP-law for short, is a statement of the form

∀x (A1 : α1) ∨ · · · ∨ (An : αn)← φ, (5)

where the αi are non-zero probabilities with
∑
αi � 1, φ is a first-order formula and

the Ai are atoms, such that the universally quantified tuple of variables x contains

all free variables in φ and the Ai. Moreover, the predicate symbol of each of the

atoms Ai should be an endogenous predicate.

Such a CP-law is read as

‘For each x, φ causes an event whose effect is that at most one of the Ai becomes true; for

each i, the probability of Ai being the effect of this event is αi’.

If the causal law has a deterministic effect, i.e. it causes some atom A with

probability 1, we also write A← φ instead of (A : 1)← φ. We allow the precondition

φ to be absent, meaning that the event is vacuously caused. In this case, the causal

law is called unconditional and we omit the ‘←’-symbol as well. If the tuple x of

variables is empty, we call the causal law ground. We remark that the precondition

φ of such a ground causal law may still contain variables, as long as they are all

bound by some quantifier in φ.

A CP-theory is a finite multiset2 of CP-laws. For now, we will restrict attention to

CP-theories in which all formulas φ are positive, i.e. they do not contain negation.

Afterwards, Section 5 will examine how negation can be added.

Example 1

In about 25% of the cases, syphilis causes a neuropsychiatric disorder called general

paresis, and in fact, syphilis is the only cause for paresis. This can be modelled as

follows:

(Paresis : 0.25)← Syphilis . (6)

where Syphilis is an exogenous predicate. This example illustrates the difference

between causation and material implication. Indeed, because syphilis is the only

cause for paresis, observing that a patient has paresis implies that he must also have

syphilis, i.e. the material implication Paresis ⊃ Syphilis holds. So, in this example,

the directions of causation and material implication are precisely opposite.

Example 2

Our running example for this section will also be a medical example. Pneumonia

might cause angina with probability 0.2. Vice versa, angina might cause pneumo-

nia with probability 0.3. A bacterial infection can cause either pneumonia (with

probability 0.4) or angina (with probability 0.1). We consider bacterial infection as

exogenous.

(Angina : 0.2)← Pneumonia . (7)

(Pneumonia : 0.3)← Angina . (8)

(Pneumonia : 0.4) ∨ (Angina : 0.1)← Infection . (9)

2 Example 3 explains why we consider multisets instead of sets.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 255

Example 3

A CP-theory is a multiset of CP-laws, which means that it may contain several

instances of the same event. To illustrate this, consider a variant of the above

problem in which the patient comes into contact with two different sources of

infection, each of which might cause him to become infected with a probability of

0.1. To model this, we can add the following multiset of two unconditional events

to the theory of Example 2:

(Infection : 0.1). (10)

(Infection : 0.1). (11)

We now define some notations to refer to different components of a ground

CP-law. The head head(r) of a rule r of form (5) is the set of all pairs (Ai, αi)

appearing in the description of the effects of the event; the body of r body(r)

is its precondition φ. By headAt(r) we denote the set of all atoms Ai for which

there exists an αi such that (Ai, αi) ∈ head(r). Similarly, by bodyAt(r) we denote the

set of all atoms A which ‘appear’3 in body(r). For Example 2, if r is the CP-law

(9), then head(r) = {(Pneumonia, 0.4), (Angina, 0.1)}, headAt = {Pneumonia, Angina},
body(r) = Infection and bodyAt(r) = {Infection}.

We will call a CP-law E ← φ a rule if we want to emphasize that we are referring

to a syntactical construct.

3.2 Semantics

This section defines the formal semantics of CP-logic. We will restrict attention

to Herbrand interpretations, i.e. we consider only interpretations whose domain is

the set of constants of the theory and which interpret each constant as itself. This

restriction is made for two reasons: it simplifies the presentation, and it is also what

is usually done in (probabilistic) logic programming. However, it is easy to extend

all our definitions and results to arbitrary domains.

We view a non-ground CP-law ∀x r as an abbreviation for the set of all ground

CP-laws r[x/t] that result from replacing the variables x by a tuple t of ground

terms in vocabulary Σ. For instance, if we wanted to consider multiple people in

Example 2, we might include constants {John,Mary} in our vocabulary Σ and write

the non-ground rule

∀x (Angina(x) : 0.2)← Pneumonia(x),

3 More formally, we use bodyAt(r) to denote At(body(r)), where At is the mapping from sentences to sets
of ground atoms, that is inductively defined by

• For Q(t) a ground atom, At(Q(t)) = {Q(t)};
• For φ ◦ ψ, with ◦ either ∨ or ∧, At(φ ◦ ψ) is defined as At(φ) ∪ At(ψ);
• For ¬φ, At(¬φ) = At(φ);
• For Θx φ, with Θ either ∀ or ∃, At(Θx φ) = ∪t∈HU (Σ)At(φ[x/t]), where HU (Σ) denotes the

Herbrand universe for the vocabulary Σ.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

256 J. Vennekens et al.

to abbreviate the two CP-laws

(Angina(John) : 0.2)← Pneumonia(John),

(Angina(Mary) : 0.2)← Pneumonia(Mary).

Because CP-theories are finite, the use of such abbreviations only makes sense in

the context of a finite domain, i.e. when the vocabulary does not generate an infinite

number of terms. By restricting attention to finite relational vocabularies, we ensure

that this is the case.

In our formal treatment of CP-logic, we will never consider non-ground rules, but

always assume that these have already been expanded into a finite set of ground

CP-laws. When using such non-ground rules in examples, we will implicitly assume

that predicates and constants have been appropriately typed, in such a way as to

avoid instantiations that are obviously not intended. We will also allow ourselves

to use arithmetic function symbols, such as +/2 and −/2, and assume that the

grounding replaces terms made from these symbols by numerical constants in the

appropriate way.

As already explained, our basic semantical object will be that of a probability tree

in which the nodes correspond to interpretations.

Definition 2 (Probabilistic Σ-process)

Let Σ be a vocabulary. A probabilistic Σ-process T is a pair 〈T ;I〉, where

• T is a tree structure, in which each edge is labelled with a probability, such

that for every non-leaf node s, the probabilities of all edges leaving s sum up

to precisely 1;

• I is a mapping from nodes of T to Herbrand interpretations for Σ.

In a probability tree, we can associate to each node s the probability P(s) of a

random walk in the tree, starting from its root, passing through s. Indeed, for the

root ⊥ of the tree, P(⊥) = 1 and for each other node s, P(s) =
∏

i αi where the αi are

all the probabilities associated to edges on the path from the ⊥ to s. Essentially, the

mapping P contains all the information that is present in the labelling of the edges

and vice versa. To ease notation, we will sometimes take the liberty of identifying a

probabilistic Σ-process 〈T ;I〉 with the triple 〈T ;I;P〉 and ignoring the labels on

the edges of T .

Each probabilistic Σ-process now induces an obvious probability distribution over

the states in which the domain described by Σ might end up.

Definition 3 (πT)

Let Σ be a vocabulary and T = 〈T ;I;P〉 a probabilistic Σ-process. By πT we

denote the probability distribution that assigns to each Herbrand interpretation I

of Σ the probability
∑

s∈LT(I)P(s), where LT(I) is the set of all leaves s of T for

which I(s) = I .

Like any probability distribution over interpretations, such a πT also defines a

set of possible worlds, namely that consisting of all I for which πT(I) > 0. If all the

probabilities P(s) are non-zero, then this is simply the set of all I(l) for which l is

a leaf of T.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 257

We now want to relate the transitions in such a probabilistic Σ-process to the

events described by a CP-theory.

Definition 4 (Rules firing)

Let Σ be a vocabulary, C a CP-theory in this vocabulary and T a probabilistic

Σ-process. Let r ∈ C be a CP-law of the form:

(A1 : α1) ∨ · · · ∨ (An : αn)← φ.

We say that r fires in a node s of T if s has n+ 1 children s1, . . . , sn+1, such that

• For all 1 � i � n, I(si) = I(s) ∪ {Ai} and the probability of edge (s, si) is αi;

• For sn+1, I(sn+1) = I(s) and the probability of the edge (s, sn+1) is 1−
∑

i αi.

For simplicity, we will omit edges labelled with a probability of zero; this does

not affect any of the following material.

This definition now allows us to link the transitions in a probabilistic Σ-process

T to the events of a CP-theory C . Formally, we will consider a mapping E from

each non-leaf node s of T to an associated CP-law r ∈ C . Because the same ground

CP-law should fire at most once in each branch, the following definition will also

consider, for a node s, the set of all CP-laws that have not yet fired in s, i.e. the set

of all r ∈ C for which there does not exist an ancestor s′ of s such that E(s′) = r.

We will denote this set as RE(s).

Definition 5 (Execution model – positive case)

Let C be a positive CP-theory and X an interpretation of the exogenous predicates.

A probabilistic Σ-process T = 〈T ;I〉 is an execution model of C in context X,

written as T |=X C , iff there exists a mapping E from the non-leaf nodes of T to

C , such that

• For the root ⊥ of T, I(⊥) = X;

• In each non-leaf node s, a CP-law E(s) ∈ RE(s) fires, such that its precondition

is satisfied in s, i.e., I(s) |= body(E(s));

• For each leaf l ofT, there are no CP-laws r ∈ RE(l) for which I(l) |= body(r).

If there are no exogenous predicates, we simply write T |= C .

Example 2 has one execution model for every specific context X; the process for

X = {Infected} is depicted in Figure 4. As we showed with the window breaking

example in Section 1, there also exist theories which allow multiple execution models

for a given context. However, all of these execution models must then generate the

same probability distribution over their final states.

Theorem 2 (Uniqueness – positive case)

Let C be a positive CP-theory. If T1 and T2 are both execution models of C , then

πT1
= πT2

.

Proof

Proof of this theorem can be found in Section A.2. �

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

258 J. Vennekens et al.

Fig. 4. A process T for Example 2 and its distribution πT.

This theorem shows that knowing all the probabilistic causal laws of a domain

gives enough information to predict a single probability distribution over the final

states that this domain might reach. This result is important for two reasons.

First, it suggests an appealing explanation for why causality is such a useful and

important concept: causal information tells you just enough about the behaviour

of a probabilistic process to be able to predict its final outcome in every possible

context, while allowing irrelevant details to be ignored. As such, it offers a compact

and robust representation of the class of probability distributions that can result

from such a process. Second, in our construction of CP-logic, we have started from

Shafer’s dynamic analysis of causality, using the probability tree as a basic semantic

object. In this respect, our approach differs from that of causal Bayesian networks

(Pearl 2000), in which causal information is viewed more statically, with probability

distributions as basic semantical objects. The above theorem relates these two views,

because it allows us to not only view a CP-theory as describing a class of processes,

but also as defining a unique probability distribution.

Definition 6 (πXC)

Let C be a CP-theory and X an interpretation for the exogenous predicates of C .

By πXC , we denote the unique probability distribution πT, for which T |=X C . If

there are no exogenous predicates, we simply write πC .

A CP-theory can be viewed as mapping each interpretation for the exogenous

predicates to a probability distribution over interpretations of the endogenous

predicates or, to put it another way, as a conditional distribution over interpretations

of the endogenous predicates, given an interpretation for the exogenous predicates.

Definition 7 (Models of a CP-theory)

Let C be a CP-theory and π a probability distribution over interpretations of all

the predicates of C . π is a model of C , denoted as π |= C iff for each interpretation

X of the exogenous predicates with π(X) > 0 and each interpretation J of the

endogenous predicates, π(J | X) = πXC (J).

If a CP-theory C has no exogenous predicates, then there is a unique π for which

π |= C and this is, of course, simply the distribution πC .

Having defined this formal semantics for CP-logic, it is natural to ask how the

causal interpretation that we have informally attached to expressions in our language

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 259

is reflected in it. We see that our semantics essentially consists of the following two

causal principles:

• The principle of universal causation states that all changes to the state of the

domain must be triggered by a causal law whose precondition is satisfied.

• The principle of sufficient causation states that if the precondition to a causal

law is satisfied, then the event that it triggers must eventually happen.

Together with our decision to use Shafer’s probability trees as our basic semantical

objects and the particular representation that we have chosen for probabilistic causal

laws, these two principles essentially determine our logic completely – at least, in the

positive case. In the following sections, we turn our attention to the question of how

to extend our definitions to the case where negation can appear in the precondition

of a CP-law. However, this requires us to first discuss in more detail a particular

modelling methodology for CP-logic.

4 Modelling more complex processes in CP-logic

In the formal semantics of CP-logic, the interpretations I(s) associated to nodes s

of the probability trees play an important role. Indeed, if we forget for a moment

the restriction that each causal law can fire at most once in each branch, then the

interpretation I(s) completely determines which of the causal laws can fire in s.

In our account of CP-logic so far, we have suggested that the logical vocabulary

Σ of a CP-theory be chosen in such a way that possible states of the domain of

discourse correspond to (Herbrand) interpretations for Σ. However, this assumption

restricts the kind of causal laws that can be represented in at least two different,

but related, ways. First, it means that we can only describe events that are caused

by some property of the current state s. In particular, it is not possible to say that

an event is caused by something which happened previously, but no longer has

any visible effect on the current state. Second, since the interpretations I(s) grow

monotonically throughout a branch, i.e. no atoms are ever removed from such an

interpretation, it also means that we actually cannot even describe events whose

effects manifest themselves in some state, but then disappear again in a future state.

The following example illustrates these limitations of the view that an interpretation

I(s) represents precisely the state of the domain at node s.

Example 4

In 10% of the cases, pneumonia causes permanent lung damage, which persists after

the pneumonia itself has disappeared. Let us also assume that the probability of

getting pneumonia is 0.3. One attempt to model this is as follows:

(LungDamage : 0.1)← Pneumonia . (12)

(Pneumonia : 0.3). (13)

The problem with this theory is that, under the natural interpretation of the

predicates, it violates the assumptions made by CP-logic: after pneumonia has been

caused and has in turn lead to permanent lung damage, it might go away again.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

260 J. Vennekens et al.

Fig. 5. A global process as a sequence of local processes.

As such, it is no surprise that, according to the formal semantics of this theory, the

probability of a patient having permanent lung damage and no pneumonia is zero,

while in reality, this situation is perfectly possible.

There is however a simple solution to this problem – at least, if we are prepared

to refine our informal interpretation of the atom Pneumonia. Instead of interpreting

this atom as representing the real-world property that ‘the patient has pneumonia’,

we can also interpret it as representing the property that ‘at some point in time,

the patient has had pneumonia’. It is obvious that this now is a property that, once

initiated, will forever persist. CP-law (12) now reads as ‘if the patient has, at some

point, had pneumonia, then this causes him to have lung damage with probability

0.1’. According to this reading, it is now only the case that it is impossible for a

patient to have lung damage if he has not at some point in time had pneumonia,

which is of course a conclusion that should follow from our problem statement.

To fix this example, we had to subtly change the correspondence between the

states of the formal execution model and the states of the real world: whereas

previously, each of our formal states precisely matched one state of the real world,

it is now the case that a formal state actually represents both the state of the world

at some particular time and also certain information about the history of the world

up to that time. Taking this idea further actually allows us to describe processes in

considerable temporal detail, as the following example illustrates:

Example 5

A patient is admitted to hospital with pneumonia and stays there for a number of

days. Each day, the pneumonia might cause him to suffer chest pain on that particular

day with probability 0.6. With probability 0.8, a patient who has pneumonia on one

day still has pneumonia the next day.

On the one hand, this example describes a progression through a sequence of

days. On the other hand, it also describes events that take place entirely during one

particular day. In general, a process of this kind will look something like Figure 5:

the global structure of the process is a succession between different time points, and

at each particular time point a local process might take place.

The question now is how to model such a succession of states in CP-logic. A

first important observation is that we now need to distinguish between the values

of properties at different time points, i.e. we can no longer represent every relevant

property by a single ground atom, but instead we need a ground atom for every pair

of such a property and a time point. Typically, one would construct a vocabulary

by adding time as an argument to predicates, as is done in, e.g. the event calculus

or situation calculus. For instance, to describe Example 5, we could construct a

vocabulary which has the following ground atoms:

• Referring to day 1: {Pneumonia(1),Chestpain(1)};

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 261

Fig. 6. Initial segment of the intended model of Example 5.

• Referring to day 2: {Pneumonia(2),Chestpain(2)};
• . . .

• Referring to day n: {Pneumonia(n),Chestpain(n)};

Of course, it might be equally possible to use some other representation, such as

Pneumonia(SecondDay) or Pneumonia2 instead of Pneumonia(2). With the above

vocabulary, we can now model Example 5. We assume a fixed range 1–n of days, to

ensure finiteness of the grounded theory.

Pneumonia(1). (14)

∀d (Pneumonia(d+ 1) : 0.8)← Pneumonia(d). (15)

∀d (Chestpain(d) : 0.6)← Pneumonia(d). (16)

Here, the CP-laws described by (15) are of the kind that propagate from one time

point to a later time point, whereas (16) describes a class of ‘instantaneous’ events,

taking place entirely inside of a single time point. Of course, whether a particular

event is instantaneous depends greatly on which unit of time is being used: one can

imagine that it makes a difference whether we measure time in seconds or in days.

According to the informal description of Example 5, the intended model is the

process shown in Figure 6. It can easily be seen that this is indeed an execution

model of the above CP-theory. We remark that this theory also has other execution

models, which do not respect the proper ordering of time points, such as, e.g. the

process in which all events caused by (15) happen before those caused by (16).

However, since these ‘wrong’ processes all generate the same probability distribution

as the intended process anyway, this is harmless.

We also observe that, again, the correspondence between the states of the execution

model and the states of the real world is less direct than it was in the examples

of Section 3.2. Indeed, now, a state of an execution model contains a trace of the

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

262 J. Vennekens et al.

entire evolution of the real world until a certain point in time. As such, a leaf of

the execution model now represents a complete history of the world, whereas in the

examples of Section 3.2, it only represented the final state of the process.

Let us now make the above discussion more formal. We assume that, when

constructing the vocabulary Σ, we had in mind some function λ from the Herbrand

base of Σ to an interval [0, n] ⊆ �, such that, in our desired interpretation of this

vocabulary, each atom p refers to the state of some property at time point λ(p). We

call such a function a timing and λ(p) the time of atom p. In the typical case of

predicates containing an explicit temporal argument, such a timing would simply

map atoms onto this argument; for instance, in the case of the above example, we

had in mind the following timing λ:

• For each ground atom Pneumonia(i), λ(Pneumonia(i)) = i;

• For each ground atom Chestpain(i), λ(Chestpain(i)) = i.

If we now look again at the CP-laws we wrote for this example, we observe that,

whenever there is an atom in the head of a CP-law r that refers to the truth of

some property at time i and an atom in the body of r that refers to the truth of

some property at time j, it is the case that i � j. This is of course not a coincidence.

Indeed, because, in the real world, causes precede effects, it should be impossible

that the cause–effect propagation described by a CP-law goes backwards in time.

Note that it is also possible that i = j; in this case, the CP-law is instantaneous w.r.t.

the granularity of time that is being used, i.e. it describes one of those events (such

as (15) in Example 5) that takes place entirely within a single time point. Another,

perhaps more illustrative, example of an instantaneous CP-law is the statement that

an increase in the current flowing through a resistor causes an increase in the voltage

drop across it. Here, the increased current conceptually precedes the increased voltage

drop, but we would never expect to actually observe a temporal delay.

Definition 8 (Respecting a timing)

Let Σ be a vocabulary. A CP-theory C respects a timing λ iff, for every r ∈ C , if

h ∈ headAt(r) and b ∈ bodyAt(r), then λ(h) � λ(b).

Such a timing λ also contains information about when events might happen. To

be more concrete, if a CP-law r fires at time point i, then we would expect i to

lie somewhere between the maximum of all λ(b) for which b ∈ bodyAt(r), and the

minimum of all λ(h) for which h ∈ headAt(r). For a rule r, we write tλ(r) to denote

this interval, i.e.

tλ(r) = [max
b∈bodyAt(r)

λ(b), min
h∈headAt(r)

λ(h)].

Now, if we are constructing a CP-theory with a particular timing λ in mind, then

the process we are trying to model should be such that every CP-law r that actually

fires does so at some time point κ(r) ∈ tλ(r). We will call such a mapping κ from rule

r ∈ C to time points κ(r) ∈ tλ(r) an event-timing of λ. We remark that if a CP-law

r is instantaneous, then the interval tλ(r) will consist of a single time point and it is

indeed clearly at this time point that the CP-law should fire.

A timing λ therefore imposes the following constraint on which processes can be

considered reasonable.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 263

Definition 9 (Following a timing)

Let Σ be a vocabulary with timing λ and let C be a CP-theory that respects λ. A

probabilistic Σ-process T follows λ if there exists an event timing κ of λ such that

the CP-laws ofT fire in the order imposed by κ, i.e. if for all successors s′ of a node

s, κ(E(s′)) � κ(E(s)).

It can now be shown that for any timing λ and any CP-theory C respecting λ, C

will have an execution model that follows λ.

Theorem 3

Let C be a CP-theory respecting a timing λ. There exists an execution model T of

C , such that T follows λ.

Proof

Proof of this theorem can be found in Section A.3. �

This result shows that if we construct a CP-theory C with a particular timing in

mind, then C will have an execution model in which the events happen in precisely

the order dictated by this timing. Therefore, the modelling methodology that we

have suggested in this section is indeed valid. In the case of Example 5, the process

shown in Figure 6 is an execution model that follows the timing λ specified above.

In the sequel, we will refer to CP-theories, for whose vocabulary we have some

intended timing in mind, as temporal CP-theories; other CP-theories will be called

atemporal.

5 CP-logic with negation

So far, we have only allowed positive formulas as preconditions of CP-laws. In this

section, we examine whether it is possible to relax this requirement. We first look at

a small example.

Example 6

Having pneumonia causes a patient to receive treatment with probability 0.95.

Untreated pneumonia causes fever with probability 0.7.

(Fever : 0.7)← Pneumonia ∧ ¬Treatment . (17)

(Treatment : 0.95)← Pneumonia . (18)

Figure 7 shows two processes for this example that satisfy all the requirements

that we previously imposed for positive theories. It is obvious, however, that in this

case the final outcome is affected by the order in which events occur. So, simply

including negation in this naive way would give rise to ambiguities, causing our

desirable uniqueness property (Theorem 2) to be lost.

Giving up the uniqueness property would have grave consequences for the logic

and its practical use. One radical solution to the problem might be to force the user

to not only specify causal probabilistic events, but also information about the order

in which these events can happen. However, such information is difficult to obtain

and represent; moreover, in many cases, it would just be useless overhead – indeed,

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

264 J. Vennekens et al.

Fig. 7. Two processes for Example 6.

as we have already seen, one of the most interesting features of CP-logic without

negation is precisely the fact that we can obtain a complete probability distribution

without requiring such information. The solution that we will adopt instead is to

restrict the class of processes associated to a CP-theory in such a way that the

uniqueness property is preserved, i.e. all processes from this restricted class generate

the same distribution over the final states.

To introduce the additional constraint that will be imposed on execution models,

let us take a closer look at the above example. We observe that, in process 7(b),

event (17) is caused at a moment when its precondition is not yet in its final state.

In particular, when (17) happens in the initial state, its precondition ¬Treatment
holds, but later on, for instance in the leftmost branch, event (18) causes Treatment,

thereby falsifying this precondition. So, in the final state of this branch, we see that

Fever holds, while the precondition of the CP-law that caused it no longer holds.

In the light of this discussion, we can now explain the additional assumption that

CP-logic makes about the causal processes. This assumption, called the temporal

precedence assumption, is that a CP-law r will not fire until its precondition is in its

final state. More precisely, it cannot fire until the part of the process that determines

whether its precondition holds is fully finished. For Example 6, it is clear that only the

process in Figure 7(a) satisfies this assumption, and so, in this case, the ambiguity

has been resolved.

We stress here that temporal precedence is nothing more than an assumption:

inherently, there is nothing wrong with the causal process in Figure 7, and we

could in fact easily imagine that, because fever is one of the earliest symptoms of

pneumonia, this process is actually a better model of the real world than that in

Figure 7(a). So why do we choose to eliminate precisely these processes, in order to

regain our uniqueness result?

To explain our motivation for this, we need to go back to the analysis of Section 4.

There, we considered timed vocabularies, in which ground atoms are intended to

represent properties at some particular point in time. We then proved that each

temporal theory without negation has an execution model that follows its timing, i.e.

in which events happen in the right order. As we remarked, such a theory may also

have other execution models, in which events happen in the wrong order, but this is

not a problem, because all execution models of a positive theory generate the same

probability distribution anyway. For theories with negation, however, the situation

is more complicated. In that case, we can have three different kinds of execution

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 265

models: those which follow the timing; those which do not follow the timing, but

nevertheless generate the same probability distribution as the ones that do; and those

which do not follow the timing and also generate a different probability distribution.

The right way to resolve the ambiguity for these theories is obviously to reject this

last kind of execution model.

As we will prove in Section 6.3, temporal precedence will do precisely this – at

least, if the CP-laws containing negation are not instantaneous. Intuitively, this can

be explained as follows. For such a non-instantaneous CP-law, the timings of the

atoms in its precondition are strictly earlier than those of its effects. Therefore,

in a process which follows this timing, all events which cause one of these atoms

must happen before the CP-law itself fires. This is now precisely what temporal

precedence assumes. The following example is a variant – or rather, a refinement –

of Example 6, which illustrates this.

Example 7

A patient enters the hospital, possibly suffering from pneumonia. At this time, he

will be examined by a physician, who will decide to treat the patient with probability

0.95 if he actually has pneumonia. If the patient has pneumonia but the doctor does

not treat him, there is a probability of 0.7 that the patient will exhibit a fever by the

next morning. We introduce the following propositions:

• Pneumonia: ‘the patient has pneumonia when entering the hospital’;

• Treatment: ‘the patient is treated upon admission’;

• Fever: ‘the patient has a fever the next morning’.

Under this interpretation of our vocabulary, the CP-theory of Example 6 respects

the timing and correctly models the example. Clearly, the intended model of the

theory is now that of Figure 7(a): in this model, CP-laws fire in the right temporal

order. The process of Figure 7(b), on the other hand, goes against the flow of time

(‘treatment upon admission’ is only caused after ‘fever the next morning’), which

should be impossible.

So, as this example illustrates, if our CP-theory respects some intended timing

such that the CP-laws containing negation are non-instantaneous, the temporal

precedence assumption will resolve the ambiguity in the right way, i.e., by selecting

precisely those processes that follow the intended timing. We will now formally

define temporal precedence and prove afterwards, in Section 6.3 that this property

holds in general.

We start by introducing some mathematical machinery. The basic idea is that

a CP-law should only fire after all events that might still affect the truth of its

precondition have already happened, i.e. this precondition should not merely be

currently true, but should in fact already be guaranteed to also remain true in all

potential future states. This naturally leads to a three-valued logic, where we have

truth values t (guaranteed to remain true), f (guaranteed to remain false), and u

(still subject to change). Recall that a three-valued interpretation ν is a mapping

from the ground atoms of our vocabulary to the set of truth values {t, f , u}, which

induces for each formula φ a truth value φν .

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

266 J. Vennekens et al.

Now, if our probabilistic process is in a state s, then the atoms of which we are

already sure that they are true are precisely those in I(s). To figure out which

atoms are still unknown, we need to look at which CP-laws might still fire, i.e. at

those rules r, for which body(r)ν �= f . Whenever we find such a rule, we know that

the atoms in head(r) might all still be caused and, as such, they must be at least

unknown. We will now look at a derivation sequence, in which we start by assuming

that everything that is currently not t is f and then gradually build up the set of

unknown atoms by applying this principle.

Definition 10 (Hypothetical derivation sequence)

A hypothetical derivation sequence in a node s is a sequence (νi)0�i�n of three-valued

interpretations that satisfied the following properties. Initially, ν0 assigns f to all

atoms not in I(s). For each i > 0, there must be a rule r with body(r)νi �= f , such

that, for all p ∈ headAt(r) with νi(p) = f , it is the case that νi+1(p) = u, while for all

other atoms p, νi+1(p) = νi(p).

Such a sequence is terminal if it cannot be extended. A crucial property is now

that all such sequences reach the same limit.

Theorem 4

Every terminal hypothetical derivation sequence reaches the same limit, i.e. if (νi)0�i�n

and (ν ′i)0�i�m are such sequences, then νn = ν ′m.

Proof

Proof of this theorem is given in Section A.1. �

For a state s in a probabilistic process, we will denote this unique limit as νs and

refer to it as the potential in s. Such a νs now provides us with an estimate of which

atoms might still be caused, given that we are already in state s. We can now tell

whether the part of the process that determines the truth of a formula φ has already

finished by looking at νs; indeed, we can consider this process to be finished iff

φνs �= u. We now extend the concept of an execution model to arbitrary CP-theories

as follows.

Definition 11 (Execution model – general case)

Let C be a CP-theory in vocabulary Σ, T a probabilistic Σ-process and X an

interpretation of the exogenous predicates of C . T is an execution model of C in

context X iff

• T satisfies the conditions of Definition 5 (execution model – positive case);

• For every node s, body(E(s))νs �= u, with νs the potential in s.

From now on, we will refer to a probabilistic Σ-process that satisfies the original

conditions of Definition 5, but not necessarily the additional condition imposed

above, as a weak execution model.

In the case of Example 6, this definition indeed gives us the result described

above, i.e. the process in Figure 7(a) is an execution model of the example, while

the one in Figure 7(b) is not. Indeed, if we look at the root ⊥ of this tree,

with I(⊥) = {Pneumonia}, we see that we can construct the following terminal

hypothetical derivation sequence:

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 267

• ν0 assigns f to Treatment and Fever;

• ν1 assigns u to Treatment;

• ν2 assigns u to Fever, because (¬Treatment ∧ Pneumonia)ν1 = u;

As such, the only CP-law that can initially fire is the one by which the patient might

receive treatment. Afterwards, in every descendant s of ⊥, νs(Treatment) will be

either t or f . In the branch where it is f , the event by which the patient gets fever

because of untreated pneumonia will subsequently happen.

The temporal precedence assumption imposes a constraint on the order in which

CP-laws can fire and hence, on the order in which atoms can be caused to become

true. In the case of Example 6, this order is fixed and can easily be derived from the

syntactical structure of the CP-theory. This is not always the case. As the following

example illustrates, the order of events may depend on the context in which they

happen.

Example 8

A software system consists of two servers that provide identical services. One server

acts as master and the other as slave, and these roles are assigned randomly. Clients

can request services. The master makes a selection among these request and the

slave fulfils the requests that are not accepted by the master.

(Master(S1) : 0.5) ∨ (Slave(S1) : 0.5). (19)

Master(S2)← Slave(S1). (20)

Slave(S2)←Master(S1). (21)

∀x∀s(Accepts(x, s) : 0.6)← Application(s) ∧Master(x). (22)

∀x∀s Accepts(x, s)← Application(s) ∧ Slave(x)∧
Master(y) ∧ ¬Accepts(y, s).

(23)

In all causal processes that satisfy the temporal precedence assumption, the master

accepts services before the slave does. However, because who is slave and who is

master depends on the result of event (19), this means that we cannot say upfront

which of the atoms Accepts(S1, s) and Accepts(S2, s) will be caused first. This shows

that the temporal precedence assumption induces a context-dependent stratification

on both events and atoms.

The temporal precedence assumption is correct for many theories – including, as

we will prove later, all those temporal theories in which CP-laws containing negation

are not instantaneous – but not for all.

Example 9

We consider a variant of the problem of Example 8 in which the slave does not have

to wait for the decision of the master, but is allowed to accept any request provided

it has not yet been accepted by the master. It is then possible that first the slave and

later the master accept the same request, in which case the service is provided two

times.

Unlike Example 8, this specification is an incomplete description of a probability

distribution. Indeed, the probability of a request being handled by the slave now also

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

268 J. Vennekens et al.

depends on the probability of the slave reaching a decision before the master does,

which is not specified. If we try to model this example with the same CP-theory

as Example 8, the temporal precedence assumption would make one particular

assumption about the relative speed of the two servers, namely that the slave

is always slower than the master. If we want to model some other distribution,

where the slave is sometimes faster than the master, we have to use a different

representation style, which allows such information to be incorporated. This will be

discussed later in Example 13.

What this discussion illustrates is that, ultimately, it is the responsibility of the

user to design his CP-theory in such a way that the intended causal processes satisfy

the temporal precedence assumption.

6 Discussion

We now check whether the way in which the previous section has extended the

concept of an execution model to cope with negation indeed satisfies the goals that

we originally stated.

6.1 The case of positive theories

First of all, we remark that, for positive CP-theories, the new definition (Definition

11) simply coincides with the original one (Definition 5), i.e. for positive theories,

there is no difference between execution models and weak execution models. Indeed,

because, according to our original definition, it must be the case that I(s) |= E(s)

for each non-leaf node s, this is an immediate consequence of the following theorem,

which follows trivially from the fact that throughout a hypothetical derivation

sequence, the truth of an atom p can only increase.

Theorem 5

Let s be a node in a probabilistic Σ-process. For any positive formula φ, if I(s) |= φ,

then νs(φ) = t.

We conclude that, for positive CP-theories, the new definition is simply equivalent

to the old one.

6.2 Uniqueness theorem regained

Second, the uniqueness theorem now indeed extends beyond positive theories.

Theorem 6 (Uniqueness – general case)

Let C be a CP-theory and X an interpretation of the exogenous predicates of C .

If T and T′ are execution models of C in context X, i.e. T |=X C and T′ |=X C ,

then πT = πT′ .

Proof

Proof of this theorem is given in Section A.1. �

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 269

6.3 Correctness of temporal precedence in temporal CP-theories

In the previous section, we introduced the temporal precedence assumption as

a way of solving an ambiguity problem, namely the fact that different weak

execution models of a CP-theory with negation might produce different probability

distributions. We showed that this assumption was satisfied in the temporal CP-

theory of Example 7. We now prove that the temporal precedence assumption is

satisfied in a broad class of CP-theories, namely in all temporal CP-theories in

which events containing negation are non-instantaneous. To be more concrete, we

will show that if a weak execution model follows the timing of the vocabulary, it

also satisfies the temporal precedence assumption.

Our first step is to refine our notion of a theory respecting a timing (Definition 8),

to make a distinction between those atoms from some bodyAt(r) that appear only in

a positive context and those which occur at least once in a negative context. The set

of all the latter atoms will be denoted as body−At(r), whereas that of all the former

ones is body+
At(r)

4.

Definition 12 (Strictly respecting a timing)

A CP-theory C (with negation) strictly respects a timing λ if, for all ground atoms

h and b

• If there is CP-law r with h ∈ headAt(r) and b ∈ body+
At(r), then λ(h) � λ(b);

• If there is CP-law r with h ∈ headAt(r) and b ∈ body−At(r), then λ(h) > λ(b);

Notice that we impose a stronger condition on negative conditions than on positive

ones: the times of negative conditions should be strictly less than any caused atom.

This condition entails that CP-laws with negation are not instantaneous.

Theorem 7

Let C be a CP-theory which strictly respects a timing λ. Every weak execution model

of C that follows λ also satisfies temporal precedence and is, therefore, an execution

model of C . Moreover, such a process always exists.

Proof

Proof of this theorem is given in Section A.3. �

Intuitively, the theorem states that any causal process of C that is physically

possible (i.e. in which no event is caused by conditions that arise only in the future)

automatically satisfies temporal precedence. Hence, in the context of CP-theories

that strictly respect some intended timing, the temporal precedence assumption

applies naturally.

4 Formally, we define, for all sentences φ, the sets At+(φ) and At−(φ) by simultaneous induction as:

• For p(t) a ground atom, At−(p(t)) = {} and At+(p(t)) = {p(t)};
• For φ ◦ψ, with ◦ either ∨ or ∧, At+(φ ◦ψ) = At+(φ)∪At+(ψ) and At−(φ ◦ψ) = At−(φ)∪At−(ψ);
• For ¬φ, At+(¬φ) = At−(φ) and At−(¬φ) = At+(φ);
• For Θx φ, with Θ either ∀ or ∃, At+(Θx φ) = ∪t∈HU (Σ)At

+(φ[x/t]) and At−(Θx φ) =
∪t∈HU (Σ)At

−(φ[x/t]), where HU (Σ) is the Herbrand universe.

We can then define body−At(r) = At−(body(r)) and body+
At(r) = bodyAt(r) \ body−At(r).

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

270 J. Vennekens et al.

Fig. 8. A division into time slots.

Example 10

We consider a time line divided into a number of different time slots, as illustrated

in Figure 8. In the first time slot, a client sends a request to a server. If the server

receives a request, then with probability 0.5, he accepts it and sends a reply, all

within the same time slot as that in which he received the request. If the client has

sent a request and has not received a reply at the end of the time slot, he will repeat

his request. A message that is sent has a probability of 0.8 of reaching the recipient

in the same time slot as it was sent; with probability 0.1, it reaches the recipient

only in the next slot; with the remaining probability of 0.1, it will be lost.

(Send(Client, Req, Server, 1) : 0.7). (24)

∀t (Accept(t) : 0.5) ∨ (Reject(t) : 0.5)← Recvs(Server, Req, t). (25)

∀t Send(Server, Answer, Client, t)← Accept(t). (26)

∀t, s, r, m (Recvs(r, m, t) : 0.8)∨(Recvs(r, m, t+ 1) : 0.1)

← Send(s, m, r, t).
(27)

∀t Send(Client, Req, Server, t+ 1)← Send(Client, Req, Server, t)

∧ ¬Recvs(Client, Answer, t).
(28)

In this CP-theory, (24), (25) and (26) are all instantaneous; the events described

by (27) might either take place within one time slot or constitute a propagation to

a later time slot, depending on which of the possible effects actually occurs; finally,

the events described by (28) all propagate to a later time slot. Because these last

events are the only ones in which negation occurs, this theory strictly respects its

intended timing and the theorem shows that the semantics gives the intended result.

In summary, a sensible temporal CP-theory should respect its timing. If it strictly

respects this timing – that is, the timing is fine-grained enough to make CP-laws with

negation non-instantaneous – then all of its weak execution models will automatically

satisfy temporal precedence as well. Otherwise, there may be weak execution models

that do not satisfy temporal precedence and, hence, will be ruled out as well.

6.4 Validity of a CP-theory

Not all CP-theories have an execution model. Let us illustrate this by the following

example:

Example 11

A game is being played between two players, called White and Black. If White does

not win, this causes Black to win and if Black does not win, this causes White to

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 271

win.

Win(White)← ¬Win(Black). (29)

Win(Black)← ¬Win(White). (30)

This theory has two weak execution models: one in which (29) fires first and white

wins with probability 1, and one in which (30) fires first and black wins with

probability 1. However, both of these weak execution models are rejected by the

temporal precedence assumption. Indeed, in each of these weak execution models,

it is the case that, for the root ⊥, (¬Win(White))ν⊥ = u = (¬Win(Black))ν⊥ , so

neither of the two events can happen. So, this is an example of an ambiguity

that cannot be resolved by assuming temporal precedence. In order to make

a sensible CP-theory out of this example, we would have to add additional

information about the probability that one CP-law fires before the other. As will

be illustrated in Example 13, such information can be modelled in CP-logic, but

requires a different representation style in which temporal arguments are added to the

predicates.

Theories which have no execution models are obviously not of interest. This

motivates the following definition:

Definition 13 (Valid CP-theories)

A CP-theory C is valid in an interpretation X for its exogenous predicates if it has

at least one execution model in context X. If C is valid in all contexts X, we simply

say that C is valid.

Clearly, it is only if C is a valid CP-theory that we can associate a probability

distribution πC to it. The theories of Examples 6 and 8 are valid.

The above discussion raises the question how to recognize whether a theory is

valid. We now propose a simple syntactic criterion that guarantees this.

Definition 14 (Stratified CP-theories)

A CP-theory C is stratified if there exists a function λ from the set of its atoms to

an interval [0, n] such that C strictly respects λ.

Here, it is possible that the function λ is a timing such as in Section 6.3, but this

is not necessary; e.g. it might be the case that λ assigns different natural numbers

to atoms that conceptually, in their intended interpretation, are supposed to refer to

the same time points. The following corollary of Theorem 7 is of relevance both to

temporal and atemporal CP-theories.

Corollary 1

Each stratified theory C has an execution model.

We remark that, in particular, all positive theories are stratified, because, for such

a theory, we can simply assign 0 to all ground atoms. An example of a stratified

theory containing negation is given in Example 10. The theory of Example 8 is not

stratified because the atoms Accepts(S1, x) and Accepts(S2, x) cannot be ordered in

time, since the times at which they are made true depends on who is the master. This

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

272 J. Vennekens et al.

is an example of a valid but unstratified CP-theory. We therefore conclude that the

existence of a stratification is a sufficient condition for the existence of an execution

model – and hence of the theory actually defining a probability distribution – but

not a necessary one.

6.5 The representation of time in CP-logic

In the preceding sections, we have encountered two quite different styles of knowledge

representation: temporal theories explicitly include time, while atemporal theories

make abstraction of it.

There may be several reasons for making time explicit. One obvious reason is if

we are actually interested in the intermediate states of the process. Other reasons

might be that the causal processes in a domain are simply too complex to model

without explicit time. Below, we illustrate two such cases.

In CP-logic, each atom starts out as false and might become true during the

process; moreover, if at some point an atom becomes true, it will remain true. In

applications where the obvious relevant properties of the domain of interest do not

behave like this, we cannot simply represent them by atoms in our CP-theory. As

already mentioned in Section 4, this problem can typically be solved by explicitly

including time in the representation. The following example illustrates how this

methodology can be used to handle domains in which there are causes for both a

property and its negation.

Example 12

Consider the following variant of Example 2, in which a doctor can now administer

a medicine to suppress chest pain with probability 0.9.

Pneumonia(1). (31)

∀d (Pneumonia(d+ 1) : 0.8)← Pneumonia(d). (32)

∀d (Chestpain(d) : 0.6)← Pneumonia(d) ∧ ¬Suppressed(d). (33)

∀d Medicine(d)← Chestpain(d). (34)

∀d (Suppressed(d+ 1) : 0.9)←Medicine(d). (35)

In this representation, the use of negation allows the predicate Suppressed to act as

a cause for not having chest pain.

We now discuss another type of application that requires time to be made explicit.

As mentioned before, temporal precedence might give unintended results for theories

which are not temporal or whose granularity of time is such that negation occurs in

instantaneous events. In such cases, the obvious solution is to make time explicit and

ensure it is fine-grained enough to make all events with negation non-instantaneous5.

To illustrate, we consider the following refinement of Example 9:

5 For most real-world events, there exists, at least in principle, some time scale that would make them
non-instantaneous. For instance, even an event such as the temperature of a gas increasing when the
space in which it is contained decreases, only manifests itself after the molecules of the gas have
travelled a certain microscopic distance, which does take a – small, but in principle non-zero – amount
of time. Examples of truly instantaneous events can be found in quantum mechanics (if the state of

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 273

Example 13

We again consider the setting of Example 9, where the slave does not necessarily

wait for the decision of the master, before deciding whether to accept the request

himself. This might be the case, for instance, in a system where the two servers

have not been properly synchronized. As we explained, for such a model to be

a complete description of a probability distribution, we then also need to include

information about the probability that the slave decides before the master. We will

assume that, at each time point where the master has not decided yet, there is a

probability of 0.2 that he will decide; for the slave, we assume that this probability is

0.8.

(Master(S1) : 0.5) ∨ (Slave(S1) : 0.5)← .

Master(S2)← Slave(S1).

S lave(S2)←Master(S1).

∀x∀s∀t(Decides(x, s, t) : 0.2)← Master(x) ∧ Application(s)∧
¬∃t′ (t′ < t ∧ Decides(x, s, t′)).

∀x∀s∀t(Accepts(x, s, t) : 0.6)←Master(x) ∧ Decides(x, s, t).
∀x∀s∀t(Decides(x, s, t) : 0.8)← Slave(x) ∧ Application(s)∧

¬∃t′ (t′ < t ∧ Decides(x, s, t′)).
∀x∀s∀t Accepts(x, s, t)← Slave(x) ∧ Decides(x, s, t)∧

¬∃y∃t′(Master(y) ∧ t′ < t ∧ Accepts(y, s, t′)).

In this CP-theory, we have introduced the predicate Decides(x, s, t) as a reification

of the events by which the servers reach their decision (i.e. the events that were

described by (22) and (23) in our original theory from Example 8). The meaning

of this predicate is that server x makes his decision on application s at time

t. The above CP-theory models the situation of an eager slave that decides on

applications much faster than the master, which causes many services to be provided

twice.

7 The relation to Bayesian networks

In this section, we investigate the relation between CP-logic and Bayesian networks.

Before we begin, let us briefly recall the definition of a Bayesian network. Such a

network consists of a directed acyclic graph and a number of probability tables.

Every node n in the graph represents a random variable, which has some domain

dom(n) of possible values. A network B defines a unique probability distribution

πB over the set of all possible assignments n1 = v1, . . . , nm = vm of values to all of

these random variables, with all vi ∈ dom(ni). First, this πB must obey a probabilistic

independence assumption expressed by the graph, namely that every node n is

probabilistically independent of all of its non-descendants, given its parents. This

one object collapses, this instantaneously causes the collapse of the state of each entangled object) and
abstract properties defined by social convention (e.g. signing a purchase deed instantaneously makes
one the owner of a house).

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

274 J. Vennekens et al.

allows the probability πB(n1 = v1, . . . , nm = vm) of such an assignment of values

to all random variables to be rewritten as a product of conditional probabilities∏
i πB(ni = vi | pa(ni) = v), where each pa(ni) is the tuple of all parents of ni in

the graph. The probability tables associated to the network now specify precisely

all of these conditional probabilities πB(ni = vi | pa(ni) = v). The second condition

imposed on πB is then simply that all of these conditional probabilities must match

the corresponding entries in these tables. It can be shown that this indeed suffices

to uniquely characterize a single distribution.

Most commonly, Bayesian networks are constructed without any explicit refer-

ences to time, since this tends to produce the simplest models. However, in some

cases such a representation does not suffice; then, one typically uses a so-called

dynamic Bayesian network (Ghahramani 1998) which makes time explicit in much

the same way as can be done in CP-logic.

Like CP-logic, Bayesian networks are a formal language that can be used to

represent causal relations in a domain. This is done by choosing as the parents

of a node x all nodes y for which it is the case that the value of y has a direct

effect on the value of x. The values in the conditional probability table for x then

quantify the joint effect that all of these parents together have on x. Bayesian

networks constructed in this way are usually called causal networks, to distinguish

them from ‘non-causal’ networks which do not necessarily follow the direction of

causal relations. Causal Bayesian networks are more informative than non-causal

ones: not only do they define a probability distribution, but they also specify what

will happen when an external action intervenes with the normal operation of the

causal mechanisms it describes (Pearl 2000).

In this section, we will compare causal Bayesian networks to CP-logic. We first

show that, because Bayesian networks can easily be unfolded into probability trees

(Shafer 1996), they can be mapped to CP-logic in a straightforward way. We

then discuss how CP-logic differs from Bayesian networks. There are essentially

three main differences. Our representation is more fine-grained and modular in the

sense that a single probabilistic causal law can express the effect that some of the

‘parents’ of an atom have on it, regardless of the effect of others. It is also more

qualitative, since we can use first-order formulas to specify in which circumstances

the ‘parents’ will have a certain effect on the child, while Bayesian networks encode

such information in probability tables. Finally, it is also more general, in the sense

that it can directly represent cyclic causal relations, which a Bayesian network

cannot. We remark that these comparisons consider only the ‘vanilla’ way of writing

down Bayesian networks, i.e. as a drawing of a directed acyclic graph accompanied

by tables of numbers. A large number of alternative notations exist in the literature

(e.g. Comley and Dowe 2003). These provide more elegant ways of handling all but

one of the ‘shortcomings’ of Bayesian networks that we will mention – the exception

being, to the best of our knowledge, their inability to directly represent cyclic causal

relations.

After this discussion of representation issues, Section 7.5 will discuss interventions

in causal Bayesian networks and show that the semantics of CP-logic induces a

natural counterpart to this notion.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 275

Fig. 9. Bayesian network for the sprinkler example.

Fig. 10. Process corresponding to the sprinkler Bayesian network.

7.1 Bayesian networks in CP-logic

As also mentioned in Shafer’s book, a Bayesian network can be seen as a description

of a class of probability trees. We first make this more precise. To make it easier to

compare to CP-logic later on, we will start by introducing a logical vocabulary for

describing a Bayesian network.

Definition 15

Let B be a Bayesian network. The vocabulary ΣB consists of a predicate symbol Pn
for each node n of B and a constant Cv for each value v in the domain of n.

Now, we want to relate a Bayesian network B to a class of ΣB-processes. Intuitively,

we are interested in those processes, where the flow of events follows the structure

of the graph and every event propagates the values of the parents of a node to this

node itself. We illustrate this by the following famous example:

Example 14 (Sprinkler)

The grass can be wet because it has rained or because the sprinkler was on. The

probability of the sprinkler causing the grass to be wet is 0.8; the probability of rain

causing the grass to be wet is 0.9; and the probability of the grass being wet if both

the sprinkler is on and it is raining is 0.99. The a priori probability of rain is 0.4 and

that of the sprinkler having been on is 0.2.

The Bayesian network formalization of this example can be seen in Figure 9. Fig-

ure 10 shows a process that corresponds to this network. Here, we have exploited the

fact that all random variables of the Bayesian network are boolean, by representing

every random variable by a single atom, i.e. writing for instance Wet and ¬Wet

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

276 J. Vennekens et al.

instead of Wet(True) and Wet(False). Formally, we define the following class of

processes for a Bayesian network:

Definition 16

Let B be a Bayesian network. A B-process is a probabilistic ΣB-processT for which

there exists a mapping N from nodes of T to nodes of B, such that the following

conditions are satisfied. For every branch ofT,N is a one-to-one mapping between

the nodes on this branch and the nodes of B, which is order preserving, in the sense

that, for all s, s′ on this branch, if N(s) is an ancestor of N(s′) in B, then s must

be an ancestor of s′ in T. If N(s) is a node n with domain {v1, . . . , vk} and parents

p1, . . . , pm in B, then the children of s in T are nodes s1, . . . , sk , for which

• I(si) = I(s) ∪ {Pn(Cvi)};
• The edge from s to si is labelled with the entry in the table for n, that gives

the conditional probability of n = vi given p1 = w1, . . . , pm = wm, where each

wi is the unique value from the domain of pi for which Ppi (Cwi) ∈ I(s).

It should be clear that every leaf s of such a B-processT describes an assignment

of values to all nodes of B, i.e. every node n is assigned the unique value v for which

Pn(cv) ∈ I(s). Moreover, the probability P(s) of such a leaf is precisely the product

of all the appropriate entries in the various conditional probability distributions.

Therefore, the distribution πT coincides with the distribution defined by the net-

work B.

We now construct a CP-theory CPB , such that the execution models of CPB
will be precisely all B-processes. We first illustrate this process by showing how the

Bayesian network in Figure 9 can be transformed into a CP-theory.

Example 14 (Sprinkler – continued)

We can derive the following CP-theory from the Bayesian network in Figure 9.

(Wet : 0.99)← Sprinkler ∧ Rain

(Wet : 0.8)← Sprinkler ∧ ¬Rain.
(Wet : 0.9)← ¬Sprinkler ∧ Rain.

(Wet : 0.0)← ¬Sprinkler ∧ ¬Rain.
(Sprinkler : 0.2).

(Rain : 0.4).

Again, this example exploits the fact that the random variables are all boolean,

by using the more readable representation of Wet and ¬Wet instead of Wet(True)

and Wet(False). It should be obvious that the process in Figure 10 is an execution

model of this theory and, therefore, that this theory defines the same probability

distribution as the Bayesian network.

It is now easy to see that the encoding used in the above example generalizes.

Concretely, for every node n with parents p1, . . . , pm and domain {v1, . . . , vk}, we

should construct the set of all rules of the form

(Pn(Cv1) : α1) ∨ · · · ∨ (Pn(Cvk) : αk)← Pp1
(Cw1

) ∧ · · · ∧ Ppm (Cwm),

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 277

where each wi belongs to the domain of pi and each αj is the entry for n = vj ,

given p1 = w1, . . . , pm = wm in the CP-theory for n. Let us denote the CP-theory thus

constructed by CPB . The following result is then obvious:

Theorem 8

Let B be a Bayesian network. Every B-process T is an execution model of the

CP-theory CPB , i.e. T |= CPB . Therefore, the semantics of B coincides with the

distribution πC .

This result shows that CP-logic offers a straightforward way of representing

Bayesian networks. We now discuss three ways in which it offers more expressivity.

7.2 Multiple causes for the same effect

In a process corresponding to a Bayesian network, the value of each random variable

is determined by a single event. CP-logic, on the other hand, allows multiple events

to affect the same property. This leads to better representations for effects that have

a number of independent causes. Let us illustrate this by the following example:

Example 15

We consider a game of Russian roulette that is being played with two guns, one in

the player’s left hand and one in his right, each of which has a bullet in one of its

six chambers.

(Death : 1/6)← Pull trigger(Left gun).

(Death : 1/6)← Pull trigger(Right gun).

In this example, there are two ‘causal mechanisms’ that might lead to Death: one

is the fact that pulling the trigger of the left gun might cause a bullet to hit the

person’s left temple, and the other is the fact that pulling the trigger of the right

gun might cause a bullet to hit the person’s right temple. They are independent

in the following sense: once we know how many and which of these mechanisms

are actually activated (i.e. which of the two triggers are pulled), then observing

whether one of these possible causes actually results in the effect (i.e. whether one

of the bullets is actually fired and kills the persons) provides no information about

whether one of the other causes will cause the effect (i.e. whether one of the other

bullets is also fired). Mathematically, this is of course saying nothing more than the

probability of the effect occurring should be equal to the result of applying a noisy-

or6 to the multiset of the probabilities with which each of the causal mechanisms

that are actually activated causes the effect, i.e. if both guns are fired, the probability

of death should be 1− (1− 1/6)2. This independence is precisely the condition that

is required in order to be able to represent each of these two causal mechanism by a

separate CP-law, as in the above example. To succinctly describe this situation, we

6 The noisy-or maps a multiset of probabilities αi to 1−
∏
i(1− αi).

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

278 J. Vennekens et al.

Fig. 11. A Bayesian network for Example 15.

say that Pull trigger(Left gun) and Pull trigger(Right gun) are independent causes

for Death.

For instance, in Example 14, Rain and Sprinkler were not independent causes for

Wet, since the probability of Wet given both Rain and Sprinkler is 0.99, which is not

equal to 1− (1− 0.8)(1− 0.9) = 0.98. In this case, the causal mechanisms by which

Rain and Sprinkler cause Wet therefore appear to reenforce each other: it might be

that a light drizzle only causes the grass to get slightly moist, and that sometimes

the pressure on the water main is so low that the sprinkler by itself cannot get the

grass really wet, but that a light drizzle and a lightly spraying sprinkler together

would be enough to cause Wet, even though neither of them separately would do

the trick. Because Sprinkler and Rain are not independent causes in this example,

we cannot use a representation of the form:

(Wet : α)← Sprinkler.

(Wet : β)← Rain.

and instead have no choice but to use the representation shown in the six formulas

on page 32.

Figure 11 shows a Bayesian network for the Russian roulette example. The most

obvious difference between this representation and ours concerns the independence

between the two different causes for death. In the CP-theory, this independence

is expressed by the structure of the theory, whereas in the Bayesian network, it is

a numerical property of the probabilities in the conditional probability table for

Death. Because of this, the CP-theory is more elaboration tolerant, since adding or

removing an additional cause for Death simply corresponds to adding or removing

a single CP-law. Moreover, its representation is also more compact, requiring, in

general, only n probabilities for n independent causes, instead of the 2n entries that

are needed in a Bayesian network table. Of course, these entries are nothing more

than the result of applying a noisy-or7 to the multiset of the probabilities with which

each of the causes that are present actually causes the effect.

In graphical modelling, it is common to consider variants of Bayesian networks

that use more sophisticated representations of the required conditional probability

distributions than a simple table. Including the noisy-or as a structural element

in such a representation achieves the same effect as CP-logic when it comes to

representing independent causes.

7 The noisy-or maps a multiset of probabilities αi to 1−
∏
i(1− αi).

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 279

7.3 First-order logic representation of causes

In CP-logic, the cause of an event can be represented in a qualitative way, by

means of a first-order formula. Bayesian networks, on the other hand, encode such

information in the probability tables.

Example 16

In the so-called Wumpus world, an agent moves through a grid, which contains,

among other things, a number of bottomless pits. One aspect of this world is that if

a position x is next to such a pit, then with a certain probability α, a breeze can be

felt there (often, α is simply taken to be 1). In CP-logic, we could write the following

CP-law:

∀x (Breeze(x) : α)← ∃y NextTo(x, y) ∧ Pit(y).
For a grid in which square A is surrounded by squares B,C,D and E, a Bayesian

network could represent the effect of Pit(B), P it(C), P it(D), P it(E) on Breeze(A) by

the following table:

Breeze(A)

Pit(B) Pit(C) Pit(D) Pit(E) α

P it(B) Pit(C) Pit(D)¬Pit(E) α

...
...

¬Pit(B)¬Pit(C)¬Pit(D) Pit(E) α

¬Pit(B)¬Pit(C)¬Pit(D)¬Pit(E) 0

In this example, CP-logic offers a representation which is considerably more

concise than that of the Bayesian network. This manifests itself in two ways: first,

our first-order representation succeeds in defining the probability of Breeze(x) for all

squares x simultaneously by a single CP-law, while each square would need its own

(identical) probability table in the Bayesian network; second, it can also summarize

the 24 entries that make up the probability table for each Breeze(x) by the single

first-order precondition of this CP-law. Again, these shortcomings have already been

recognized by the Bayesian network community, leading to, for instance, the use of

decision trees to represent probability tables (Comley and Dowe 2003), various forms

of parameter tying and first-order versions of Bayesian networks such as Bayesian

Logic Programs (Kersting and De Raedt 2000) (see also Section 9.4.3).

We remark that this feature of CP-logic cannot really be seen separately from

that discussed in the previous section: it is precisely because we split up the effect

that ‘parents’ have on their ‘child’ into a number of independent causal laws, that

we get more opportunity to exploit the expressivity of our first-order representation.

7.4 Cyclic causal relations

In real life, probabilistic processes may consist of events that might propagate values

in opposite directions. We already saw this in Example 2, where angina could cause

pneumonia, but, vice versa, pneumonia could also cause angina. In CP-logic, such

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

280 J. Vennekens et al.

Fig. 12. Bayesian network for the angina–pneumonia causal loop.

causal loops do not require any special treatment. For instance, the loop formed by

the two CP-laws

(Angina : 0.2)← Pneumonia.

(Pneumonia : 0.3)← Angina.

correctly behaves as follows:

• If the patient has neither angina nor pneumonia by an external cause (‘external’

here does not mean exogenous, but simply that this cause is not part of the

causal loop), then he will have neither;

• If the patient has angina by an external cause, then with probability 0.3 he

will also have pneumonia;

• If the patient has pneumonia by an external cause, then with probability 0.2

he will also have angina;

• If the patient has both pneumonia and angina by an external cause, then he

will obviously have both.

In order to get the same behaviour in a Bayesian network, this would have to be

explicitly encoded. For instance, one could introduce new, artificial random variables

external(angina) and external(pneumonia) to represent the possibility that angina and

pneumonia result from an external cause and construct the Bayesian network that is

shown in Figure 12. In general, to encode a causal loop formed by n properties, one

would introduce n additional nodes, i.e. all of the n original properties would have

the same n artificial nodes as parents.

7.5 Interventions in CP-logic

Pearl’s work investigates the behaviour of causal models in the presence of in-

terventions, i.e. outside manipulations that preempt the normal behaviour of the

system. His key observation here is that causal relations are robust, in the sense

that, even when some causal relations are intervened with, the other causal relations

will still hold as before. Formally, an intervention for Pearl is something of the

form do(X = x) that sets the value of a random variable X to x. In doing this, all

edges leading into X are removed, because even though they represent the causal

mechanism that would normally determine the value of X, they become irrelevant

when the value of X is determined by an external intervention instead.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 281

It is also possible to consider such interventions in the context of CP-logic.

Our representation of a causal system is a modular one, in which the atomic unit

is a single CP-law. Because of this, our language comes with a specific kind of

interventions ‘built-in’: if we want to know what the result is of intervening with

a single causal law r, we can simply consider the theory from which this one law

is removed (and possibly replaced by some other law). So, to judge the effect of

doing an intervention that prevents r, we simply have to look at πC\{r} instead of

πC , in (roughly) the same way that Pearl would look at something of the form

P (· | do(X = x)) instead of P (·). The opposite is of course also possible: if we want

to know the effect of doing an intervention that instead establishes an additional

causal law r, we could look at πC∪{r}.

To illustrate, let us consider another medical example. A tumour in a patient’s

kidney might cause kidney failure, which might cause the death of the patient;

however, to make matters even worse, the tumour can also metastasize to the brain,

which might also, independently, kill the patient. We can represent this as

(KidneyFailure : 0.1)← KidneyTumor .

(BrainTumor : 0.1)← KidneyTumor .

(Death : 0.5)← BrainTumor .

(Death : 0.9)← KidneyFailure.

Now, let us suppose that we want to know what the effect will be of putting the

patient on a dialysis machine, which allows him to survive kidney failure. To answer

this question, we simply remove the last of these causal laws (since the dialysis is

precisely meant to prevent this particular causality from taking effect) and look at

the semantics of the resulting theory. If, say, the dialysis also carries some small risk,

we can also add new causal laws such as

(Death : 0.01)← Dialysis .

In this way, the semantics of CP-logic already carries within it a notion of

intervention, which is also slightly more fine-grained than that of Pearl, since we can

consider interventions that prohibit a single causal law (as in the above example),

whereas Pearl only considers interventions that prohibit all causal laws that affect

the value of a certain random variables. In the case of the above example, therefore,

we would have to either intervene to prevent all possible causes for death, including

the brain tumour, or none at all. Admittedly, it is of course easy enough to solve

this problem by introducing some intermediate variable, say ‘high levels of toxins in

the blood’, between kidney failure and death.

Among other things, Pearl uses interventions to make sense of the statistical

phenomenon known as Simpson’s paradox. Because this is somewhat of a benchmark

for causal formalisms, we will briefly discuss how CP-logic can deal with it.

Simpson’s paradox refers to the phenomenon that a population can sometimes

be partitioned in such a way that a certain outcome has a low probability in

each of the partitioning sets, yet has a high probability in the population over all

(or vice versa). For instance, a certain drug might be harmful to both men and

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

282 J. Vennekens et al.

women, but appear beneficial for persons of unknown sex. More precisely, taking

the drug and recovering might be positively correlated in the population at large,

but become negatively correlated when conditioning on sex. This can happen, for

instance, if men are both more likely to take the drug and to spontaneously recover

from the disease. (Because then observing that a patient takes the drug increases

the probability that he is male, which in turn increases the probability that he will

recover on his own, thus erroneously suggesting that the drug had some beneficial

effects on this recovery.)

The crux of Simpson’s paradox is that the same probability distribution can be

generated by different sets of causal laws, and that in order to figure out whether,

e.g. some drug has a positive effect on a patient’s condition, it is really these causal

laws that matter. Pearl’s book shows that the paradox can therefore be resolved by

considering the causal models behind the probability distribution. In CP-logic, we

can do the same. Let us illustrate this by a famous real-world example: it was found

that women had a significantly lower acceptance rate than men for the graduate

school of the University of California at Berkeley, which led to a discrimination

law-suit against the university. However, it turned out that none of the individual

departments of the university had a lower acceptance rate for women than for men;

instead, it was simply the case that women were significantly more likely to apply

to departments with a low acceptance rate.

A highly simplified model of the real situation might therefore have looked

something like

∀x (Apply(x,Engineering) : 0.7) ∨ (Apply(x,Literature) : 0.3)← Man(x).

∀x (Apply(x,Engineering) : 0.2) ∨ (Apply(x,Literature) : 0.8)←Woman(x).

∀x (Accepted (x) : 0.6)← Apply(x,Engineering).

∀x (Accepted (x) : 0.3)← Apply(x,Literature).

Here, there clearly is no gender discrimination: the gender of the applicant plays

no role in the CP-laws that describe how the university decides whether to accept

an application. The reason for the law suit is that, if we only look at the acceptance

rates of men and women for the university as a whole, we cannot distinguish this

CP-theory from, e.g. the following one:

∀x (Apply(x,Engineering) : 0.6) ∨ (Apply(x,Literature) : 0.5)← Man(x).

∀x (Apply(x,Engineering) : 0.4) ∨ (Apply(x,Literature) : 0.6)←Woman(x).

∀x (Accepted (x) : 0.3)← Apply(x,Engineering) ∧Woman(x).

∀x (Accepted (x) : 0.6)← Apply(x,Engineering) ∧Man(x).

∀x (Accepted (x) : 0.4)← Apply(x,Literature) ∧Woman(x).

∀x (Accepted (x) : 0.5)← Apply(x,Literature) ∧Man(x).

Indeed, both theories yield an acceptance rate of 0.36 for women and an acceptance

rate of 0.51 for men. In the law suit, the acceptance rates of individual departments

were used to argue that the first model was, in fact, the correct one. Purely

theoretically, another option could have been to conduct a randomized experiment

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 283

to eliminate selection bias: instead of allowing students to choose their department,

we would assign it at random. In CP-logic terms, this corresponds to the intervention

of removing the first two CP-laws from both theories and replacing them by

∀x (Apply(x, Engineering) : 0.5) ∨ (Apply(x, Literature) : 0.5).

If we were to perform this intervention, the first theory would predict a new

acceptance rate of 0.45 for men and women alike, whereas the second would predict

an acceptance rate of 0.35 for women and 0.55 for men. So, here we see that the kind

of interventions induced by the semantics of CP-logic is able to explain Simpson’s

paradox, and does so in essentially the same way that Pearl does.

8 CP-logic and logic programs

There is an obvious similarity between the syntax of CP-logic and that of logic

programs. Moreover, the constructive processes that we used to define the semantics

of a CP-theory are also similar to the kind of fixpoint constructions used to

define certain semantics for logic programs. In this section, we will investigate these

similarities. To be more concrete, we will first define a straightforward probabilistic

extension of logic programs, called Logic Programs with Annotated Disjunctions, and

then prove that this is essentially equivalent to CP-logic.

The connection between causal reasoning and logic programming has long been

implicitly present; we can refer in this respect to, for instance, formalizations of

situation calculus in logic programming (Pinto and Reiter 1993; Van Belleghem

et al. 1997). Here, we now make this relation explicit, by showing that the language

of CP-logic, that we have constructed directly from causal principles, corresponds

to existing logic programming concepts. In this respect, our work is similar to that

of McCain and Turner (1996), who defined the language of causal theories, which

was then shown to be closely related to logic programming. However, as we will

discuss later, McCain and Turner formalise somewhat different causal intuitions,

which leads to a correspondence to a different logic programming semantics. Our

results from this section will help to clarify the position of CP-logic among related

work in the area of probabilistic logic programming, such as Poole’s Independent

Choice Logic (Poole 1997). Moreover, they provide additional insight into the role

that causality plays in such probabilistic logic programming languages, as well as in

normal and disjunctive logic programs.

8.1 Logic programs with annotated disjunctions

In this section, we define the language of Logic Programs with Annotated Disjunctions,

or LPADs for short. This is a probabilistic extension of logic programming, which

is based on disjunctive logic programs. This is a natural choice, because disjunctions

themselves – and therefore also disjunctive logic programs – already represent a

kind of uncertainty. Indeed, to give just one example, we could use these to model

indeterminate effects of actions. Consider, for instance, the following disjunctive

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

284 J. Vennekens et al.

rule:

Heads ∨ Tails← Toss.

This offers a quite intuitive representation of the fact that tossing a coin will result

in either heads or tails. Of course, this is not all we know. Indeed, a coin also has

equal probability of landing on heads or tails. The idea behind LPADs is now simply

to express this by annotating each of the disjuncts in the head with a probability,

i.e. we write

(Heads : 0.5) ∨ (Tail : 0.5)← Toss.

Formally, an LPAD is a set of rules

(h1 : α1) ∨ · · · ∨ (hn : αn)← φ, (36)

where the hi are ground atoms and φ is a sentence. As such, LPADs are syntactically

identical to CP-logic. However, we will define their semantics quite differently. For

instance, the above example will express that precisely one of the following logic

programming rules holds: either Heads ← Toss holds, i.e. if the coin is tossed this

will yield heads, or the rule Tails← Toss holds, i.e. tossing the coin gives tails. Each

of these two rules has a probability of 0.5 of being the actual instantiation of the

disjunctive rule.

More generally, every rule of form (36) represents a probability distribution over

the following set of logic programming rules:

{(hi ← φ) | 1 � i � n}.

From these distributions, a probability distribution over logic programs is then

derived. To formally define this distribution, we introduce the following concept of

a selection. We use the notation head∗(r) to denote the set of pairs head(r) ∪ {(∅, 1−∑
(h:α)∈head(r) α)}, where ∅ represents the possibility that none of the hi’s are caused

by the rule r.

Definition 17 (C-selection)

Let C be an LPAD. A C-selection is a function σ from C to
⋃
r∈C head

∗(r), such that

for all r ∈ C , σ(r) ∈ head∗(r). By σh(r) and σα(r) we denote, respectively, the first

and second element of the pair σ(r). The set of all C-selections is denoted as SC .

The probability P (σ) of a selection σ is now defined as
∏

r∈C σ
α(r). For a set

S ⊆ SC of selections, we define the probability P (S) as
∑

σ∈S P (σ). By Cσ we

denote the logic program that consists of all rules σh(r)← body(r) for which r ∈ C
and σh(r) �= ∅. Such a Cσ is called an instance of C . We will interpret these instances

by the well-founded model semantics. Recall that, in general, the well-founded model

of a program P , wfm(P), is a pair (I, J) of interpretations, where I contains all atoms

that are certainly true and J contains all atoms that might possibly be true. If I = J ,

then the well-founded model is called exact. Intuitively, if wfm(P) is exact, then the

truth of all atoms can be decided, i.e. everything that is not false can be derived.

In the semantics of LPADs, we want to ensure that all uncertainty is expressed by

means of the annotated disjunctions. In other words, given a specific selection, there

should no longer be any uncertainty. We therefore impose the following criterion:

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 285

Definition 18 (Soundness)

An LPAD C is sound iff all instances of C have an exact well-founded model.

For such LPADs, the following semantics can now be defined:

Definition 19 (Instance-based semantics μC)

Let C be a sound LPAD. For an interpretation I , we denote by W (I) the set of all

C-selections σ for which wfm(Cσ) = (I, I). The instance-based semantics μC of C is

the probability distribution on interpretations, that assigns to each I the probability

P (W (I)) of this set of selections W (I).

It is straightforward to extend this definition to allow for exogenous predicates

as well. Indeed, in Section 2.2, we have already seen how to define the well-founded

semantics for rule sets with open predicates, and this is basically all that is needed.

Concretely, given an interpretation X for a set of exogenous predicates, we can

define the instance-based semantics μXC given X as the distribution that assigns, to

each interpretation I of the endogenous predicates, the probability of the set of all

selections σ for which (I, I) is the well-founded models of Cσ given X. Of course,

this semantics is only defined for LPADs that are sound in X, meaning that the

well-founded model of each Cσ given X is two valued.

8.2 Equivalence to CP-logic

Every CP-theory is syntactically also an LPAD and vice versa. The key result of

this section is that the instance-based semantics μC for LPADs coincides with the

CP-logic semantics πC defined in Sections 3 and 5.

Theorem 9

Let C be a CP-theory that is valid in X. Then C is also an LPAD that is sound in

X and, moreover, μXC = πXC .

Proof

Proof of this theorem is given in Section A.2. �

We remark that it is not the case that every sound LPAD is also a valid CP-

theory. In other words, there are some sound LPADs that cannot be seen as a

sensible description of a set of probabilistic causal laws.

Example 17

It is easy to see that the following CP-theory has no execution models:

(P : 0.5) ∨ (Q : 0.5)← R.

R ← ¬P .
R ← ¬Q.

However, each of its instances has an exact well-founded model: for {P ← R;R ←
¬P ;R ← ¬Q} this is {R, P } and for {Q ← R;R ← ¬P ;R ← ¬Q} this is {R,Q}.
Clearly, this CP-theory does not have execution models that satisfy the temporal

precedence assumption.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

286 J. Vennekens et al.

8.3 Discussion

The results of this section relate CP-logic to LPADs and, more generally speaking, to

the area of logic programming and its probabilistic extensions. As such, these results

help to position CP-logic among related work, such as Poole’s Independent Choice

Logic and McCain and Turner’s causal theories, which we will discuss in Section

9.2. Moreover, they also provide a valuable piece of knowledge representation

methodology for these languages, by clarifying how they can represent causal

information. To illustrate, we now discuss the relevance of our theorem for some

logic programming variants.

Disjunctive logic programs. In probabilistic modelling, it is often useful to consider

the qualitative structure of a theory separately from its probabilistic parameters.

Indeed, for instance, in machine learning, the problems of structure learning and

parameter learning are two very different tasks. If we consider only the structure of

a CP-theory, then, syntactically speaking, we end up with a disjunctive logic program,

i.e. a set of rules:

h1 ∨ · · · ∨ hn ← φ. (37)

We can also single out the qualitative information contained in the semantics πC of

such a CP-theory. Indeed, as we have already seen, like any probability distribution

over interpretations, πC induces a possible world semantics, consisting of those

interpretations I for which πC (I) > 0. Thus we can define

I |= C if πC (I) > 0.

Now, let us restrict our attention to only those CP-theories in which, for every CP-law

r, the sum of the probabilities αi appearing in head(r) is precisely 1. This is without

loss of generality, since we can simply add an additional disjunct (P : 1 −
∑

i αi),

with P some new atom, to all rules which do not satisfy this property. It is easy

to see that the set of possible worlds is then independent of the precise values of

the αi, i.e. the qualitative aspects of the semantics of such a theory depend only

on the qualitative aspects of its syntactical form. Stated differently, for any pair of

CP-theories C,C ′ which differ only on the αi’s, it holds that, for any interpretation

I , I |= C iff I |= C ′.

From the point of view of disjunctive logic programming, this set of possible worlds

therefore offers an alternative semantics for such a program. Under this semantics,

the intuitive reading of a rule of form (37) is: ‘φ causes a non-deterministic event,

whose effect is precisely one of the h1,. . . , hn’. This is a different informal reading than

in the standard stable model semantics for disjunctive programs (Przymusinski 1991).

Indeed, under our reading, a rule corresponds to a causal event, whereas, under the

stable model reading, it is supposed to describe an aspect of the reasoning behaviour

of a rational agent. Consider, for instance, the disjunctive program {p∨q. p.}. To us,

this program describes a set of two non-deterministic events: One event causes either

p or q and another event always causes p. Formally, this leads to two possible worlds,

namely {p} and {p, q}. Under the stable model semantics, however, this program

states that an agent believes either p or q and the agents believe p. In this case, he has

no reason to believe q and the only stable model is {p}. So, clearly, the causal view on

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 287

disjunctive logic programming induced by CP-logic is fundamentally different from

the standard view and leads to a different formal semantics. Interestingly, the possible

model semantics (Sakama and Inoue 1994) for disjunctive programs is quite similar

to the LPAD treatment, because it consists of the stable models of instances of a pro-

gram. Because, as shown in Section 8.2, the semantics of CP-logic considers the well-

founded models of instances, these two semantics are very closely related. Indeed,

for a large class of programs, including all stratified ones, they coincide completely.

Normal logic programs. Let us consider a logic program P , consisting of a set of

rules h← φ, with h a ground atom and φ a formula. Syntactically, such a program

is also a deterministic CP-theory. Its semantics πP assigns a probability of 1 to a

single interpretation and 0 to all other interpretations. Moreover, the results from

Section 8.2 tell us that the interpretation with probability 1 will be precisely the

well-founded model of P . As such, these results show that a logic program under

the well-founded semantics can be viewed as a description of deterministic causal

information. Concretely, we find that we can read a rule h ← φ as ‘φ causes a

deterministic event, whose effect is h’.

This observation makes explicit the connection between causal reasoning and

logic programming that has long been implicitly present in this field, as is witnessed,

e.g. by the work on situation calculus in logic programming. As such, it enhances

the theoretical foundations behind the pragmatic use of logic programs to represent

causal events.

FO(ID). FO(ID) (also called ID-logic) (Denecker and Ternovska 2007) extends clas-

sical logic with inductive definitions. Similar to the way they appear in mathematical

texts, an inductive definition is represented as a set of definitional rules, which are

of the form ∀x p(t) ← φ, where x is a tuple of variables, φ is a first-order formula

and p(t) an atom. Such a definition defines all predicates in the head of the rules

by simultaneous induction in terms of the other predicates, which are called the

open predicates of the definition. This syntax offers a uniform way of expressing

the most important forms of inductive definitions found in mathematics, including

monotone, transfinite and iterated inductive definitions, and inductive definitions

over a well-founded order. Formally, the semantics of such a definition is given by

the well-founded semantics, which has been shown to correctly formalise these forms

of inductive definitions. To be more concrete, an interpretation I is a model of a

definition D if it interprets the defined predicates as the well-founded model of D

extending the restriction of I to the open symbols of D.

Our results show that finite propositional definitions in FO(ID) are, both syntacti-

cally and semantically, identical to deterministic CP-theories. We can therefore view

such a set of rules as both an inductive definition and a description of a causal process.

This relation between induction and causality may be remarkable, but it is not all

that surprising. In essence, an inductive definition defines a concept by describing

how to construct it. As such, an inductive definition also specifies a construction

process, and such processes are basically causal in nature. Or to put it another way, an

inductive definition is nothing more than a description of a causal process, that takes

place not in the real world, but in the domain of mathematical objects. This suggests

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

288 J. Vennekens et al.

that the ability of mathematicians and formal scientists in general to understand

inductive definitions is rooted deeply in human common sense, in particular our

ability to understand and reason about causation in the physical world.

9 Related work

In this section, we discuss some research that is related to our work on CP-logic.

Roughly speaking, we can divide this into two different categories, namely the related

work that focuses mainly on formalizing causality and that which focuses mainly

on representing probabilistic knowledge.

9.1 Pearl’s causal models

Our work on CP-logic studies causality from a knowledge representation perspective.

As such, it is closely related to the work of Pearl (2000). His work uses Bayesian net-

works and structural models as formal tools. In Section 7, we have already compared

CP-logic to Bayesian networks and showed that it offers certain representational

advantages. A structural model is a set of equations, each of which defines the value

of one random variable in terms of the values of a set of other random variables.

For each endogenous random variable, there is precisely one such defining equation.

As for Bayesian networks, we can say here that a CP-theory is more detailed, since

it represents individual causal laws, while a single structural model equation has to

take into account all of the random variables that have a direct influence on the

value of the defined random variable. Another similarity to Bayesian networks is

that structural models have to be acyclic as well, which means that, in this sense,

they are also less general than CP-logic. Apart from this, a lot depends of course on

the particular form that these equations take, so there is not much more that can

be said in general about this.

Pearl’s work mainly focuses on the behaviour of causal models in the presence

of interventions. As we have shown in Section 7.5, it is possible to consider similar

interventions in the context of CP-logic. Pearl uses interventions for a number of

interesting purposes, such as handling counterfactuals. They have also been used to

define concepts such as ‘actual causes’ (Halpern and Pearl 2001a) and ‘explanations’

(Halpern and Pearl 2001b). The explicitly dynamic processes of CP-logic seem to offer

an interesting setting in which to investigate these concepts as well. Indeed, in any

particular branch of an execution model of a CP-theory, every true atom p is caused

by at least one CP-law whose precondition φ was satisfied at the time when this

event happened. It now seems sensible to call φ an actual cause of p. An interesting

question is to what extent such a definition would coincide with the notion of actual

causation defined by Halpern. However, we leave these issues for future work.

9.2 Causality in logic programs

In the area of logic programming, many languages can be found which express some

kind of (non-probabilistic) causal laws. A typical example is McCain and Turner’s

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 289

causal theories (McCain and Turner 1996). A causal theory is a set of rules φ⇐ ψ,

where φ and ψ are propositional formulas. The semantics of such a theory T is

defined by a fixpoint criterion. Concretely, an interpretation I is a model of T if I

is the unique classical model of the theory TI that consists of all φ, for which there

is a rule φ⇐ ψ in T such that I |= ψ.

In CP-logic, we assume that the domain is initially in a certain state, which then

changes through a series of events. This naturally leads to the kind of constructive

processes that we have used to define the formal semantics of CP-logic. By contrast,

according to McCain and Turner’s fixpoint condition, a proposition can have any

truth value, as long as there exists some causal explanation for this truth value. This

difference mainly manifests itself in two ways.

First, in CP-logic, every endogenous property has an initial truth value, which can

only change as the result of an event. As such, there is a fundamental asymmetry

between falsity and truth, since only one of them represents the ‘natural’ state of

the property. For McCain and Turner, however, truth and falsity are completely

symmetric and both need to be causally explained. As such, if the theory is to have

any models, then, for every proposition Q, there must always be a cause for either

Q or ¬Q.

A second difference is that the constructive processes of CP-logic rule out any

unfounded causality, i.e. it cannot be the case that properties spontaneously cause

themselves. In McCain and Turner’s theories, this ‘spontaneous generation’ of

properties can occur. For instance, the CP-theory {Q ← Q} has {} as its (unique)

model, whereas the causal theory {Q⇐ Q} has {Q} as its (unique) model. As such,

the direct representation of cyclic causal relations that is possible in CP-logic (e.g.

Example 2) cannot be done in causal theories; instead, one has to use an encoding

similar to the one needed in Bayesian networks (e.g. Figure 12). In practice, the

main advantage of McCain and Turner’s treatment of causal cycles seems to be

that it offers a way of introducing exogenous atoms into the language. Indeed, by

including both Q ⇐ Q and ¬Q ⇐ ¬Q, one can express that Q can have any truth

value, without this requiring any further causal explanation. Of course, CP-logic

has no need for such a mechanism, since we make an explicit distinction between

exogenous and endogenous predicates. It is interesting to observe that, given the

relation between logic programming and causal theories proven in McCain McCain

(1997), this difference actually corresponds to the difference between the well-founded

and completion semantics for logic programs.

9.3 Action languages

In knowledge representation, a significant amount of work has been done on the

topic of action languages, such as A, B and C (Gelfond and Lifschitz 1998).

These languages have in common with CP-logic that causality plays a significant

role in their setting, and also that they are closely related to logic programming

(Lifschitz and Turner 1999). Moreover, there also exist probabilistic extensions of

these languages (Baral et al. 2002).

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

290 J. Vennekens et al.

Action languages conceive the world as consisting of a system of causal laws,

together with an external agent who can decide to act upon this system. Crucially,

the agent’s decisions are themselves not governed by the system’s causal laws.

Therefore, if we consider, e.g. Pearl’s framework, the closest thing to this concept

of an action would be his notion of an intervention. Indeed, it has been shown

in Tran and Baral (2004) that interventions can be encoded in the probabilistic

action language PAL (Baral et al. 2002) precisely as actions. In CP-logic, the most

natural way of encoding an action would be, for the same reason, by means of an

exogenous predicate. While the behaviour of an agent in an action language is not

determined by the state of the system, it is however typically restrained by it: certain

actions are only available in certain states. Neither of these two ways of encoding

actions (i.e. in Pearl’s framework or in ours) would be able to directly represent such

constraints.

Action languages allow the effects of an action to be specified by means of

so-called dynamic causal laws. In Pearl’s framework, the effect of an action would

be given as part of the specification of the intervention that is performed. In

CP-logic, such knowledge would take the form of a CP-law whose body contains

the exogenous predicate representing the action, and whose head contains some

endogenous predicate that is affected by the action.

Besides these dynamic causal laws, there are also static causal laws. These represent

the causal laws that are obeyed by the system itself; once we know the direct effects

of the agent’s actions, the static causal laws tell us how these propagate through the

rest of the system. In Pearl’s framework, they would correspond to the functional

equation that were not intervened with. In CP-logic, they would be CP-laws with

endogenous predicates in body and head.

As this brief discussion demonstrates, we could conceive of a probabilistic action

language in which the (dynamic and static) causal laws are expressed in CP-logic,

while the actions and constraints thereon are defined in some other language. To

the best of our knowledge, however, all of the approaches in current literature use

essentially a McCain and Turner-style representation for the causal laws (see, e.g.

Giunchiglia and Lifschitz 1998).

To illustrate, let us consider the transmission in a car. This is a system consisting

of a number of gear wheels, which can be connected in various ways, such that

turning one of the gear wheels causes connected gear wheels also to turn. This

system can be represented by a set of causal laws – and can be done so better in

CP-logic than in McCain and Turner’s logic. The reason is that there exist cyclic

causal relations between connected gear wheels: if the engine is turning, this can

cause the car to move, but vice versa, if the car is moving, this can also cause the

engine to turn (engine braking). As explained in Section 9.2, such cyclic causality is

handled better in CP-logic. Note also that in the context of probabilistic planning,

the McCain and Turner style representation poses the problem that loops in the

causal laws (e.g. p⇐ q and q ⇒ p) lead to uncertainty (e.g. p and q can either both

be true or both be false) that is not probabilistically quantified. PAL, for instance,

solves this problem by assuming that, in such a case, all possible states are equally

likely.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 291

A CP-logic representation of the transmission would probably use predicates such

as Clutch and ShiftGear to refer to the actions available to the driver. These would

be exogenous predicates, and we would not say anything more about them. An

action language, however, could do more. It would also allow to express constraints

on these actions, such as that shifting gears is only allowed while the clutch is in

operation. In such a setting, we would have enough information to help the driver

come up with a plan to, e.g. put the car into fourth gear without stalling, which

cannot be done using just CP-logic by itself.

9.4 Probabilistic languages

Part of the motivation behind CP-logic was to provide a probabilistic logic pro-

gramming language in which statements have an intuitive meaning that can easily

be explained to domain experts, without having to rely on any prior knowledge of

logic programming. To this end, we have developed, from scratch, a formalization of

the concept of a probabilistic causal law; the resulting language was then shown to

be equivalent to the probabilistic logic programming construction of LPADs. This

result allows us to interpret probabilistic logic programs in a new way, namely as

sets of probabilistic causal laws. This does not only hold for LPADs themselves, but

also for related languages, which we will now discuss in more detail.

9.4.1 Independent Choice Logic

Independent Choice Logic (ICL) by Poole (1997) is a probabilistic extension of

abductive logic programming that extends the earlier formalism of Probabilistic

Horn Abduction (Poole 1993). An ICL theory consists of both a logical and a

probabilistic part. The logical part is an acyclic logic program. The probabilistic

part consists of a set of rules of the following form (in CP-logic syntax):

(h1 : α1) ∨ · · · ∨ (hn : αn)

such that
∑n

i=1 = 1. The atoms hi in such clauses are called abducibles. Each

abducible may only appear once in the probabilistic part of an ICL program; in the

logical part of the program, abducibles may only appear in the bodies of clauses.

Syntactically speaking, each ICL theory is also a CP-theory. Moreover, the ICL

semantics of such a theory (as formulated in, e.g. Poole 1997) can easily be seen to

coincide with our instance-based semantics for LPADs. As such, an ICL theory can

be seen as a CP-theory in which every CP-law is either deterministic or unconditional.

We can also translate certain LPADs to ICL in a straightforward way. Concretely,

this can be done for acyclic LPADs without exogenous predicates, for which the

bodies of all CP-laws are conjunctions of literals. Such a CP-law r of the form

(h1 : α1) ∨ · · · ∨ (hn : αn)← φ

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

292 J. Vennekens et al.

is then transformed into the set of rules
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h1 ← φ ∧ Choicer(1).

· · ·
hn ← φ ∧ Choicer(n).

(Choicer(1) : α1) ∨ · · · ∨ (Choicer(n) : αn).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The idea behind this transformation is that every selection of the original theory

C corresponds to precisely one selection of the translation C ′. More precisely, if

we denote by ChoiceRule(r) the last CP-law in the above translation of a rule r,

then a C-selection σ corresponds to the C ′-selection σ′, for which for all r ∈ C ,

σ(r) = (hi : αi) iff σ′(ChoiceRule(r)) = (Choicer(i) : αi). It is quite obvious that

this one-to-one correspondence preserves both the probabilities of selections and

the (restrictions to the original vocabulary of the) well-founded models of the

instances of selections. This suffices to show that the probability distribution defined

by C coincides with the (restriction to the original vocabulary of) the probability

distribution defined by C ′.

So, our result on the equivalence between LPADs and CP-logic shows that the

two parts of an ICL theory can be understood as, respectively, a set of unconditional

probabilistic events and a set of deterministic causal events. In this sense, our work

offers a causal interpretation for ICL. It is, in this respect, somewhat related to the

work of Finzi et al. on causality in ICL. In Finzi and Lukasiewicz (2003), these

authors present a mapping of ICL into Pearl’s structural models and use this to

derive a concept of actual causation for this logic, based on the work by Halpern

(Halpern and Pearl 2001a). This approach is, however, somewhat opposite to ours.

Indeed, we view a CP-theory, with its structure based on individual probabilistic

causal laws, as a more fine-grained model of causality. Transforming a CP-theory

into a structural model actually loses information, in the sense that it is not possible

to recover the original structure of the theory. From the point-of-view of CP-logic,

the approach of Finzi et al. would therefore not make much sense, since it would

attempt to define the concept of actual causation in a more fine-grained model of

causal information by means of a transition to a coarser one.

9.4.2 P-log

P-log (Baral et al. 2004, in press) is an extension of the language of Answer Set

Prolog with new constructs for representing probabilistic information. It is a sorted

logic, which allows for the definition of attributes, which map tuples (of particular

sorts) into a value (of a particular sort). Two kinds of probabilistic statements are

considered. The first is called random selection rules and is of the form

[r] random(A(t) : {x : P (x)})← φ.

Here, r is a name for the rule, P is an unary boolean attribute, A is an attribute

with t a vector of arguments of appropriate sorts and φ is a collection of so-called

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 293

extended literals8. The meaning of a statement of the above form is that, if the

body φ of the rule is satisfied, the attribute A(t) is selected at random from the

intersection of its domain with the set of all terms x for which P (x) holds (unless

some deliberate action intervenes). The label r is a name for the experiment that

performs this random selection. The choice of which value will be assigned to

this attribute is random and, by default, all possible values are considered equally

likely. It is, however, possible to override such a default, using the second kind of

statements, called probabilistic atoms. These are of the form

prr(A(t) = y |c φ) = α.

Such a statement should be read as: if the value of A(t) is determined by the

experiment r, and if φ also holds, then the probability of A(t) = y is α.

The information expressed by a random selection rule and its associated proba-

bilistic atoms is somewhat similar to a CP-law, but stays closer to a Bayesian network

style representation. Indeed, it expresses that, under certain conditions, the value

of a certain attribute will be determined by some implicit random process, which

produces each of a number of possible outcomes with a certain probability. We see

that, as in Bayesian networks, there is no way of directly representing information

about the actual events that might take place; instead, only information about the

way in which they eventually affect the value of some attribute (or random variable,

in Bayesian network terminology) can be incorporated. Therefore, representing the

kind of phenomena discussed in Section 7 – namely cyclic causal relations and

effects with a number of independent possible causes – requires the same kind of

encoding in P-log as in Bayesian networks.

A second interesting difference is that a random-statement of P-log represents an

experiment in which a value is selected from a dynamic set of alternatives, whereas,

in CP-logic the set of possible outcomes is specified statically. Consider, for instance,

a robot that leaves a room by selecting at random one of the doors that happens to

be open. In P-log, this can easily be written down as

[r] random(Leave through : {x : Open door(x)}).

In CP-logic, such a concise representation is currently not possible.

Apart from probabilistic statements, a P-log program can also contain a set of

regular Answer Set Prolog rules and a set of observations and interventions. The

difference between observations and interventions is the same as highlighted by

Pearl, and Baral and Hunsaker (2007) show that interventions in P-log can be used

to perform the same kind of counterfactual reasoning as Pearl does. One interesting

difference, however, is that in P-log interventions are actually represented within the

theory, whereas Pearl’s approach (as well as the one we presented in Section 7.5)

views interventions as meta-manipulations of theories.

In summary, the scope of P-log is significantly broader than that of CP-logic

and it is a more full-blown knowledge representation language than CP-logic, which

8 An extended literal is either a classical literal or a classical literal preceded by the default negation not,
where a classical literal is either an atom A(t) = t0 or the classical negation ¬A(t) = t0 thereof.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

294 J. Vennekens et al.

is only aimed at expressing a specific kind of probabilistic causal laws. However,

when it comes to representing just this kind of knowledge, CP-logic offers the same

advantages over P-log that it does over Bayesian networks.

9.4.3 First-order versions of Bayesian networks

In this section, we discuss two approaches that aim at lifting the propositional

formalism of Bayesian networks to a first-order representation, namely Bayesian

Logic Programs (BLPs) (Kersting and De Raedt 2000) and Relational Bayesian

Networks (RBNs) (Jaeger 1997).

A Bayesian Logic Program or BLP consists of a set of definite clauses, using the

symbol ‘|’ instead of ‘←’, i.e. clauses of the form

P (t0) | B1(t1), . . . , Bn(tn).

in which P and the Bi’s are predicate symbols and the tj’s are tuples of terms. For

every predicate symbol P , there is a domain dom(P) of possible values. The meaning

of such a program is given by a Bayesian network, whose nodes consist of all the

atoms in the least Herbrand model of the program. The domain of a node for a

ground atom P (t) is dom(P). For every ground instantiation P (t0) | B1(t1), . . . , Bn(tn)

of a clause in the program, the network contains an edge from each Bi(ti) to P (t0),

and these are the only edges that exist.

To complete the definition of this Bayesian network, all the relevant conditional

probabilities also need to be defined. To this end, the user needs to specify, for each

clause in the program, a conditional probability table, which defines the conditional

probability of every value in dom(P), given an assignment of values to the atoms

in the body of the clause. Now, let us first assume that every ground atom in the

Bayesian network is an instantiation of the head of precisely one clause in the

program. In this case, the tables for the clauses suffice to determine the conditional

probability tables of the network, because every node can then simply take its

probability table from this unique clause. However, in general, there might be many

such clauses. To also handle this case, the user needs to specify, for each predicate

symbol P , a so-called combination rule, which is a function that produces a single

probability from a multiset of probabilities. The conditional probability table for a

ground atom P (t) can then be constructed from the set of all clauses r, such that

P (t) is an instantiation of head(r), by finding the appropriate entries in the tables for

all such clauses r and then applying the combination rule for P to the multiset of

these values. According to the semantics of BLPs, this combination rule will always

be applied, even when there exists only a single such r.

This completes the definition of BLPs as given in, e.g. Kersting and De Raedt

(2000). More recently, a number of issues with this formalism have led to the

development of Logical Bayesian Networks (Fierens et al. 2005). These issues have

also prompted the addition of so-called ‘logical atoms’ to the original BLP language

(Kersting and De Raedt in press). Since this does not significantly affect any of the

comparisons made in this section, however, we will ignore this extension.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 295

A Relational Bayesian Network (Jaeger 1997) is a Bayesian network in which the

nodes correspond to predicate symbols and the domain of a node for a predicate

P/n consists of all possible interpretations of this predicate symbol in some fixed

domain D, i.e. all subsets of Dn. The conditional probability distribution associated

to such a node P is specified by a probability formula Fp. For every tuple d ∈ Dn,
Fp(d) defines the probability of d belonging to the interpretation of P in terms of

probabilities of tuples d′ belonging to the interpretation of a predicate P ′, where P ′

is either a parent of P in the graph or even, under certain conditions, P itself. Such

a probability formula can contain a number of different operations on probabilities,

including the application of arbitrary combination rules. Such a Relational Bayesian

Network can also be compiled into a network that is similar to that generated by a

BLP, i.e. one in which the nodes correspond to domain atoms instead of predicate

symbols. The main advantage of such a compiled network is that it allows more

efficient inference.

Again, the main difference between these two formalisms and CP-logic is that they

both stick to the Bayesian network style of modelling, in the sense that the actual

events that determine the values of the random variables are entirely abstracted

away and only the resulting conditional probabilities are retained. However, through

the use of, respectively, combination rules and probability formulas, these can be

represented in a more structured manner than in a simple table. In this way,

knowledge about the underlying causal events can be exploited to represent the

conditional probability distributions in a concise way. The most common example

is probably the use of the noisy-or to handle an effect which has a number of

independent possible causes. For instance, let us consider the Russian roulette

problem of Example 15. In a BLP, the relation between the guns firing and the

player’s death could be represented by the following clause:

Death | Fire(X).

Fire(x) = t Fire(x) = f

Death = t 1/6 0

Death = f 5/6 1

Combination rule for Death : noisy-or

In Relational Bayesian Networks, this would be represented as follows:

FDeath = noisy-or({1/6 · Fire(x) | x})

Fire Death

As such, combination rules do allow some knowledge about the events underlying

the conditional probabilities to be incorporated into the model. However, this is of

course not the same as actually having a structured representation of the events

themselves, as is offered by CP-logic. As a consequence of this, cyclic causal relations,

such as that of our Pneumonia−Angina example, still need the same kind of encoding

as in a Bayesian network.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

296 J. Vennekens et al.

9.4.4 Other approaches

In this section, we give a quick overview of some other related languages. An

important class of probabilistic logic programming formalisms is the one following

the Knowledge Based Model Construction approach. Such formalisms allow the

representation of an entire ‘class’ of propositional models, from which, for a specific

query, an appropriate model can then be constructed ‘at run-time’. This approach

was initiated by Breese Breese (1992) and Bacchus Bacchus (1993) and is followed by

both Bayesian Logic Programs and Relational Bayesian Networks. Other formalism

in this class are Probabilistic Knowledge Bases of Ngo and Haddawy Ngo and

Haddawy (1997) and Probabilistic Relational Models of Getoor et al. Getoor et al.

(2001). From the point of view of comparison to CP-logic, both are very similar to

Bayesian Logic Programs (see, e.g. Kersting and De Raedt 2001 for a comparison).

The language used in the Programming in Statistical Modelling system (PRISM)

(Sato and Kameya 1997) is very similar to Independent Choice Logic. Our comments

concerning the relation between CP-logic and Independent Choice Logic therefore

carry over to PRISM.

Like CP-logic, Many-Valued Disjunctive Logic Programs (Lukasiewicz 2001) are

also related to disjunctive logic programming. However, in this language, probabili-

ties are associated with disjunctive clauses as a whole. In this way, uncertainty of the

implication itself – and not, as is the case with LPADs or CP-logic, of the disjuncts

in the head – is expressed.

All the works mentioned so far use point probabilities. There are however also

a number of formalisms using probability intervals: Probabilistic Logic Programs

of Ng and Subrahmanian Ng and Subrahmanian (1992), their extension to Hybrid

Probabilistic Programs of Dekhtyar and Subrahmanian Dekhtyar and Subrahmanian

(2000) and Probabilistic Deductive Databases of Lakshmanan and Sadri Lakshmanan

and Sadri (1994). Contrary to our approach, programs in these formalisms do

not define a single probability distribution, but rather a set of possible probability

distributions, which allows one to express a kind of ‘meta-uncertainty’, i.e. uncertainty

about which probability distribution is the ‘right’ one. Moreover, the techniques

used by these formalisms tend to have more in common with constraint logic

programming than standard logic programming. The more recent formalism of

CLP(BN) (Santos Costa et al. 2003) belongs to this class.

We also want to mention Stochastic Logic Programs of Muggleton and Cussens

(Cussens 2000; Muggleton 2000), which is a probabilistic extension of Prolog. In this

formalism, probabilities are attached to the selection of clauses in Prolog’s SLD-

resolution algorithm, which basically results in a first-order version of stochastic

context-free grammars. Because of this formalism’s strong ties to the procedural

aspects of Prolog, it appears to be quite different from CP-logic and indeed all of

the other formalisms mentioned here.

ProbLog (De Raedt et al. 2007) is a more recent probabilistic extension of pure

Prolog. Here, too, every clause is labelled with a probability. The semantics of

ProbLog is very similar to that of LPADs and, in fact, the semantics of a ground

ProbLog program coincides completely with that of the corresponding LPAD. More

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 297

precisely put, a ProbLog rule of the form:

α : h← b1, . . . , bn,

where h and the bi are ground atoms is entirely equivalent to the LPAD rule:

(h : α)← b1, . . . , bn.

For non-ground programs, however, there is a difference. The semantics of an LPAD

first grounds the entire program and then probabilistically selects instantiations of

the rules of this ground program. In ProbLog, on the other hand, selections directly

pick out rules of the original program. This means that, for instance, the following

ProbLog-rule:

0.8 : likes(X,Y)← likes(X,Z), likes(Z, Y),

specifies that, with probability 0.8, the likes-relation is entirely transitive, whereas

the corresponding LPAD-rule would mean that for all individuals a, b and c, the fact

that a likes b and b likes c causes a to like c with probability 0.8.

10 Conclusions and future work

Causality has an inherent dynamic aspect, which can be captured at the semantical

level by the probability tree framework that Shafer has developed in (Shafer 1996).

He concludes this book with the following observation:

When we think of a Bayes net as a representation of a probability tree, we sometimes

may also want to leave indeterminate orderings that are not imposed by arrows in the

graph, so that the net can be thought of as a representation not of a single tree but of

a class of trees, corresponding to different choices for these orderings. The possibility of

introducing indeterminacy in the ordering of judgements is obviously equally present in

the type-theoretical representation. [. . .] [W]e can think of [a large collection of partially

ordered judgements] as a set of rules from which martingale trees can be constructed. [. . .]

More abstractly, they can be thought of as causal laws, and we can imagine many problems

of deliberation being posed and solved directly in terms of these causal laws, without the

specification of a martingale tree. Thus type theory can take us beyond probability trees to a

more general framework for causal deliberation.

This paper can be seen as an extension of Shafer’s work in the direction pointed at by

the above remarks. We have developed a logical language which uses probabilistic

causal laws to concisely represent classes of probability trees. Our representation

does not explicitly impose any order on the possible events, since we move away

from a representation in which it is the outcome of previous events that causes a

new event, to one in which new events are caused by properties of the current state

of the domain. Even though this means that the probability trees corresponding to

a given set of causal laws might be considerably different from one another, we

prove that they will all still generate the same probability distribution over their final

states. Therefore, such causal laws capture precisely those properties of probability

trees that we need to answer questions about the probabilities in these final states,

which is what we are typically interested in.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

298 J. Vennekens et al.

A first contribution of this paper is the language CP-logic itself. This language

allows to represent a probability distribution over possible states of a domain by

an enumeration of the probabilistic causal laws according to which it is generated.

As we tried to show by, among others, the comparison to Bayesian networks, this

representation is often natural and concise. A second contribution is that we have

shown that CP-logic can be equivalently defined as a probabilistic logic programming

language. Because both the meaning of statements in CP-logic, as well as their formal

semantics, can be completely explained in terms of intuitions about probabilistic

causal laws, this formal equivalence offers a new way of (informally) explaining the

meaning of probabilistic logic programs. This is a useful contribution to the existing

modelling methodology for such languages.

By relating causality and logic programming in this way, our paper also serves as

a unifying semantic study of existing probabilistic and non-probabilistic logics and

formalisms. We showed how CP-logic refines causal Bayesian networks and several

logics based on them. We also elaborated on the links between CP-logic and existing

logic programming extensions such as ICL, PRISM and LPADs, thus showing

that these logics can also be viewed as causal probabilistic logics. For example, a

theory in ICL can be understood as a combination of deterministic causal events

and unconditional probabilistic events. As for logic programming itself, we showed

that CP-logic induces a causal view on this formalism, in which rules represent

deterministic causal events. We also argued that this view basically coincides with

the view of logic programs as inductive definitions. To be more concrete, we have

shown that a normal logic program under the well-founded semantics can be

understood as a set of deterministic causal statements and we have presented an

alternative semantics for disjunctive logic programs (similar to that of Sakama and

Inoue 1994) under which these can be interpreted as sets of non-deterministic causal

events.

This paper is primarily intended to show how the concept of a probabilistic

causal law can be formalized in a logical language, and to demonstrate the close

relation of such a language to probabilistic logic programs. Because of this, we have

intentionally kept our language quite simple. As became apparent in the comparison

with other logics, such as P-log, CP-logic therefore lacks the expressivity to be truly

useful for a broad class of applications. To make it more suitable for practical

purposes, it should therefore be improved in a number of ways. We see the following

opportunities for future research.

Refinement of CP-logic. The current language of CP-logic is restricted in a number

of ways. First, it only allows a finite number of CP-laws. Let us consider, for

instance, a die that is rolled as long as it takes to obtain a six. Here, there is

no upper bound on the number of throws that might be needed and, therefore,

this example can currently not be represented in CP-logic. Second, CP-logic is also

limited in its representation of the effects of an event. For instance, it is not possible

to directly represent events whose range of possible outcomes is not completely

fixed beforehand. Also, we currently do not allow different events to cancel out or

reinforce each other’s effects. Third, and somewhat related to the previous point,

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 299

CP-logic currently can only handle properties that are either fully present or fully

absent. As such, it cannot correctly represent causes which have only a contributory

effect, e.g. turning on a tap would not instantaneously cause a basin to be full, but

only contribute a certain amount per time unit.

Integration into a larger formalism. To correctly formalise a domain in CP-logic, a

user must exactly know the causes and effects of all relevant events that might

happen. For real domains of any significant size, this is an unrealistic assumption.

Indeed, typically, one will only have such detailed knowledge about certain parts

of a domain. So, in order to still be able to use CP-logic in such a setting, it

would have to be integrated with other forms of knowledge. There are some

obvious candidates for this: statements about the probabilities of certain properties,

statements about probabilistic independencies (such as those in Bayesian networks)

and constraints on the possible states of the domain. Integrating these different

forms of knowledge without losing conceptual clarity is one of the main challenges

for future work regarding CP-logic, and perhaps even for the area of uncertainty in

artificial intelligence as a whole.

Inference. The most obvious inference task in the context of CP-logic is calculating

the probability πC (φ) of a formula φ. A straightforward way of doing this would be

to exploit the relation between CP-logic and (probabilistic) logic programming,

such that we perform these computations by reusing existing algorithms (e.g.

the inference algorithm of Poole’s independent choice logic (Poole 1997) in an

appropriate way. A more advanced technique, using binary decision diagrams,

has recently been developed in Riguzzi (2007). Another interesting inference task

concerns the construction of a theory in CP-logic. For probabilistic modelling

languages in general, it is typically not desirable that users are forced to estimate

or compute concrete probability values themselves; instead, it should be possible

to automatically derive these from a given data set. For CP-logic, there already

exist algorithms that are able to do this in certain restricted cases (Riguzzi 2004;

Blockeel and Meert 2007). It would be interesting to generalize these, in order to

make them generally applicable. Besides such learning of probabilistic parameters,

it is also possible to learn the structure of the theory itself. This too is an important

topic, because if we are able to construct the theory that best describes a given data

set, we are in effect finding out which causal mechanisms are most likely present

in this data. Such information can be relevant for many domains. For instance,

when bio-informatics attempts to distinguish active from non-active compounds,

this is exactly the kind of information that is needed. In Meert et al. (2007), it

is discussed how certain Bayesian network learning techniques can be adapted to

perform structure learning for ground CP-logic.

Acknowledgements

This research was supported by GOA 2003/8 Inductive Knowledge Bases and by

FWO Vlaanderen. Joost Vennekens is a postdoctoral researcher of the FWO.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

300 J. Vennekens et al.

Appendix: Proofs of the theorems

In this section, we present proofs of the theorems that were stated in the previous

section. To ease notation, we will assume that there are no exogenous predicates.

This can be done without loss of generality, since all our results can simply be

relativized with respect to some fixed interpretation for these predicates.

A.1 The semantics is well defined

We start by proving that the semantics of CP-logic – and in particular, the partial

interpretation νs, the potential in s, used in the additional condition imposed by

Definition 11 for handling negation – is indeed well defined. Since we defined

νs as the unique limit of all terminal hypothetical derivation sequences of s, this

requires us to show that all such sequences indeed end up in the same limit

(Theorem 4).

Let us consider a CP-theory C and state s in an execution model of C . We will

denote by R(s) the set of all CP-laws r ∈ C that have not yet happened in s, i.e.

for which there is no ancestor s′ of s with E(s′) = r. Consider the collection Os
of all partial interpretations ν such that for each atom p, pν = t iff pI(s) = t, and

for each rule r ∈ R(s), if body(r)ν �= f , then for each atom p ∈ headAt(r), pν �= f .

Stated differently, ν can be obtained from I(s) by turning false atoms of I(s) into

unknown atoms in such a way that if the body of some rule r ∈ R(s) is unknown

or true in ν, then each of its head atoms is unknown or true in ν as well.

Proposition 1

Let (νi)0�i�n be a hypothetical derivation sequence in state s.

• For each 0 � i � n and each ν ∈ Os it holds that ν �p νi.

• The limit νn = νs is an element of Os.

Proof

The first property can be proven by a straightforward induction. Clearly, it holds

that ν �p ν0 = I(s). Assume ν �p νi for some i < n. The true atoms of ν and

νi+1 are those of I(s), so they are the same. Therefore, it suffices to show that

every atom p that is false in ν is also false in νi+1, or, since ν and νi+1 have

the same true atoms, that every such p is not unknown in νi+1. Assume towards

contradiction that p is false in ν and unknown in νi+1. By the induction hypothesis,

p is still false in νi. Therefore, p belongs to the head of some rule r ∈ R(s) such that

body(r)νi �= f . Since ν �p νi, this would imply that body(r)ν �= f , which, given that

ν ∈ Os, leads to the contradiction that pν �= f . Hence, p is false in νi+1. It follows that

ν �p νi+1.

As for the second property, it is clear that νs can be obtained from I(s) by turning

some false atoms into unknown atoms, and that there are no more rules r ∈ R(s)

with a non-false body and false atoms in the head w.r.t. νs. Hence, νs ∈ Os. �

We can now use this set Os to characterize the limit νn of any hypothetical

derivation sequence (νi)0�i�n in s.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 301

Theorem 10

Let (νi)0�i�n be a hypothetical derivation sequence in s and let ν be the least

upperbound of Os w.r.t. the precision order �p. Then νn = ν.

Proof

It is obvious that ν itself also belongs to Os. Therefore, by the first condition of

Proposition 1, ν �p νn. Because, by the second condition of Proposition 1, νn also

belongs to Os, we have that ν �p νn as well. �

Since this theorem shows that all hypothetical derivation sequences converge to

the most precise element of Os, it implies Theorem 4 and, therefore, our semantics

is indeed well defined.

A.2 CP-logic and LPADs are equivalent

Let C be an LPAD. Let us define a partial C-selection as a partial function σ

from C mapping rules r of a subset dom(σ) ⊆ C to pairs (p : α) ∈ head∗(r). The

probability function of selections can be extended to partial selections by setting

P (σ) =
∏

r∈dom(σ) σ
α(r). Define also S(σ) as the set of C-selections that extend σ. The

following equation is obvious:

P (σ) =
∑
σ′∈S (σ)

P (σ′)

We define an instance of σ as any instance Cσ′ in which σ′ is a C-selection that

extends σ.

LetT be an execution model of C . Clearly, each node s inT determines a unique

partial C-selection, denoted by σ(s). Formally, if (si)0�i�n is the path from the root

to s, then the domain of σ(s) is {E(si) | 0 � i < n} and each rule r = E(si) in its

domain is mapped to the atom p ∈ head∗(r) that was selected for si+1. Moreover, we

have

P(s) = P (σ(s)) =
∑

σ′∈S (σ(s))

P (σ′). (A1)

With the path (si)0�i�n from the root to some node s, we now also associate a

sequence of partial interpretations (Kj)
2n+1
j=0 defined as follows:

• K0 = ⊥, the partial interpretation mapping all atoms to u.

• K2i+1 = νsi , for all 0 � i � n.

• K2i+2 = νsi[p : t], for all 0 � i < n, where p is the head atom of E(si) selected

to obtain si+1.

Proposition 2

For each σ ∈ σ(s), (Kj)
2n+1
j=0 is a well-founded induction of Cσ .

Proof

The proof is by induction on the length n of the path from the root of T to s.

We start by proving that (Kj)
2n
j=0 is a well-founded induction of all instances Cσ

with σ ∈ S(σ(s)). If n = 0, then s is the root of the tree and σ(s) is the empty partial

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

302 J. Vennekens et al.

selection. The sequence (K0) is obviously a well-founded induction of any instance

Cσ . For n > 0, the induction hypothesis states that (Kj)
2n−1
j=0 is a well-founded

induction of all instances Cσ , where σ belongs to S(σ(sn−1)). Let r be E(sn−1), the

rule selected in sn−1, and let K2n = K2n−1[p : t] where p was selected in the head of

r to obtain s. Hence, body(r) is true in K2n−1 = νsn−1
. Clearly, for each σ ∈ S(σ(s)),

Cσ contains the rule p← body(r). Consequently, (Kj)
2n
j=0 is a well-founded induction

of Cσ .

Next, we prove that (Kj)
2n+1
j=0 is a well-founded induction of all Cσ with σ ∈ S(σ(s)).

Let us investigate the set U of all atoms q such that K2n(q) �= K2n+1(q). We will

prove that all atoms of U are unknown in K2n and false in K2n+1 and that U is an

unfounded set of Cσ . It then will follow that (Kj)
2n+1
j=0 is a well-founded induction

of Cσ .

Let us first verify that all atoms in U are unknown in K2n and false in K2n+1. If

n = 0, then K0 = ν0 = K1, so U = {} and the statement trivially holds. Let n > 0.

Recall that K2n is νsn−1
[p : t], where p is the atom selected in the head of E(sn−1) to

obtain s, and K2n+1 = νs. It is easy to see that the true atoms of K2n and K2n+1 are

identical to those true in I(s). Hence, K2n and K2n+1 only differ on false or unknown

atoms. To show that U contains only atoms that are unknown in K2n and false in

K2n+1, it therefore suffices to show that all atoms false in K2n are also false in K2n+1.

To prove this, it suffices to show that K2n ∈ Os. Indeed, if K2n ∈ Os, Proposition 1

entails that νs �p K2n and hence, all atoms false in K2n are false in νs = K2n+1.

We observe that, since νsn−1
belongs to Osn−1

(Proposition 1), all head atoms of

rules r ∈ R(sn−1) with a non-false body in νsn−1
, are true or unknown in νsn−1

. In

particular, E(sn−1) ∈ R(sn−1) and has a true body in νsn−1
, hence p is true or unknown

in νsn−1
. It follows that

νsn−1
�p νsn−1

[p : t] = K2n.

It follows that any rule r ∈ R(s) ⊆ R(sn−1) with a non-false body in K2n has a non-

false body in νsn−1
; hence, all atoms in the head of such an r are true or unknown

in νsn−1
and, a fortiori, in K2n = νsn−1

[p : t]. Thus, we obtain that K2n ∈ Os, as

desired.

So far, we have proven that K2n+1 = K2n[U : f] and that all elements in U are

unknown in K2n. It follows that K2n �p K2n+1 and, more generally, that Kj �p K2n+1,

for all j � 2n. All that remains to be shown is that U is an unfounded set of each

instance of σ(s). Let C ′ be such an instance and for any atom q ∈ U, let q ← ϕ be

a rule of C ′. We need to show that ϕ is false in K2n+1. The rule is obtained as an

instance of some rule r ∈ C with q in its head. The rule r is not one of the rules E(si)

with i < n, since otherwise q would be true in I(sj) for all j > i and, in particular,

also in νsn = K2n+1, which would contradict the fact that we have already shown q

to be false in K2n+1. It follows that r ∈ R(s). Since K2n+1 = νs ∈ Os and q is false in

νs, body(r) = ϕ is false in K2n+1. �

Proposition 3

For each leaf l of an execution model T of C , I(l) is the well-founded model of

each instance Cσ with σ ∈ S(σ(l)).

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 303

Proof

Let l be a leaf and σ ∈ S(σ(l)). By Proposition 2, (Kj)
2n+1
j=0 is a well-founded induction

of Cσ . Because l is a leaf, we have that for every rule r ∈ R(l), body(r) is false in I(l).

Therefore, I(l) ∈ Ol and Proposition 1 states that νl �p I(l). However, because

I(l) is two valued, this implies that νl = Il . Therefore, K2n+1 = νl is a total

interpretation. Because a well-founded induction with a total limit is terminal, I(l)

is the well-founded model of Cσ . �

This now allows us to prove the desired equivalence, which was previously stated

as Theorem 9.

Theorem 11

Let T be an execution model of a CP-theory C . For each interpretation J ,

μC(J) = πT(J).

Proof

Given an execution model T of a CP-theory C (Definition 11), we associate to

each node s of T the set S(σ(s)) of all those C-selections σ (Definition 17) that

extend σ(s). It is easy to see that, with LT the set of all leaves of T, the class

{S(σ(l))|l ∈ LT} is a partition of the set SC of all selections. Let LT(J) be the set of

all leaves l of T for which I(l) = J , and let Sels(J) be the set of selections σ such

that WFM(Cσ) = J . Because for each leaf l, the well-founded model of a selection

σ ∈ S(σ(l)) for is I(l) (Proposition 3), the class {S(σ(l))|l ∈ LT(J)} is a partition of

the collection Sels(J) . This now allows us to derive the following equation:

μC (J) =
∑

σ∈Sels(J) P (σ) =
∑

l∈LT(J)

∑
σ∈S (σ(l)) P (σ) (Definition 19)

=
∑

l∈LT(J)P(l) (see equation (A1))

= πT(J).

�

For any execution model T of C , this theorem now characterizes the probability

distribution πT in a way that depends only on C and not on T itself. It follows

that, indeed, for all execution models T and T′ of C , πT = πT′ , which means that

we have now also proven Theorem 6 (and, therefore, Theorem 2 as well).

A.3 Execution models that follow the timing

In this section, we will prove Theorem 7, which states that every stratified CP-theory

has an execution model which follows its stratification. Recall that a CP-theory

is stratified if it strictly respects some timing λ (i.e. for all h ∈ headAt(r) and

b ∈ body+
At(r), λ(h) � λ(b) and for all h ∈ headAt(r) and b ∈ body−At(r), λ(h) > λ(b)).

As we did in Definition 9, we will again introduce a event timing κ of λ (i.e. κ

maps rules to time points in such a way that λ(h) � κ(r) � λ(b) for all h ∈ headAt(r)
and b ∈ bodyAt(r)). Moreover, we assume that κ is such that for all b ∈ body−At(r),
κ(r) > λ(b). It can easily be seen that for any stratified theory C , it is always possible

to find such a κ.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

304 J. Vennekens et al.

Our goal is now to show that, first, all weak execution models that follow κ

(Definition 9) also satisfy temporal precedence and, second, that such a process

indeed exists.

Let us start by making some general observations about any weak execution

model T that follows κ. For any descendant s′ of a node s of T, it is, by definition,

the case that κ(E(s′)) � κ(E(s)). Because every event r can only affect the truth value

of atoms with timing � κ(r), it must be the case that, for each rule r with timing

< κ(E(s)), body(r)I(s) = body(r)I(s′). Suppose now that for such an r it would be

the case that r ∈ R(s) and I(s) |= body(r), i.e. r is an event that could also have

happened in s. In this case, body(r) would remain satisfied in all descendants of s, up

to and including each leaf l that might be reached. However, it is impossible that r

actually happens in some descendant s′ of s, since that would violate the constraint

that κ(E(s′)) � κ(E(s)). So, it would be the case that r ∈ R(l) and I(l) |= body(r),

which would contradict the fact that l is a leaf. We conclude that such an r cannot

exist, i.e. for each s, it must be the case that E(s) is a rule with minimal timing

among all rules r ∈ R(s) for which I(s) |= body(r).

Let us now assume that we non-deterministically construct a probabilistic Σ-

process T as follows:

• We start with only a root s, with I(s) = {};
• As long as one exists, we select a leaf s of our current tree, for which the set

of rules r ∈ R(s) such that I(s) |= body(r) is non-empty. We then extend T
by executing one of the rules whose timing is minimal in this set.

As shown earlier, all weak execution models that follow κ can be constructed in

this way. Conversely, each process T that we can construct in this way can easily

be seen to also be a weak execution model. Moreover, it is again easy to see that

for all descendants s′ of s of such a T and each rule r with timing < κ(E(s)),

body(r)I(s) = body(r)I(s′). Therefore, as we go along any particular branch of T,

the minimum timing of all rules with true body can only increase, which means

that each process constructed in the above way must follow κ. So, this provides an

alternative, constructive characterization of the set of all weak execution models that

follow κ. An immediate consequence is that there exist such processes. Therefore, it

now suffices to show that all these processes also satisfy temporal precedence.

Proposition 4

Each weak execution model T that follows the timing κ also satisfies temporal

precedence and is, therefore, an execution model.

Proof

We need to show that, for each node s of T, νs(body(E(s)) = t. In general, applying

an event with timing � i during a hypothetical derivation sequence only modifies

atoms with timing � i, and hence, can only modify the truth value of bodies of

events with timing � i. Because, in the first step ν0 of a sequence constructing νs, the

only events that can be used are those r ∈ R(s) for which I(s) |= body(r) and we

know that the time of E(s) is minimal among these events, we conclude that I(s)

and νs coincide on all atoms p with timing λ(p) < i. Because C strictly respects λ, all

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 305

atoms p ∈ body−At(r) therefore have the same truth value in νs as in I(s). Moreover,

I(s) �t νs, so, in particular, for all atoms p ∈ body+
At(r), I(s)(p) �t νs(p). By a well-

known monotonicity property of three-valued logic, t = body(r)I(s) �t body(r)
νs .

Hence, body(r)νs is indeed t. �

This concludes the proof of Theorem 7. Since this theorem clearly generalizes

Theorem 3, we have now proven all theorems stated in this paper.

References

Bacchus, F. 1993. Using first-order probability logic for the construction of Bayesian networks.

In Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, UAI’93,

219–226. Morgan Kaufmann, San Fransisco, USA.

Baral, C., Gelfond, M. and Rushton, N. 2004. Probabilistic reasoning with answer sets. In

Proceedings of the 7th International Conference on Logic Programming and Nonmonotonic

Reasoning (LPNMR-7). Lecture notes in artificial intelligence (LNAI), vol. 2923. Springer-

Verlag NY, USA, 21–33.

Baral, C., Gelfond, M. and Rushton, N. In press. Probabilistic reasoning with answer sets.

Theory and Practice of Logic Programming 9(1). Cambridge University Press.

Baral, C. and Hunsaker, M. 2007. Using the probabilistic logic programming language

P-log for causal and counterfactual reasoning and non-naive conditioning. In Proceedings

of IJCAI. Hyderabad, India.

Baral, C., Tran, N. and Tuan, L. 2002. Reasoning about actions in a probabilistic setting.

In AAAI. Edmonton, Alberta, Canada.

Blockeel, H. and Meert, W. 2007. Towards learning non-recursive LPADs by transforming

them into Bayesian networks. In Inductive Logic Programming, ILP’06, Revised Selected

Papers. Lecture Notes in Computer Science, vol. 4455, 94–108. Springer-Verlag, New York.

Breese, J. 1992. Construction of belief and decision networks. Computational Intelligence 8 (4),

624–647.

Comley, J. W. and Dowe, D. L. 2003. General Bayesian networks and asymmetric languages.

In Proceedings of the Second Hawaii International Conference on Statistics and Related fields.

Honolulu, Hawaii, USA.

Cussens, J. 2000. Stochastic logic programs: Sampling, inference and applications. In

Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence.

Morgan Kaufmann, San Fransisco, USA, 115–122.

De Finetti, B. 1937. La prvision: ses lois logiques, ses sources subjectives. Annales de l’Institut

Henri Poincaré 7, 1–68.

Dekhtyar, A. and Subrahmanian, V. S. 2000. Hybrid probabilistic programs. Journal of

Logic Programming 43 (3), 187–250.

Denecker, M. 1998. The well-founded semantics is the principle of inductive definition. In

Logics in Artificial Intelligence (JELIA’98), J. Dix, L. Fariñas del Cerro, and U. Furbach,

Eds. Lecture Notes in Artificial Intelligence, vol. 1489, Springer-Verlag NY, USA, 1–16.

Denecker, M. and Ternovska, E. 2008. A logic of non-monotone inductive definitions.

Transactions On Computational Logic (TOCL), NY, USA. 9(2), 1–52.

Denecker, M. and Vennekens, J. 2007. Well-founded semantics and the algebraic theory of

non-monotone inductive definitions. In Logic Programming and Nonmonotonic Reasoning,

9th International Conference, LPNMR 2007, Proceedings. Lecture Notes in Artificial

Intelligence, vol. 4483, Springer, 84–96.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

306 J. Vennekens et al.

De Raedt, L., Kimmig, A. and Toivonen, H. 2007. ProbLog: A probabilistic Prolog and its

application in link discovery. In Proceedings of the 20th International Joint Conference on

Artificial Intelligence, IJCAI’07, 2462–2467.

Fierens, D., Blockeel, H., Bruynooghe, M. and Ramon, J. 2005. Logical Bayesian

networks and their relation to other probabilistic logical models. In Proceedings of the

15th International Conference on Inductive Logic Programming, ILP’05. Lecture Notes in

Computer Science, vol. 3625, Springer NY, USA, 121–135.

Finzi, A. and Lukasiewicz, T. 2003. Structure-based causes and explanations in the

independent choice logic. In Proceedings of the 19h Conference on Uncertainty in Artificial

Intelligence, UAI’03. Acapolco, Mexico.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive

databases. New Generation Computing 9, 365–387.

Gelfond, M. and Lifschitz, V. 1993. Representing action and change by logic programs.

Journal of Logic Programming 17 (2–4), 301–322.

Gelfond, M. and Lifschitz, V. 1998. Action languages. Linköping Electronic Articles in

Computer and Information Science 3, 16.

Getoor, L., Friedman, N., Koller, D. and Pfeffer, A. 2001. Learning probabilistic relational

models. In Relational Data Mining, S. Dzeroski and N. Lavrac, Eds. Springer-Verlag NY,

USA, 7–34.

Ghahramani, Z. 1998. Learning dynamic Bayesian networks. In Adaptive Processing of

Sequences and Data Structures. Lecture Notes in Artificial Intelligence. Springer-Verlag NY,

USA, 168–197.

Giunchiglia, E. and Lifschitz, V. 1998. An action language based on causal explanation:

Preliminary report. In Proceedings of AAAI 98. Madison, Wisconsin, USA.

Halpern, J. and Pearl, J. 2001a. Causes and explanations: A structural model approach –

Part I: Causes. In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence,

UAI’01. Madison, Wisconsin, USA.

Halpern, J. and Pearl, J. 2001b. Causes and explanations: A structural model approach

– Part II: Explanations. In Proceedings of the 17th Conference on Uncertainty in Artificial

Intelligence, UAI’01. Madison, Wisconsin, USA.

Jaeger, M. 1997. Relational Bayesian networks. In Proceedings of the Thirteenth Conference

on Uncertainty in Artificial Intelligence (UAI-97). Providence, Rhode Island, USA.

Kakas, A. C., Kowalski, R. and Toni, F. 1992. Abductive logic programming. Journal of

Logic and Computation 2 (6), 719–770.

Kersting, K. and De Raedt, L. 2000. Bayesian logic programs. In Proceedings of the Work-

in-Progress Track at the 10th International Conference on Inductive Logic Programming,

J. Cussens and A. Frisch, Eds. 138–155.

Kersting, K. and De Raedt, L. 2001. Bayesian logic programs. Tech. Rep. 151, Institute for

Computer Science, University of Freiburg, Germany.

Kersting, K. and De Raedt, L. 2007. Bayesian logic programming: Theory and tool. In An

Introduction to Statistical Relational Learning, L. Getoor and B. Taskar, Eds. MIT Press.

291–322.

Lakshmanan, L. V. S. and Sadri, F. 1994. Probabilistic deductive databases. In Proceedings

of the International Symposium on Logic Programming, ILPS’94, M. Bruynooghe, Ed. MIT

Press, Cambridge, MA, USA, 254–268.

Lifschitz, V. and Turner, H. 1999. Representing transition systems by logic programs. In

LPNMR. El Paso, TX, USA.

Lukasiewicz, T. 2001. Fixpoint characterizations for many-valued disjunctive logic programs.

In Proceedings of the 6th International Conference on Logic Programming and Nonmonotonic

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

CP-logic: A language of causal probabilistic events 307

Reasoning (LPNMR’01). Lecture Notes in Artificial Intelligence, vol. 2173. Springer-Verlag

NY, USA, 336–350.

Martin-Löf, P. 1982. Constructive mathematics and computer programming. In Proceedings

of the Sixth International Congress of Logic, Methodology, and Philosophy of Science. 153–

175.

McCain, N. 1997. Causality in commonsense reasoning about actions. Ph.D. Thesis, University

of Texas at Austin.

McCain, N. and Turner, H. 1996. Causal theories of action and change. In Proceedings

of the Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative

Applications of Artificial Intelligence Conference (13th AAAI/8th IAAI). AAAI Press, Menlo

Park, CA, USA, 460–465.

Meert, W., Struyf, J. and Blockeel, H. 2007. Learning ground CP-logic theories by means

by Bayesian network techniques. In Proceedings of the 6th International Workshop on Multi-

Relational Data Mining. 93–104.

Muggleton, S. 2000. Learning stochastic logic programs. Electronic Transactions in Artificial

Intelligence 5 (041), 141–153.

Ng, R. T. and Subrahmanian, V. S. 1992. Probabilistic logic programming. Information and

Computation 101 (2), 150–201.

Ngo, L. and Haddawy, P. 1997. Answering queries from context-sensitive probabilistic

knowledge bases. Theoretical Computer Science 171 (1–2), 147–177.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, San Fransisco, USA.

Pearl, J. 2000. Causality: Models, Reasoning, and Inference. Cambridge University Press,

Cambridge, England.

Pinto, J. and Reiter, R. 1993. Temporal reasoning in logic programming: A case for the

situation calculus. In Proceedings of the International Conference on Logic Programming.

203–221. MIT Press Cambridge, MA, USA.

Poole, D. 1993. Probabilistic Horn abduction and Bayesian networks. Artificial

Intelligence 64 (1), 81–129.

Poole, D. 1997. The Independent Choice Logic for modelling multiple agents under

uncertainty. Artificial Intelligence 94 (1–2), 7–56.

Przymusinski, T. C. 1991. Stable semantics for disjunctive programs. New Generation

Computing 3/4, 401–424.

Riguzzi, F. 2004. Learning logic programs with annotated disjunctions. In 14th Internation

Conference on Inductive Logic Programming (ILP2004), Porto, 6–8 September 2004,

A. Srinivasan and R. King, Eds. Springer-Verlag, Heidelberg, Germany, 270–287.

Riguzzi, F. 2007. A top down interpreter for LPAD and CP-logic. In The 14th RCRA

Workshop Experimental Evaluation of Algorithms for Solving Problems with Combinatorial

Explosion. Rome, Italy.

Sakama, C. and Inoue, K. 1994. An alternative approach to the semantics of disjunctive logic

programs and deductive databases. Journal of automated reasoning 13 (1), 145–172.

Santos Costa, V., Page, D., Qazi, M. and Cussens, J. 2003. CLP(BN): Constraint

logic programming for probabilistic knowledge. In Proceedings of the Nineteenth Annual

Conference on Uncertainty in Artificial Intelligence (UAI-2003). Morgan Kaufmann, San

Fransisco, USA. 517–524.

Sato, T. and Kameya, Y. 1997. PRISM: A language for symbolic-statistical modeling. In

Proceedings of the International Joint Conferences on Artificial Intelligence, IJCAI’97, 1330–

1335. Morgan Kauffmann, San Fransisco, USA.

Shafer, G. 1996. The Art of Causal Conjecture. MIT Press, San Fransisco, USA.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

308 J. Vennekens et al.

Tran, N. and Baral, C. 2004. Encoding probabilistic causal model in probabilistic action

language. In AAAI. San Jose, California, USA.

Van Belleghem, K., Denecker, M. and De Schreye, D. 1997. On the relation between

situation calculus and event calculus. Journal of Logic Programming (Special Issue on

Reasoning about Actions and Change), 31 (1–3), 3–37.

Van Gelder, A., Ross, K. and Schlipf, J. 1991. The well-founded semantics for general logic

programs. Journal of the ACM 38 (3), 620–650.

Venn, J. 1866. The Logic of Chance: An Essay on the Foundations and Province of the Theory

of Probability. Macmillan, London, UK.

Vennekens, J., Denecker, M. and Bruynooghe, M. 2006. Representing causal information

about a probabilistic process. In Logics in Artificial Intelligence, 10th European Conference,

JELIA’06, Proceedings. Lecture Notes in Computer Science, vol. 4160. Springer NY, USA,

452–464.

Vennekens, J., Verbaeten, S. and Bruynooghe, M. 2004. Logic programs with annotated

disjunctions. In Logic Programming, 20th International Conference, ICLP’04, Proceedings.

Lecture Notes in Computer Science, vol. 3132. Springer NY, USA, 431–445.

https://doi.org/10.1017/S1471068409003767 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409003767

