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Abstract

The inelastic interaction between heavy ions and an electron plasma in the presence of an intense radiation field (RF) is
investigated. The stopping power of the test ion averaged with a period of the RF has been calculated assuming that ω0>
ωp, where ω0 is the frequency of the RF and ωp is the plasma frequency. In order to highlight the effect of the radiation field
we present a comparison of our analytical and numerical results obtained for nonzero RF with those for vanishing RF. It
has been shown that the RF may strongly reduce the mean energy loss for slow ions while increasing it at high–velocities.
Moreover, it has been shown, that acceleration of the projectile ion due to the RF is expected at high–velocities and in the
high–intensity limit of the RF, when the quiver velocity of the plasma electrons exceeds the ion velocity.
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1. INTRODUCTION

The interaction of charged particles with plasma in the
presence of radiation field (RF) has been a subject of great
activity, starting with the work of Tavdgiridze, Aliev, Gorbu-
nov, and other authors (Tavdgiridze & Tsintsadze, 1970;
Aliev et al., 1971; Arista et al., 1989; Akopyan et al.,
1997; Nersisyan & Akopyan, 1999). A comprehensive treat-
ment of the quantities related to inelastic particle–solid and
particle–plasma interactions, like scattering rates and differ-
ential and total mean free paths and energy losses, can be for-
mulated in terms of the dielectric response function obtained
from the electron gas model. The results have important
applications in radiation and solid–state physics (Ritchie
et al., 1975; Tung & Ritchie, 1977; Echenique, 1987), and
more recently, in studies of energy deposition by ion
beams in inertial confinement fusion (ICF) targets (Arista
& Brandt, 1981; Mehlhorn, 1981; Maynard & Deutsch,
1982; Arista & Piriz, 1987; D’Avanzo et al., 1993; Couillaud
et al., 1994). On the other hand, the achievement of
high–intensity laser beams with frequencies ranging between
the infrared and vacuum–ultraviolet region has given rise to
the possibility of new studies of interaction processes, such

as electron–atom scattering in laser fields (Kroll & Watson,
1973; Weingartshofer et al., 1977, 1983), multiphoton ioniz-
ation (Lompre et al., 1976; Baldwin & Boreham, 1981), in-
verse bremsstrahlung and plasma heating (Seely & Harris,
1973; Kim & Pac, 1979; Lima et al., 1979), screening break-
down (Miranda et al., 2005), and other processes of interest
for applications in optics, solid–state, and fusion research. In
addition, a promising ICF scheme has been recently pro-
posed (Stöckl et al., 1996; Roth et al., 2001), in which the
plasma target is irradiated simultaneously by intense laser
and ion beams. Within this scheme several experiments
(Frank et al., 2010; Hoffmann et al., 2010) have been per-
formed to investigate the interactions of heavy ion and
laser beams with plasma targets. An important aspect of
these experiments is the energy loss measurements for the
ions in a wide-range of plasma parameters. It is expected in
such experiments that the ion propagation would be essen-
tially affected by the parametric excitation of the plasma
target by means of laser irradiation. This effect has been sup-
ported recently by particle-in-cell (PIC) numerical simu-
lations (Hu et al., 2011).

In this paper, we present a study of the effects of intense
RF on the interaction of nonrelativistic projectile ions with
an electron plasma. Our objective is to study two regimes
of the ion energy loss, which have not been considered in
detail. For the first part of our study, we consider energy
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loss of a slow ion. In particular, this is motivated by the fact
that the alpha-particles resulting from the nuclear fusion in a
very dense plasma with temperature in the keV range, display
a velocity mostly below electron thermal velocity. The
second objective of our study is to investigate the energy
loss in high–velocity regime. Previously, this has been
done for a classical plasma (Tavdgiridze & Tsintsadze,
1970; Aliev et al., 1971; Nersisyan & Akopyan, 1999) treat-
ing only the collective excitations as well as in the range of
solid–state densities (fully degenerate plasma) and at the
intermediate intensities of the RF (Arista et al., 1989)
when the electron quiver amplitude is comparable to the
screening length of the target. To gain more insight into
the RF effect on the energy loss process, we consider here
the regime of intense RF when the quiver amplitude largely
exceeding the typical screening length of the fully degenerate
electron plasma.
The plan of the paper is as follows. In Section 2, we briefly

outline the RPA formulation for the energy loss of a heavy
ion uniformly moving in a plasma in the presence of an in-
tense RF. The limiting case of a weak RF is also considered.
In Sections 3 and 4, we have calculated the effects of the RF
on the mean energy loss (stopping power) of the test ion con-
sidering two somewhat distinct cases with slow (Sec. 3) and
fast (Sec. 4) projectiles moving in a classical and fully degen-
erated electron gas, respectively. In the latter case, the degen-
erated electron gas is treated within a simple plasmon–pole
approximation proposed by Basbas and Ritchie (1982). It
has been shown, that besides usual stopping in a plasma, it
is possible to accelerate the charged particles beam through
RF. This effect is expected for fast projectiles and in the
high–intensity limit of the RF, when the “quiver velocity”
of the plasma electrons exceeds the projectile ion velocity.
The results are summarized in Section 5, which also includes
discussion and outlook.

2. RPA FORMULATION

The whole interaction process of the projectile ion with
plasma involves the energy loss and the charge states of
the ion and — as an additional aspect — the ionization
and recombination of the ion driven by the RF and the col-
lisions with the plasma particles. A complete description of
the interaction of the ion requires a simultaneous treatment
of all these effects including, in particular, the effect of the
ion charge equilibration on the energy loss process. In this
paper, we do not discuss the charge state evolution of the pro-
jectiles under study, but concentrate on the RF effects on the
energy loss process assuming an equilibrium charge state of
the ion with an effective charge Ze. This is motivated by the
fact that the charge equilibration occurs in time scales, which
are usually much smaller than the time of passage of the ion
through target.
The problem is formulated using the random–phase

approximation (RPA) and includes the effects of the RF in
a self–consistent way. The electromagnetic field is treated

in the long–wavelength limit, and the electrons are con-
sidered nonrelativistic. These are good approximations pro-
vided that (1) the wavelength of the RF (λ0= 2πc/ω0) is
much larger than the typical screening length (λs= vs/ωp

with vs the mean velocity of the electrons and ωp the
plasma frequency), and (2) the “quiver velocity” of the elec-
trons in the RF (vE= eE0/mω0) is much smaller than the
speed of light c. These conditions can be alternatively written
as (1) ω0/ωp ≪ 2πc/vs, (2) WL ≪ 1

2 n0c(mc
2)(ω0/ωp)2,

where WL= cE0
2/8π is the RF intensity. As an estimate in

the case of dense gaseous plasma, with electron density
n0= 1018 cm−3, we get 1

2 n0mc
3 ≃ 1.2 × 1015 W/cm2. Thus

the limits (1) and (2) are well above the values obtained
with currently available high–power RF sources, and so the
approximations are well justified.
We consider the time–dependent Hamiltonian for the

plasma electrons in the presence of both a RF with vector
potential A(t)= (c/ω0)E0 cos(ω0t), and a self–consistent
scalar potential φ(r, t) (Arista et al., 1989; Nersisyan &
Akopyan, 1999), i.e.,

H(t) =
∑
p

1
2m

p− e

c
A(t)

( )2
c+p cp − e

∑
p,k

φ(k, t)c+p+kcp, (1)

where cp, cp
+ are annihilation and creation operators for elec-

trons with momentum p, respectively, and φ(k, t) is the Four-
ier transform of φ(r, t).
The potential φ(k, t) is produced by the external charge

and by the induced electronic density, viz.,

k2φ(k, t) = 4πρ0(k, t)− 4πe
∑
p

Np(k, t), (2)

being ρ0(k, t) the Fourier transform of the external charge
density ρ0(r, t), and Np(k, t)= (cp−k

+ cp)t is the electrons
number operator.
The time evolution of the operator Np(k, t) is determined

by the equation

i h− ∂Np(k, t)
∂t

= Np(k, t), H(t)
[ ]

. (3)

In particular, for an oscillatory field A(t) and within ran-
dom–phase approximation, Eq. (3) has the solution (Arista
et al., 1989; Nersisyan & Akopyan, 1999)

Np(k, t) = ie

h− fp−k − fp
( )∫t−∞dt

′φ(k, t′)

× exp
i

h− εp−k − εp
( )

(t − t′)
[ ]

× exp −iζ sin (ω0t)− sin (ω0t
′)

( )[ ]
,

(4)

where ζ= k · a, a= eE0/mω0
2 is the oscillation amplitude

of the electrons driven by the RF (quiver amplitude), εp=
p2/2m is the electron energy with momentum p. Here fp is
the equilibrium distribution function for the electron plasma.
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Finally, using Eq. (2) and making a further Fourier trans-
formation, we obtain a solution for the potential φ in the form

φ̃(k, ω) = 4π̃ρ0(k, ω)
k2ε(k, ω)

, (5)

where we have introduced the frequency transforms
φ̃(k, ω), ρ̃0(k, ω) of the quantities

ρ̃0(k, t)
φ̃(k, t)

( )
= ρ0(k, t)

φ(k, t)

( )
eiζ sin (ω0 t), (6)

and ε(k, ω) is the RPA dielectric function (Lindhard, 1954;
Lindhard & Winther, 1964).
We consider a heavy point–like particle with mass M and

effective charge Ze, which moves with rectilinear trajectory
with constant velocity v. We thus neglect the effect of the
RF on the particle assuming that the quiver velocity of the
ion in the laser field vq= ZeE0/Mω0 ≪ vs, v. Here vs is
the mean velocity of the target electrons. The charge density
of the point–like ion is then given by ρ0(r, t)= Zeδ(r− vt).
Inserting the Fourier transformation of this formula with re-
spect to r into Eq. (6) and making a further Fourier trans-
formation we obtain

ρ̃0(k, ω) = 2πZe
∑∞
n=−∞

Jn(ζ)δ ω− k · v+ nω0( ), (7)

where Jn is the Bessel function of nth order. Using Eqs.
(5)–(7) for the self–consistent potential φ(r, t) we finally
arrive at

φ(r, t) = Ze

2π2
∑∞

m,n=−∞

ei(n−m)ω0 t∫dk eik·(r−vt)Jm ζ( )Jn ζ( )
k2ε(k, k · v− nω0)

. (8)

This result represents the dynamical response of the medium
to the motion of the test particle in the presence of the RF; it
takes the form of an expansion over all the harmonics of the
field frequency, with coefficients Jn(ζ) that depend on the in-
tensity WL∝ a2.
From Eq. (8) it is straightforward to calculate the electric

field E(r, t)=−∇ φ (r, t), and the time average (with respect
to the period 2π/ω0 of the laser field) of the stopping field
Estop= 〈E(vt, t)〉 acting on the particle. Then, the averaged
stopping power (SP) of the test particle becomes

S ≡ −Ze
v
v
· Estop

= 2Z2e2

(2π)2v

∑∞
n=−∞

∫dk k · v
k2

J2n (ζ)Im
−1

ε(k, Ωn(k))
,

(9)

with Ωn(k)= nω0+ k · v.
To illustrate the effects of the RF it is convenient to take

into account the symmetry of the integrand in Eq. (9), with
respect to the change k, n→−k, −n. Using also the

property of Bessel functions, J−n
2 (ζ)= Jn

2(ζ), we obtain

S = Z2e2

2π2v
∫dk k · v

k2
J20 (ζ)Im

−1
ε(k, k · v)

[

+2
∑∞
n=1

J2n (ζ)Im
−1

ε(k, Ωn(k))

]
.

(10)

Hence, the SP depends on the particle velocity v, the fre-
quency ω0 and the intensity WL= cE0

2/8π of the RF (the in-
tensity dependence is given through the quiver amplitude a).
Moreover, since the vector k in Eq. (10) is spherically inte-
grated, S becomes also a function of the angle ϑ between
the velocity v, and the direction of polarization of RF, rep-
resented by a.

By comparison, the SP in the absence of the RF is given by
Deutsch (1986) and Peter and Meyer-ter-Vehn (1991)

SB = Z2e2

2π2v
∫dk k · v

k2
Im

−1
ε k, k · v( ) . (11)

In the presence of the RF, the SP SB is modified and is given
by the first term in Eq. (10) (“no photon” SP)

S0 = Z2e2

2π2v
∫dk k · v

k2
J20 (ζ)Im

−1
ε k, k · v( ) . (12)

Next we consider the case of a weak radiation field (a< λs,
where λs is the characteristic screening length) at arbitrary
angle ϑ between v and E0. In Eq. (10), we keep only the
quadratic terms with respect to the quantity a and for the
stopping power S we obtain

S = SB + Z2e2

4π2v
∫ dk
k2

(k · v)(k · a)2

× Im
1

ε(k, ω0 + k · v)−
1

ε(k, k · v)
[ ]

,

(13)

where SB is the field-free SP given by Eq. (11). Note that due
to the isotropy of the dielectric function ε(k, ω) the angular
integrations in Eqs. (10)–(13) can be easily done.

It is well known that within classical description an upper
cut-off parameter kmax= 1/rmin (where rmin is the effective
minimum impact parameter) must be introduced in Eqs.
(11) and (13) to avoid the logarithmic divergence at large
k. This divergence corresponds to the incapability of the clas-
sical perturbation theory to treat close encounters between
the projectile particle and the plasma electrons properly.
For rmin, we use the effective minimum impact parameter ex-
cluding hard Coulomb collisions with a scattering angle
larger than π/2. The resulting cut-off parameter kmax≃
m(v2+ vth

2 )/|Z|e2 is well known for energy loss calculations
(see, e.g., Zwicknagel et al. (1999); Nersisyan et al. (2007)
and references therein). Here vth is the thermal velocity of
the electrons. In particular, at low projectile velocities this
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cut-off parameter reads kmax= T/|Z|e2, where T is the plasma
temperature given in energy units.

3. ENERGY LOSS OF SLOW IONS

In this section, subsequent derivations are performed for the
classical plasma and in the low–velocity limit of the ion. In
this case, the RPA dielectric function is given by Fried and
Conte (1961)

ε(k, ω) = 1+ 1

k2λ2D
W

ω

kvth

( )
, (14)

where λD is the Debye screening length, and W(z)= g(z)+
if(z) is the plasma dispersion function (Fried & Conte,
1961) with

g(z) = 1− ze−z2/2∫
z

0 e
t2/2dt, f (z) =

��
π

2

√
ze−z2/2. (15)

Consider now the SP determined by Eq. (10) in the limit of
low–velocities, when v ≪ vth. As discussed above, we also
assume that v ≫ vq and neglect the effect of the RF on the
ion. In the limit of the low–velocities from Eqs. (10)–(15),
we obtain

S(γ, a, ϑ) = SBΞ(γ, a, ϑ), (16)

where

Ξ(γ, a, ϑ) = Ξ1(γ, a)+ Ξ2(γ, a) sin
2 ϑ, (17)

Ξs(γ, a) = 6
ψ(ξ)

∫
ξ

0
k3dk

(k2 + 1)2
∫
1

0 J
2
0 (Akμ)fs(μ)dμ

{

+2

��
2
π

√ ∑∞
n=1

∫
ξ

0Im
W1(n/kγ)k3dk

(k2 +W(n/kγ))2

[ ]
∫
1

0 J
2
n (Akμ)fs(μ)dμ

}
.

(18)

Here s= 1, 2 , and f1(μ) = μ2, f2(μ) = 1
2(1− 3μ2). Note that at

the absence of the laser field (i.e., at a→ 0) Ξ1 (γ, a)→ 1,
Ξ2 (γ, a)→ 0. In this case, the SP is determined by the quantity
SB in Eq. (11) (Deutsch, 1986; Peter &Meyer-ter-Vehn, 1991)

SB =
��
2
π

√
Z2e2

6λ2D

v

vth
ψ(ξ), (19)

where

ψ(ξ) = ln (1+ ξ2)− ξ2

1+ ξ2
, (20)

is the Coulomb logarithm with ξ= kmaxλD. Also in Eqs.
(16)–(18), we have introduced the angle ϑ between the velocity
v and the polarization a vectors,W1(z)= dW(z)/dz, A= a/λD,
γ=ωp/ω0< 1. Note that while the k integral in Eq. (11) di-
verges logarithmically in a field–free case, Eqs. (12) and
(18) are finite and do not require any cut-off. The Bessel func-
tions involved in these expressions due to the radiation field
guarantee the convergence of the k–integrations. However,
since in the sequel we shall compare Eqs. (16)–(18) with
field–free SP SB, for consistency the upper limits of the k–inte-
grals in Eq. (18) are kept finite with the same upper cutoff par-
ameter as in Eqs. (11) and (19).
In many experimental situations, the ions move in plasma

with random orientations of ϑ with respect to the direction of
the polarization of laser field a. The stopping power appropri-
ate to this situation may be obtained by carrying out a spheri-
cal average over ϑ of S(γ, a, ϑ) in Eqs. (16) and (17). We find

Sav(γ, a) = SB Ξ1(γ, a)+ 2
3
Ξ2(γ, a)

[ ]
≡ SBΞav(γ, a). (21)

The study of the effect of a radiation field on the SP is easier
in the case of low-intensities WL when a< λD. Then consid-
ering in Eqs. (16)–(18) only the quadratic terms with respect
to a for the SP S(γ, a, ϑ) we obtain

S(γ, a, ϑ) = SB 1− a2

5λ2D
(2 cos2 ϑ+ 1)D(γ, ξ)

[ ]
, (22)

Fig. 1. The dimensionless quantities Ξ(γ, a, ϑ) (the lines with symbols) and
Ξav (γ, a) (the solid line without symbols) vs the intensity parameter of the
laser field a/λD for ϑ= 0 (solid line), ϑ= π/4 (dashed line), ϑ= π/2
(dotted line) and for ω0= 1.2ωp.

H.B. Nersisyan & C. Deutsch392

https://doi.org/10.1017/S0263034611000486 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034611000486


where

D(γ, ξ) = 1
ψ(ξ)

∫
∞

1/ξ
dx

x3
1

(x2 + 1)2
−

��
2
π

√{

× Im
W1(x/γ)

1+ x2W(x/γ)
( )2
[ ]}

.

(23)

Taking into account that γ< 1 and ξ≫ 1 from Eqs. (22) and
(23) we finally obtain D(γ, ξ) ≃3/4γ2. It is seen that at low–
velocities the SP S(γ, a, ϑ) decreases with the intensity of
radiation field.
In Figure 1, the quantities Ξ(γ, a, ϑ) and Ξav(γ, a) are

shown vs the intensity parameter a/λD of the laser field for
three values of angles ϑ= 0, ϑ= π/4, ϑ= π/2 and for
ω0= 1.2ωp. It is convenient to represent the intensity par-
ameter a/λD in the form a/λD = 0.18λ20

���������
n0WL/T

√
, where

the wavelength (λ0) and the intensity (WL) of the laser field
and the density (n0) and the temperature (T ) of plasma are
measured in units μm, 1015 W/cm2, 1020 cm−3 and keV,
respectively. As an example, consider the case when the elec-
tron quiver amplitude reaches the Debye screening length,
a= λD. For the values of the RF and plasma parameters
with λ0= 0.5 μm, n0= 1018 cm−3, T= 0.1 keV, the above
condition is fulfilled at the radiation field intensity WL=
4.94 × 1018 W/cm2.
From Figure 1 it is seen that the intense laser field may

strongly reduce the SP of the low–velocity ion. And as ex-
pected, the effect of the radiation field is maximal for ϑ= 0.
Note that in this case and at a= λD the radiation field re-
duces the energy loss SB approximately by 15%. For expla-
nation of the obtained result, let us consider a simple
physical model. The stopping power of the ion is defined
as S=−(1/v)〈dW/dt〉, where 〈dW/dt〉 is the averaged
(with respect to the period of the radiation field) energy
loss rate. We assume that the frequency of the radiation
field ω0 is larger than the effective frequency of the pair-
wise Coulomb collisions neff. Also assuming that in the
low– velocity limit the energy loss of the ion on the collec-
tive plasma excitations is negligible and is mainly deter-
mined by the Coulomb collisions we obtain 〈dW/dt〉∼
neffW. On the other hand neff∼ 1/veff

3 , where veff is the aver-
aged relative velocity of the colliding particles. At v< vth
and for vanishing radiation field veff≃ vth. However, in
the presence of the radiation field, the averaged relative vel-
ocity of the collisions is veff≃ (vth

2 + vE
2)1/2 and increases

with the intensity of the laser field. Thus the effective col-
lision frequency neff and hence the stopping power of the
ion are reduced with increasing intensity of the radiation
field.
At the end of this section we consider a practical example.

Let us consider the stopping of the α–particles in the corona
of the laser plasma. Although the thermonuclear reactions
mainly occur far below the critical surface the stopping
length of the α–particles is larger than the characteristic

length scale of plasma inhomogeneity and some part of the
α–particles transfer the energy to the plasma corona before
they reach the critical surface (Max, 1982). In the vicinity
of the plasma critical density, the intensity of the radiation
field is very large and the stopping capacity of the plasma
may be strongly reduced. In this example, the typical temp-
erature is T= 10 keV and therefore vα/vth= 0.22 (Eα=
MαVα

2/2= 3.5 MeV, where Eα, Mα, vα are the energy, the
mass and the velocity of the α–particles). For λ0= 0.5 μm,
WL= 2 × 1017 W/cm2, and ω0 = ωp

��
2

√
(the plasma density

is n0= nc/2, where nc is the plasma critical density) we find
a≃ λD. In this parameter regime the radiation field reduces
the SP of the α–particles by 20%.

4. ENERGY LOSS OF FAST IONS

In this section, we consider the energy loss of a fast heavy ion
moving in a fully degenerate plasma (which means that the
partially degenerate case could be postponed to a further
presentation) in the presence of a radiation field. The longi-
tudinal dielectric function of the degenerated electron gas
is determined by Lindhard’s expression (Lindhard, 1954;
Lindhard & Winther, 1964). However, here we consider
the simplest model of the dielectric function of a jellium. Pre-
viously, a plasmon–pole approximation to ε(k, ω) for an elec-
tron gas was used for calculation of the SP (Basbas &
Ritchie, 1982; Deutsch, 1995; Nersisyan & Das, 2000). In
order to get easily obtainable analytical results, Basbas and
Ritchie (1982) employed a simplified form that exhibits col-
lective and single–particle effects

Im
−1

ε(k, ω)
= πω2

p

|ω|
ω

[
δ ω2 − ω2

p

( )
H(kc − k)

+ δ ω2 − ω2
k

( )
H(k − kc)

]
,

(24)

where H(x) is the Heaviside unit–step function, ωk =
h− k2/2m, kc = (2mωp/h− )1/2, and ωp is the plasma frequency.
The cut-off parameter kc is determined by equating the argu-
ments of the two delta–functions in Eq. (24) at k= kc. The
first term in Eq. (24) describes the response due to nondisper-
sive plasmon excitation in the region k< kc, while the second
term describes free–electron recoil in the range k> kc (sin-
gle–particle excitations). Note that this approximate dielec-
tric function satisfies at arbitrary k the usual frequency sum
rule (Basbas & Ritchie, 1982; Deutsch, 1995; Nersisyan &
Das, 2000).

In contrast to the previous section, we consider here
the fast projectile ion with v≳vc (where vc= ωp/kc=
(h− ωp/2m)1/2), which justifies the approximation (24) valid
only in this specific case (Basbas & Ritchie, 1982).

It is constructive to consider first the case of a weak radi-
ation field (kca< 1) at arbitrary angle ϑ between v and a. In
this case, the SP is determined by Eq. (13), where the field–
free SP SB in the high–velocity limit is given by (Lindhard,
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1954; Lindhard & Winther, 1964; Deutsch, 1986, 1995)

SB = Z2e2ω2
p

v2
ln

2mv2

h− ωp

( )
. (25)

Inserting Eq. (24) into (13) for the stopping power we obtain

S = 2Z2Σ0

λ2
ln λ+ (kca)2

4
Φ1(λ, γ)+ 1

2
Φ2(λ, γ) sin

2 ϑ

[ ]{ }
, (26)

where Σ0 = e2 k2c = 2h− ωp/a0, a0 is the Bohr radius, Φ1=
Φ1c+Φ1s, Φ2=Φ2c+Φ2s, λ= v/vc, γ= ωp/ω0< 1. Also

Φ1c(λ, γ) = 1

2λ2
6
γ2

ln λ+ 1
γ
+ 1

( )3
[

× ln
γ

1+ γ
− 1

γ
− 1

( )3

ln
γ

1− γ

]
,

(27)

Φ2c(λ, γ) = −3 Φ1c(λ, γ)+ 1

2γ2λ2

[ ]
, (28)

Φ1s(λ, γ) = 1

4λ2
1
2

β21 + η21 − α21 − δ21
( )[

+ 3
γ

β1 + δ1 − α1 − η1
( )

− 1
γ3

1
β1

− 1
α1

− 1
η1

+ 1
δ1

( )
+ 3
γ2

ln
β1η1
α1δ1

+ 1− λ4
]
,

(29)

Φ2s(λ, γ) = β1 − α1
4

1− 9

γλ2

( )
+ η1 − δ1

4
1+ 9

γλ2

( )
− 3

8λ2
β21 + η21 − α21 − δ21
( )

+ 3

4γ3λ2
1
β1

− 1
α1

− 1
η1

+ 1
δ1

( )
+ 1

4γ
ln
β1δ1
α1η1

− 9

γλ2
ln
β1η1
α1δ1

( )
+ 1

4
1− 1

λ2

( )
λ2 + 3
( )

,

(30)

αn

ηn

( )
= max

λ

2
−

��������
λ2

4
∓

n

γ

√⎛⎝ ⎞⎠2

; 1
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βn
δn

( )
= λ

2
+

��������
λ2

4
∓

n

γ

√⎛⎝ ⎞⎠2

.

(31)

In Eq. (31), n is a positive integer (n= 1,2,…). The first term
in Eq. (26) corresponds to the field–free SP (25) represented
in a dimensionless form. The remaining terms proportional to
the intensity of the radiation field (a2), describe the collective
(proportional to Φ1c; 2c (λ, γ)) and single–particle (pro-
portional to Φ1s; 2s (λ, γ)) excitations. It should be noted

that the stopping power Eq. (26) is not vanishing only at
high–velocities when λ ≥ 2/

��
γ

√
.

Consider next the angular distribution of the SP at low–
intensities of the RF. An analysis of the quantity P= (S−
SB)/SB (the relative deviation of S from SB) for the proton
projectile shows that at moderate velocities (λ≳2/

��
γ

√
) the

angular distribution of P has a quadrupole nature. At
0 ≤ ϑ ≤ ϑ0(λ, γ), where ϑ0(λ, γ) is some value of the angle
ϑ, the excitation of the waves with the frequencies ω0 ± ωp

leads to the additional energy loss. At ϑ0 (λ, γ)≤ϑ≤π/2
the proton energy loss changes sign and the total energy
loss decreases. When the proton moves at angles ϑ= ϑ0 (λ,
γ) with respect to the polarization vector a the radiation
field has no any influence on the SP. However, at very
large velocities (λ ≫ 2/

��
γ

√
) the relative deviation P is nega-

tive for arbitrary ϑ and the radiation field systematically re-
duces the energy loss of the proton.
Let us now investigate the influence of the intense radi-

ation field on the stopping process when v is parallel to a.
It is expected that the effect of the RF is maximal in this
case. From Eqs. (10) and (24) we obtain

S = S0 + Z2Σ0

λ2
∑n−
n=1

n

γ
+ 1

( )
J2n Apn
( )

ln
λ

n/γ+ 1

{

−
∑n+
n=1

n

γ
− 1

( )
J2n Aqn
( )

ln
λ

n/γ− 1

+ 1
2

∑N
n=1

∫
βn(λ)

αn(λ)
dx

x2
n

γ
+ x

( )
J2n APn(x)( )

− 1
2

∑∞
n=1

∫
ηn(λ)

δn(λ)
dx

x2
n

γ
− x

( )
J2n AQn(x)( )

}
,

(32)

where A= kca, Pn(x)− (1/λ)(n/γ= x), Qn(x)= (1/λ)
(n/γ− x), pn= Pn (1), qn=Qn(1), and

S0 = Z2Σ0

λ2
J20

A

λ

( )
ln λ+ 1

2
∫
λ

1/λ
dx

x
J20 Ax( )

[ ]
(33)

is the SP without emission or absorption of the photons. Also
we have introduced the notations

n± = int
kcv± ωp

ω0

( )
= int γ λ± 1( )[ ]

,

N = int
mv2

2h− ω0

( )
= int

γλ2

4

( )
,

(34)

where int(x) is the integer part of x. The quantities αn(λ),
βn(λ), δn(λ), ηn(λ) in Eq. (32) are determined by Eq. (31).
We note that in Eq. (32) the terms involving n± and N pho-
tons are not vanishing at λ≥ 1/γ∓ 1 and λ ≥ 2/

��
γ

√
,

respectively. Similarly the SP (33) is not vanishing at λ≥ 1.
The first term in Eq. (33) describes the collective exci-

tations while the second term corresponds to the single–
particle excitations. From Eq. (33) it is seen that S0 oscillates
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with the intensity of the laser field. However, the radiation
field suppresses the excitation of the collective and the sin-
gle–particle modes and the SP S0 is less than the field–free
SP SB. As follows from Eq. (33) at high–intensities of the
RF the SP S0 is close to zero when A/λ≃ μm (or alternatively
at γ (vE/v)≃ μm) with m= 1,2,…, where μm are the zeros of
the Bessel function J0 (μm)= 0 (μ1= 2.4, μ2= 5.52, μ3=
8.63…). Then the energy loss of the ion is mainly determined
by the other terms in Eq. (32) and is stipulated by excitation
of plasma waves with frequencies nω0± ωp. The first and the
last pairs of terms in Eq. (32) describe the excitation of the
collective and single–particle modes, respectively, with
emission or absorption several photons. The number of
photons (n±, N ) involved in the process of the inelastic inter-
action are determined by the energy–momentum conserva-
tions (see the arguments of the delta–functions in the
dielectric function (24)).
The results of the numerical evaluation of the SP (Eqs.

(32) and (33)) are shown in Figure 2, where the ratio
R(a)= S(a)/SB is plotted as a function of the laser field in-
tensity (kca= 5.38WL

1/2ω0
−2rs

−3/4, where rs is the Wigner–
Seitz density parameter and WL and ω0 are measured in
units 1015 W/cm2 and 1016 s−1, respectively). For instance,
for Al target with rs= 2.07, ħωp= 15.5 eV, and vc= 1.2 ×
108 cm/s. From Figure 2 it is seen that the SP exceeds the
field–free SP and may change sign due to plasma irradiation
by intense (kca≫1) laser field. Similar properties of the SP
has been obtained previously for a classical plasma (Nersis-
yan & Akopyan, 1999). However, due to the higher density
of the degenerate electrons (in metals typically n0∼ 1023

cm−3) the acceleration rate of the projectile particle is
larger than similar rate in the case of a classical plasma.
The acceleration effect occurs at vE/v≃ μm/γ (with m=
1,2, …) when the SP S0 nearly vanishes. It should be
noted that in the laser irradiated plasma a parametric instabil-
ity is expected (Silin, 1973) with an increment increasing
with the intensity of the radiation field. This restricts the
possible acceleration time with stronger condition than in

the case of a classical plasma. Finally, let us note that the
effect of the enhancement of the SP of an ion moving in a
laser irradiated plasma is intensified at smaller frequency
(Fig. 2, left panel) of the radiation field (ω0≃ ωp but ω0>
ωp) or at larger incident kinetic energy of the projectile ion
(Fig. 2, right panel) when the numbers n± and N of the pho-
tons involved in the inelastic interaction process are strongly
increased (Eq. (34)).

5. SUMMARY

In this paper, within RPA we have investigated the energy
loss of a heavy point–like ion moving in a laser irradiated
plasma. In the course of this study, we derived a general
expression for the SP, which has been also simplified in
the limit of weak RF. As in the field–free case, the SP in
a laser irradiated plasma is completely determined by the
dielectric function of the plasma. We have considered
two somewhat distinct cases of the slow– and high–velocity
ion moving in a classical and fully degenerate electron
plasma, respectively. At low–velocities the RF leads to
the strong decrease of the energy loss. Physically, this is
due to the strong reduction of the effective frequency of
the pairwise Coulomb collisions between projectile ion
and the plasma electrons. At high velocities the RF may
strongly increase the SP. This effect is more pronounced
when the laser frequency approaches the plasma frequency
in agreement with PIC simulations (Hu et al., 2011). More-
over, at high–velocities and in the presence of the intense
RF an ion projectile energy gain is expected when the
quiver velocity of the plasma electrons exceeds the ion vel-
ocity. The analysis presented above can in principle be ex-
tended to the case of a partially degenerate plasma as well
as to the case of light ion projectiles and also electrons and
positrons when the effect of the intense RF on the ion
cannot be neglected anymore. We intend to address these
issues in our forthcoming investigations.

Fig. 2. (Left panel) the ratio R(a)= S(a)/SB as a function of dimensionless quantity kca at v= 8.6vc, ω0= 1.2ωp (solid line), ω0= 1.6ωp

(dashed line), ω0= 2ωp (dotted line), ω0= 3ωp (dash–dotted line). Thin solid line corresponds to R0(a)= S0(a)/SB (see Eq. (33)). (Right
panel) same as in left panel but at ω0= 1.2ωp, v= 3vc (solid line), v= 7vc (dashed line), v= 11vc (dotted line), v= 17vc (dash–dotted
line).
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FRANK, A., BLAŽEVIĆ, A., GRANDE, P.L., HARRES, K., HESSLING, Th.,
HOFFMANN, D.H.H., KNOBLOCH-MAAS, R., KUZNETSOV, P.G.,
NÜRNBERG, F., PELKA, A., SCHAUMANN, G., SCHIWIETZ, G.,
SCHÖKEL, A., SCHOLLMEIER, M., SCHUMACHER, D., SCHÜTRUMPF,
J., VATULIN, V.V., VINOKUROV, O.A. & ROTH, M. (2010).
Energy loss of argon in a laser-generated carbon plasma. Phys.
Rev. E 81, 0264011–6.

FRIED, D.B. & CONTE, S.D. (1961). The Plasma Dispersion Func-
tion. New York: Academic.

HOFFMANN, D.H.H., TAHIR, N.A., UDREA, S., ROSMEJ, O., MEISTER,
C.V., VARENTSOV, D., ROTH, M., SCHAUMANN, G., FRANK, A.,
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