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SUMMARY
In this paper, a new approach is presented for perfect torque compensation of the robot in point-to-
point motions. The proposed method is formulated as an open-loop optimal control problem. The
problem is defined as optimal trajectory planning with adjustable design parameters to compensate
applied torques of a planar 5R parallel robot for a given task, perfectly. To illustrate the effectiveness
of the approach, the obtained optimal path is used as the reference command in the experiment. The
experimental outputs show that the performance index has been reduced by over 80% compared to
the typical design of the robot.

KEYWORDS: Planar 5R parallel robot; Counterweights; Point-to-point motion; Optimal trajectory;
Optimal control; Torque compensation.

1. Introduction
The parallel robot is a closed-loop mechanism consisted of a closed-loop kinematic chain. The end
effector of the parallel robot is connected to the ground by the kinematic chain.1 Due to their great
performance in terms of speed, rigidity, and accuracy, parallel robots have proved useful in many
applications,2 one which is pick-and-place operation. Such an operation is very common in food,
electronics, and pharmaceutical industries. In the point-to-point motion, the end effector repeatedly
moves between two given positions. In many practical situations, the end effector needs to move in a
planar point-to-point motion. For this particular problem, the planar 5R parallel robot is introduced.
Huang et al. presented a design of planar 5R parallel robot using the properties of parallelograms.
This was performed by the optimal dimensional synthesis of the robot.3 Pierrot et al. presented a
new architecture known as Par2 to perform 2-Degrees of freedom (DOF) pick-and-place tasks. Par2
has two actuated kinematic chains and also two passive chains.4 Huang et al. proposed an approach
for the optimal design of planar 5R parallel robot. Considering the normalized inertial and centrifu-
gal/Coriolis torques, two dynamic performance indices were proposed for the minimization.5 Meng
et al. proposed a novel 2-DOF translational parallel robot named as V2. Three motion/force trans-
mission and constraint indices are introduced for V2.6 Sang et al. proposed a local performance
evaluation taking into consideration the directional variation of robots’ performance. A circular tra-
jectory around a local output point is considered as a target trajectory. This approach was applied to
a five-bar parallel robot.7 Dincer and Cevik introduced a new composite polynomial in the trajectory
planning of a 2-DOF parallel mechanism. This polynomial combines cubic polynomials with Bezier
curves based on quadratic Bernstein polynomials.8

∗ Corresponding author. E-mail: anikoobin@semnan.ac.ir

https://doi.org/10.1017/S0263574720000971 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000971
https://orcid.org/0000-0003-0820-7607
mailto:mrv@semnan.ac.ir
mailto:aghoddosian@semnan.ac.ir
mailto:anikoobin@semnan.ac.ir
https://doi.org/10.1017/S0263574720000971


1164 Perfect torque compensation of planar 5R parallel robot

For robotic systems, the problem of motion planning and control are divided into two levels.9 The
first level is called path or trajectory planning, and the second level is called trajectory tracking or
path control. The trajectory planning often generates off-line movements to perform tasks in a defined
environment.10 The trajectory tracking is carried out in real time.8, 11 For trajectory planning problem,
it is possible to find different optimality criteria; the most significant are minimum execution time,
minimum effort, and minimum jerk. The criterion of minimum effort for the planar 5R parallel robot
is a significant problem in the point-to-point motions. This criterion is used for minimization of
torque, power, and energy of robotic manipulators.

The criterion of minimum effort has been studied in previous literature. A review of related lit-
erature shows that the minimization problem can be classified into two groups. In the first group,
the mass or geometric parameters of the robot are not considered as design parameters. While in
the second group, robot parameters are introduced as the design variables determined by solving the
problem. Thus, these two groups are called “optimal motion generation” and “optimal redistribution
of design parameters”, respectively.

In the first group, trajectory planning for a specified robotic system is presented. Luo et al. used
the Lagrange interpolation method for the joint angles of the robot manipulators. Using this method,
an optimal trajectory was obtained for energy minimization.12 Boscariol and Gasparetto presented a
solution for constrained robust trajectory planning of nonlinear mechatronic systems. The inclusion
of constraints does not affect actuator effort.13 Kucuk developed an optimal trajectory generation
algorithm for generating minimum-time smooth motion trajectories for serial and parallel manip-
ulators. This algorithm consumes less power to perform the trajectory tracking task.14 Bagheri et
al. considered the trajectory optimization of a 7-DOF manipulator using both the heuristic- and
gradient-based methods. The cost function is formulated as mechanical energy consumption with
torque saturation constraints.15 Gong et al. performed a study on the optimal control to find optimal
pose at target for a planar 3-DOF manipulator. Accordingly, they reached an optimal trajectory for
which the torque was minimized while dynamics were taken into consideration.16 Nusbaum et al.
considered the problem of energy minimization for a given task. The problem is formulated as a
constrained optimal control to the simultaneous path planning and control optimization of redundant
systems.17 Woolfrey et al. analyzed the problem of torque minimization for a redundant serial link
manipulator where an external force acts on the end effector. Using null space control, the redundant
task is designed to reduce the dynamic torque.18 Boscariol and Richiedei presented a method for
planning minimum energy trajectories of Cartesian robots. The trajectory for each joint of the robot
was defined by spline functions.19

In the second group, some robot parameters are considered to be unknown, which is calculated
in the problem-solving process. Quaglia and Yin proposed a method to design the spring param-
eters of balancing devices for articulated robots. This method produces the proper torque of the
robot.20 Nikoobin et al. presented an optimal balancing method to minimize the torque at joints of
the serial robot. The method calculates states, controls, and unknown parameters of the robot for
a point-to-point motion, simultaneously.21 They developed their work for planar cable robot22 and
spatial cable robot.23 Arakelian studied the gravity compensation methods applied in robotics. They
also examined some properties of the gravity compensation and presented the results via kinematic
schemes. Three principal groups are considered to classify the balancing schemes: counterweight,
spring, and active force.24 Misaghi et al. proposed an optimization method to minimize the energy
consumption of a 3-DOF parallel robot by adding weights to the links. The dynamic analysis of the
robot is performed by the principle of virtual work to obtain an optimal set of dynamic parameters.25

Moradi et al. utilized a closed-loop method to find the optimal controller/parameters of an open-
chain robot manipulator in point-to-point motion. The optimality conditions are derived using the
closed-loop optimal control theory.26 They developed their work for a repetitive full-cycle motion of
robot manipulators including different subtasks. The entire cycle of motion is considered an optimal
balancing problem.27 Zhang et al. proposed an analytically tractable solution to gravity balancing
a planar four-bar linkage. They provided an optimal generation of the balancing developed by a
nonzero length spring.28 Gupta et al. investigated optimum design of serial robotic manipulators for
minimum driving torques/forces at joints. They proposed an alternate dynamic formulation based on
the concept of the equimomental system of point masses and the decoupled natural orthogonal com-
plement.29 Martini et al. presented an approach to statically balance of open and closed kinematic
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Perfect torque compensation of planar 5R parallel robot 1165

chains. The proposed algorithm determines the balance arrangement by installing combinations of
counterweights and springs.30

This paper uses the optimal control theory for the torque compensation problem.31 In the opti-
mal control, the optimality conditions are expressed as a set of differential equations based on
Pontryagin’s minimum principle (PMP). According to the initial condition, the optimal control can
obtain the exact solution of the problem. This method has been widely used for analyzing nonlin-
ear systems and trajectory planning for different types of system.32–34 Korayem et al. presented a
trajectory optimization for a non-holonomic mobile manipulator in pursuing a moving target. The
dynamic motion planning of the system is formulated as an optimal control problem.35 Rahaghi and
Barat investigated the dynamic load carrying capacity of a manipulator in the specified path. They
used a new closed-loop optimal control method.36 In these studies, the performance index was min-
imized or maximized rather than obtaining a global optimum response. Also, the adjustable design
parameters for the system are not considered in the optimization problem.

The main purpose of the above studies is to reduce the torque or power consumption. Among
them, static balancing or gravity compensation methods can be a simple and effective approach for
the low-speed tasks. But, its efficiency is reduced due to the increase in inertial forces in the high-
speed operations. Each of the previous methods has provided a solution to reduce power, but none
has reached zero. In this paper, a new approach is presented for perfect torque compensation of the
robotic systems in point-to-point motion. For a predefined point-to-point task, the proposed method
is formulated as an optimal control problem,31 in which the design parameters of the robot and the
optimal trajectories are calculated simultaneously in order to compensate the applied torques at joints.
The mass of the counterweights and the installation angle of them, with reference to the robot links,
are considered as design parameters. The both mass and angle of the counterweights are determined
by solving the optimal control problem.

In the proposed method, the counterweights parameters are determined off-line for a given bound-
ary condition and the given time interval. The presented approach is suitable for a situation in which
the start and end points are fixed or have little change. The method is applied to a planar 5R parallel
robot with the adjustable counterweights.

This paper is organized in five sections. In Section 2, formulation of the perfect torque com-
pensation method (PTCM) is presented and the dynamic equations for a planar 5R parallel robot
are derived considering the counterweights. Section 3 illustrates the effectiveness of the proposed
method to cause a swinging motion, with zero torque, between the two given points in the task space
via theoretical simulation. In order to verify the PTCM, experimentations are carried out, the results
of which are presented in the fourth section. Finally, Section 5 draws conclusions from this study.

2. Formulation of PTCM
In this section, a new approach for torque minimization problem called PTCM is introduced for
the planar 5R parallel robot. The optimal control theory is used to achieve the necessary conditions
for the implementation of PTCM. The necessary conditions are expressed as a set of differential
equations based on PMP. In the proposed approach, the trajectory of the robot, unknown parameters
of counterweights, and the performance index are calculated simultaneously for a point-to-point
motion.

2.1. Dynamic modeling of planar 5R parallel robot with counterweights
A kinematic scheme of the robot with counterweights is shown in Fig. 1, in which two counter-
weights were attached to the links 1 and 3. This arrangement for two adjustable counterweights is
a design choice. This choice simplifies the practical implementation of the planar 5R parallel robot.
In here, mci , rci , and αci (i = 1, 2) are mass, length, and installation angle of the ith counterweight
with reference to the link 2i-1.The moment of inertia of the counterweights is ignored and they are
considered as point masses.

The kinematic model of the robot can be simplified as a planar five-bar mechanism. The position
of point P is {

x p = Ai + l2i−1 cosθi + l2i cosβi

yp = l2i−1 sinθi + l2i sinβi
; i = 1, 2, (1)
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1166 Perfect torque compensation of planar 5R parallel robot

Fig. 1. A kinematic scheme of considered planar 5R parallel robot with counterweights.

where l2i−1 and l2i are the length of the proximal and distal links; Ai is the offset from coordinate
system XOY; θ i and β i are the angular positions of the proximal and distal links, respectively.

The active joint angles θ i (i = 1, 2) and the angular velocities θ̇i (i = 1, 2) are obtained by Eqs. (2)
and (3), respectively:5, 37

θi = 2 tan−1

⎛
⎝−Di + sgn ( j)

√
D2

i + E2
i − F2

i

Fi − Ei

⎞
⎠; i = 1, 2, sgn ( j)=

{
1 j = 1

−1 j = 2 (2)

Di = −2l2i−1 yp, Ei = 2l2i−1
(

Ai − x p
)
, Fi = x2

p + y2
p + A2

i + l2
2i−1 − l2

2i − 2x p Ai

θ̇i = Ji Ẋ p; i = 1, 2, (3)

where Ji ; i = 1, 2 is the Jacobian matrix. The dynamic model of the robot can be obtained by
Lagrange–Euler formulation. For the planar 5R parallel robot, the generalized coordinate and
generalized forces of the Lagrange–Euler formulation are defined as:

q = X p = [
x p yp

]T
, Q = τ = [

τ1 τ2
]T
, (4)

where Xp is the position of the end effector p. The term τ is the applied torque at the active joints A1

and A2. To calculate the kinetic and potential energies of the robot, the following steps are performed.
Initially, the positions of the center of masses are determined in the global coordinate system as Eq.
(5). The parameter of r demonstrates the location of the center of mass on each link:

xr
2i−1 = Ai + r2i−1 cosθi , yr

2i−1 = r2i−1 sinθi ; i = 1, 2

xr
2i = Ai + l2i−1 cosθi + r2i cosβi , yr

2i = l2i−1 sinθi + r2i sinβi ; i = 1, 2 (5)

xc
i = Ai + rci cos (θi − αci ), yc

i = rci sin (θi − αci ); i = 1, 2

In Eq. (5), xr
2i−1 and yr

2i−1 (i = 1, 2) are the coordinates of the center of mass in link 2i-1 in the
directions of X and Y, respectively; xr

2i and yr
2i (i = 1, 2) are the coordinates of the center of mass in

link 2i in the directions of X and Y, respectively. Also, xc
i and yc

i (i = 1, 2) are the coordinates of the
mass of the counterweight i in the directions X and Y, respectively. By taking derivative of the above
equations with respect to time, velocities of the centers of mass are obtained as:

ẋ r
2i−1 = −r2i−1θ̇i sinθi , ẏr

2i−1 = r2i−1θ̇i cosθi ; i = 1, 2

ẋ r
2i = −l2i−1θ̇i sinθi − r2i β̇i sinβi , ẏr

2i = l2i−1θ̇i cosθi + r2i β̇i cosβi ; i = 1, 2 (6)

ẋ c
i = −rci θ̇i sin (θi − αci ), ẏc

i = rci θ̇i cos (θi − αci ); i = 1, 2
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Finally, the kinetic and potential energies of the robot are determined as:

K = k + kc, U = u + uc

k = 0.5
2∑

i=1

(
m2i−1v

2
2i−1 + I2i−1θ̇

2
i + m2iv

2
2i + I2i β̇

2
i

)
, kc = 0.5

2∑
i=1

mciv
2
ci

v2
2i−1 = r2

2i−1θ̇
2
i , v

2
2i = l2

2i−1θ̇
2
i + r2

2i β̇
2
i + 2l2i−1r2i θ̇i β̇i cos (θi − βi ) (7)

v2
ci = r2

ci θ̇
2
i ; i = 1, 2

u =
2∑

i=1

(m2i−1 g r2i−1 sinθi + m2i g (l2i−1 sinθi + r2i sinβi )),

uc =
2∑

i=1

mci g rci sin (θi − αci ),

where k and u are the kinetic and potential energies of the proximal and distal links of the robot,
respectively; and kc and uc are the kinetic and potential energies of the two counterweights of the
robot, respectively. Using the Lagrange–Euler formulation, the final dynamic equation of the robot
is obtained as in the form of:

M Ẍ p + N + G = J T τ ; Ẍ p = [
ẍ p ÿp

]T
, τ = [

τ1 τ2
]T
, (8)

where M, N, and G are the matrices of inertia, Coriolis and centrifugal, and gravity terms,
respectively. J is the Jacobian matrix.

For static balancing, the linear momentum formulation is used for the planar 5R parallel robot.38

The static balancing of the robot needs a third counterweight. This counterweight is attached to the
joint B1. The mass, length, and installation angle of the third counterweight are mc3, rc3, and αc3 with
reference to the link 2. The linear momentum of the system is defined as:

Lo =
(

m1r1 + m2l1 + m4r4l1

l4
+ mc1rc1 e−iαc1 + mc3l1

) (
i θ̇1

)
eiθ1

+
(

m3r3 + m4l3 − m4r4l3

l4
+ mc2rc2 e−iαc2

) (
i θ̇2

)
eiθ2 (9)

+
(

m2r2 + m4r4l2

l4
+ mc3rc3 e−iαc3

) (
i β̇1

)
eiβ1 .

To obtain the zero linear momentum, the coefficients of angular velocities become zero. Thus, the
following conditions are derived as:

m1r1 + m2l1 + m4r4l1

l4
+ mc1rc1 cosαc1 + mc3l1 = 0, mc1rc1 sinαc1 = 0

m3r3 + m4l3 − m4r4l3

l4
+ mc2rc2 cosαc2 = 0, mc2rc2 sinαc2 = 0 (10)

m2r2 + m4r4l2

l4
+ mc3rc3 cosαc3 = 0, mc3rc3 sinαc3 = 0.

By simplification of the above equation, the specifications of counterweights are obtained by
Eq. (11):

αc1 = αc2 = αc3 = π

mc1 = m1r1 + m2l1 + mc3l1

rc1
+ m4r4l1

rc1l4
, mc2 = m3r3 + m4l3

rc2
− m4r4l3

rc2l4
, (11)

mc3 = m2r2

rc3
+ m4r4l2

rc3l4
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2.2. PTCM methodology
In this section, the implementation of the PTCM for the planar 5R parallel robot is presented. The
PTCM is formulated as the optimal control problem by defining the state vector as:

x = [
qT q̇T

]T q=[x p yp]T , q̇=[ẋ p ẏp]T

−−−−−−−−−−−−−−−→ x = [
x p yp ẋ p ẏp

]T
. (12)

By rewriting the above equation, the final form of the state vector x is obtained as:

x = [
x p yp ẋ p ẏp

]T x1=x p, x2=yp, x3=ẋ p, x4=ẏp−−−−−−−−−−−−−−−−−−→ x = [
x1 x2 x3 x4

]T
. (13)

Therefore, the dynamic Eq. (8) can be rewritten in the state-space form of:

f = ẋ
ẋ=

[
ẋ p ẏp ẍ p ÿp

]T

−−−−−−−−−−−−−→ f =
⎡
⎣ x3

x4

M−1
2×2 (x1, x2, b)

[
J T τ − N (x, b)− G (x1, x2, b)

]
2×1

⎤
⎦, (14)

where b is the vector of design parameters, which contains the unknown constant parameters of the
model. Then, Hamiltonian function is defined as [36]:

H = L +ψT f, (15)

where ψ is the co-state vector and L is the integrand of the performance index. For the planar 5R par-
allel robot, the control effort vector and the time interval are u = [τ 1 τ 2]T and t = [0 t f ], respectively.
By defining the performance index as the following minimum effort:

J =
∫ tf

0
L dt =

∫ tf

0

(
τ 2

1 + τ 2
2

)
dt, (16)

and the co-state vector:

ψ = [
ψT

1 ψT
2

]T
ψ1 =

[
x5 x6

]T
, ψ2 =

[
x7 x8

]T

−−−−−−−−−−−−−−−−−−−→ ψ = [
x5 x6 x7 x8

]T
, (17)

the Hamiltonian function becomes

H = (
τ 2

1 + τ 2
2

) + x5x3 + x6x4

+ [
x7 x8

] [
M−1

2×2 (x1, x2, b)
[
J T τ − N (x, b)− G (x1, x2, b)

]
2×1

]
2×1
. (18)

The value of J is placed between zero and positive infinity. Thus, the global optimal value of the
performance index is zero.

Using the PMP, the optimality conditions are given by:

ẋ = Hψ =
[
∂H

∂ψ1

∂H

∂ψ2

]T

→ ẋ = f, (19)

ψ̇ = −Hx → ψ̇ = [
ẋ5 ẋ6 ẋ7 ẋ8

]T = −
[
∂H

∂x1

∂H

∂x2

∂H

∂x3

∂H

∂x4

]T

, (20)

Hu = 0 → ∂H

∂τ 1
= 0,

∂H

∂τ 2
= 0, (21)

subject to the following boundary conditions:

x(0)= x0, x(tf )= x f ;
x(0)= [ x1(0) x2(0) x3(0) x4(0) ]T = [ x p0 yp0 0 0 ]T

, (22)

x(tf )= [ x1(tf ) x2(tf ) x3(tf ) x4(tf ) ]T = [ x p f yp f 0 0 ]T
.
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Table I. Parameters of examined planar 5R parallel robot.

Parameter Value

Mass (kg) m1 = 0.2061,m3 = m1, m2 = 0.1497,m4 = m2, mc1 = 0.1,mc2 = 0.1
Length (m) l1 = 0.1171, l3 = l1, l2 = 0.2452, l4 = l2

Position of the active joints (m) A1 = −0.06, A2 = −A1

Position of the center of mass (m) r1 = 0.0508, r3 = r1, r2 = 0.1316, r4 = r2, rc1 = 0.07, rc2 = 0.07
Moment of inertia (kg.m2) I1 = 0.0006, I3 = I1, I2 = 0.0013, I4 = I2

Installation angle of αc1 = π , αc2 = π

counterweight (rad)
Gravitational acceleration (m/s2) g = 9.81

In the above equation, [xp0, yp0] is the initial position at t = 0 and [xp f , yp f ] is the final position at
t = t f . For the point-to-point motion, the initial and final velocities are set to zero, that is, ẋ p0 = ẏp0 =
ẋ p f = ẏp f = 0.

In the PTCM, the optimal values of the design parameters are obtained by defining new state
variables in the optimal control problem. Indeed, the optimal trajectory planning is implemented
based on the unknown parameters of the robot. Therefore, the values of parameters depend on the
dynamic equation, the performance index, and the boundary conditions of the model.

The PTCM can be performed by two groups of parameters: [mc1 mc2 αc1 αc2] or [rc1 rc2 αc1 αc2].
The parameters of the first group simplify the practical implementation of the planar 5R parallel
robot. Adjusting the mass of the counterweights is very simpler than adjusting their length in the
experimental setup. Thus, for the planar 5R parallel robot, parameters mc1, mc2, αc1, and αc2 are
taken as unknown variables of the counterweights. Thus, by considering the vector of parameters:

b = [
mc1 mc2 αc1 αc2

]
, (23)

the new state vector μ is defined as:

μ= [
x9 x10 x11 x12

]T
. (24)

The optimality and boundary conditions associated with the vector μ are obtained as follows:

μ̇= −Hb → ẋ9 = − ∂H

∂mc1
, ẋ10 = − ∂H

∂mc2
, ẋ11 = − ∂H

∂αc1
, ẋ12 = − ∂H

∂αc2
(25)

μ (t0)=μ
(
tf

) = 0

x9 (0)= x10 (0)= x11 (0)= x12 (0)= x9
(
tf

) = x10
(
tf

) = x11
(
tf

) = x12
(
tf

) = 0. (26)

Finally, by substituting τ 1and τ 2 from Eq. (21) into Eqs. (19), (20), and (25), 12 nonlinear ordinary
differential equations are derived, which beside the 16 boundary conditions given in Eqs. (22) and
(26), form a two-point boundary value problem (TPBVP). This TPBVP is solved using the bvp4c
command of MATLAB software to determine the state vector x, co-state vector ψ , new state vector
μ, and the vector b.

Note that the PTCM is presented to perfect torque compensation of the robot for a predefined
point-to-point task. Thus, by changing condition of motion, the problem must be resolved again and
new optimal parameters are obtained. Then, the new parameters of the counterweights are adjusted
and fixed on the robot. Indeed, it is not possible to change the counterweights while the robot is
moving.

3. Simulation
In this section, the results of simulating the planar 5R parallel robot shown in Fig. 1 are presented.
The design of planar 5R parallel robot is considered as a mirror symmetry geometry. Two cases are
considered for this purpose: typical form (TF) and PTCM of the planar 5R parallel robot. In the TF
case, the planar 5R parallel robot is considered without counterweights, that is, mc1= mc2= 0. The
experimental setup presented in Section 4 is based on the robot parameter values given in Table I.
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Fig. 2. Start and end positions of robot.

Fig. 3. Optimal trajectory of robot.

Consider a repetitive point-to-point motion with the following boundary conditions for the forward
motion:

x1(0)= 0.1, x2(0)= −0.3, x1
(
tf

) = 0, x2
(
tf

) = −0.22

x3(0)= x3
(
tf

) = x4(0)= x4
(
tf

) = 0, tf = 0.5 s, (27)

and the following boundary conditions for the return motion:

x1(0)= 0, x2(0)= −0.22, x1
(
tf

) = 0.1, x2
(
tf

) = −0.3

x3(0)= x3
(
tf

) = x4(0)= x4
(
tf

) = 0, tf = 0.5 s. (28)

By solving the TPBVP obtained in Section 2.2, the position and velocity of the end effector and the
values of mc1, mc2, αc1, and αc2 of the counterweights can be computed. The start and end positions of
the planar 5R parallel robot with the counterweights are shown in Fig. 2. For the forward motion, the
end effector of the robot moves from [0.1 −0.3] to [0 −0.22]. In the return motion, the end effector
of the robot goes from [0 −0.22] to [0.1 −0.3]. The optimal trajectories of the robot for the forward
and return motions are plotted in Fig. 3. In the figure, the red and green curves show the forward and
return motions of the end effector, respectively. As seen in Fig. 3, the trajectory of the end effector in
the forward motion is in accordance with the trajectory of the end effector in the return motion. The
position and velocity of the point p of the robot for the forward and return motions are illustrated in
Figs. 4 and 5, respectively.
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Fig. 4. Position of point p.
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Fig. 5. Velocity of point p.

Fig. 6. Simulation of planar 5R parallel robot via SimMechanics toolbox.

As seen in Fig. 4, in the forward motion, position x of the point p moves from 0.1 to 0 m, while
position y moves from –0.3 to –0.22 m. Then, in the return motion, position x of the point p returns
from 0 m to 0.1 m, and position y goes back from −0.22 to −0.3 m. The time interval for both the
forward and return motions is 0.5 s, making up a full-cycle period of 1 s. As shown in Fig. 5, in the
both forward and return motions, the zero velocity is expected at the both start and end points.

Two interesting points are observed in the simulation results. First, for the forward and return
motions, the same values of parameters are obtained: mc1 = 285.1065 g, mc2 = 500.9559 g, αc1 =
231.5737o, and αc2 = 124.8787o. Second, the torques applied on the joints A1 and A2 were found
to be zero. Thus, it can be concluded that by properly setting the unknown parameters of the coun-
terweights, the robot exhibits a free oscillatory motion between the start and end points. Note that
the zero torque is obtained at the ideal condition without considering any friction, disturbance, and
parameter uncertainty. Also, a motion without any pause at the start and end points is considered.
Indeed, the PTCM is suitable for a single task in which start and end points are fixed.

Block diagram of the planar 5R parallel robot shown in Fig. 1 is created via SimMechanics toolbox
to verify the results. Figure 6 presents the block diagram of the robot. The obtained parameters of
counterweights and the initial conditions given in Eq. (27) are applied to the SimMechanics model.
SimMechanics model of the planar 5R parallel robot is shown in Fig. 7. The model is an open-loop
scheme without a controller. The position and velocity of point p computed from SimMechanics
toolbox for four motion cycles are shown in Figs. 8 and 9, respectively. In Figs. 8 and 9, the robot
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Fig. 7. SimMechanics model of planar 5R parallel robot.
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Fig. 8. Positionof point p obtained from SimMechanics toolbox and TPBVP.

Fig. 9. Velocity of point p obtained from SimMechanics toolbox and TPBVP.
F: Forward, R: Return.

exhibits a free periodic motion at a period of 1 s between the start position [0.1 −0.3] and end position
[0 −0.22]. Additionally, for the time interval of 0–0.5 s, the obtained results of the SimMechanics
model are well in accordance with the optimal trajectory obtained from TPBVP (Figs. 4 and 5).

4. Experimental Results
In this section, the results of simulations and experiments performed for different point-to-point
motions are given. For both TF and PTCM cases, the theoretical results are compared to the
experimental data.

4.1. Experimental setup
For the purpose of experimentation, a planar 5R parallel robot with adjustable counterweights was
designed in Semnan Robotics Lab. The robot with the counterweights is shown in Fig. 10. A
graded plate is used to adjust the counterweight arm angle (Fig. 11). Figure 12 presents the parts
of a counterweight.
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Table II. The experimental equipment to operate system.

Equipment Type

Power supply SMPS 12v and SMPS2Dynamixel
PC operating system Windows
Connection between PC and Dynamixel USB2Dynamixel
Compatible software with Dynamixel Microsoft Visual Studio

Fig. 10. Planar 5R parallel robot with two adjustable counterweights.

Fig. 11. Graded circular plate.

Counterweight arm Counterweight mass

Fig. 12. Different components of counterweight.

The servo-actuators used in the robot are Dynamixel XH430-W210 by Robotis c©. The servo-
actuators are operated in position control mode. This mode is ideal for articulated robots. The
resolution of the actuator is 0.088 deg. The control algorithm of the servo-actuator is Proportional
Integral Derivative (PID) control. The position sensor is a contactless absolute encoder. The current
feedback is used to measure the motor torque. The torque is proportional to the motor current, so by
multiplying the measured current at the motor torque constant, that is, 1.25, the applied torque can
be obtained. The experimental equipment of the system is given in Table II.

The servo-actuators are operated directly from PC by USB2Dynamixel connector as shown in
Fig. 13. The USB2Dynamixel is connected to USB port of PC. The Microsoft Visual Studio is used
to send and receive real-time data. The programming language is C#.

Due to the friction and parametric uncertainties, it is practically impossible to implement a motion
repeatedly without consuming any torque as an open-loop approach to exactly reproduce the periodic
motion discussed in the previous section. Parameter uncertainties are caused by measurement error
of mass, length, moment of inertia, and the position of the center of mass. Indeed, the used parameters
in the simulation study are not identical to the actual values of the experimental model. Thus, two
servo-actuators are used in the experimental setup to track the optimal trajectory in a closed-loop
approach. The flowchart of the command diagram is shown in Fig. 14.
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PC USB2Dynamixel Dynamixel servo actuators

Fig. 13. Dynamixel control using PC.
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Fig. 14. Command diagram of experiment setup.

Fig. 15. Position of point p for case 2.

4.2. Examples
In this experiment, PTCM was implemented for different pairs of start and end points. Four config-
urations were considered (Eq. (29)) with different positions in the coordinate system XOY. For all
cases, the velocity is considered zero at the start and end points, that is, ẋ p0 = ẏp0 = ẋ p f = ẏp f = 0:

case 1 : x1(0)= 0.1, x2(0)= −0.3, x1
(
tf

) = 0, x2
(
tf

) = −0.22; tf = 0.5 s

case 2 : x1(0)= −0.1, x2(0)= −0.3, x1
(
tf

) = 0.05, x2
(
tf

) = −0.25; tf = 0.75 s (29)

case 3 : x1(0)= 0, x2(0)= −0.24, x1
(
tf

) = 0, x2
(
tf

) = −0.34; tf = 0.5 s

case 4 : x1(0)= 0.075, x2(0)= −0.28, x1
(
tf

) = −0.075, x2
(
tf

) = −0.28; tf = 0.75 s

By solving the TPBVP, the position and velocity of the end effector p and also the values of mc1,
mc2, αc1, and αc2 of the counterweights are obtained. Position of point p in case 2 for the forward and
return motions is illustrated in Fig. 15. As seen in this figure, in the forward motion, point p moves
from [−0.1 −0.3] to [0.05 −0.25]. Then, in the return motion, point p returns from [0.05 −0.25] to
[−0.1 −0.3].
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Table III. Optimal values of mc1, mc2, αc1, and αc2 for different cases.

case mc1 (g) mc2 (g) αc1 (deg) αc2 (deg)

1 285.1065 500.9559 231.5737 124.8787
2 408.8644 359.3820 198.8428 158.0534
3 317.0116 317.0116 223.7515 136.2485
4 380.5313 380.5313 201.7857 158.2143

Fig. 16. Velocity of point p for case 2.

Fig. 17. Angular positions of active joints for case 2.
Exp.: Experimental.

The velocity of point p in case 2 for the forward and return motions is illustrated in Fig. 16. In the
both forward and return motions, the zero velocity is expected at the both start and end points.

The optimal values of parameters mc1, mc2, αc1, and αc2 of counterweights for different cases are
given in Table III. For each case, the same values of parameters mc1, mc2, αc1, and αc2 were obtained
for the forward and return motions.

To compare the theoretical and experimental results, the angular position and velocity at the active
joints are computed by Eqs. (2) and (3), respectively. The angular positions of the active joints A1

and A2 of the planar 5R parallel robot in case 2 for the forward and return motions are illustrated in
Fig. 17 for the both numerical and experimental results. As seen in Fig. 17, the results of the TPBVP
were in agreement with those of the experiment setup.

The angular velocities of the active joints in case 2 for the forward and return motions are illus-
trated in Fig. 18 for the both theoretical and experimental studies. The results of the TPBVP are in
agreement with those of the experiments.

For case 2, the start and end positions of the planar 5R parallel robot with the counterweights are
shown in Fig. 19. For the forward motion, the end effector of the robot moves from A to B. Next, in
the return motion, the end effector of the robot moves from B to A.

For case 2, the trajectory of the robot end effector for the forward and return motions are shown
in Fig. 20. This figure was obtained by taking a snapshot from the video file. The black curve shows
the optimal trajectory of the end effector of the planar 5R parallel robot.

In order to record the end effector trajectory, a small red laser pointer is attached to the end
effector. The end effector light path of the experiment setup was in agreement with the obtained
optimal trajectory of the TPBVP. Note that the video was recorded from a rear view of the robot.
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Fig. 18. Angular velocities of active joints for case 2.
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B

Fig. 19. Start and end points of robot in case 2.

Forward motion

Return motion

Fig. 20. Trajectory of end effector in case 2.

The numerically simulated and experimentally observed values of torque at active joints of the
planar 5R parallel robot in case 2 are plotted in Fig. 21 for the forward and return motions.

As seen in Fig. 21, for the PTCM, the zero theoretical torque values were calculated for the
forward and return motions. Also, by experimentally investigating the torque at active joints upon
implementing the PTCM, the obtained values were considerably lower than those with TF condition.
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Table IV. Value of performance index.

J((N.m)2.s)

Case Condition Forward Return Average

1 TF Theoretical 0.0609 0.0609 0.0609
Experimental 0.0619 0.0617 0.0618

Static balancing Theoretical 0.0497 0.0498 0.0498

PTCM Theoretical 0 0 0
Experimental 0.0059 0.0022 0.0040

2 TF Theoretical 0.0819 0.0819 0.0819
Experimental 0.0931 0.0912 0.0922

Static balancing Theoretical 0.0031 0.0032 0.0032

PTCM Theoretical 0 0 0
Experimental 0.0063 0.0042 0.0052

3 TF Theoretical 0.0440 0.0440 0.0440
Experimental 0.0482 0.0474 0.0478

Static balancing Theoretical 0.0248 0.0251 0.0249

PTCM Theoretical 0 0 0
Experimental 0.0045 0.0064 0.0055

4 TF Theoretical 0.0794 0.0794 0.0794
Experimental 0.0856 0.0849 0.0852

Static balancing Theoretical 0.0069 0.0069 0.0069

PTCM Theoretical 0 0 0
Experimental 0.0058 0.0070 0.0064

Fig. 21. Applied torque to joints A1 (left) and A2 (right) of robot – case 2.
F: Forward, R: Return, Exp.: Experimental.

Table IV presents the values of the performance index under different sets of condition according
to Eq. (16). In the static balancing, the value of masses mc1, mc2, and mc3 are 1.4760, 0.2656, and
0.5629 kg, respectively, according to Eq. (11).

Based on the results presented in Table IV, the following conclusions can be drawn:

1. Theoretical simulation:

For the cases 1, 2, 3, and 4, the values of performance index with the TF condition were found to be
0.0609, 0.0819, 0.0440, and 0.0794, respectively. Under static balancing, the values of performance
index for cases 1 to 4 are 0.0498, 0.0032, 0.0249, and 0.0069, respectively, while the corresponding
values of the PTCM condition were all zero.

For the cases 1, 2, 3, and 4, the static balancing reduces the performance index respectively
18.23%, 96.09%, 43.41%, and 91.31%. The reduction of this index in the PTCM is 100%. As seen
in the results, the efficiency of static balancing is decreased in high-speed motion.
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Fig. 22. Values of performance index for all cases.
The.: Theoretical, Exp.: Experimental.

2. Experimental implementation:

For the cases 1, 2, 3, and 4, the values of performance index with TF condition were calculated
as 0.0618, 0.0922, 0.0478, and 0.0852, respectively, while the corresponding values for PTCM
condition were 0.0040, 0.0052, 0.0055, and 0.0064, respectively.

In order to clarify the results given in Table IV, Fig. 22 presents the values of the performance
index obtained from the theory and experimentation. The figure demonstrates the advantage of PTCM
as compared with TF condition.

5. Conclusions
In this paper, PTCM was presented for a planar 5R parallel robot using optimal control problem
formulation. The necessary conditions of PTCM for optimality of the robot were obtained by the
PMP. In the PTCM, the states, torques at active joints, and unknown parameters of counterweights
were determined simultaneously, ending up with zero performance index. The performance index is
considered as the minimum effort. In the simulation study, it was shown that the required torques
for the active joints can be omitted completely, and identical counterweights for the forward and
return motions are calculated. Indeed, for a point-to-point motion, the values of mc1, mc2, αc1, and
αc2 of the counterweights were determined to obtain an optimal trajectory in which the robot can
freely swing between the two desired points. For the purpose of validation, the optimal values of
the counterweights were applied to a dynamic model of a planar 5R parallel robot created in the
SimMechanics environment. The simulation results demonstrate the ability of the robot to oscillate
freely between the initial and final positions without applying any torque. In order to demonstrate the
effectiveness of the proposed method, an experiment setup was developed. In the practical implemen-
tation, significantly lower performance index values were obtained for the robot on which the PTCM
was applied, as compared to the TF of the robot. According to experimental results, the performance
index decreased by about 90% compared to the unbalanced robot.

Previous studies reduce the applied torques at joints, whereas the proposed method reduces the
torque to zero. Compared to the static balancing method, it is a bit more difficult to implement. But
the proposed method can be useful and economical for the high repetitive and high-speed motion.
Indeed, the proposed method compensates the inertia force, gravity, Coriolis, and the centrifugal
terms of the dynamic equation. Using the presented method, the maximum required torque and power
of the actuators can be reduced considerably as shown in the experimental results. This aspect can
reduce the actuator size of the robot in the design setup or increase the number of cycles per unit
of time for an available robotic system. Although this method was successfully implemented for a
point-to-point motion, it has a limitation in the industrial applications. The PTCM is not considered
pause at the start and end points. However, a solution for the mentioned limit is the use of the servo
motor which has a solenoid or electromagnetic brake.
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