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Results of Anick (1986), Squier (1987), Kobayashi (1990), Brown (1992b), and others, show

that a monoid with a finite convergent rewriting sytem satisfies a homological condition

known as FP∞.

In this paper we give a simplified version of Brown’s proof, which is conceptual, in

contrast with the other proofs, which are computational.

We also collect together a large number of results and examples of monoids and groups

that satisfy FP∞ and others that do not. These may provide techniques for showing that

various monoids do not have finite convergent rewriting systems, as well as explicit

examples with which methods can be tested.

1. Introduction

Kapur and Narendran (1985) showed that the rewriting system {(aba, bab)} has no

equivalent finite convergent rewriting system. However, the monoid it presents can also

be presented by the finite convergent rewriting system {(ab, c), (ca, bc), (bcb, cc), (ccb, acc)}
on three generators a, b, c.

It is therefore natural to ask what conditions a monoid must satisfy if it can be presented

on some generating set by a finite convergent rewriting system.

An obvious necessary condition is that the monoid has a solvable word problem.

Squier (1987) showed that such a monoid must satisfy the condition FP3, which is well

known in homology theory. It was later realised that the results of Anick (1986) contained,

in a different language and with some conditions, which can be weakened, the stronger

result that such monoids satisfy the homological condition FP∞. These conditions, and

the related conditions FPn for all n, will be defined in Section 6.

Anick proved his result by showing that any convergent, but not necessarily finite,

rewriting system gives rise to a resolution for the monoid. A proof given in Kobayashi

(1990), which is very similar to Anick’s, is rather easier to follow. Another proof was given

by Groves (1991); see also Farkas (1992). A version of Squier’s argument is also given in

Lafont and Prouté (1991); their argument is closer to ours than the other cited proofs,

and is a useful introduction to our method.

All these proofs are computational, and so provide no insight as to why they work. By

contrast, a proof due to Brown (1992b) is conceptual, and helps to explain what is hap-

pening. Also, Brown’s method enables us to compute certain important homomorphisms,

https://doi.org/10.1017/S0960129596002149 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129596002149


D. E. Cohen 208

called boundary operators. The other proofs in principle allow these boundary operators

to be computed, but do so only by a complicated inductive definition, which is likely to

be troublesome in practice.

Brown’s proof, however, requires some detailed knowledge of topology and homology

theory to understand it. It therefore seems worthwhile to give a proof of Anick’s theorem

using the essential ideas of Brown’s method in a form that does not require detailed

topological or homological knowledge. I gave a version of the proof in Cohen (1993), but

the algebra can be simplified further by slightly weakening Brown’s conclusion, and we

look at the simpler version here.

Squier also proved (the result was published after his death in Squier et al. (1994); see

also Lafont (1994)) that a monoid with a finite convergent rewriting system satisfies a

stronger condition, which he referred to as having finite derivation type. He showed that

there was a monoid that did not have finite derivation type but is FP∞. Recently, Cremans

and Otto (1994) showed that a group has finite derivation type iff it is FP3.

Much recent work in group theory has a very geometric flavour, and Hermiller and

Meier (1994b) have shown a connection between groups with finite convergent rewriting

systems and certain geometric properties. Precisely, they show that such a group has the

geometric property known as a tame 1-combing . It is known that any group with a tame

1-combing is FP∞, so we have another proof of Anick’s Theorem, but only for groups.

The weaker property known as a bounded combing is discussed in Alonso (1992), where

groups with this property are shown to be FP∞. Many groups with tame 1-combings are

known, some of which have additional properties. It would be of interest to know whether

such groups must have a finite convergent rewriting system.

Hermiller and Meier (1994b) also show that if the finite convergent rewriting system has

additional properties (for instance, if it is length-reducing), further geometric properties

of the group can be obtained.

The relevant properties of rewriting systems are recalled in Section 2. Sections 4 and

5 contain the homological results needed to discuss the FPn and FP∞ properties, with

their topological background sketched in Section 3. Section 6 lists all the results I know

of about these properties. This is intended as a source of information, which can be used

in conjunction with Anick’s theorem to obtain interesting monoids or groups that have

no finite convergent rewriting system (or as examples in which one may want to look for

such a system). Section 7 contains the proof of Brown’s theorem, and Section 8 compares

the different approaches.

2. String rewriting

A rewriting system on a set X is a set R of pairs of elements of the free monoid X∗. We

define a relation → on X∗ by ulv → urv for any pair (l, r) ∈ R and any (possibly empty)

words u and v of X∗, and we then say that ulv rewrites to urv. We denote by
+→ and

∗→
the transitive closure and the reflexive transitive closure of →. The monoid presented by

〈X;R〉 is defined to be the quotient of X∗ by the equivalence relation generated by →.

We say that a word w is reducible if there is some word z with w → z; if there is no

such z we call w irreducible.
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An arbitrary relation � on a set S is called noetherian (or well-founded) if any sequence

s1 � s2 � . . . � sn � sn+1 � . . . is finite. In particular, if → is noetherian, we see that any

sequence of rewritings must eventually stop with an irreducible word.

We say that R is convergent (also called canonical or complete) if it is noetherian and

there is only one irreducible word in each equivalence class. Results of Newman (1943)

and others give conditions equivalent to this. In particular, if a finite system is noetherian

(for instance, if r is shorter than l for all (l, r) ∈ R), one can decide whether or not it is

convergent. For general properties of rewriting systems see the books by Jantzen (1988)

and Book and Otto (1993).

Two rewriting systems on the same set are called equivalent if the equivalence relations

they define are the same. Knuth and Bendix (1970) proved that to every rewriting system

there is an equivalent convergent rewriting system (which may, however, be infinite even

if the original system is finite).

We say that the convergent rewriting system R is minimal if, for each (l, r) ∈ R, r is

irreducible with respect to R and l is irreducible with respect to R − {(l, r)}. It is well

known (see Kapur and Narendran (1985) or Theorem 2.4 of Squier (1987)) that to every

convergent rewriting system there is an equivalent minimal convergent rewriting system,

which is finite if the original system is finite. Indeed, as shown in the references cited,

the most obvious modification of R is suitable. That is, we begin by replacing each pair

(l, r) by (l, r̂) where r̂ is the irreducible word obtained from r by repeated reduction. We

then omit any pair (l1, r1) for which there is a pair (l, r) and words u and v with l1 = ulv.

Finally, for each l we omit all but one pair with left-hand side l. If R is not convergent,

however, the resulting system need not be equivalent to R .

We say that R is strongly minimal if it is minimal and each element of X is irreducible.

Any minimal convergent rewriting system R on X can be modified to a strongly minimal

convergent rewriting system presenting the same monoid. We define X2 to be {x ∈
X; there is a pair (x, rx) ∈ R}, and let X1 = X − X2. Since R is minimal, no member of

X2 occurs on the right-hand side of any member of R. Also, the only member of R that

has the element x of X2 occurring in its left-hand side is (x, rx). It follows that the monoid

presented by 〈X;R〉 is also presented by 〈X1;R1〉, where R1 = R−{(x, rx); x ∈ X2}. This

latter system is easily seen to be convergent and strongly minimal. The two systems will

not be equivalent, since they are defined over different generating sets.

We conclude this section by proving some results about noetherian relations, which will

be used in Section 6.

Let � be a relation on a set S . We define the height of an element s as the supremum of

all k for which there is a sequence s � s1 � . . . � sk . This height is either a non-negative

integer or is infinite.

There are two reasons why s may have infinite height. The first is that there is an infinite

sequence s � s1 � . . . � sn � . . .. The second is that there is no such infinite sequence,

but, for all n there is a finite sequence s � sn1 � . . . � snn. The following result is well

known, and its proof is easy. We make explicit use of it in the proof of Brown’s theorem.

It is needed in Anick’s proof, and in all the other proofs, but its use there is implicit, and

readers have to look closely to see that it plays a crucial role in the performance of an

inductive process.
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Lemma 1. (König’s Lemma) Suppose that for each s there are only finitely many t

with s � t. Then an element s has infinite height only if there is an infinite sequence

s � s1 � . . . � sn � . . .. In particular, if, in addition, � is noetherian, every element has

finite height.

Lemma 2. Let� and⇒ be noetherian relations on a set S such that whenever u⇒ v � w

there is some z with u � z ⇒ w. Define � by u � v if either u � v or u ⇒ v. Then � is

noetherian.

Proof. Let
∗⇒ be the reflexive transitive closure of ⇒. An easy induction shows that if

u
∗⇒ v � w, there is some z such that u� z

∗⇒ w.

Suppose we have an infinite sequence v1 � v2 � . . .. We want to show that this sequence

is ultimately constant. It will be enough to find elements ui such that, for all i, ui
∗⇒ vi

and either ui � ui+1 or ui = ui+1 and one of vi ⇒ vi+1 and vi = vi+1 holds. For, as � is

noetherian, the sequence {ui} will be ultimately constant. Once this constancy is achieved,

the sequence {vi} will also be ultimately constant, since ⇒ is also noetherian.

We begin by defining u1 = v1, and suppose that we have defined ui for all i 6 k. If

vk ⇒ vk+1 or vk = vk+1, we let uk+1 = uk . If vk � vk+1, the first paragraph of the proof

shows that there is a suitable uk+1.

3. The topological background

Our algebraic constructions and results first occurred in a topological setting, and closely

mimic the corresponding topological constructions and results. It may therefore be helpful

to begin with an account of the topological material. Because this is just for background,

I leave many of the terms undefined, with the related algebraic concepts precisely defined

later. Also, I omit technical conditions necessary for some of the results to hold (for

instance, there is usually a need for the spaces considered to be reasonably well behaved).

Let G be a group. Let X and Y be spaces, both of which have trivial higher ho-

motopy groups and have fundamental group G. Then X is homotopy equivalent to Y .

Consequently, these spaces have the same homology groups (and cohomology groups). It

is natural to refer to these groups (which, for spaces with a geometric or combinatorial

structure, are easily defined in terms of the geometry) as the homology groups of the

group G.

This result was proved in 1935, but it was not until about ten years later that an explicit

construction for the homology groups was made. This construction, and the earlier result,

are the sources from which the wide river of homological algebra sprung.

For a simplicial complex (that is, a space made up of simplexes – triangles in dimension

2, tetrahedra in dimension 3, and so on), the homology groups are fairly easy to describe.

The chain group in dimension n is defined to be the free abelian group with basis the

n-simplexes. A boundary operator from the n-chains to the (n − 1)-chains is defined by

requiring the boundary of a simplex to be the signed sum of its faces. The homology

groups then measure how much the subgroup of all n-chains with zero boundary differs

from the subgroup of all boundaries of (n + 1)-chains. For general spaces, we have a

related construction, but the chain groups are much harder to describe.
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How can we find such a space X? We can start with a contractible space C on which

G acts nicely, and define X to be the quotient C/G.

We then want to obtain the homology groups of X. Because G acts on C , it will also

act on the chain groups of C , and the quotient of these chain groups by the action of G

gives us the chain groups of X. Because C is contractible, the chain groups of C form a

resolution of G (this algebraic notion is defined in the next section). Then the construction

of the homology groups of X from the chain groups of X, and the construction of these

chain groups from those of C , is exactly the algebraic construction of the homology

groups of G given in the next section.

We still have to construct a suitable space C . We build C out of simplexes (we can

regard the constructed object either as something abstract and combinatorial, or as a

topological space). We take one n-simplex [y1, . . . , yn+1] to each (n+ 1)-tuple y1, . . . , yn+1 of

elements of G. This simplex has n+1 (n−1)-dimensional faces, each obtained by omitting

one of the yi. Also, G acts on C by the obvious rule [y1, . . . , yn+1]z = [y1z, . . . , yn+1z]. It is

not difficult to show that C is contractible.

This construction defines the simplexes in what may be called a homogeneous fashion.

There is an alternative approach, which may be called non-homogeneous. For this we take

one n-simplex, denoted by (x1, . . . , xn)xn+1 to each (n+ 1)-tuple of elements of G. We have

an obvious action of G on these simplexes, and we have a bijection between the simplexes

in the two constructions under which (x1, . . . , xn)xn+1 corresponds to [y1, . . . , yn+1] if

yi = xi . . . xn+1 for 1 6 i 6 n+ 1; equivalently, xn+1 = yn+1 and xi = yiy
−1
i+1 for 1 6 i 6 n.

In this construction, the non-homogeneous (n−1)-dimensional simplexes corresponding

to the faces of [y1, . . . , yn+1] are easily seen to be (x2, . . . , xn)xn+1 for the first face,

(x1, . . . , xn−1)xnxn+1 for the last face, and (x1, . . . , xi−2, xi−1xi, xi+2, . . . , xn)xn+1 for the i-th

face.

This description of the faces explains the definition of the bar resolution in a later

section. When we are dealing with a group G, the homogeneous definition is simpler. But

for an arbitrary monoid M, rather than a group, we no longer get a bijection between the

homogeneous simplexes and the non-homogeneous ones, and the complex constructed

using the homogeneous simplexes does not provide a resolution of M; also, the action of

the monoid on the homogeneous simplexes is no longer free.

4. Complexes and resolutions

Let M be a monoid. Let ZM be the monoid ring of M. This is defined to be the

set of all finite formal sums
∑
nuu, where u runs over all elements of M, nu ∈ Z

and nu = 0 for all but finitely many u. Addition and multiplication are defined by

(
∑
nuu) + (

∑
puu) =

∑
(nu + pu)u and (

∑
nuu)(

∑
puu) =

∑
quu where qu =

∑
vw=u nvpw .

It is easy to check that this makes ZM a ring. We do not use any special properties of Z,

and the whole theory would be identical if we chose an arbitrary commutative ring for

coefficients. However, Z is the most important case, so we do not use the more general

notation.

A free chain complex over M consists of a sequence of free right ZM -modules Pn for

all n > 0 and homomorphisms ∂n : Pn → Pn−1 for all n > 0 such that ∂n∂n+1 = 0 for
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n > 0. We shall usually just refer to a complex , since we do not consider other kinds of

complex. We can just as well work with left modules, but choose right modules so as to

be consistent with Brown’s notation (and Anick’s, but not Squier’s).

We say that a complex is augmented if there is also a homomorphism ε : P0 → Z such

that ε∂1 = 0. Here, Z is regarded as a module on which M acts trivially.

An augmented complex is called a resolution of M if we have im ∂n+1 = ker ∂n for n > 0,

and im ∂1 = ker ε and εP0 = Z. Note that for any complex the left-hand side is contained

in the right-hand side. Strictly speaking, we should refer to a free resolution of Z, but

this is the only kind we shall consider.

Every monoid has a resolution. For, suppose we have a partial resolution; that is, the

modules and corresponding homomorphisms are defined only for n 6 k. Every module is

the quotient of a free module. So we can find a free module Pk+1 that has a homomorphism

onto ker ∂k , and define ∂k+1 to be this homomorphism. Inductively, we can extend any

partial resolution to a resolution. To start the induction, we may choose P0 to be ZM

and ε(
∑
nuu) =

∑
nu. Resolutions constructed like this are too big to be useful, but a

smaller resolution will be constructed in the next section, and an even smaller resolution

is obtained by Anick’s and Brown’s theorems.

Theorem 1. (Anick’s Theorem) Any strongly minimal convergent rewriting system on a

monoid M gives rise to a resolution of M. This resolution will be finitely generated in

each dimension if the rewriting system is finite.

This will be proved using Brown’s method in Section 6.

Given a sequence of modules and homomorphisms, it is usually straightforward to

see that it forms an (augmented) complex. A direct proof that it is a resolution may be

quite hard. Fortunately, to show that a complex is a resolution it is enough to prove the

existence of other homomorphisms satisfying certain conditions.

Suppose we have an augmented complex with modules Pn and homomorphisms ∂n. A

contracting homotopy consists of a sequence of homomorphisms of abelian groups (not

of modules) σn : Pn → Pn+1 and η : Z → P0 such that, for n > 0 and x ∈ Pn we have

∂n+1σnx + σn−1∂nx = x, and for x ∈ P0 and r ∈ Z we also have ∂1σ0x + ηεx = x and

εηr = r. In examples we usually have P0 = ZM with ε(
∑
nuu) =

∑
nu, and we then take

η to be given by ηr = r1, where 1 is the identity element of M.

Lemma 3. An augmented complex with a contracting homotopy is a resolution.

Proof. Let x be in Pn, where n > 0 (the other cases are similar but simpler). Then

(omitting subscripts for ease of notation) x = ∂σx + σ∂x, so if ∂x = 0, we have, as

required, x = ∂(σx).

It is not hard to see that every resolution has a contracting homotopy, which is defined

inductively using the fact that the modules are free abelian groups. Since we do not need

this result, the proof is left to the reader.

Let P be a free ZM-module with basis S . We denote by P̃ the free abelian group

with basis S . Let Q be another free module with basis T , and let φ : P → Q be a

homomorphism. Then, for all s ∈ S , we can write φs =
∑
tcst, where cst ∈ ZM and, for

each s, cst = 0 for all but finitely many t. We define φ̃ : P̃ → Q̃ by φ̃s =
∑
t(εcst), where

ε(
∑
nuu) =

∑
nu. The modules and homomorphism can be defined without mention of a
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basis. Specifically, we can define P̃ to be P ⊗ZM Z, where ⊗ denotes the tensor product.

This is in principle a better approach, but it requires knowledge of tensor products, which

readers may not have and do not need for the properties that concern us.

It is easy to see that ˜imφ = im φ̃, and that k̃erφ ⊆ ker φ̃. In general this inclusion is

not an equality.

Suppose we have a resolution with modules Pn and homomorphisms ∂n. Then we have

the corresponding abelian groups P̃n and homomorphisms of abelian groups ∂̃n. Since

∂n∂n+1 = 0, the previous paragraph tells us that im ∂̃n+1 ⊆ ker ∂̃n. The quotient group

ker ∂̃n/ im ∂̃n+1 is called the nth homology group of M.

These homology groups appear to depend on the choice of resolution. But it is well-

known (see Hilton and Stammbach (1971), Mac Lane (1963), or Lafont and Prouté

(1991)) that in fact they only depend on M. This is, of course, a key result, without which

homology theory would be impossible. Also, these groups are the homology groups with

integer coefficients. It is possible to use other coefficients, and also to define cohomology

groups. Any of these groups can be used to check if Anick’s condition holds.

5. The bar resolution

Let M be a monoid. We will construct two resolutions of M, the unnormalised bar

resolution and the normalised bar resolution.

An n-tuple of elements of M will be called an n-cell or a cell of dimension n. Let Bn be

the free right ZM -module with basis the n-cells. In particular, B0 has a single generator

(), and we usually identify B0 with ZM and () with 1M , where 1M is the identity of M

(which we usually denote just by 1). We then define ε : B0 → Z by ε
∑
nuu =

∑
nu. We

also define η : Z→ ZM by ηn = n1M ,

We define homomorphisms ∂ni : Bn → Bn−1 for n > 0 and 0 6 i 6 n by

∂nn(u1, . . . , un) = (u1, . . . , un−1)un,

∂n0(u1, . . . , un) = (u2, . . . , un),

and, for 0 < i < n,

∂ni(u1, . . . , un) = (u1, . . . , ui−1, uiui+1, ui+2, . . . , un).

We then define ∂n to be
∑n

0(−1)n−i∂ni. In particular, ∂1(u) = u−1 (identifying B0 with ZM

and () with 1), ∂2(u, v) = (v)−(uv)+(u)v, and ∂3(u, v, w) = −(v, w)+(uv, w)−(u, vw)+(u, v)w.

Plainly, ε∂1 = 0.

It is easy to check that ∂ni∂n+1,j = ∂n,j−1∂n+1,i for 0 6 i < j 6 n+ 1, from which we see

that ∂n∂n+1 = 0 for all n. Thus we have a complex.

We may define a homomorphism σn of abelian groups from Bn to Bn+1 that sends

(u1, . . . , un)un+1 to (u1, . . . , un, un+1). It is easy to check that this is a contracting homotopy.

Thus our complex is a resolution, which we call the unnormalised bar resolution.

We call the cell (u1, . . . , un) degenerate if ui = 1 for some i, and we let Dn be the

submodule of Bn with basis the set of degenerate n-cells. Plainly, ∂n maps Dn into Dn−1

and σn maps Dn into Dn+1. It follows that ∂n induces a homomorphism of modules from
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Bn/Dn to Bn−1/Dn−1, and σn induces a homomorphism of abelian groups from Bn/Dn to

Bn+1/Dn+1. Thus the modules Bn/Dn, which are plainly free with basis the non-degenerate

n-cells, together with the homomorphisms induced by ∂n also form a resolution.

We call this the normalised bar resolution. For notational reasons, we usually think of

it as generated by all n-cells (u1, . . . , un) with the relations (u1, . . . , un) = 0 if ui = 1 for

some i. We shall usually call this resolution the bar resolution, since we shall not need the

unnormalised resolution.

6. The FP∞ property

We say that a monoid is FP∞ if it has a free resolution that is finitely generated in all

dimensions. More generally, we say that it is FPn if it has a free resolution that is finitely

generated in all dimensions 6 n.
We have seen that any partial resolution can be extended to a resolution. Thus M

will be FPn if it has a partial resolution that is defined in dimensions 6 n and finitely

generated in each dimension 6 n.
The theorem of Anick, Brown and Kobayashi tells us that a monoid with a finite

convergent rewriting system will be FP∞. Thus it is of interest to give examples of

monoids and groups that satisfy this condition and other examples that do not satisfy

it. I will give here most of the results I am aware of concerning this property, so as to

provide a resource for anyone interested in examples. As one of the major references

(Bieri 1976) may not be widely available (having been published in a departmental lecture

notes series), it seems worthwhile to record many of the results given there. Readers

wanting to look at particular examples that cannot be treated by the methods discussed

here will probably need to ask assistance from an expert in homology theory. The explicit

presentations given (or obtainable) for some of these groups provide a source of examples

to test.

As remarked in the introduction, in the rapidly developing field of geometric group

theory, important classes of groups are FP∞ and satisfy the stronger necessary condition

given in Hermiller and Meier (1994b). I do not give examples of such groups; the interested

reader should check the book by Epstein et al. (1992).

Let M be a monoid that is FP∞ with a resolution by free modules Pn that are finitely

generated for all n. Let P̃n be the corresponding free abelian group discussed in Section 3;

this is finitely generated. Since every subgroup of a finitely generated free abelian group

is finitely generated, ker ∂̃n will be finitely generated. Thus the homology group Hn(M),

being a quotient of this, will also be finitely generated. So we have seen that a monoid that

is FP∞ will have finitely generated homology groups in all dimensions. We can use any

resolution to evaluate the homology groups. The bar resolution is too large for efficient

calculation of these groups. However, Brown’s theorem gives us a smaller resolution from

any convergent rewriting system, even an infinite one. So we may be able to show, using

this smaller resolution, that some homology group is not finitely generated; it will then

follow that the monoid is not FP∞, so cannot be given by any finite convergent rewriting

system. (More generally, we could use coefficients other than Z, and we could use the

cohomology groups rather than the homology groups.) Here, Brown’s theorem is of more
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use than Anick’s and Kobayashi’s theorems, as it gives the boundary operators by a

simple formula (of geometric origin), whereas they only give the boundary operators by

a complicated inductive formula.

Squier (1987) cites several examples of finitely generated groups with a solvable word

problem that are not FP3, and hence cannot be presented by any finite convergent

rewriting system. These examples belong to families of finitely presented groups with a

solvable word problems, such that each family contains, for every n > 2, a group that is

FPn but not FPn+1. These examples, which will be given later, satisfy Squier’s condition

if n > 2, but do not satisfy Anick’s condition.

Squier (1987) also explicitly gives a family of monoids Sk for all k > 0, and proves

the following facts. Each Sk is given by an infinite convergent rewriting system in a form

from which one can easily see that the monoid has a solvable word problem. S0 is not

FP2, and so (as remarked below) cannot be presented by any finite rewriting system, even

one that is not convergent. For k > 1, Sk can be presented by a finite rewriting system

(but this system is not convergent). For k > 2, Sk is not FP3 (this is shown by using

the infinite convergent rewriting system to calculate the homology groups), and so Sk
cannot be presented by any finite convergent rewriting system. The monoid S1 is FP∞,

but Squier showed in a later paper (published after his death as Squier et al. (1994); see

also Lafont (1994)) that S1 cannot be presented by any finite convergent rewriting system.

It is shown in Squier (1987) (and in Lafont and Prouté (1991); the result was known

much earlier than Squier’s paper) that any finitely generated monoid is FP1 and any

finitely presented monoid is FP2. It is shown in Bieri (1976) (and elsewhere) that a group

that is FP1 is finitely generated. This does not hold for monoids, since a monoid that is

right FP∞ but not left FP1 cannot be finitely generated. I do not know if there is a monoid

that is both left and right FP1 but is not finitely generated. For groups, the property FP2

is equivalent, as shown in Bieri (1976), to a property known as almost finitely presented.

6.1. Monoids and groups; differences and similarities

Our definitions and proofs have been given in terms of right modules, so, strictly speaking,

we should refer to the property of being right FP∞. There will be a similar concept of left

FP∞. A monoid with a finite convergent rewriting system will be both right FP∞ and left

FP∞.

For a group G, any left G-module can be regarded as a right G-module, and conversely,

by defining ug = g−1u for any g ∈ G and any u in the module. Thus a group is right FP∞
if and only if it is left FP∞, and the same holds for FPn. For monoids, the two concepts

can differ. It is shown in Cohen (1992) that there is a monoid that is right FP∞ but not

even left FP1.

Most of the results on the FP∞ and FPn properties hold only for groups. We begin

with some results relating the monoid M with presentation 〈X;R〉 to the group G with

the same presentation. There is a homomorphism i from M to G induced by the inclusion

of X∗ into F , the free group on X. More precisely, there are, by definition of monoid and

group presentations, homomorphisms π : X∗ →M and ρ : F → G, and there is a natural

inclusion j from X∗ to F; we shall sometimes regard j as inclusion, so that it need not be
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explicitly mentioned. Because the relations of M hold in G, we can define i by iπ = ρj.

However, i need not be an inclusion, as is seen by taking X = {a} and R = {(a2, a)}.

Lemma 4. Suppose that for any u1 and u2 in M there are v1 and v2 in M such that

u1v1 = u2v2. Then G = (iM)(iM)−1.

Proof. Since G is generated by iX, it is enough to show that (iM)(iM)−1 is a subgroup.

It is plainly closed under taking inverses. So look at a product (iw1)(iu1)−1(iw2)(iu2)−1.

By hypothesis, we can find p and q in M such that u1p = w2q. Let u = u1p, v = w1p,

and z = u2q. Then the product we are looking at equals (iv)(iu)−1(iu)(iz)−1 = (iv)(iz)−1, as

required.

Lemma 5. To any homomorphism α from M into a group H there is a homomorphism β

from G into H such that α = βi. If there is a one–one homomorphism from M into some

group, then i is one–one. If α is one–one and M satisfies the conditions of the previous

lemma, then β is one–one.

Proof. Define a homomorphism β̂ : F → H by β̂x = απx. For any (l, r) ∈ R, we have

πl = πr, so β̂l = β̂r. It follows that there is a homomorphism β : G → H such that

β̂ = βρ. Then βiπ = βρj = β̂j = απ, and the first part of the lemma follows, as π maps

onto M.

When α is one–one, we see at once from α = βi that i is one–one.

Suppose the condition of Lemma 4 holds. Then to any g ∈ G there are u and v in G

such that g = (iu)(iv)−1. Then βg = (αu)(αv)−1. If βg = 1, we get αu = αv. Thus, if α is

one–one, ker β = {1}, and thus β is one–one.

Lemma 6. Suppose the condition of Lemma 4 holds. Then i is one–one if and only if, for

all u, v, w ∈M, uw = vw implies u = v.

Proof. Let i be one–one, and suppose that uw = vw. Then (iu)(iw) = (iv)(iw). Since G

is a group, this implies that iu = iv, and so u = v.

Conversely, let M be a monoid satisfying the condition of Lemma 4. Define a relation

∼ on M×M by (u, v) ∼ (u1, v1) if there are w and w1 such that uw = u1w1 and vw = v1w1.

Then ∼ is obviously reflexive and symmetric, and it is easy to check, using the condition,

that it is transitive. Furthermore, to any two equivalence classes A and B there are u, v, w

such that A and B are the equivalence classes of (u, v) and (v, w), respectively. Also, the

class of (u, w) depends only on A and B, not on the choices of u, v, w. Thus we have a

multiplication on the set of equivalence classes that (it is easy to see) makes it into a

group. This group is isomorphic to G, but we do not need this fact.

There is a homomorphism from M into this group that sends u into the class of (u, 1).

If u and v have the same image, there is some w such that uw = vw. Thus our second

hypothesis tells us that this homomorphism is one–one, and so, by the previous lemma, i

is one–one.

Lemma 7. Let i be one–one. Then M has a solvable word problem if G has a solvable

word problem. Also, if, in addition, M satisfies the condition of Lemma 4, then G has a

solvable word problem if M has a solvable word problem.

Proof. Let u and v be in X∗. Then πu = πv iff iπu = iπv iff ρu = ρv. If G has a solvable
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word problem, we can decide whether or not this holds, and so M has a solvable word

problem.

Conversely, suppose that the condition of Lemma 4 holds, and that M has a solvable

word problem. By the condition, to any a and b in X∗, there are c and d in X∗ such

that π(ac) = π(bd). Since M has a solvable word problem, such c and d can be computed

from a and b (by testing all pairs until a suitable pair is found). Evidently, we then have

ρ(a−1b) = ρ(cd−1). Iterating this procedure, for any w in the free group F we can compute

y and z in X∗ such that ρw = ρ(yz−1). Thus ρw = 1 iff ρy = ρz, that is, iff iπy = iπz.

Since i is one–one, this holds iff πy = πz, and we can decide whether or not this holds,

since M has a solvable word problem.

The proof of the next lemma is rather complicated, because it is a special case of a

general homological result. Readers may prefer to note the statement, but omit its proof.

Lemma 8. Let i be one–one, and let the condition of Lemma 4 hold. If M is FPm for

some m with 1 6 m 6 ∞, then G is FPm.

Proof. For convenience of notation, we shall regard i as inclusion, so that we can omit

mention of it.

An easy induction shows that, for any k and any u1, . . . , uk ∈M there are v1, . . . , vk ∈M
such that u1v1 = . . . = ukvk . It then follows that, for any k and any g1, . . . , gk ∈ G, there

are w1, . . . , wk ∈M and t ∈M such that gi = wit
−1 for all i. It is then easy to see that any

element of ZG can be written as cu−1 for some c ∈ ZM and u ∈M, and, finally, that, for

any k, any k elements of ZG can be written as ciu
−1 for some u ∈M and c1, . . . , ck ∈ ZM.

Let P be a free ZM -module with basis S . The previous paragraph shows that any

element of the free ZG-module with basis S can be written as pu−1 for some p ∈ P and

u ∈M. We therefore denote this free ZG-module by PM−1.

Let Q be another free ZM -module with basis T , and let φ : P → Q be a homomorphism.

Then there are elements cst of ZM such that, for all s, φs =
∑
tcst, and for each

s there are only finitely many t with cst 6= 0. We may define a ZG-homomorphism

φM−1 : PM−1 → QM−1 by (φM−1)s =
∑
tcst. Also, if ε is a ZM -homomorphism from P

to the trivial module Z, we have integers ks such that εs = ks, and again we define εM−1

to be the ZG-homomorphism from PM−1 to the trivial module Z that sends s to ks. It is

possible to define PM−1 and φM−1 without reference to a basis, but for our purposes it

seems easier to use this definition.

It is easy to check that im(φM−1) = (imφ)M−1, and that ker(φM−1) = (kerφ)M−1,

with similar results for ε.

It follows that any resolution of M by modules Pn and homomorphisms ∂n gives rise

to a resolution of G by modules PnM
−1 and homomorphisms ∂nM

−1. The lemma is now

immediate.

6.2. Examples of monoids and groups that are FP∞

6.2.1. Some easy examples The simplest case is that of finite monoids. The bar resolution

shows at once that any finite monoid is FP∞.

Let M be the free monoid on X. Let P0 = ZM and let P1 be free on a basis {tx}
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bijective with X. Define ∂1 : P1 → P0 by ∂1tx = x − 1, and define ε as usual. Plainly,

ε∂1 = 0. Let 0 6= p ∈ P1. We can write p =
∑
txux, where ux ∈ ZM and ux = 0 for all

but finitely many x. Each ux is a finite sum
∑
nximxi with nxi ∈ Z and mxi ∈ M, where i

runs over some index set depending on x. Let myj have the maximum length among all

the elements mxi for all x and all associated i. Then ∂1p 6= 0, since it contains the term

nyjymyj , which cannot cancel against any other term.

Thus M has a resolution with P0 and P1 as above, with Pn = 0 for n > 1. Plainly, then,

M is FP∞ if X is finite.

A similar, but more complicated, analysis of elements of maximum length can be

applied to the free group G on X. It gives a resolution with P0 being ZG, P1 the free

ZG-module with basis {tx}, and Pn = 0 for n > 1. Thus the free group on a finite set X is

FP∞.

Alternatively, we can regard the free group on X as the monoid with presentation

〈X ∪ X̄; (xx̄, 1), (x̄x, 1) for all x〉. This rewriting system is convergent, so Brown’s theorem

tells us that the group is FP∞ when X is finite. However, this approach does not show

that we can take Pn = 0 for n > 1.

The free abelian monoid on {x1, . . . , xn} is presented by the convergent rewriting system

{(xjxi, xixj)} for all j > i. Brown’s theorem tells us that this monoid has a resolution for

which Pk has basis the set of all k -tuples (xj1 , . . . , xjk ) with j1 > . . . > jk . In particular, this

monoid is FP∞ (and even has Pk = 0 for k > n).

By Lemma 8, the free abelian group on a finite set is also FP∞.

Lyndon (1950) shows that a finitely generated group with a single defining relation is

FP∞. (Note that here we are looking at group presentations, not monoid presentations,

when we say that there is a single defining relation.)

6.2.2. Some simple constructions We now look at how various group-theoretic construc-

tions behave with regard to the FPn properties. We will find that various results about

FP∞ have parallel results about convergent rewriting systems.

The next two results are shown in Bieri (1976).

Let H be a subgroup of the group G, and let H have finite index in G. Then, for 1 6 n 6 ∞,

G is FPn iff H is FPn.

Let K be a normal subgroup of the group G, and let K be FP∞. Then, for 1 6 n 6 ∞, G

is FPn iff G/K is FPn. In particular, the direct product of FP∞ groups is FP∞.

The following analogues of these for rewriting systems are found in the unpublished

paper Groves and Smith (1989); some of these results are published in Groves and

Smith (1993).

Let H be a subgroup of the group G, and let H have finite index in G. If H has a finite

convergent rewriting system, so does G. However, it is not known if H must have a finite

convergent rewriting system when G has a finite convergent rewriting system.

Let K be a normal subgroup of the group G. If both K and G/K have finite convergent

rewriting systems, so does G. In particular, the direct product of groups with finite convergent

rewriting systems has a finite convergent rewriting system.

The following results are immediate from those given above. Let G0 = {1}, and, for

1 6 i 6 k, let Gi be a group containing Gi−1. Suppose that, for 1 6 i 6 k, either Gi−1 has
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finite index in Gi or Gi−1 is a normal subgroup of Gi with Gi/Gi−1 finitely generated and

either free or free abelian or with one defining relation. Then Gk is FP∞. If the last case is

omitted, Gk has a finite convergent rewriting system.

The following criterion can be found in Bieri (1980).

Let G be a finitely presented group that is isomorphic to a subgroup of GLn(Q), the group

of invertible n× n matrices with rational coefficients. If G is FP∞, the centre of G, which is

defined to be {g ∈ G; gh = hg for all h ∈ G}, is finitely generated.

6.2.3. Further constructions Two constructions of importance in group theory are the

amalgamated free product and the HNN extension. The former constructs a group A∗C B
from two groups A and B and a group C , which is a subgroup of both. In particular, if C

is trivial, we get the free product A ∗B; this has presentation 〈X ∪Y ;R∪S〉 when A and

B have presentations 〈X;R〉 and 〈Y ;S〉 with X and Y disjoint. The latter constructs a

group from a group A, a subgroup C and a one–one homomorphism φ : C → A.

The following results are found in Bieri (1976). Here we have 1 6 n 6 ∞, with n − 1

denoting ∞ if n = ∞.

Let G be the amalgamated free product A∗C B. If A and B are FPn and C is FPn−1, then

G is FPn. If G and C are FPn, so are A and B. If G is FPn and A and B are FPn−1, then

C is FPn−1.

Let G be the HNN extension 〈A, t; t−1Ct = φC〉. If A is FPn and C is FPn−1, then G is

FPn. If G and C are FPn, so is A. If G is FPn and A is FPn−1, then C is FPn−1.

Baumslag and Bieri (1976) define the class of constructible groups to be the smallest

class C closed under isomorphisms and such that:

— {1} ∈ C,

— G ∈ C if G has a subgroup H of finite index with H ∈ C,

— an amalgamated free product A ∗C B is in C if A, B, and C are in C,

— an HNN extension 〈A, t; t−1Ct = φC〉 is in C if A and C are in C.

From the previous discussions, it is immediate that all constructible groups are FP∞.

Those constructible groups that are solvable (also called soluble; this means that some

term of the derived series is trivial, and it has no connection with having a solvable

word problem) are characterised in Baumslag and Bieri (1976). It is shown in Groves

and Smith (1989) that all constructible solvable groups have finite convergent rewriting

systems. This paper also gives sufficient conditions for an amalgamated free product or

an HNN extension to have a finite convergent rewriting system.

Let Γ be a finite graph, and suppose that, for each vertex i ∈ Γ, we have a group

Gi with presentation 〈Xi;Ri〉. The graph product of the groups is defined to be the

group with presentation 〈
⋃
Xi;
⋃
Ri ∪ S〉, where S = {xyx−1y−1 for all x ∈ Xi, y ∈

Xj and i adjacent to j}. This can be shown to depend only on the graph and the groups,

not on the presentations chosen. The similar construction for monoids is called a partially

commutative monoid.

The graph product can be constructed from direct products and amalgamated free

products in a simple way, giving the next result (Cohen 1995).

The graph product of FP∞ groups is FP∞. It is shown in Hermiller and Meier (1994a)
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that convergent rewriting systems on the vertex groups (or monoids) give rise, in a natural

way, to a convergent rewriting system on the graph product, and this is finite if the original

rewriting systems are finite.

6.3. Examples of groups that are not FP∞

6.3.1. Bieri’s groups An and Bn We need to begin with the notion of the split extension of

one group by another. We define an action of the group G on the group H as a function

from G×H to H , denoted by ·, such that

— g · (hh1) = (g · h)(g · h1) for all g ∈ G and h, h1 ∈ H ,

— (gg1) · h = g · (g1 · h) for all g, g1 ∈ G and h ∈ H ,

— g · 1H = 1H for all g ∈ G, where 1H is the identity element of H ,

— 1G · h = h for all h ∈ H , where 1G is the identity element of G.

Equivalently, an action of G on H is a homomorphism from G to the group of automor-

phisms of H .

Given an action of G on H , the split extension of H by G is the group whose underlying

set is H × G with the multiplication defined by (h, g)(h1, g1) = (h(g · h1), gg1). It is easy

to see that this multiplication makes H × G a group, and that this group contains a

subgroup isomorphic to G and a normal subgroup isomorphic to H . The intersection of

these subgroups is trivial, and their product is the whole group.

We now apply this construction. Let Dn = 〈x1, y1〉 × . . .× 〈xn, yn〉, the direct product of

n free groups of rank 2. Let F be the free group of countable rank with basis {ak; k ∈ Z},
and let Z[1/d], where d is an integer greater than 1, be the set of rational numbers of the

form r/ds for some r ∈ Z and s ∈ N. We may specify an action of Dn on either of these

groups by specifying how the generators act, and any action of these generators extends

to an action of Dn if it respects the relations. In particular, we have an action of Dn on

F given by xi · ak = ak+1 = yi · ak for all k ∈ Z and 1 6 i 6 n, and an action of Dn on

Z[1/d] by xi · q = dq = yi · q for all q ∈ Z[1/d] and 1 6 i 6 n. Let An and Bn be the

corresponding split extensions.

Then An and Bn have normal subgroups isomorphic to F and Z[1/d], respectively,

the quotient groups being Dn in each case. It is then easy to see that both An and Bn
have a solvable word problem. It is also easy to check that (for instance), for any j,

the relation x2 · aj = aj+1 can be derived from the relations x2 · a0 = a1, x2x1 = x1x2,

and, for all k, x1 · ak = ak+1. As a result, we find that An has a finite presentation with

generators x1, y1, . . . , xn, yn, and a with the relations xixj = xjxi, yiyj = yjyi, xiyj = yjxi
for 1 6 i < j 6 n, and xiax

−1
i = x1ax

−1
1 , yiay

−1
i = x1ax

−1
1 for 1 6 i 6 n. Similarly Bn has

a finite presentation with the same generators as An, and with the relations of An and one

additional relation z1ax
−1
1 = ad. It is shown in Bieri (1976) that both An and Bn are FPn

but not FPn+1. It is these examples that Squier uses.

6.3.2. Abels’ group Gn Let p be a prime, and let Z[1/p] be the ring consisting of all

rational numbers of form r/pn.

The group GLn(Z[1/p]) consists of those n×n matrices with entries in Z[1/p] that have
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an inverse of the same form. Let Gn be the subgroup of GLn+1(Z[1/p]) that consists of

those matrices A = (aij) with a11 = 1 = an+1,n+1 and aij = 0 for i > j. As a matrix group,

Gn has a solvable word problem. Brown shows that, for n > 2, Gn is finitely presented and

FPn−1, but not FPn.

We can find an explicit finite presentation of Gn. It is a split extension of the group

T of unitriangular matrices (that is, matrices with aii = 1 for all i and aij = 0 for i > j)

by the group of those diagonal matrices that are in Gn (that is, aij = 0 for i 6= j and

a11 = 1 = an+1,n+1). For 1 6 k 6 n, let Tk be the subgroup of T consisting of those

matrices in T such that aij = 0 for 1 6 j − i 6 k. Then Tk+1 is a normal subgroup of Tk
such that the quotient Tk/Tk+1 is the direct sum of n+ 1− k copies of Z[1/p], regarded

as a group under addition.

Now, if P is a group with a normal subgroup Q, it is easy to find a presentation of P

from presentations of Q and P/Q. Thus we can find inductively an (infinite) presentation

of each Tk . This leads to an infinite presentation of T , and then of Gn. A finite presentation

of Gn can be found from its infinite presentation by routine but tedious manipulations.

Details are left to the reader. Abels (1979), which first discussed the group G3, gives a

group presentation (not a monoid presentation) of G3 with five generators and thirteen

relations.

6.3.3. Brown’s group Hn Brown (1987) gives conditions under which a group acting on a

space is FP∞, and under which it is FPn but not FPn+1. In Brown (1984) he discusses

circumstances under which such a group is finitely presented. When the action is given

in sufficient detail, a finite presentation can be explicitly determined, but it is often

quite complicated to do so. The proofs of his results require a considerable knowledge

of homological methods. The statements, however, are not difficult to understand. In

particular, the statements of Corollary 3.3 in Brown (1987) and Theorem 3 in Brown (1984)

require very little technical knowledge. His examples include the following ones.

Let Hn be the group of those permutations α of N× {0, . . . , n− 1} for which there are

integers m0, . . . , mn−1 such that, for 0 6 i 6 n − 1 and all sufficiently large x ∈ N, we

have α(x, i) = (x + mi, i). It is easy to see that the function sending α to (m0, . . . , mn−1)

is a homomorphism. The kernel of this homomorphism is isomorphic (by means of the

bijection from N× {0, . . . , n− 1} to N, which sends (k, i) to kn+ i) to the group of those

permutations of N that fix all but finitely many elements.

Given α, choose k so that α(x.i) = (x + mi, i) for x > k and 0 6 i 6 n − 1. Since α is

a permutation, it maps
⋃
i{(x, i); x 6 k} bijectively onto

⋃
i{(x, i); x 6 k + mi}. Hence the

image of the homomorphism is contained in {(m0, . . . , mn−1;
∑
mi = 0}. That the image is

precisely this set is easily seen, using the permutations αi for which

αi(x, 0) = (x+ 1, 0), αi(0, i) = (0, 0), αi(x+ 1, i) = (x, i), αi(x, j) = (x, j) for all i 6= 0, i.

From this we can easily see that Hn has a solvable word problem. It is shown in

Brown (1987) that, for n > 2, Hn is finitely presented and is FPn−1 but not FPn. In

principle, Brown’s results could be used to find an explicit finite presentation of Hn, but

it may be easier to use the technique sketched below.

We begin with presentations 〈Xk;Rk〉 of the finite symmetric groups Sk (for instance,
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that in 6.28(1) of Coxeter and Moser (1958), or one of the other presentations given by

them). If these are chosen so that Xk ⊆ Xk+1 and Rk ⊆ Rk+1, then 〈
⋃
Xk;

⋃
Rk〉 is an

infinite presentation of the group of all permutations of N that move only finitely many

elements. This is a normal subgroup of Hn, and we have described the quotient group,

which has an obvious presentation. As in the discussion of Abels’ group, this leads easily

to an infinite presentation of Hn, and routine but complicated calculations enable us (with

the aid of the permutations αi defined above) to replace this by a finite presentation. The

details are left to the reader.

6.4. Further monoids and groups that are FP∞

The first of these is the monoid M presented on X = {xi, all i ∈ N} by the rewriting

system {(xjxi, xixj+1) for all i, j with i < j}, and the group F with the same presentation.

The history of this group is discussed in Brown (1987; 1992b). The rewriting system is

evidently convergent, and so M has a solvable word problem. It is easy to check that

the irreducible words of X∗ are exactly the words xi1 . . . xik for all k and all i1, . . . , ik
with i1 6 . . . 6 ik . We can then see easily that M satisfies both hypotheses of Lemma

6. It follows, by Lemma 7, that F also has a solvable word problem. Brown shows by

topological methods in Brown (1987) that F is FP∞, and he indicates how the topological

proof can be turned into an algebraic one. A slightly different proof is given in Brown

and Geoghegan (1984). Further discussion in Brown (1992b) makes it clear (though this

is not stated explicitly) that M is FP∞; the proof in Brown (1992b) that F is FP∞ is that

of Lemma 8, stated in a more abstract homological version.

We will show that F can be finitely presented. This result is stated in the references

cited, but the proof is left to the reader. As it is slightly messy, but still managable by

hand, I give the details here. By contrast, M is right FP∞ but is shown in Cohen (1993)

not to be left FP1, so it is not even finitely generated.

For k > 0 let rk be the relation x−1
0 xkx0 = xk+1, for k > 1 let sk be the relation

x−1
1 xkx1 = xk+1, and for k > 0 let tk be the relations x−1

k xk+1xk = xk+2; in particular, r1 is

the same as t0 and s2 is the same as t1.

It is easy to see that, for 0 < i < j, the relation x−1
i+1xj+1xi+1 = xj+2 can be derived

from ri, rj , rj+1 and the relation x−1
i xjxi = xj+1. It follows that all the relations can be

derived from {rk; k > 0} ∪ {sk; k > 1}. It is also clear that, for k > 0, rk+2 can be derived

from rk, rk+1, tk and tk+1, and that, for k > 1, sk+2 can be derived from sk, sk+1, tk and

tk+1. Thus we may take for the defining relations of F the relations tk for all k > 0,

together with the relations r2 and s3. The relations tk for k > 2 can be used to eliminate

the generators xk for k > 4. We get a finite presentation of F with generators xi for

0 6 i 6 4 and relations r2, s3, t0, t1 and t2. If we prefer, the relation s3 can be replaced by

the relation x−1
1 x3x1 = x−1

0 x3x0. Each of these finite presentations can easily be replaced

by presentations on the two generators x0, x1.

Guba and Sapir (1995) show that this group, regarded as a monoid on the generators

x0, x1, x̄0, x̄1 can be given by a convergent rewriting system that is regular (it is still

unknown whether it has a finite convergent rewriting system).

There is a family of groups, which arise as groups of homeomorphisms or as auto-
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morphism groups, all of which are finitely presented infinite simple groups that are FP∞.

Some of the properties of these groups are obtained in Brown (1992b). In Brown (1992a)

one of these groups is exhibited explicitly in such a way that a finite presentation can

easily be derived from it.

Brown (1992a) defines a triangle of groups to consist of three groups Gi for i = 1, 2, 3,

together with a subgroup Gij of Gi for i 6= j and isomorphism from Gij to Gji for

1 6 i < j 6 3. Let Gi have presentation 〈Xi;Ri〉, where Xi ∩ Xj =W for i 6= j. Let Yij be

a subset of the free group on Xi whose image in Gi generates Gij , and let these sets be

chosen so that the isomorphism from Gij to Gji is induced by a bijection from Yij to Yji.

Brown defines the triangle product in a way that depends on the groups but not on their

presentations. However, it is easy to see from his definition that this triangle product has

presentation 〈X1 ∪X2 ∪X3;R1 ∪ R2 ∪ R3 ∪ S〉, where S consists of all yijy
−1
ji where i < j,

yij ∈ Yij , and yji corresponds to yij in the bijection between Yij and Yji.

The triangle product is defined in a similar way to the amalgamated free product (which

uses two groups rather than three, with the obvious modifications). But they behave very

differently. The amalgamated free product always contains copies of the original groups,

whereas the triangle product of non-trivial groups can be trivial.

Brown shows that one of the groups he considered can be described as a triangle

product of symmetric groups of degrees 5, 6, and 7 in the following way. Let G1 be the

group of all permutations of the set {a, b, c, d, e}, let G2 be the group of all permutations

of {a, b, c, d, e0, e1}, and let G3 be the group of all permutations of {a, b, c, d0, d1, e0, e1}.
Let G12 be the subgroup of G1 fixing e, G21 the subgroup of G2 fixing both e0 and e1,

G23 the subgroup of G2 fixing d, and G32 the subgroup of G3 fixing both d0 and d1, the

isomorphisms being the obvious ones. Let G13 be the subgroup of G1 that preserves the

sets {a, b, c} and {d, e}. Thus G13 is the direct product of the group of permutations of

{a, b, c} by a cyclic group of order 2 whose non-trivial element is the permutation (d e).

Finally, G31 is to be the direct product of the group of permutations of {a, b, c} by the

cyclic group of order 2 whose non-trivial element is (d0 e0)(d1 e1).

From this description, it is routine to obtain a presentation of the triangle product. We

could use various presentations of the symmetric group to get a number of presentations

of the triangle product.

7. Brown’s Theorem

Brown showed that, in circumstances to be given shortly, a complex (either in the algebraic

sense of this paper or in a topological sense) can be replaced by a smaller complex that

is equivalent, in a suitable sense, to the original complex. In particular, in the algebraic

setting, if the original complex is a resolution, so is the smaller complex. Brown proved

his result in a topological setting. A translation of his proof to the algebraic setting was

given in Cohen (1993). If we are content to prove the result for resolutions, which will

be enough to obtain Anick’s result, the algebraic proof can be further simplified, and this

simplified proof will be given in this section.
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7.1. The topological background

Let T be a triangle (edges and interior), let T1 be the union of two of its edges, and let

T2 be the third edge. It is easy to see that T can be deformed (pushed down, collapsed)

into T1, by moving each point in a direction perpendicular to T2.

Let X be a space and let Y be the space obtained by attaching T to X along T1. More

precisely, let f : T1 → X be a map, and let Y be obtained from the disjoint union of

X and T by identifying t with ft for all t ∈ T1. Then the collapsing of T into T1 can

be extended to a collapsing of Y into X. Thus Y and X are homotopy equivalent, and

so have the same homology. We call T2 a redundant edge with corresponding collapsible

triangle T .

This can obviously be extended to higher dimensions; T could be a tetrahedron, T2

one of its faces, and T1 the union of its other faces, or, more generally, T could be a cell

(simplex) of arbitrary dimension and T1 the union of all but one of its faces. Furthermore,

there is no need to add just one cell (simplex); we can add an arbitrary number of cells

(possibly infinite) at once, and Y will still collapse into X.

We can proceed further, attaching new collapsible and redundant cells to Y (by means

of maps into Y that are not maps into X), and so on. We get a sequence of spaces,

X = Y0 ⊆ Y1 ⊆ Y2 ⊆ . . . ,

where each Yn is obtained by adding collapsible and redundant cells to Yn−1.

Then, as before, each Yn collapses into Yn−1, and, inductively, Yn collapses into X. Let

Y∞ =
⋃
Yn. A subtler argument shows that Y∞ is homotopy equivalent to X.

A further generalisation is now needed. We are often given a space Y that we want to

regard as coming from a simpler space X by adding cells in various stages. That is, we

have a sequence

X = Y0 ⊆ Y1 ⊆ Y2 ⊆ . . . ,
where each Yn is obtained by adding cells to Yn−1, and Y =

⋃
Yn. In this situation, we will

not expect that all the cells added to Yn−1 to form Yn will be collapsible or redundant; we

call the remaining cells essential. Brown’s topological theorem states that Y is homotopy

equivalent to a space Z obtained from X by adding, for each k, one k-cell for each

essential k-cell occurring somewhere in the sequence (and, furthermore, the attaching map

can be constructed).

This topological idea translates to the algebraic notion of a collapsing scheme, which

will be defined shortly. All our proofs are given in the algebraic setting.

7.2. Collapsing schemes and resolutions

Let P be an augmented free chain complex. We specify a basis for each Pn, and we call

the elements of this basis n-cells. A collapsing scheme for P consists of the following:

(1) a division of the cells into three disjoint classes, called the essential, redundant, and

collapsible cells, with all 0-cells being essential, and all 1-cells being either essential

or redundant,

(2) a function, called height, from the set of all redundant cells into N,
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(3) a bijection between the set of redundant n-cells and the set of collapsible (n+ 1)-cells

such that, when c is the collapsible cell corresponding to the redundant cell r, for one

of the two choices of sign any redundant cell occurring in r ± ∂c has smaller height

than r.

A collapsing scheme on a resolution (not on an arbitrary complex) is called strong if it

satisfies the following extra condition:

(4) there is a contracting homotopy σ such that, for any collapsible chain x and any

m ∈M the chain σ(xm) is collapsible.

We shall see later how this notion arises in the bar resolution.

Usually the height function is given implicitly and not explicitly. That is, we replace

conditions (2) and (3) by

(2′) for each n, a noetherian relation > on the set of redundant n-cells,
(3′) a bijection between the set of redundant n-cells and the set of collapsible (n+ 1)-cells

such that, when c is the collapsible cell corresponding to the redundant cell r, for

one of the two choices of sign any redundant cell r′ occurring in r ± ∂c has r > r′.

For the rest of the theory we will assume that the sign in ± is always −. This can be

achieved simply by replacing c by −c for some collapsible cells to get a new basis. In

the explicit construction given later, however, it is preferable to use ± because there is a

natural choice of the cells.

König’s Lemma and its preceding remarks, applied to the relation � given by r � r′ if

r′ occurs in r − ∂c, show that, when (1), (2′) and (3′) hold, there will be a height function

satisfying (2) and (3). Note that we only need to compare redundant cells of the same

dimension.

Theorem 2. (Brown’s Theorem) If a free resolution has a (strong) collapsing scheme,

there is a free resolution that in dimension n has as basis the essential n-cells. Also,

the boundary operator in dimension n is determined by the original boundary operator

in dimension n and the collapsing scheme in dimensions n − 1 and n. Every strongly

minimal convergent rewriting system 〈X;R〉 gives rise to a strong collapsing scheme for

the normalised bar resolution of the monoid presented by the rewriting system in such

a way that the essential 1-cells and 2-cells are bijective with X and R, respectively, and

there are only finitely many essential cells in each dimension if the rewriting system is

finite.

The theorem is true for any collapsing scheme, but the proof for a strong collapsing

scheme is slightly easier, and is all that we need, so we will only prove this case. The proof

of the theorem will take the rest of this section.

Let P be a resolution with a collapsing scheme. We call a chain essential, redundant or

collapsible if all its cells are essential, redundant or collapsible, respectively. We denote

by En the set of all essential n-chains. The resolution we construct will have En as its set

of n-chains, but it will take some work to define the boundary operators.

We begin by defining a homomorphism θn : Pn → Pn. For a redundant cell r with

corresponding collapsible cell c, we let θr = r− ∂c (as usual, we omit subscripts wherever

this does not cause confusion), we let θe = e for any essential cell e, and we let θc′ = 0

for any collapsible cell c′.
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We define the height of a chain to be −1 if the chain has no redundant cells, and to be

the maximum height of its redundant cells if it has any such cells. It is easy to see that

if x is a chain of height k > 0, then θx has height less than k. It follows that (even if

k = −1) θk+1x has no redundant cells, θk+2x is essential, and θmx = θk+2x for m > k + 2.

We define φx to be θmx for any m > k + 2. Then φn can be regarded either as a

homomorphism from Pn to itself or as a homomorphism from Pn to En; we rely on the

context to determine which is meant.

We define δn : En → En−1 by δn = φn−1∂n.

Proposition 1. The modules En and homomorphisms δn form an augmented free chain

complex.

Proof. Observe first that to any n-chain x there is a collapsible n-chain y and a

collapsible (n + 1)-chain z such that x − θx = ∂y + z. For this holds for all chains if

it holds for all cells. However, if x is essential, we may take y = 0 and z = 0, if x is

redundant, we may take z = 0 and y the collapsible cell corresponding to x, while if x is

collapsible, we take y = 0 and z = x.

Since φx = θmx for some m, it is immediate that for each x

x− φx = ∂y + z for some collapsible y, z (†)

Since z is collapsible, there will be a redundant u such that ∂z = u−θu. Hence φ∂(∂y+z) =

φ∂z = φ(u− θu) = 0, since ∂∂ = 0, and, by definition of φ, φθ = φ.

It follows that

φ∂x = φ∂φx. (‡)
Since all 0-cells are essential, φ0 is the identity, and εδ0 = ε∂0 = 0.

Also, by the above, δδ = φ∂φ∂ = φ∂∂ = 0, as required.

The first part of Brown’s theorem is completed by the following proposition.

Proposition 2. Suppose that the collapsing scheme is strong. Define τn : En → En+1 by

τ = φσ. Then τ is a contracting homotopy for the complex of essential chains, so this

complex is a resolution.

Proof. We begin by showing that φσφ = φσ. Take any chain u. By † there are

collapsible chains y and z such that u−φu = ∂y+ z. Thus φσu−φσφu = φσ(∂y+ z). By

hypothesis, σz is a collapsible chain, so φσz = 0. Because σ is a contracting homotopy,

we have φσ∂y = φy − φ∂σy. Now φy = 0, because y is collapsible. By hypothesis, σy is

a collapsible chain, so there is a redundant chain w with ∂σy = w − θw. As φθ = φ, we

see that φσu− φσφu = 0, as required.

Now, for any essential chain x, (τδ + δτ)x = (φσφ∂ + φ∂φσ)x, by definition, and this,

by the result just shown and ‡, equals (φσ∂ + φ∂σ)x = φx, because σ is a contracting

homotopy. Since x is essential, we have φx = x, which shows that τ is a contracting

homotopy.

It is not difficult to prove the result for all collapsing schemes. Since we do not need it,

the details will be left to the reader. One needs to use (†), and to begin by proving that

for a non-zero collapsible chain x the chain ∂x is non-zero.
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7.3. Rewriting systems and collapsing schemes

Let R be a strongly minimal convergent rewriting system on the set X. Let M be the

monoid with presentation 〈X;R〉. Brown shows how to obtain from R a collapsing scheme

on the normalised bar resolution of M. We shall follow the account in Brown (1992b).

The details are given here only to make the current paper self-contained.

Even when R is infinite, the collapsing scheme may be simple enough to enable

calculations to be made in the resolution by essential cells. We may then be able to prove

that M has an infinitely generated homology group in some dimension, and so cannot be

FP∞, and therefore cannot be given by any finite convergent rewriting system.

We will regard the elements of M as the irreducible elements of X∗. If u and v are

in M the product uv may be reducible. We will denote by u × v the irreducible element

obtained from uv; thus u× v is the product in M of u and v.

The construction is somewhat complicated, so we will look explicitly at the low-

dimensional cases first.

Let v ∈ M − X. Then in X∗ we have v = xu for some x ∈ X and u ∈ M. As indicated

in the topological background material, we are thinking of the cells as being added in

stages. Since u is simpler than v, it is natural to expect that u will already be present

when we want to add v. The 2-cell (x, u) has boundary (x)u − (x × u) + (u). Since xu is

irreducible, v = x × u, and the second term in the boundary is the 1-cell (v), while the

third term is (u), which is already present. We therefore say that (v) is a redundant cell

whose corresponding collapsible cell is (x, u). The essential 1-cells will be the cells (x) for

x ∈ X.

By analogy with the 1-dimensional case, with v as above and any w, the 2-cell (v, w) is

to be redundant, with corresponding collapsible 3-cell (x, u, w). The boundary of this cell

is (x, u)w − (x, u × w) + (x × u, w) − (u, w). Here the third term is our 2-cell (v, w), while

(x, u) is collapsible. The other two terms may be collapsible, essential, or redundant (or

zero, since we are working in the normalised bar resolution, if u × w = 1). We will have

to define the partial ordering on redundant cells so that these two precede (u, v) if they

are redundant.

We still have to consider 2-cells of the form (x, w). Such a cell will, by our earlier

discussion, be collapsible if xw is irreducible.

Suppose that xw is reducible. If no proper subword is reducible (equivalently, if xw is

the left-hand side of an element of R), there is no natural way of associating a 3-cell with

(x, w), and we therefore call this cell essential.

Now suppose that some proper subword of xw is reducible. Since w is irreducible, we

can write w = pq, where xp is the left-hand side of an element of R. We now define

(x, w) to be redundant, with corresponding collapsible 3-cell (x, p, q). Its boundary is

(x, p)q − (x, p× q) + (x× p, q)− (p, q). Here the second term is our redundant cell (x, w),

while (x, p) is essential. The other two terms can be of any type. We must define our

partial ordering so that they precede (x, w) if they are redundant.

We will now look at arbitrary dimensions. Recall that the n-cells are the n-tuples

(u1, . . . , un) with ui ∈ M − {1} for all i, and that, if ui = 1 for some i, then (u1, . . . , un)

denotes 0.
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The cell (u1, . . . , un) is defined to be essential if

(i) u1 ∈ X,

(ii) for all i < n, uiui+1 is reducible,

(iii) for all i < n, no proper prefix of uiui+1 is reducible.

It is obvious that there are only finitely many essential cells in each dimension if R
is finite, so Brown’s analysis provides a proof that a monoid with a finite convergent

rewriting system is FP∞.

Let u1 6∈ X, and write u1 = xv for some x ∈ X. Then the cell (u1, . . . , un) is to be

redundant, with corresponding collapsible cell (x, v, u2, . . . , un). We say that the level of

this redundant cell is 1.

Now let u1 ∈ X. We say that (u1, . . . , un) has level i if i is as large as possible subject to

(u1, . . . , ui−1) being essential; note that i > 1. Thus an essential cell has level n+ 1, and a

non-essential cell has level at most n. If the cell is not essential, (u1, . . . , ui−1) is essential

but (u1, . . . , ui) is not, so either ui−1ui is irreducible or some prefix of it is reducible. In the

first case we call the cell collapsible, in the second case we call it redundant.

Suppose that (u1, . . . , un) is redundant of level i. Write ui as vw, where v is as short

as possible subject to ui−1v being reducible. Then the cell (u1, . . . , ui−1, v) is essential, so

(u1, . . . , ui−1, v, w, ui+1, . . . , un) is easily seen to be collapsible. We define a function from

redundant cells to collapsible cells by letting this collapsible cell correspond to the

redundant cell (u1, . . . , un).

It is easy to see that this is a bijection between the set of redundant n-cells and the set

of collapsible (n+ 1)-cells, and that every collapsible cell comes from a redundant cell of

one level lower.

We still need to define a relation >n on the n-cells (it is convenient to define >n on all

n-cells, though we only need it on the redundant ones), and show that (3′) holds.

In X∗, we say that v is a subword of w, and write w ⇒ v, if w = pvq for some words p

and q that are not both empty (though one may be). We define w > v to mean that either

w
+→ v (in the sense of the rewriting system) or w ⇒ v. Since R is noetherian, and ⇒ is

obviously noetherian, Lemma 2 tells us that > is noetherian.

When b denotes the cell (u1, . . . , un), we let W (b) be the element u1 . . . un of X∗, and we

let i(b) be the level of b.

Let b and b′ be n-cells. We say that b >n b
′ if either W (b) > W (b′) or W (b) = W (b′)

and i(b) < i(b′). Since > is noetherian, and i(b) and i(b′) are at most n+ 1, we see easily

that >n is also noetherian.

Let c = (u1, . . . , un) be a collapsible n-cell of level i + 1 with corresponding redundant

(n− 1)-cell r of level i. We have ∂n0c = (u2, . . . , un) and ∂nnc = bun, where b = (u1, . . . , un−1).

Both W (∂n0c) and W (b) are subwords of W (c).

For 0 < j < n, ∂njc = (u1, . . . , uj−1, uj × uj+1, . . . , un). By the definition of level and of

essential, uiui+1 is irreducible, while ujuj+1 is reducible for 0 < j < i. In particular, we

have W (r) = W (c). Since ujuj+1 reduces to uj × uj+1, we see that if ujuj+1 is reducible,

then W (c)
+→ W (∂njc); in particular, this holds for 0 < j < i, and may hold for some

j > i. When j > i and ujuj+1 is irreducible, we have W (c) = W (∂njc). Also, for j > i, ∂njc

begins with u1, . . . , ui, as does c itself, so its level is at least i+ 1.
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Thus ∂c has one entry ±r, while all its other cells (whether redundant or not) are <n r,

and we have the final condition (3′) for a collapsing scheme.

Brown goes on to discuss methods of calculating the boundary maps, giving sev-

eral examples. This material is easy to follow, now that we have made the general

algebraic construction; readers are strongly recommended to look at these examples in

Brown (1992b).

Brown and Geoghegan (1984) discuss the monoid M presented on generators {xn; n ∈
N} by the convergent rewriting system {(xjxi, xixj+1); all i, j with i < j}. The general

analysis of the collapsing scheme associated with a convergent rewriting system shows

that M has a resolution whose basis in dimension n is the set of all cells (xj1 , . . . , xjn ).

They show that there is a further collapsing scheme on this resolution for which there are

exactly two essential cells in each dimension. Thus M is FP∞, as previously remarked.

7.4. An alternative ordering

There is a variation of the definitions and proofs, which will be useful in the next section.

When b is an n-cell, and u ∈ M, we call bu an n-term. We call a term redundant,

essential, or collapsible if the corresponding cell is redundant, essential, or collapsible. We

modify the definition of a collapsing scheme to allow for a height function, or a partial

ordering, on terms rather than cells. Precisely, we replace (2′) and (3′) by

(3′′) for each n, a noetherian relation > on the set of redundant n-terms,

(4′′) a bijection between the set of redundant n-cells and the set of collapsible (n+1)-cells

such that, when c is the collapsible cell corresponding to the redundant cell r, for

one of the two choices of sign any redundant term r′u′ occurring in ru ± ∂cu has

ru > r′u′.

It is easy to check that, with this variant definition, all the previous results apply, and

once again a collapsing scheme gives rise to a resolution whose chains have as basis the

essential cells.

We now associate with a convergent rewriting system a collapsing scheme in this new

sense.

We change the definition of ⇒, and now define w ⇒ v if w = vq for some non-empty

q. As before, we define w > v to mean that either w
+→ v (in the sense of the rewriting

system) or w ⇒ v, using this new sense of ⇒. Then > will be noetherian. Let � be the

transitive closure of >.

Fo a term bu, we define W (bu) and i(bu) to be W (b)u and i(b). We get a noetherian

relation >n on the n-terms by bu >n b
′u′ if either W (bu) > W (b′u′) or W (bu) = W (b′u′)

and i(bu) < i(b′u′).

As before, let c = (u1, . . . , un) be a collapsible n-cell of level i + 1 with corresponding

redundant (n − 1)-cell r of level i; let u ∈ M. With our new definition, we still have

∂ni(cu) = ru and W (ru) = W (cu), and we have ru >n−1 ∂nj(cu) for 0 < j < n and j 6= i.

If unu is reducible, we have W (cu) > W (∂nn(cu)), while if unu is irreducible, we have

W (cu) = W (∂nn(cu)) and i(∂nn(cu)) > i+ 1 > i(ru), so we also have ru >n−1 ∂nn(cu). Thus

we have a collapsing scheme in the new sense.
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We also note that any term t, of whatever kind, occurring in θ(ru) satisfiesW (ru)�W (t)

or W (ru) = W (t).

It is then immediate that, for any term t and any term t′ occurring in φt we have either

W (t)�W (t′) or W (t) = W (t′).

We now consider an essential n-term eu, where e = (u1, . . . , un). Suppose that v = unu

is irreducible, and let e′ = (u1, . . . , un−1), which is an essential cell. Then e′v = ∂nn(cu), and

W (e′v) = W (eu). Also, because e is essential, ujuj+1 is reducible for 0 < j < n, and we

see that W (eu) > W (∂nj(eu)). Also, W (eu)⇒ W (∂n0(eu)). Hence W (e′v) > W (∂nj(eu)) for

0 6 j < n.

Since δ = φ∂, we see, from the remarks previously made about φ, that δ(eu) = e′v + q,

where any term t in q satisfies W (e′v)�W (t), and W (e′v) = W (eu).

Now suppose that unu is reducible. Then ∂nn(eu) = (u1, . . . , un−1)w, where w = un × u.
Thus W (eu) > W (∂nn(eu)). So any term t in ∂(eu) has W (eu) > W (t). As before, it follows

that any term t′ in δ(ey) has W (eu)�W (t′).

We shall need these results in the next section.

8. Comparison with other approaches

In this section, we shall show that our approach leads to the same resolutions as the

ones found by Kobayashi, Anick, and (up to dimension 3) Squier. Note that we will

use brackets [ and ] as a means of grouping expressions together, because we are using

parentheses ( and ) in the notation for essential cells; this will be done except for the

few occasions when we need several levels of grouping. We need a notation because some

of our functions are homomorphisms of abelian groups, not of modules; if f is such a

function and e is a cell, we need to distinguish between f(eu) and (fe)u.

8.1. Kobayashi’s method

Kobayashi’s definition uses as basis for the chains what we have called the essential cells.

However, he uses an inductive definition for the boundary operator dn and the contracting

homotopy tn. (Our notation is slightly different from his, in order to be consistent with

that of Section 7.) We shall use the definition of > given in Subsection 7.3. He defines

d1(x) = x− 1

and, when u = x1 . . . xn,

t0u =
∑

(xi)xi+1 . . . xn.

Suppose that di has been defined for i 6 n and ti has been defined for i < n. He then

defines

dn+1(u1, . . . , un+1) = (u1, . . . , un)un+1 − tn−1dn[(u1, . . . , un)un+1].

Let (u1, . . . , un) be an essential n-cell, and let u ∈M. When unu is irreducible (in particular,

when u = 1), he defines tn[(u1, . . . , un)u] = 0.

When unu is reducible, we can write u = vw where v is as short as possible with unv
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reducible. Then (u1, . . . , un, v) is an essential cell. He then defines

tn[(u1, . . . , un)u] = (u1, . . . , un, v)w + tn[(tn−1dn[(u1, . . . , un)v])w].

This last is shown to be a valid definition by noetherian induction, using other properties

of the di and ti that are themselves proved inductively. We want to identify his boundary

operators and contracting homotopy with ours. For this we need to know that tn satisfies

the stated formula, but we do not have to show that this formula provides a definition of

tn.

Note that this approach (and Anick’s) requires us to know both dn and tn−1 in order to

compute dn+1. In turn, dn requires knowledge of dn−1 and tn−2. Thus we cannot use either

Kobayashi’s formula or Anick’s to compute dn+1 until we have computed the boundary

operators and contracting homotopy in all lower dimensions.

By contrast, our method starts with the bar resolution, in which the boundary operators

and contracting homotopies are given by simple formulas. The division of the cells into

essential, collapsible and redundant cells is also fairly simple, and the boundary operator

for our resolution in dimension n + 1 is determined using only these data in dimensions

n+ 1 and n; there is no need to look at lower dimensions.

Let u = x1 . . . xn, and, if n > 1, let v = x2 . . . xn. We have σ01 = 0, since we are regarding

degenerate cells as zero. We have σ0u = (u). If n > 1, the cell (u) is redundant, with

corresponding collapsible 2-cell (x, v). We have ∂(x, v) = (x)v−(xv)+(v), so θ(u) = (x)v+v;

similarly if n > 2, we obtain θv. Hence

τ0u = φσ0u =
∑

(xi)xi+1 . . . xn = t0u.

Plainly, d1 = δ1.

Now suppose that di = δi for i 6 n, and ti = τi for i < n. To show that dn+1 = δn+1, it

is evidently enough to show that

δn+1(u1, . . . , un+1) = (u1, . . . , un)un+1 − τn−1δn[(u1, . . . , un)un+1].

However,

τn−1δn[(u1, . . . , un)un+1] = (u1, . . . , un)un+1 − δn+1τn[(u1, . . . , un)un+1],

and σn[(u1, . . . , un)un+1] = (u1, . . . , un, un+1). As this is essential, we have

τn[(u1, . . . , un)un+1] = (u1, . . . , un, un+1),

and thus we have the required formula.

To show that tn = τn, we use noetherian induction on W [(u1, . . . , un)u]. If u = 1,

then σn[(u1, . . . , un)u] = 0, by definition, so τn[(u1, . . . , un)u] = 0. If unu is irreducible, then

σn[(u1, . . . , un)u] is collapsible, so τn[(u1, . . . , un)u] = 0. Thus tn = τn on terms of these kinds.

Now suppose that unu is reducible, and write u = vw as before. We have

τn−1δn[(u1, . . . , un)v] = (u1, . . . , un)v − δn+1τn[(u1, . . . , un)v].

Also, σn[(u1, . . . , un)v] = (u1, . . . , un, v), which is essential, so

τn[(u1, . . . , un)v] = (u1, . . . , un, v).
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It then follows that

τn[(τn−1[δn(u1, . . . , un)v])w] = τn[(u1, . . . , un)u]− τnδn+1[(u1, . . . , un, v)w].

However,

τnδn+1[(u1, . . . , un, v)w] = (u1, . . . , un, v)w − δn+2τn+1[(u1, . . . , un, v)w].

As already remarked, because vw is irreducible, τn+1[(u1, . . . , un, v)w] = 0. That is, we have

τn[(τn−1[δn(u1, . . . , un)v])w] = τn[(u1, . . . , un)u]− (u1, . . . , un, v)w.

This formula is obtained from that for tn, by replacing t by τ and d by δ.

Inductively, we assume that di = δi for i 6 n, and that ti = τi for i < n. As a

subsidiary noetherian induction, we assume that tn[e
′u′] = τn[e

′u′] for any term e′u′ with

W [(u1, . . . , un)u] � W [e′u′], and we want to prove that tn[(u1, . . . , un)u] = τn[(u1, . . . , un)u].

By the discussion of the previous paragraphs, we may assume that unu is reducible,

write u = vw, and we need only show that in [τn−1[δn(u1, . . . , un)v]]w any term e′u′ has

W [(u1, . . . , un)u]�W [e′u′].

Now, for any essential cell e′′ and any m ∈ M, we plainly have W [e′′m] = W [σ[e′′m]].

By the discussion in Subsection 6.3, it follows that for any term e′u′ in τ[e′′m] we

have W [e′′m] � W [e′u′)] or W [e′′m] = W [e′u′]. Because unv is reducible, we know that

W [(u1, . . . , un)v] � W [e′′m] for any term e′′m in δn[(u1, . . . , un)v]. Hence, by the previous

paragraph, in τn−1[δn(u1, . . . , un)v] any term e′u′ has W [(u1, . . . , un)v]� W [e′u′]. Since the

relation � is preserved by multiplication on the right, we have the required property.

Thus we have identified Kobayashi’s boundary operators and contracting homotopy

with ours.

Kobayashi states his result in a more general from, involving a second rewriting system

S, for which we can rewrite lv to rv, but cannot rewrite ulv to urv if u 6= 1. Brown’s

method generalises to this situation. We begin by changing the definition of ∂n0 in the

unnormalised bar resolution to ∂n0(u1, . . . , un) = (û1u2, . . . , un), where û1 is the normal form

of u1, leaving ∂ni unchanged for n > 0. We then define a cell to be degenerate if either u1

is irreducible or ui = 1 for some i > 1, and get a normalised resolution (in a slightly more

general sense) by factoring out the degenerate cells. The details of the collapsing scheme

are left to the reader.

8.2. Anick’s method

Anick’s account is both more and less general than ours. It is more general because

he works with an associative algebra rather than a monoid; we shall not make this

generalisation. It is less general, because on the free monoid he takes a well-ordering

compatible with multiplication and assumes that any (l, r) ∈ R has r less than l. It is

possible to modify his approach, using a noetherian partial ordering as before, and using

noetherian induction rather than transfinite induction. Since we already have a better

proof, we shall not do this. However, we will show that his resolution is also the same as

ours.

Anick’s definition of the elements that form a basis for the chains is very different from
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ours, and the main work is in showing that there is a natural bijection between his basis

and the essential cells. We will leave this till later, and for the moment assume that they

are the same.

We denote his boundary operator in dimension n (but with the essential cells as basis

using the bijection) by βn. He does not define a contracting homotopy, but only defines a

homomorphism of abelian groups αn from ker βn to the group of (n+ 1)-chains such that

βn+1αnc = c when βnc = 0.

With the notation of the previous subsection, he defines β1 = d1 and α0(u − 1) = t0u.

Thus we have β1 = δ1 and α0 = τ0 on ker ε.

Suppose we have defined βi for i 6 n and αi for i < n, and that βi = δi for i 6 n and

αi = τi on ker βi for i < n.

He defines

βn+1(u1, . . . , un+1) = (u1, . . . , un)un+1 − αn−1[βn(u1, . . . , un)un+1].

As in Kobayshi’s approach, we find that βn+1 = δn+1.

Before defining αn we need a lemma.

Lemma 9. Let (u1, . . . , un) and (v1, . . . , vn) be essential cells, and let u and v be in M. If

W [(u1, . . . , un)u] = W [(v1, . . . , vn)v], then ui = vi for all i and u = v.

Proof. Since u1 . . . unu = v1 . . . vnv and both u1 and v1 are in the generating set X, we

have u1 = v1. Suppose we have ui = vi for i 6 r and let r + 1 6 n. Since urur+1 and

vrvr+1 are prefixes of the same word, either one is a prefix of the other or they are equal.

By the definition of an essential cell, both urur+1 and vrvr+1 are reducible, but neither

has a reducible prefix. Thus they must be equal. As ur = vr , we see that ur+1 = vr+1. So,

inductively, ui = vi for all i, and then u = v.

We define a quasi-ordering of essential terms that may have different dimensions by

saying that the essential term eu is higher than the essential term e′u′ if W [eu] is higher

than W [e′u′]. From the lemma, this is a well-ordering on essential terms of a fixed

dimension. From the way the well-ordering is defined, eu is higher in this well-ordering

than e′u′ if eu� e′u′.

Now consider an essential n-chain c with δnc = 0. Let (u1, . . . , un)u be its highest term,

so that c = k(u1, . . . , un)u+ c′, where k ∈ Z and the terms in c′ are lower than (u1, . . . , un)u.

Then, by our analysis in Subsection 6.3, all the terms in δnc
′ will be lower than (u1, . . . , un)u,

as will all but one of the terms in δn(u1, . . . , un)u. If unu is irreducible, the remaining term

is (u1, . . . , un−1)U with U = unu, and W [(u1, . . . , un−1)U] = W [(u1, . . . , un)u], so this term is

higher than all the other terms of δnc. This is impossible, because δnc = 0.

Thus unu is reducible, and, as usual, we write u = vw. We have βn+1(u1, . . . , un, v)w =

δn+1(u1, . . . , un, v)w = (u1, . . . , un)u + c′, where, as before, all terms in c′ are lower than

(u1, . . . , un, v)w and so lower than (u1, . . . , un)u. It follows that c− kβn+1(u1, . . . , un, v)w is a

chain in ker βn, all of whose terms are lower than (u1, . . . , un)u; we denote it by c′′.

Anick now defines

αnc = k(u1, . . . , un, v)w + αnc
′′,

a definition by transfinite induction.

Since βn+1 = δn+1 and, as shown in the previous subsection, τnδn+1[(u1, . . . , un, v)w] =
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(u1, . . . , un, v)w, we also have

τnc = k(u1, . . . , un, v)w + τnc
′′.

Thus we have proved by transfinite induction that αn = τn on kerβn. We now proceed

to give Anick’s account of the basis elements. We shall define n-overlaps and leftmost

n-overlaps . (These correspond to Anick’s notion of n-prechains and n-chains. His names

do not indicate what the objects are; also, we need the word chain to refer to the elements

of our complex.) His resolution has as basis in dimension n the leftmost (n− 1)-overlaps.

Let L be the set of left-hand sides of elements of R. When li ∈ L, we denote by ri the

word such that (li, ri) ∈ R. We call the elements of X 0-overlaps and the elements of L

1-overlaps. Every member of X or L is to be a leftmost overlap.

An n-overlap is defined to be a word x1 . . . xk for some k and some xi ∈ X, together

with integers ir and jr for 1 6 r 6 n such that

1 = i1 < i2 6 j1 < i3 6 j2 < . . . < in 6 jn−1 < jn = k,

and xir . . . xjr ∈ L for 1 6 r 6 n. Less formally, an n-overlap consists of a word w and

words l1, . . . , ln ∈ L such that

— l1 is a prefix of w, ln is a suffix of w, and lr is a subword of w for 1 < r < n,

— for i < n the subword li+1 of w overlaps the subword li and starts later than the start

of li (it will also end later than the end of li, because R is reduced; conversely, any

subword that is in L and ends later than the end of li must start later than the start

of li),

— the subword li+2 does not overlap the subword li.

A 2-overlap is often referred to as an overlap ambiguity, which gives rise to a critical

pair (since R is reduced, there are no inclusion ambiguities).

We sometimes refer to the word w as an n-overlap, without explicit mention of the

corresponding integers. Strictly speaking, this is incorrect, as there may be more than

one way of assigning the integers so as to get an n-overlap. Because R is reduced, this

cannot happen if n = 2. But suppose that {abc, bcd, cde, def } ⊆ L. Then the word abcdef

is a 3-overlap in two ways. one using the subwords abc, cde, and def, and the other using

abc, bcd, and def. Note that the word abcde, in which the subwords abc and bcd overlap

and the subwords bcd and cde also overlap, is not a 3-overlap, as the subwords abc and

cde overlap, which is forbidden by our definition. In this example, the second expression

as an overlap is further to the left than the first, in an obvious sense. More precisely, the

first expression gives rise to a 2-overlap of abc and cde in the word abcde, and the second

expression gives rise to a 2-overlap of abc and bcd in the word abcd; the second word

is a prefix of the first. This explains the notion of a leftmost overlap, given in the next

paragraph.

To each n-overlap and m < n there is a corresponding m-overlap given by the word

x1 . . . xjm and the integers ir and jr for r 6 m. We say that an n-overlap is leftmost if, for

all m 6 n and all r < jm the word x1 . . . xr is not an m-overlap.

It is easy to see that, although some words may be n-overlaps in more than one way,

a word can be a leftmost n-overlap in at most one way. For suppose it had two such
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expressions, corresponding to integers ir and jr for one and i′r and j ′r for the other. Because

each corresponding m-overlap is leftmost for each expression, we must have j ′m = jm for

all m. Because R is reduced, this requires that we also have i′m = im.

Note that a word that can be expressed as an n-overlap may not have an expression as

a leftmost n-overlap. For instance, let L = {abc, bcd, cde, efg}. Then the word abcdefg is

expressed as a 3-overlap using the subwords abc, cde and efg. The corresponding 2-overlap

is abcde, which has the 2-overlap abcd as prefix. So this expression is not leftmost. But if

we try to find an expression that is further to the left, we must use the subwords abc, bcd

and efg, which express our word as the product of a 2-overlap and a 1-overlap, not as a

3-overlap.

Anick constructs his resolution using the leftmost (n− 1)-overlaps as the basis for the

chains in dimension n. We shall show how to obtain a bijection between essential n-cells

and leftmost (n− 1)-overlaps.

The leftmost 0-overlaps are the elements of X, and the essential cell corresponding to

x is (x). The leftmost 1-overlaps are the elements of L. Since R is strongly reduced, any

l ∈ L can be written l = xu for some non-empty word u, and the corresponding essential

2-cell is (x, u).

Now let x1 . . . xk be a word that is a leftmost (n − 1)-overlap, for n > 1. We define

words u1, . . . , un inductively, by setting u1 = x1 and u1 . . . ur+1 = x1 . . . xjr for 0 < r < n.

By definition of an n-overlap, umum+1 is reducible for 0 < m < n. Because our overlap is

leftmost, no prefix of umum+1 is reducible. Hence the n-cell (u1, . . . , un) is essential.

Conversely, take an essential n-cell (u1, . . . , un), and write u1 . . . un = x1 . . . xk with xi ∈ X
for all i. Define jr for 0 < r < n by u1 . . . ur+1 = x1 . . . xjr . Because urur+1 is reducible

but no prefix of it is reducible, there will be a suffix of urur+1 in L; this suffix will be

unique, since R is reduced. We define ir by requiring xir . . . xjr ∈ L. This expresses x1 . . . xk
as an (n − 1)-overlap. If it is not leftmost, take the smallest value of m such that the

corresponding m-overlap has a prefix that is also an m-overlap. We would then find that

umum+1 had a reducible prefix, contrary to hypothesis.

So we have the required bijection, and we have identified Anick’s resolution with

ours. As already remarked, the boundary operator is much easier to calculate using our

approach. However, in some cases the structure of the overlaps is more transparent than

that of the essential cells, so Anick’s method may be better if we do not need to compute

the boundary operators.

8.3. Squier’s method

We conclude the detailed comparison by considering Squier’s method. Squier works with

left modules, while we use right ones. As already remarked, we can use either, and we

will look at the right module version of Squier’s result. We begin by defining a function

Dx : X∗ → ZX∗ for each x ∈ X. Let u = x1 . . . xn. Then we define Dxu =
∑
xr+1 . . . xn,

the sum being taken over those r for which xr = x. For example, if u = xyxyxz, then

Dxu = yxyxz+yxz+z, Dyu = xyxz+xz, Dzu = 1. We extend Dx to ZX∗ linearly. It is easy

to see that, for any u, v ∈ X∗, we have Dx[uv] = [Dxu]v + Dxv and
∑

[x− 1]Dxu = u− 1.
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From our previous description, we see that τ0u =
∑

(x)Dxu. We already know that

φ1(u) = τ0u.

For any w ∈ X∗, let πw be the irreducible word equivalent to w; we extend π linearly

to ZX∗.

Let l ∈ L. For any u and v, we have Dx[ulv − urv] = [Dxu][lv − rv] + [Dxl − Dxr]v, so

πDx[ulv − urv] = π[[Dxl − Dxr]v].
Write l as xu. Then there is a corresponding essential 2-cell (x, u). To focus attention

on l, we will also denote this cell by 〈l〉.
Now ∂2(x, u) = (x)u + (u) − (π[xu]). From our discussion of φ1 and τ0, we have

δ2〈l〉 =
∑

(x)Dx[l − r]. This identifies our δ2 with Squier’s. Note that we also have

δ2[〈l〉w] =
∑

(x)πDx[[l − r]w]; the formula of the previous sentence does not need π

because the elements involved are irreducible. Furthermore, we have already seen that

πDx[[l − r]w] = π[[Dxl − Dxr]w]. For each w ∈ X∗, choose (arbitrarily) a sequence

w = w1 → w2 . . .→ wn = πw. For i < n, let wi = uilivi and wi+1 = uirivi, where li ∈ L with

corresponding right-hand side ri. Denote this sequence by F , and define 〈F〉 =
∑
〈li〉vi.

From our previous remarks, we see that δ2〈F〉 =
∑

(x)πDx[w − πw].

In particular, if we always make the rightmost reduction possible, the resulting function

will be denoted by ρ. Note that ρw = 〈l1〉v1 + ρw2. Also, ρ[ww′] = ρw′ + ρ[wz], where

z = πw′.

We now show that φ2(u, v) = ρ[uv] for any 2-cell (u, v). To do this, we use noetherian

induction on>2, defined as in Subsection 6.3. First suppose that u = xt for some x ∈ X and

non-empty t. Then (u, v) is redundant, and, looking at the boundary of the corresponding

collapsible cell, we have φ2(u, v) = φ2(t, v) + φ2(x, π[tv]) = ρ[tv] + ρ[x[π[tv]], inductively,

and this equals ρ[xtv], as required.

Next suppose that u = x. If xv is irreducible, then (x, v) is collapsible, so φ2(x, v) = 0, and

ρ[xv] = 0. Otherwise we can write v = pq with xp = l ∈ L. Note that xp is the only subword

of xpq that is in L. Then π[xp] = r. We have φ2(x, v) = 〈l〉q + φ2(r, q) = 〈l〉q + ρ[rq],

inductively, and this equals ρ[xpq], as required.

We see that τ1[(x)u] = ρ[xu], since σ1[(x)u] = (x, u).

In dimension 3, Squier’s module differs from ours. Before discussing it, we look at

some results on 3-cells. Consider a 3-cell (u, v, w) with uv irreducible. If u ∈ X, this cell

is collapsible, and φ3(u, v, w) = 0. Otherwise this cell is redundant, and, looking at the

boundary of the corresponding collapsible 4-cell, we easily see that φ3(u, v, w) = 0, by

induction on the length of u. From this we then see that if uv ∈ L and u = xt, we have

φ3(u, v, w) = φ3(x, tv, w).

Squier takes a module S with basis the cells (u, v, w), where uv = l1 and vw = l2 are

in L. We consider the boundary δ3 = φ2∂3 on S . We know that δ2δ3 = 0, and that

φ2∂3φ3 = φ2∂3. So, by the previous paragraph, δ3S = δ3S
′, where S ′ has as basis the cells

(x, tv, w), with u, v, w as before and u = xt. These cells include all essential cells, so we

have ker δ2 ⊆ δ3S
′, as required.

Now ∂3(u, v, w) = (u, v)w − (u, r2) + (r1, w) − (v, w), by definition. Using the connection

between φ2 and ρ previously found, and noting that ρ[uv] = 〈l1〉 and ρ[vw] = 〈l2〉, we
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obtain

δ3(u, v, w) = 〈l1〉w − 〈l2〉+ ρ[r1w]− ρ[ur2].

Allowing for the fact that we are using right modules and Squier is using left ones,

this is exactly Squier’s definition of his boundary operator. Thus Squier’s module in

dimension 3 is larger than it needs to be, which leads to the difficulties in extending

the resolution further. Comparing with Anick’s approach, we find that the the bijection

between essential 3-cells and leftmost 2-overlaps extends to a bijection between the cells

of S ′ and all 2-overlaps.

Squier extends his theory further by using the function α obtained by using an arbitrary

choice of reductions, rather than ρ, which was obtained using the rightmost possible

reduction at each step. That is, taking the same set S , he defines

∆3(u, v, w) = 〈l1〉w − 〈l2〉+ α[r1w]− α[ur2].

He then proves that ker δ2 = ∆3S .

We have

∆3(u, v, w)− δ3(u, v, w) = α[r1w]− ρ[r1w]− α[ur2] + ρ[ur2].

So δ2∆3 = δ2δ3 = 0 if δ2αz = δ2ρz for all z. But we have already remarked that both

these expressions equal
∑

(x)Dx[z − πz]. If we show that αz − ρz ∈ ∆3S for any z, it will

be immediate that δ3(u, v, w) ∈ ∆3S . The next lemma proves a stronger property. We first

need to obtain a simple formula. Let F be a sequence of rewritings from w to πw, and

let u and v be any words. Let H be a sequence of rewritings from u[πw]v to π[uwv]. Let

uF denote the obvious sequence from uwv to u[πw]v, and let G consist of uFv followed

by H . It is easy to check (noting that the product in M of πvi and πv is π[viv]) that

〈G〉 = 〈F〉πv + 〈H〉.

Lemma 10. Let F and G be sequences of rewritings from a word z to πz. Then 〈F〉−〈G〉 ∈
∆3S .

Proof. We prove the result by noetherian induction.

Let F1 and G1 be the sequences obtained from F and G by omitting the first rewriting.

If the first rewriting in F is the same as the first in G, then 〈F〉 − 〈G〉 = 〈F1〉 − 〈G1〉, and

the result holds by induction.

Otherwise we have the usual two possibilities. The first is that z = al1bl2c, where the

first rewriting of F replaces l1 by r1, and the first rewriting of G replaces l2 by r2. Let H

be any sequence of rewritings from ar1br2c to π[ar1br2c]. Then 〈F〉 = 〈l1〉π[bl2c] + 〈F1〉.
Inductively, 〈l2〉πc+ 〈H〉 − 〈F1〉 ∈ ∆3S . Using the similar formulae concerning G and G1,

the result is immediate.

The second case is that z = auvwb with uv = l1 and vw = l2; we will have u, v, w

irreducible and non-empty, and so w = πw. Then 〈F〉 = 〈l1〉π[wb] + 〈F1〉. Let A be that

sequence of rewritings from r1w to π[r1w] = π[uvw] that defines α[r1w], and let H be

any sequence of rewritings from aπ[uvw]b to π[auvwb]. Then we have the sequence aAb

followed by H from ar1wb and the sequence F1 from the same word. Inductively, using the

formula before the lemma, α[r1w]πb + 〈H〉 − 〈F1〉 ∈ ∆3S . Similarly, 〈G〉 = 〈l2〉πb + 〈G1〉,
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and α[ur2]πb + 〈H〉 − 〈G1〉 ∈ ∆3S . So it is enough to show that 〈l1〉π[wb] + α[r1w]πb −
〈l2〉πb− α[ur2]πb ∈ ∆3S . But this is precisely ∆3(u, v, w)πb.

A closer look at the proof shows that we have 〈F〉 − 〈G〉 = ∆3q, where any term t in

the chain q has either z � W [t] or z = W [t]. The same will hold for δ3, which is just

a special case of ∆3. It then follows that for any chain p there is a chain q such that

∆3p = δ3[p+ q] and p+ q 6= 0 if q 6= 0 . In particular, ∆3 has trivial kernel if δ3 has trivial

kernel.

Here we are looking at δ3 as a homomorphism from S . If (in the notation used in the

previous section) all overlaps are leftmost, φ3 is plainly a bijection from the basis of S to

the set of essential 3-cells. Since δ3φ3 = δ3, we see that δ3 has trivial kernel on S if it has

trivial kernel on the set of essential 3-chains. By Brown’s Theorem, this will certainly hold

if there are no 3-overlaps. We have therefore shown the following result, which is exactly

Theorem 3.2 of Squier (1987).

Proposition 3. Suppose that all 2-overlaps are leftmost and that there are no 3-overlaps.

Then ker ∆3 = 0.

8.4. Groves’ method

Groves (1991) gives yet another proof of Anick’s theorem. This differs in significant

details from the approaches we have discussed, because it is based on cubes rather than

simplexes (which, for some situations such as free and direct products of groups, is more

convenient). Nevertheless, readers who have followed our approach this far will probably

feel, on looking at Groves’s work, that it can be fitted into our account of collapsing

schemes. The notations and concepts he uses seem to me rather complicated, and I have

not been able to simplify them enough to give a detailed account. I therefore make just a

few comments on his work.

Groves starts with our usual strongly minimal convergent rewriting system 〈X;R〉,
presenting the monoid M. He then defines a directed graph Γ, with vertex set X∗ and with

one edge starting at u for each application of a rewrite rule to u. He then defines what he

calls cubes and stars of Γ, and obtains a resolution whose basis consists of certain stars.

We note that Γ is disconnected, with one component for each element of M. Also, each

component has a terminal vertex; that is, a vertex that can be reached from any other

vertex in the component by a directed path. These vertices are precisely the irreducible

words. Because of this, it is easy to construct a resolution

. . . C2 → C1 → C0 → ZM → 0

of the abelian group ZM by free abelian groups (note that we do not define a module

structure yet). The basis of Cn will consist of all n-cubes except that certain cubes are

equated to zero.

In the low dimensions it is not too difficult to see what we want the redundant and

collapsible cells to be, and we should be able to extend this to a collapsing scheme. It is

then necessary to factor out further subgroups, as indicated by Groves, in order to get an

action of M. The boundary operators map each such subgroup into the next one down,
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and so we get a complex. This will satisfy the condition for a resolution, except in low

dimensions, because the contracting homotopies will map each subgroup in the next one

up. In low dimensions, we need to make explicit definitions slightly different from the

original ones, and check that the required properties hold.
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