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This paper introduces a test for the comparison of multiple misspecified condi-
tional interval models, for the case of dependent observations+ Model accuracy is
measured using a distributional analog of mean square error, in which the approx-
imation error associated with a given model, say, model i, for a given interval, is
measured by the expected squared difference between the conditional confidence
interval under model i and the “true” one+

When comparing more than two models, a “benchmark” model is specified,
and the test is constructed along the lines of the “reality check” of White ~2000,
Econometrica 68, 1097–1126!+ Valid asymptotic critical values are obtained via a
version of the block bootstrap that properly captures the effect of parameter esti-
mation error+ The results of a small Monte Carlo experiment indicate that the test
does not have unreasonable finite sample properties, given small samples of 60
and 120 observations, although the results do suggest that larger samples should
likely be used in empirical applications of the test+

1. INTRODUCTION

There are several instances in which merely having a “good” model for the
conditional mean and0or variance may not be adequate for the task at hand+
For example, financial risk management involves tracking the entire distribu-
tion of a portfolio or measuring certain distributional aspects, such as value at
risk ~see, e+g+, Duffie and Pan, 1997!+ In such cases, models of conditional mean
and0or variance may not be satisfactory+
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A very small subset of important contributions that go beyond the examina-
tion of models of conditional mean and0or variance includes papers that assess
the correctness of conditional interval predictions ~see, e+g+, Christoffersen,
1998!; assess volatility predictability by comparing unconditional and condi-
tional interval forecasts ~see, e+g+, Christoffersen and Diebold, 2000!; and assess
conditional quantiles ~see, e+g+, Giacomini and Komunjer, 2005!+1 Needless to
say, correct specification of the conditional distribution implies correct specifi-
cation of all conditional aspects of the model+ Perhaps in part for this reason,
there has been growing interest in recent years in providing tests for the correct
specification of conditional distributions+ One contribution in this direction is
the conditional Kolmogorov ~CK! test of Andrews ~1997!, which is based on
the comparison of the empirical joint distribution of yt and Xt with the product
of a given distribution of yt 6Xt and the empirical cumulative distribution func-
tion ~c+d+f+! of Xt + Other contributions in this direction include, for example,
the work of Zheng ~2000!, who suggests a nonparametric test based on a first-
order linear expansion of the Kullback–Leibler information criterion ~KLIC!,
Altissimo and Mele ~2002!, and Li and Tkacz ~2004!, who propose a test based
on the comparison of a nonparametric kernel estimate of the conditional den-
sity with the density implied under the null hypothesis+2 Following a different
route based on use of the probability integral transform, Diebold, Gunther, and
Tay ~1998! suggest a simple and effective means by which predictive densities
can be evaluated ~see also Bai, 2003; Diebold, Hahn, and Tay, 1999; Hong,
2001; Hong and Li, 2005!+

All of the papers cited in the preceding paragraph consider a null hypothesis
of correct dynamic specification of the conditional distribution or of a given
conditional confidence interval+3 However, a reasonable assumption in the con-
text of model selection may instead be that all models are approximations of
the truth and hence all models are likely misspecified+ Along these lines, it is
our objective in this paper to provide a test that allows for the joint comparison
of multiple misspecified conditional interval models, for the case of dependent
observations+

Assume that the object of interest is a conditional interval model for a scalar
random variable, Yt , given a ~possibly vector valued! conditioning set, Z t, where
Z t contains lags of Yt and0or other variables+ In particular, given a group of
~possibly! misspecified conditional interval models, say, ~F1~ Su 6Z t,u1

†! �
F1~ tu 6Z t,u1

†!, + + + ,Fm~ Su 6Z t,um† ! � Fm~ tu 6Z t,um† !!, assume that the objective is to
compare these models in terms of their closeness to the true conditional inter-
val, F0~ Su 6Z t,u0! � F0~ Su 6Z t,u0! � Pr~ tu � Yt � Su 6Z t!+ If m � 2, we follow
White ~2000!+ Namely, we choose a particular model as the “benchmark” and
test the null hypothesis that no competing model can provide a more accurate
approximation of the “true” model against the alternative that at least one com-
petitor outperforms the benchmark+ Needless to say, pairwise comparison of
alternative models, in which no benchmark need be specified, follows as a spe-
cial case+ In our context, accuracy is measured using a distributional analog of
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mean square error+ More precisely, the squared ~approximation! error asso-
ciated with model i, i � 1, + + + ,m, is measured in terms of E~~Fi ~ Su 6Z t,ui

†! �
Fi ~ tu 6Z t,ui

†!!� ~F0~ Su 6Z t,u0
†!� F0~ tu 6Z t,u0

†!!!2, where tu, Su � U and U is a pos-
sibly unbounded set on the real line+

It should be pointed out that one well-known measure of distributional accu-
racy is the KLIC, in the sense that the “most accurate” model can be shown to
be that which minimizes the KLIC ~see Section 2 for a more detailed dis-
cussion!+ For the independent and identically distributed ~i+i+d+! case, Vuong
~1989! suggests a likelihood ratio test for choosing the conditional density model
that is closest to the “true” conditional density in terms of the KLIC+ Addi-
tionally, Giacomini ~2002! suggests a weighted version of the Vuong likeli-
hood ratio test for the case of dependent observations, whereas Kitamura ~2002!
employs a KLIC-based approach to select among misspecified conditional mod-
els that satisfy given moment conditions+4 Furthermore, the KLIC approach
has recently been employed for the evaluation of dynamic stochastic general
equilibrium models ~see, e+g+, Schorfheide, 2000; Fernandez-Villaverde and
Rubio-Ramirez, 2004; Chang, Gomes, and Schorfheide, 2002!+ For example,
Fernandez-Villaverde and Rubio-Ramirez show that the KLIC-best model is
also the model with the highest posterior probability+ However, as we out-
line in the next section, problems concerning the comparison of condi-
tional confidence intervals may be difficult to address using the KLIC but
can be handled quite easily using our generalized mean square measure of
accuracy+

The rest of the paper is organized as follows+ Section 2 states the hypothesis
of interest and describes the test statistic that will be examined+ In Section 3+1,
it is shown that the limiting distribution of the statistic ~properly recentered! is
a functional of a zero mean Gaussian process, with a covariance kernel that
reflects both the contribution of parameter estimation error and the effect of
~dynamic! misspecification+ Section 3+2 discusses the construction of asymptot-
ically valid critical values+ This is done via an extension of White’s ~2000! boot-
strap approach to the case of nonvanishing parameter estimation error+ The results
of a small Monte Carlo experiment are collected in Section 4, and concluding
remarks are given in Section 5+ Proofs of results stated in the text are given in
the Appendix+

Hereafter, P * denotes the probability law governing the resampled series,
conditional on the sample, E * and Var* are the mean and variance operators
associated with P *, oP

*~1!, Pr-P denotes a term converging to zero in P *-prob-
ability, conditional on the sample and for all samples except a subset with prob-
ability measure approaching zero, and OP

*~1!, Pr-P denotes a term that is
bounded in P *-probability, conditional on the sample and for all samples except
a subset with probability measure approaching zero+ Analogously, Oa+s+* ~1! and
oa+s+* ~1! denote terms that are almost surely bounded and terms that approach
zero almost surely, according to the probability law P * and conditional on the
sample+
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2. SETUP AND TEST STATISTICS

Our objective is to select among alternative conditional confidence interval mod-
els by using parametric conditional distributions for a scalar random variable,
Yt , given Z t, where Z t � ~Yt�1, + + + ,Yt�s1

, Xt , + + + , Xt�s2�1! with s1, s2 finite+ Note
that although we assume s1 and s2 are finite, we do not require ~Yt , Xt ! to be
Markovian+ In fact, Z t might not contain the entire ~relevant! history, and all
models may be dynamically misspecified+

Define the group of conditional interval models from which one is to make a
selection as ~F1~ Su 6Z t,u1

†! � F1~ tu 6Z t,u1
†!, + + + ,Fm~ Su 6Z t,um† ! � Fm~ tu 6Z t,um† !! and

define the true conditional interval as

F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 ! � Pr~ tu � Yt � Su 6Z t !+

Hereafter, assume that ui
† � Qi , where Qi is a compact set in a finite-

dimensional euclidean space, and let ui
† be the probability limit of a quasi-

maximum likelihood estimator ~QMLE! of the parameters of the conditional
distribution under model i+ If model i is correctly specified, then ui

† � u0+ As
mentioned in the introduction, accuracy is measured in terms of a distributional
analog of mean square error+ In particular, we say that model 1 is more accu-
rate than model 2 if

E~~~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 !

� E~~~F2~ Su 6Z t,u2
†!� F2~ tu 6Z t,u2

†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 !+

This measure defines a norm and implies a standard goodness of fit measure+
As mentioned previously, a very well-known measure of distributional accu-

racy that is already available in the literature is the KLIC ~see, e+g+, White,
1982; Vuong, 1989; Giacomini, 2002; Kitamura, 2002!, according to which we
should choose model 1 over model 2 if

E~ log f1~Yt 6Z t,u1
†!� log f2~Yt 6Z t,u2

†!! � 0+

The KLIC is a sensible measure of accuracy, as it chooses the model that on
average gives higher probability to events that have actually occurred+ Also, it
leads to simple likelihood ratio type tests+ Interestingly, Fernandez-Villaverde
and Rubio-Ramirez ~2004! have shown that the best model under the KLIC is
also the model with the highest posterior probability+ However, if we are inter-
ested in measuring accuracy for a given conditional confidence interval, this
cannot be easily done using the KLIC+ For example, if we want to evaluate the
accuracy of different models for approximating the probability that the rate of
inflation tomorrow, given the rate of inflation today, will be between 0+5% and
1+5%, say, this cannot be done in a straightforward manner using the KLIC+ On
the other hand, our approach gives an easy way of addressing questions of this
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type+ In this sense, we believe that our approach provides a reasonable alterna-
tive to the KLIC+

In what follows, model 1 is taken as the benchmark model, and the objective
is to test whether some competitor model can provide a more accurate approx-
imation of F0~ tu 6{,u0!� F0~ Su 6{,u0! than the benchmark+ The null and the alter-
native hypotheses are

H0 : max
k�2, + + + ,m

E~~~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2

� ~~Fk~ Su 6Z t,uk
†!� Fk~ tu 6Z t,uk

†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 !� 0

versus

HA : max
k�2, + + + ,m

E~~~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2

� ~~Fk~ Su 6Z t,uk
†!� Fk~ tu 6Z t,uk

†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 ! � 0+

Alternatively, if interest focuses on testing the null of equal accuracy of two
conditional confidence interval models, say, models 1 and 2, we can simply
state the hypotheses as

H0
' : E~~~F1~ Su 6Z t,u1

†!� F1~ tu 6Z t,u1
†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 !

� E~~~F2~ Su 6Z t,u2
†!� F2~ tu 6Z t,u2

†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 !

versus

HA
' : E~~~F1~ Su 6Z t,u1

†!� F1~ tu 6Z t,u1
†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 !

� E~~~F2~ Su 6Z t,u2
†!� F2~ tu 6Z t,u2

†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 !+

Needless to say, if the benchmark model is correctly specified, we do not reject
the null+ Related tests that instead focus on dynamic correct specification of a
conditional interval models ~as opposed to allowing for misspecification under
both hypotheses, as is done with all of our tests! are discussed in Christoffersen
~1998!+

If the objective is to test for the correct specification of a single conditional
interval model, say, model 1, for a given information set, then we can define
the hypotheses as

H0
'' : Pr~ tu � Yt � Su 6Z t !� F1~ Su 6Z t,u1

†!� F1~ tu 6Z t,u1
†! a+s+ for some u1

† � Q

versus5

HA
'' : the negation of H0

'' +

Tests of this sort that consider the correct specification of the conditional dis-
tribution for a given information set ~i+e+, conditional distribution tests that allow
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for the possibility of dynamic misspecification under both hypotheses! are dis-
cussed in Corradi and Swanson ~2005a!+

To test H0 versus HA, form the following statistic:

ZT � max
k�2, + + + ,m

ZT ~1, k!, (1)

where

ZT ~1, k! �
1

MT (t�s

T

~~1$ tu � Yt � Su%� ~F1~ Su 6Z t, Zu1,T !� F1~ tu 6Z t, Zu1,T !!!2

� ~1$ tu � Yt � Su%� ~Fk~ Su 6Z t, Zuk,T !� Fk~ tu 6Z t, Zuk,T !!!2 ! (2)

with s � max$s1, s2% ,

Zui,T � arg max
ui�Qi

1

T (t�s

T

ln fi ~Yt 6Z t,ui !, i � 1, + + + ,m, (3)

and

ui
† � arg max

ui�Qi

E~ ln fi ~Yt 6Z t,ui !!, i � 1, + + + ,m,

where fi~Yt 6Z t,ui ! is the conditional density under model i+ As fi~{6{! does not
in general coincide with the true conditional density, Zui,T is the QMLE, and
ui

† � u0, in general+ More broadly speaking, the results discussed subsequently
hold for any estimator for which MT ~ Zui,T � ui

†! is asymptotically normal+ This
is the case for several extremum estimators, for example, such as ~nonlinear!
least squares, ~Q!MLE, and so on+ However, it is not advisable to use over-
identified generalized method of moments ~GMM! estimators because
MT ~ Zui,T � ui

†! is not asymptotically normal, in general, when model i is not
correctly specified ~see, e+g+, Hall and Inoue, 2003!+ Needless to say, if interest
focuses on testing H0

' versus HA
' , one should use the statistic ZT ~1,2!, and if

interest focuses on testing H0
'' versus HA

'' , the appropriate test statistic is

sup
v�V

ZT ~v! �
1

MT (t�1

T

~1$ tu � Yt � Su%� ~F1~ Su 6Z t, Zu1,T !� F1~ tu 6Z t, Zu1,T !!!

� 1$Z t � v%, (4)

which is a special case of the statistic considered in Theorem 2 of Corradi and
Swanson ~2005a! in the context of testing for the correct specification of the
“entire” conditional distribution for a given information set+ The limiting dis-
tribution of ~4! and the construction of valid critical values via the bootstrap
follow from Theorems 2 and 4 in the paper by Corradi and Swanson ~2005a!,
who also provide some Monte Carlo evidence+ Discussion of the test statistic
in ~4! in relation to the existing literature on testing for the correct conditional
distribution is given in the paper just mentioned+
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The intuition behind equation ~2! is very simple+ First, note that E~1$ tu �
Yt � Su%6Z t ! � Pr ~ tu � Yt � Su 6Z t ! � F0~ Su 6Z t, u0! � F0~ tu 6Z t, u0!+ Thus,
1$ tu � Yt � Su% � ~Fi ~ Su 6Z t,ui

†! � Fi ~ tu 6Z t,ui
†!! can be interpreted as an

“error” term associated with computation of the conditional expectation,
under Fi + Now, write the statistic in equation ~2! as

1

MT (t�s

T

~~~1$ tu � Yt � Su%� ~F1~ Su 6Z t, Zu1,T !� F1~ tu 6Z t, Zu1,T !!!2 �m1
2!

� ~~1$ tu � Yt � Su%� ~Fk~ Su 6Z t, Zuk,T !� Fk~ tu 6Z t, Zuk,T !!!2 �mk
2!!

�
T � s

MT
~m1

2 �mk
2!, (5)

where m j
2 � E~~1$ tu � Yt � Su% � ~Fj ~ Su 6Z t,uj

†! � Fj ~ tu 6Z t,uj
†!!!2 !, j � 1, + + + ,m+

In the Appendix, it is shown that the first term in equation ~5! weakly con-
verges to a Gaussian process+ Also, for j � 1, + + + ,m,

m j
2 � E~~1$ tu � Yt � Su%� ~Fj ~ Su 6Z t,uj

†!� Fj ~ tu 6Z t,uj
†!!!2 !

� E~~1$ tu � Yt � Su%� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!

� ~~Fj ~ Su 6Z t,uj
†!� Fj ~ tu 6Z t,uj

†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!!2

� E~~1$ tu � Yt � Su%� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 !

� E~~~Fj ~ Su 6Z t,uj
†!� Fj ~ tu 6Z t,uj

†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 !,

given that the expectation of the cross product is zero ~which follows because
1$ tu � Yt � Su%� ~F0~ Su 6Z t,u0!� F0~ tu 6Z t,u0!! is uncorrelated with any measur-
able function of Z t!+ Therefore,

m1
2 �mk

2 � E~~~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 !

� E~~~Fk~ Su 6Z t,uk
†!� Fk~ tu 6Z t,uk

†!!

� ~F0~ tu 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 !+ (6)

Before outlining the asymptotic properties of the statistic in equation ~1! two
comments are worth making+

First, following the reality check approach of White ~2000!, the problem of
testing multiple hypotheses has been reduced to a single test by applying the
~single-valued! max function to multiple hypotheses+ This approach has the
advantage that it avoids sequential testing bias and also captures the correlation
across the various models+ On the other hand, if we reject the null, we can
conclude that there is at least one model that outperforms the benchmark, but
we do not have available to us a complete picture concerning which model~s!
contribute to the rejection of the null+ Of course, some information can be
obtained by looking at the distributional analog of mean square error associ-
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ated with the various models and forming a crude ranking of the models,
although the usual cautions associated with using a mean square error type mea-
sure to rank models should be taken+ Alternatively, our approach can be com-
plemented by a multiple comparison approach, such as the false discovery rate
~FDR! approach of Benjamini and Hochberg ~1995!, which allows one to select
among alternative groups of models, in the sense that one can assess which
group~s! contribute to the rejection of the null+ The FDR approach has the objec-
tive of controlling the expected number of false rejections, and in practice one
computes p-values associated with the m hypotheses and orders these p-values
in increasing fashion, say, P1 � {{{ � Pi � {{{ � Pm+ Then, all hypotheses
characterized by Pi � ~1 � ~i � 1!0m!a are rejected, where a is a given signif-
icance level+ Such an approach, though less conservative than the Hochberg
~1988! approach, is still conservative as it provides bounds on p-values+ Over-
all, we think that a sound practical strategy could be to first implement our
reality check type tests+ These tests can then be complemented by using a mul-
tiple comparison approach, yielding a better overall understanding concerning
which model~s! contribute to the rejection of the null, if it is indeed rejected+ If
the null is not rejected, then we simply choose the benchmark model+ Never-
theless, even in this case, it may not hurt to see whether some of the individual
hypotheses in the joint null are rejected via a multiple test comparison approach+

Second, it perhaps is worth pointing out that simulation-based versions of
the tests discussed here are given in Corradi and Swanson ~2005b!, in the con-
text of the evaluation of dynamic stochastic general equilibrium models+

3. ASYMPTOTIC RESULTS

The results stated subsequently require the following assumption+

Assumption A: ~i! ~Yt , Xt ! is a strictly stationary and absolutely regular
b-mixing process with size �4, for i � 1, + + + ,m; ~ii! Fi~u 6Z t,ui ! is continuously
differentiable on the interior of Qi , where Qi is a compact set in � pi, and
¹ui Fi ~u 6Z t,ui

†! is 2r-dominated on Qi , for all u, r � 2;6 ~iii! ui
† is uniquely

identified ~i+e+, E~ ln fi ~Yt 6Z t,ui
†!! � E~ ln fi~Yt 6Z t,ui !!, for any ui � ui

†!, where
fi is the density associated with Fi ; ~iv! fi is twice continuously differentiable
on the interior of Qi , and ¹ui ln fi ~Yt 6Z t,ui ! and ¹ui

2 ln fi ~Yt 6Z t,ui ! are 2r-
dominated on Qi , with r � 2; ~v! E~�¹ui

2 ln fi ~Yt 6Z t,ui !! is positive definite,
uniformly on Qi , and limTr`Var~~1��MT !(t�s

T
¹ui ln fi ~Yt 6Z t,ui

†!! is positive
definite; and ~vi! let

vkk � lim
Tr`

Var� 1

MT (t�s

T

~~1$ tu � Yt � Su%� ~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!!2

� ~1$ tu � Yt � Su%� ~Fk~ Su 6Z t,uk
†!� Fk~ tu 6Z t,uk

†!!!2 !�,
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for k � 2, + + + ,m+ Define analogous covariance terms, vjk, j, k � 2, + + + ,m, and
assume that cov � @vjk# is positive semipositive definite+

Recalling that Z t � ~Yt�1, + + + ,Yt�s1
, Xt , + + + , Xt�s2�1!, A~i! ensures that Z t is

strictly stationary mixing with size �4+ Note that A~vi! requires at least one of
the competing models to be neither nested in nor nesting the benchmark model+
The nonnestedness of at least one competitor ensures that the long-run covari-
ance matrix is positive definite even in the absence of parameter estimation
error+ However assumption A~vi! can be relaxed, in which case the limiting
distribution of the test statistic takes exactly the same form as given in Theo-
rem 1, which follows, except that the covariance kernel contains only terms
that reflect parameter estimation error+7

3.1. Limiting Distributions

THEOREM 1+ Let Assumption A hold. Then

max
k�2, + + + ,m

~ZT ~1, k!� MT ~m1
2 �mk

2!! d
&& max

k�2, + + + ,m
Z1, k ,

where Z1, k is a zero mean Gaussian process with covariance ckk � vkk � pkk �
pckk, vkk denotes the component of the long-run covariance matrix that would
obtain in the absence of parameter estimation error, pkk denotes the contribu-
tion of parameter estimation error, and pckk denotes the covariance across the
two components. In particular: 8

vkk � E (
j��`

`

~~~1$ tu � Ys � Su%� ~F1~ Su 6Z s,u1
†!� F1~ tu 6Z s,u1

†!!!2 �m1
2!

� ~~1$ tu � Ys�j � Su%� ~F1~ Su 6Z s�j,u1
†!� F1~ tu 6Z s�j,u1

†!!!2 �m1
2!! (7)

� E (
j��`

`

~~~1$ tu � Ys � Su%� ~Fk~ Su 6Z s,uk
†!� Fk~ tu 6Z s,uk

†!!!2 �mk
2!

� ~~1$ tu � Ys�j � Su%� ~Fk~ Su 6Z s�j,uk
†!� Fk~ tu 6Z s�j,uk

†!!!2 �mk
2!! (8)

� 2E (
j��`

`

~~~1$ tu � Ys � Su%� ~F1~ Su 6Z s,u1
†!� F1~ tu 6Z s,u1

†!!!2 �m1
2!

� ~~1$ tu � Ys�j � Su%� ~Fk~ Su 6Z s�j,uk
†!� Fk~ tu 6Z s�j,uk

†!!!2 �mk
2!!, (9)
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pkk � 4mu1†
' A~u1

†!E� (
j��`

`

¹u1 ln f1~Ys 6Z s,u1
†!¹u1 ln f1~Ys�j 6Z s�j,u1

†!'�
� A~u1

†!mu1† (10)

� 4muk†
' A~uk

†!E� (
j��`

`

¹uk ln fk~Ys 6Z s,uk
†!¹uk ln fk~Ys�j 6Z s�j,uk

†!'�
� A~uk

†!muk† (11)

� 8mu1†
' A~u1

†!E� (
j��`

`

¹u1 ln f1~Ys 6Z s,u1
†!¹uk ln fk~Ys�j 6Z s�j,uk

†!'�
� A~uk

†!muk† , (12)

pckk � �4mu1†
' A~u1

†!E� (
j��`

`

¹u1 ln f1~Ys 6Z s,u1
†!

� ~~1$ tu � Ys�j � Su%� ~F1~ Su 6Z s�j,u1
†!

� F1~ tu 6Z s�j,u1
†!!!2 �m1

2!�
� 8mu1†

' A~u1
†!E� (

j��`

`

¹u1 ln f1~Ys 6Z s,u1
†!

� ~~1$ tu � Ys�j � Su%� ~Fk~ Su 6Z s�j,uk
†!

� Fk~ tu 6Z s�j,uk
†!!!2 �mk

2!� (13)

� 4muk†
' A~uk

†!E� (
j��`

`

¹uk ln fk~Ys 6Z s,uk
†!~~1$ tu � Ys�j � Su%

� ~Fk~ Su 6Z s�j,uk
†!� Fk~ tu 6Z s�j,uk

†!!!2 �mk
2!� (14)

with9 mui†
' � E~¹ui ~Fi ~ Su 6Z t,ui

†!� Fi ~ Su 6Z t,ui
†!!~1$ tu � Yt � Su%� ~Fi ~ Su 6Z t,ui

†!�
Fi ~ Su 6Z t,ui

†!!!! and A~ui
†! � ~E~�ln ¹ui

2 fi ~ yt 6Z t,ui
†!!!�1.

As an immediate corollary, note the following result+

COROLLARY 2+ Let Assumptions A(i)–(v) hold and suppose A(vi) is vio-
lated. Then

max
k�2, + + + ,m

~ZT ~1, k!� MT ~m1
2~u!�mk

2~u!!! d
&& max

k�2, + + + ,m
EZ1, k ,

1000 VALENTINA CORRADI AND NORMAN R. SWANSON

https://doi.org/10.1017/S0266466605050498 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466605050498


where EZ1, k is a zero mean normal random variable with covariance equal to
pkk, as defined in equations (10)–(12).

From Theorem 1 and Corollary 2, it follows that when all competing models
provide an approximation to the true conditional interval model that is as ~mean
square! accurate as that provided by the benchmark ~i+e+, when m1

2 � mk
2 � 0,

∀k!, then the limiting distribution corresponds to the maximum of an m � 1–
dimensional zero-mean normal random vector, with a covariance kernel that
reflects both the contribution of parameter estimation error and the dependent
structure of the data+ Additionally, when all competitor models are worse than
the benchmark, the statistic diverges to minus infinity, at rate MT + Finally,
when only some competitor models are worse than the benchmark, the limiting
distribution provides a conservative test, as ZT will always be smaller than
maxk�2, + + + ,m~ZT ~1, k! � MT ~m1

2 � mk
2!!, asymptotically, and therefore the crit-

ical values of maxk�2, + + + ,m~ZT ~1, k!� MT ~m1
2 � mk

2!! provide upper bounds for
the critical values of maxk�2, + + + ,m ZT ~1, k!+ Of course, when HA holds, the sta-
tistic diverges to plus infinity at rate MT + It is well known that the maximum of
a normal random vector is not a normal random variable and hence critical
values cannot immediately be tabulated+ In a related paper, White ~2000! sug-
gests obtaining critical values either via Monte Carlo simulation or via use of
the bootstrap+ Here, we focus on use of the bootstrap, although White’s results
do not apply in our case, as contribution of parameter estimation error does not
vanish in our setup and hence must be properly taken into account when form-
ing critical values+ Before turning our attention to the bootstrap, however, we
briefly outline an out-of-sample version of our test statistic+

Thus far, we have compared conditional interval models via a distributional
generalization of in-sample mean square error+ Needless to say, an out-of-
sample version of the statistic may also be constructed+ Let T � R � P, let
Zui, t i � 1, + + + ,m be a recursive estimator computed using t � R,R � 1, + + + ,

R � P � 1 observations, and let EZ t � ~Yt , + + + ,Yt�s1
, Xt , + + + , Xt�s2

!+ A one-step-
ahead out-of-sample version of the statistic in equations ~1! and ~2! is given by

OZP � max
k�2, + + + ,m

OZP~1, k!,

where

OZP~1, k!�
1

MP (t�R�s

T�1

~~1$ tu � Yt�1 � Su%� ~F1~ Su 6Z t, Zu1, t !� F1~ tu 6Z t, Zu1, t !!!2

� ~1$ tu � Yt�1 � Su%� ~Fk~ Su 6Z t, Zuk, t !� Fk~ tu 6Z t, Zuk, t !!!2 !+

Now, Theorem 1 and Corollary 2 still apply ~Corollary 2 requires P0Rr p� 0!,
although the covariance matrices will be slightly different+ However, Theo-
rem 3 ~in Section 3+2! no longer applies, as the block bootstrap is no longer
valid, and is indeed characterized by a bias term whose sign varies across sam-
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ples+ This is because of the use of recursive estimation+ This issue is studied by
Corradi and Swanson ~2004a!, who propose a proper recentering of the quasi-
likelihood function+10

3.2. Bootstrap Critical Values

In this section we outline how to obtain valid critical values for the asymptotic
distribution of maxk�2, + + + ,m~ZT ~1, k! � MT ~m1

2 � mk
2!!, via use of a version of

the block bootstrap that properly captures the contribution of parameter estima-
tion error to the covariance kernel associated with the limiting distribution of
the test statistic+11

To show the first-order validity of the bootstrap, we shall obtain the limiting
distribution of the bootstrap statistic and show that it coincides with the limit-
ing distribution given in Theorem 1+ As all candidate models are potentially
misspecified under both hypotheses, the parametric bootstrap is not generally
applicable in our context+ In fact, if observations are resampled from one of the
candidate models, then we cannot ensure that the resampled statistic has the
appropriate limiting distribution+ Our approach is thus to establish the first-
order validity of the block bootstrap in the presence of parameter estimation
error, by drawing in part upon results of Goncalves and White ~2002, 2004!+12

Assume that bootstrap samples are formed as follows+ Let Wt � ~Yt , Z t!+
Draw b overlapping blocks of length l from Ws, + + + ,WT , where s � max$s1, s2%,
so that bl � T � s+ Thus, Ws

*, + + + ,Ws�l
* , + + + ,WT�l�1

* , + + + ,WT
* is equal to

WI1�1, + + + ,WI1�l , + + + ,WIb�1, + + + ,WIb�l , where Ii , i � 1, + + + ,b are i+i+d+ discrete uni-
form random variates on s � 1, s, + + + ,T � l+ It follows that, conditional on the
sample, the pseudo time series Wt

*, t � s, + + + ,T, consists of b i+i+d+ blocks of
length l+

Now, consider the bootstrap analog of ZT + Define the block bootstrap QMLE
as

Zui,T* � arg max
ui�Qi

1

T (t�s

T

ln fi ~Yt
* 6Z *t,ui !, i � 1, + + + ,m

and define the bootstrap statistic as13

ZT
* � max

k�2, + + + ,m
ZT
* ~1, k!,

where

ZT,u
* ~1, k!�

1

MT (t�s

T

~~~1$ tu � Yt
*� Su%� ~F1~ Su 6Z *t, Zu1,T* !� F1~ tu 6Z *t, Zu1,T* !!!2

� ~1$ tu � Yt � Su%� ~F1~ Su 6Z t, Zu1,T !� F1~ tu 6Z t, Zu1,T !!!2 !

� ~~1$ tu � Yt
*� Su%� ~Fk~ Su 6Z *t, Zuk,T* !� Fk~ tu 6Z *t, Zuk,T* !!!2

� ~1$ tu � Yt � Su%� ~Fk~ Su 6Z t, Zuk,T !� Fk~ tu 6Z t, Zuk,T !!!2 !!+
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THEOREM 3+ Let Assumption A hold. If lr ` and l0T 102 r 0, as Tr `,
then

P�v : sup
v�� �P *� max

k�2, + + + ,m
ZT
* ~1, k! � v�

� P� max
k�2, + + + ,m

~ZT ~1, k!� MT ~m1
2 �mk

2!!� v�� � «�r 0,

where P * denotes the probability law of the resampled series, conditional on
the sample, and m1

2 � mk
2 is defined as in equation ~6!+

The preceding result suggests proceeding in the following manner+ For any
bootstrap replication, compute the bootstrap statistic, ZT

* + Perform B bootstrap
replications ~B large! and compute the quantiles of the empirical distribution of
the B bootstrap statistics+ Reject H0 if ZT is greater than the ~1 � a!th quantile+
Otherwise, do not reject+ Now, for all samples except a set with probability
measure approaching zero, ZT has the same limiting distribution as the corre-
sponding bootstrap statistic when m1

2 � mk
2 � 0, ∀k, which is the least favor-

able case under the null hypothesis+ Thus, the preceding approach ensures that
the test has asymptotic size a+ On the other hand, when one or more, but not
all, of the competing models are strictly dominated by the benchmark, the pre-
ceding approach ensures that the test has asymptotic size between 0 and a+
When all models are dominated by the benchmark, the statistic vanishes to minus
infinity, so that the rule implies zero asymptotic size+ Finally, under the alter-
native, ZT diverges to ~plus! infinity, whereas the corresponding bootstrap sta-
tistic has a well-defined limiting distribution+ This ensures unit asymptotic power+
From the previous discussion, we see that the bootstrap distribution provides
correct asymptotic critical values only for the least favorable case under the
null hypothesis, that is, when all competitor models are as good as the bench-
mark model+When maxk�2, + + + ,m~m1

2 � mk
2!� 0, but ~m1

2 � mk
2! � 0 for some k,

then the bootstrap critical values lead to conservative inference+ An alternative
to our bootstrap critical values in this case is to construct critical values using
subsampling ~see, e+g+, Politis, Romano, and Wolf, 1999, Ch+ 3!+ Heuristically,
construct T � 2bT statistics using subsamples of length bT , where bT 0T r 0+
The empirical distribution of these statistics computed over the various subsam-
ples properly mimics the distribution of the statistic+ Thus, subsampling pro-
vides valid critical values even for the case where maxk�2, + + + ,m~m1

2 � mk
2!� 0,

but ~m1
2 � mk

2! � 0, for some k+ This is the approach used by Linton, Maa-
soumi, and Whang ~2003!, for example, in the context of testing for stochastic
dominance+ Needless to say, one problem with subsampling is that unless the
sample is very large, the empirical distribution of the subsampled statistics may
yield a poor approximation of the limiting distribution of the statistic+

Hansen ~2005! points out that the conservative nature of the reality check of
White ~2000! leads to reduced power and that it should be feasible to improve
the power and reduce the sensitivity of the reality check test to poor and irrel-
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evant alternatives via use of the modified reality check test outlined in his paper+
Given the similarity between the approach taken in our paper and that taken by
White ~2000!, it may also be possible to improve our test performance using
the approach of Hansen ~2005! to modify our test+

4. MONTE CARLO FINDINGS

The experimental setup used in this section is as follows+ We begin by gener-
ating ~ yt , yt�1,wt , xt ,qt !

' as

�
yt

yt�1

xt

wt

qt

� ; St~0,S, v!,

where St~0,S, v! denotes a Student’s t distribution with mean zero, variance S,
and v degrees of freedom, with

S � �
sy

2 s12 0 0 0

s12 sy
2 0 0 0

0 0 sX
2 0 0

0 0 0 sW
2 0

0 0 0 0 sQ
2

� +
The data generating process ~DGP! of interest is assumed to be ~see, e+g+,
Spanos, 1999!

yt 6yt�1 ; St�ayt�1,� v
v� 1�1 �

yt�1
2

sy
2 �~sy

2 � sy
2a!�; v�, (15)

where a� s120s 2, so that the conditional mean is a linear function of yt�1 and
the conditional variance is a linear function of yt�1

2 +
In our experiments, we impose misspecification upon all estimated models

by assuming normality ~i+e+, we assume that Fi , i � 1, + + + ,m, is the normal c+d+f+!+
Our objective is to ascertain whether a given benchmark model is “better,” in
the sense of having lower squared approximation error, than two given alterna-
tive models+ Thus, m � 3+ Level and power experiments are defined by adjust-
ing the conditioning information sets used to estimate ~via QMLE! the
parameters of each conditional model and subsequently to form Fi~u 6Z t, Zui,T !,
Fi ~u 6Z *t, Zui,T* !, ZT , and ZT

* + In all experiments, values of a � $0+4,0+6,0+8,0+9%
are used, samples of T � 60 and 120 are tried, v � 5, s 2 � 1, and sX

2 � sW
2 �

sQ
2 � $0+1,1+0,10+0% + Throughout, the conditional confidence interval version
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of the test is constructed, and the upper and lower bounds of the interval are
fixed at mY � gsY and mY � gsY , respectively, where mY and sY are the mean
and variance of yt and where g� 1

2
_ +14 Additionally, 5% and 10% nominal level

bootstrap critical values are constructed using 100 bootstrap replications, block
lengths of l � $2,3,5,6% are tried, and all reported rejection frequencies are
based on 5,000 Monte Carlo simulations+15 Given Z t � ~ yt�1, xt ,wt ,qt !, the
experiments reported on are organized as follows+

Empirical Level Experiments. In these experiments, we define the condition-
ing variable sets as follows+ For the benchmark model ~F1!, use EZ t � ~ yt�1, xt !,
where EZ t is a proper subset of Z t+ For the two alternative models ~F2 and F3!
we set EZ t � ~ yt�1,wt ! and EZ t � ~ yt�1,qt !, respectively+ In this case, the esti-
mated coefficients associated with xt ,wt , and qt have probability limits equal to
zero, as none of these variables enters into the true conditional mean function+
In addition, all models are misspecified, as conditional normality is assumed
throughout+ Therefore, the benchmark and the two competitors are equally mis-
specified+ Finally, the limiting distribution of the test statistic in this case is
driven by parameter estimation error, as assumption A~vi! does not hold ~see
Corollary 2 for this case!+

Empirical Power Experiments. In these experiments, we set the condition-
ing variable sets as follows+ For the benchmark model ~F1!, EZ t � ~wt !+ For the
two alternative models ~F2 and F3!, we set EZ t � ~ yt�1! and EZ t � ~qt !, respec-
tively+ In this manner, it is ensured that the first of the two alternative models
has smaller squared approximation error than the benchmark model+ In fact, all
three models are incorrect for both the marginal distribution ~normal instead of
Student-t ! and for the conditional variance, which is set equal to the uncondi-
tional value instead of being a linear function of yt�1

2 + However, one of the
competitors, model 2, is correctly specified for the conditional mean, whereas
the other two are not+ Therefore, model 2 is characterized by a smaller squared
approximation error+

Our findings are summarized in Table 1 ~empirical level experiments! and
Table 2 ~empirical power experiments!+ In these tables, the first column reports
the value of a used in a particular experiment, and the remaining entries are
rejection frequencies of the null hypothesis that the benchmark model is not
outperformed by any of the alternative models+A number of conclusions emerge
upon inspection of the tables+ Turning first to the empirical level results given
in Table 1, note, for example, that empirical level varies from values grossly
above nominal levels ~when block lengths and values of a are large!, to values
below or close to nominal levels ~when values of a are smaller!+ However,
note that it is often the case that moving from 60 to 120 observations results in
rejection frequencies being closer to the nominal level of the test, as expected
~with the exception that the test becomes even more conservative when l is 5 or
6, in many cases!+ Notice also that when a � 0+4 ~low persistence! a block
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Table 1. Empirical level experiments: Interval � mY � 1
2
_sY

Sample size � 60 observations Sample size � 120 observations

a l � 2 l � 3 l � 5 l � 6 l � 2 l � 3 l � 5 l � 6

A+ 5% Nominal level—exogenous variate variance � 0+1

0+4 0+024 0+013 0+014 0+033 0+034 0+021 0+008 0+014
0+6 0+044 0+035 0+042 0+050 0+051 0+033 0+029 0+025
0+8 0+082 0+084 0+126 0+143 0+071 0+076 0+088 0+088
0+9 0+132 0+131 0+198 0+252 0+096 0+114 0+147 0+157

B+ 5% Nominal level—exogenous variate variance � 1+0

0+4 0+066 0+022 0+017 0+005 0+106 0+037 0+009 0+008
0+6 0+131 0+059 0+027 0+009 0+166 0+076 0+021 0+017
0+8 0+174 0+081 0+035 0+028 0+177 0+079 0+024 0+015
0+9 0+154 0+061 0+030 0+032 0+145 0+052 0+023 0+023

C+ 5% Nominal level—exogenous variate variance � 10+0

0+4 0+060 0+023 0+005 0+008 0+136 0+033 0+009 0+007
0+6 0+119 0+066 0+019 0+022 0+182 0+084 0+027 0+016
0+8 0+170 0+085 0+034 0+024 0+183 0+095 0+036 0+018
0+9 0+161 0+073 0+043 0+036 0+153 0+062 0+031 0+020

D+ 10% Nominal level—exogenous variate variance � 0+1

0+4 0+049 0+029 0+029 0+053 0+073 0+047 0+018 0+024
0+6 0+066 0+059 0+059 0+074 0+083 0+060 0+046 0+046
0+8 0+118 0+105 0+153 0+173 0+094 0+101 0+113 0+104
0+9 0+157 0+159 0+229 0+278 0+110 0+134 0+172 0+179

E+ 10% Nominal level—exogenous variate variance � 1+0

0+4 0+128 0+067 0+046 0+030 0+207 0+106 0+038 0+034
0+6 0+212 0+121 0+069 0+042 0+242 0+149 0+062 0+064
0+8 0+249 0+136 0+085 0+058 0+258 0+142 0+069 0+058
0+9 0+235 0+119 0+080 0+071 0+211 0+106 0+057 0+060

F+ 10% Nominal level—exogenous variate variance � 10+0

0+4 0+124 0+070 0+034 0+027 0+218 0+085 0+044 0+042
0+6 0+200 0+146 0+061 0+074 0+245 0+153 0+067 0+057
0+8 0+258 0+145 0+085 0+067 0+259 0+155 0+086 0+051
0+9 0+235 0+131 0+094 0+069 0+213 0+117 0+066 0+042

Notes: Empirical rejection frequencies are reported in the second through ninth columns+ The first column reports
the value of a, the autoregressive parameter in the DGP+ In all experiments, v� 5, s 2 � 1, and sX

2 � sW
2 � sQ

2 �
$0+1,1+0,10+0% + The upper and lower bounds of the interval are fixed at mY � gsY and mY � gsY , respectively,
where g � 1

2
_ + The 5% and 10% nominal level bootstrap critical values used in the experiments are constructed

using 100 bootstrap replications, block lengths of l � $2,3,5,6% are tried, and all reported rejection frequencies
are based on 5,000 Monte Carlo simulations+ See Section 4 for further details+
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Table 2. Empirical power experiments: Interval � mY � 1
2
_sY

Sample size � 60 observations Sample size � 120 observations

a l � 2 l � 3 l � 5 l � 6 l � 2 l � 3 l � 5 l � 6

A+ 5% Nominal level—exogenous variate variance � 0+1

0+4 0+177 0+075 0+037 0+023 0+250 0+142 0+058 0+046
0+6 0+616 0+525 0+453 0+442 0+626 0+516 0+423 0+401
0+8 0+496 0+365 0+217 0+170 0+591 0+441 0+213 0+154
0+9 0+635 0+473 0+263 0+227 0+651 0+514 0+309 0+224

B+ 5% Nominal level—exogenous variate variance � 1+0

0+4 0+168 0+081 0+035 0+038 0+317 0+163 0+050 0+035
0+6 0+614 0+498 0+420 0+414 0+671 0+550 0+421 0+415
0+8 0+577 0+395 0+219 0+177 0+614 0+426 0+230 0+148
0+9 0+630 0+479 0+280 0+206 0+663 0+521 0+298 0+194

C+ 5% Nominal level—exogenous variate variance � 10+0

0+4 0+171 0+083 0+035 0+028 0+349 0+178 0+053 0+048
0+6 0+639 0+480 0+380 0+402 0+662 0+530 0+401 0+374
0+8 0+571 0+398 0+208 0+169 0+608 0+454 0+217 0+162
0+9 0+639 0+487 0+279 0+238 0+652 0+505 0+290 0+232

D+ 10% Nominal level—exogenous variate variance � 0+1

0+4 0+263 0+169 0+105 0+074 0+345 0+271 0+150 0+132
0+6 0+666 0+605 0+510 0+501 0+673 0+597 0+495 0+468
0+8 0+557 0+461 0+327 0+279 0+635 0+527 0+327 0+264
0+9 0+676 0+541 0+375 0+330 0+687 0+577 0+409 0+338

E+ 10% Nominal level—exogenous variate variance � 1+0

0+4 0+272 0+187 0+093 0+090 0+415 0+285 0+143 0+104
0+6 0+667 0+574 0+499 0+494 0+706 0+616 0+511 0+507
0+8 0+624 0+503 0+325 0+290 0+656 0+505 0+344 0+260
0+9 0+670 0+565 0+374 0+312 0+694 0+599 0+395 0+299

F+ 10% Nominal level—exogenous variate variance � 10+0

0+4 0+278 0+171 0+101 0+090 0+437 0+310 0+157 0+121
0+6 0+691 0+558 0+469 0+472 0+707 0+596 0+490 0+460
0+8 0+638 0+503 0+345 0+289 0+648 0+540 0+349 0+267
0+9 0+682 0+591 0+416 0+351 0+699 0+585 0+400 0+329

Notes: Empirical rejection frequencies are reported in the second through ninth columns+ The first column reports
the value of a, the autoregressive parameter in the DGP+ In all experiments, v� 5, s 2 � 1, and sX

2 � sW
2 � sQ

2 �
$0+1,1+0,10+0% + The upper and lower bounds of the interval are fixed at mY � gsY and mY � gsY , respectively,
where g � 1

2
_ + The 5% and 10% nominal level bootstrap critical values used in the experiments are constructed

using 100 bootstrap replications, block lengths of l � $2,3,5,6% are tried, and all reported rejection frequencies
are based on 5,000 Monte Carlo simulations+ See Section 4 for further details+
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length of 2 usually suffices to capture the dependence structure of the series,
whereas for a� 0+9 ~high persistence! a larger block length is necessary+ Finally,
it is worth noting that, overall, the empirical rejection frequencies are not too
distant from nominal levels, a result that is somewhat surprising given the small
sample sizes used in our experiments+ However, the test could clearly be expected
to exhibit improved behavior were larger samples of data used+

With regard to empirical power ~see Table 2!, note that rejection frequencies
increase as a increases+ This is not surprising, as the contribution of yt�1 to the
conditional mean, which is neglected by models 1 and 3, becomes more sub-
stantial as a increases+ Overall, for a � 0+6 and for a nominal level of 10%,
rejection frequencies are above 0+5 in many cases, again suggesting the need
for larger samples+16

As noted before, rejection frequencies are sensitive to the choice of the block
size parameter+ This suggests that it should be useful to choose the block length
in a data-driven manner+ One way in which this may be accomplished is by use
of a two-step procedure as follows+ First, one defines the optimal rate at which
the block length should grow as the sample grows+ This rate usually depends
on what one is interested in ~e+g+, the focus is confidence intervals in our setup;
see Lahiri, 2003, Ch+ 6, for further details!+ Second, one computes the optimal
block size for a smaller sample via subsampling techniques, as proposed by
Hall, Horowitz, and Jing ~1995!, and then obtains the optimal block length for
the full sample, using the optimal rate in the first step+17 However, it is not
clear whether application of the Hall et al+ ~1995! approach leads to an optimal
choice ~i+e+, to the block size that minimizes the appropriate mean squared error,
say!+ The reason for this is that the theoretical optimal block size is obtained by
comparing the first ~or second! term of the Edgeworth expansion of the actual
and bootstrap statistics+ However, in our case the statistic is not pivotal, as ZT

and ZT
* are not scaled by a proper variance estimator, and consequently we can-

not obtain an Edgeworth expansion with a standard normal variate as the lead-
ing term in the expansion+ In principle, we could begin by scaling the test statistic
by an autocorrelation and heteroskedasticity robust ~HAC! variance estimator,
but in such a case the statistic could no longer be written as a smooth function
of the sample mean, and it is not clear whether data-driven block size selection
of the variety outlined previously would actually be optimal+18 Although these
issues remain unresolved, and are the focus of ongoing research, we neverthe-
less suggest using a data-driven approach, such as the Hall et al+ ~1995! approach,
with the caveat that the method should at this stage only be thought of as pro-
viding a rough guide for block size selection+

5. CONCLUDING REMARKS

We have provided a test that allows for the joint comparison of multiple mis-
specified conditional interval models for the case of dependent observations
and for the case where accuracy is measured using a distributional analog of
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mean square error+ We also outlined the construction of valid asymptotic criti-
cal values based on a version of the block bootstrap that properly takes into
account the contribution of parameter estimation error+A small number of Monte
Carlo experiments were also run to assess the finite-sample properties of the
test, and results indicate that the test does not have unreasonable finite-sample
properties given very small samples of 60 and 120 observations, although the
results do suggest that larger samples should likely be used in empirical appli-
cation of the test+

NOTES

1+ Prediction confidence intervals are also discussed in Granger, White, and Kamstra ~1989!,
Chatfield ~1993!, Diebold, Tay, and Wallis ~1998!, Clements and Taylor ~2001!, and the references
cited therein+

2+ Whang ~2000, 2001! proposes a CK type test for the correct specification of the conditional
mean+

3+ One exception is the approach taken by Corradi and Swanson ~2005a!, who consider test-
ing the null of correct specification of the conditional distribution for a given information set, thus
allowing for dynamic misspecification under both hypotheses+

4+ Of note is that White ~1982! shows that QMLEs minimize the KLIC under mild conditions+
5+ In the definition of H0

'' , u1
† should be replaced by u0 if Z t is meant as the information set

including all the relevant history+
6+ We say that ¹ui F~u 6Z t,ui ! is 2r-dominated on Qi uniformly in u if its kth element, k � 1,

+ + + , pi , is such that 6¹ui Fi ~u 6Z t,ui !6k � Dt~u! and supu�R E~6Dt~u!62r! � `+ For more details on
domination conditions, see Gallant and White ~1988, p+ 33!+

7+ Note that in White ~2000!, the nonnestedness of at least one competitor is a necessary con-
dition, given that in his context parameter estimation error vanishes asymptotically, whereas in the
present context it does not+More precisely,White ~2000! considers out-of-sample comparison, using
the first R observations for model estimation and the last P observations for model validation,
where T � P � R+ Parameter estimation error vanishes in his setup either because P0R r 0 or
because the same loss function is used for estimation and model validation+

8+ Note that the recentered statistic is actually

max
k�2, + + + ,m

�ZT ~1, k!�
T � s

MT
~m1

2 � mk
2!�+

However, for notational simplicity, and given that the two are asymptotically equivalent, we “approx-
imate” ~T � s!��MT with MT , both in the text and in the Appendix+

9+ Note that mui† depends on chosen interval ~ tu, Su!+ Hovever, for notational simplicity we omit
such dependence+

10+ Corradi and Swanson ~2004a! study the case of rolling estimators+
11+ In principle, we could have obtained an estimator for C � @ckj # , as defined in the statement

of Theorem 1, that takes into account the contribution of parameter estimation error; call it ZC+
Then, we could draw N m � 1-dimensional standard normal random vectors, say, h~i !, i � 1, + + + ,N,
and for each i: form ZC 102h~i ! take the maximum of the m � 1 elements and finally compute the
empirical distribution of the N maxima+ However, as pointed out by White ~2000!, when the sam-
ple size is moderate and the number of models is large, ZC is a rather poor estimator for C+

12+ Goncalves and White ~2002, 2004! consider the more general case of heterogeneous and
near epoch dependent observations+

13+ It should be pointed out that ln fi~Yt 6Z t,ui ! and ln fi ~Yt
* 6Z *t,ui ! can be replaced by generic

functions mi~Yt , Z t,ui ! and mi ~Yt
*, Z *t,ui !, provided they satisfy assumptions A and A2+1 in
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Goncalves and White ~2004! and provided E *~~1��MT !(t�1
T

mi ~Yt
*, Z *t,ui !! � o~1!, Pr-P+ Thus,

the results for QMLE straightforwardly extend to generic m-estimators, such as nonlinear least
squares or exactly identified GMM+ On the other hand, they do not apply to overidentified GMM,
as E *~~1��MT !(t�1

T
mi ~Yt

*, Z *t,ui !! � O~1!, Pr-P+ In that case, even for first-order validity, one
has to properly recenter mi ~Yt

*, Z *t,ui ! ~see, e+g+, Hall and Horowitz, 1996; Andrews, 2002; Inoue
and Shintani, 2004!+

14+ Findings corresponding to g � $ 1
16
_ , 18_ % are very similar and are available from the authors

upon request+
15+ Additional results for cases where x � $ 14

_ ,1%, l � $10,12% , and where critical values are
constructed using 250 bootstrap replications are available upon request and yield qualitatively sim-
ilar results to those reported in Tables 1 and 2+

16+ Note that our Monte Carlo findings are not directly comparable with those of Christoffersen
~1998!, as his null corresponds to correct dynamic specification of the conditional interval model+

17+ Further data-driven methods for computing the block size are reported in Lahiri ~2003, Ch+ 6!+
18+ For higher order properties for statistics studentized with HAC estimators ~see, e+g+, Götze

and Künsch, 1996, for the sample mean; and Inoue and Shintani, 2004, for linear instrumental
variables estimators!+
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APPENDIX

Proof of Theorem 1. Recall that

m i
2 � E~~1$ tu � Yt � Su%� ~Fi ~ Su 6Z t,ui

†!� Fi ~ tu 6Z t,ui
†!!!2 !

� E~~1$ tu � Yt � Su%� ~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!!2 !

� E~~~F0~ Su 6Z t,u0 !� F0~ tu 6Z t,u0 !!� ~Fi ~ Su 6Z t,ui
†!� Fi ~ tu 6Z t,ui

†!!!2 !+

Thus, from ~5!,

ZT ~1, k! �
1

MT (t�s

T

~~~1$ tu � Yt � Su%� ~F1~ Su 6Z t, Zu1,T !� F1~ tu 6Z t, Zu1,T !!!2 �m1
2!

� ~~1$ tu � Yt � Su%� ~Fk~ Su 6Z t, Zuk,T !� Fk~ tu 6Z t, Zuk,T !!!2 �mk
2!!

�
T � s

MT
~m1

2 �mk
2!

�
1

MT (t�s

T

~~~1$ tu � Yt � Su%� ~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!!2 �m1
2!

� ~~1$ tu � Yt � Su%� ~Fk~ Su 6Z t,uk
†!� Fk~ tu 6Z t,uk

†!!!2 �mk
2!!

�
2

T (t�s

T

¹u1~F1~ Su 6Z t, Nu1,T !� F1~ tu 6Z t, Nu1,T !!'

� ~1$ tu � Yt � Su%� ~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!!MT ~ Zu1,T � u1
†!

�
2

T (t�s

T

¹uk~Fk~ Su 6Z t, Nuk,T !� Fk~ tu 6Z t, Nuk,T !!'

� ~1$ tu � Yt � Su%� ~Fk~ Su 6Z t,uk
†!� Fk~ tu 6Z t,uk

†!!!MT ~ Zuk,T � uk
†!

�
T � s

MT
~m1

2 �mk
2!� oP~1!,
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where Nui,T � ~ Zui,T ,ui
†!+ Note that, given Assumptions A~i! and ~iii!, for i � 1, + + + ,m,

MT ~ Zui,T � ui
†! � A~ui

†!
1

MT (t�s

T

¹ui ln fi ~Yt 6Z t,ui
†!� oP~1!,

where A~ui
†! � ~E~�¹ui

2 fi ~ yt 6Z t,ui
†!!!�1 + Thus, ZT ~1, k! converges in distribution to a

normal random variable with variance equal to ckk+ The statement in Theorem 1 then
follows as a straightforward application of the Cramér–Wold device and the continuous
mapping theorem+ �

Proof of Corollary 2. Immediate from the proof of Theorem 1+ �

Proof of Theorem 3. In the discussion that follows, P *, E *, and Var* denote the
probability law of the resampled series, conditional on the sample, the expectation, and
the variance operators associated with P *, respectively+ With the notation oP * ~1!, Pr-P,
and OP * ~1!, Pr-P, we mean a term approaching zero in P *-probability and a term
bounded in P *-probability, conditional on the sample and for all samples except a set
with probability measure approaching zero, respectively+ Write ZT,u

* ~1, k! as

ZT,u
* ~1, k! �

1

MT (t�s

T

~~~1$ tu � Yt
*� Su%� ~F1~ Su 6Z *t,u1

†!� F1~ tu 6Z *t,u1
†!!!

� ¹u1~F1~ Su 6Z *t, Nu1,T* !� F1~ tu 6Z *t, Nu1,T* !!'~ Zu1,T* � u1
†!!2

� ~~1$ tu � Yt � Su%� ~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!!

� ¹u1~F1~ Su 6Z t, Nu1,T !� F1~ tu 6Z t, Nu1,T !!'~ Zu1,T � u1
†!!2

� ~~1$ tu � Yt
*� Su%� ~Fk~ Su 6Z *t,uk

†!� Fk~ tu 6Z *t,uk
†!!!

� ¹uk~Fk~ Su 6Z *t, Nuk,T* !� Fk~ tu 6Z *t, Nuk,T* !!'~ Zuk,T* � uk
†!!2

� ~~1$ tu � Yt � Su%� ~Fk~ Su 6Z t,uk
†!� Fk~ tu 6Z t,uk

†!!!

� ¹uk~Fk~ Su 6Z t, Nuk,T !� Fk~ tu 6Z t, Nuk,T !!'~ Zuk,T � uk
†!!2 !,

where Nui,T* � ~ Zui,T* ,ui
†!, Nui,T � ~ Zui,T ,ui

†!+ Now,

Vec� 1

MT (t�s

T

¹ui ~Fi ~ Su 6Z
*t, Nui,T* !� Fi ~ tu 6Z

*t, Nui,T* !!'~ Zui,T* � ui
†!

� ~ Zui,T* � ui
†!'¹ui ~Fi ~ Su 6Z *t, Nui,T* !� Fi ~ tu 6Z *t, Nui,T* !!�

� � 1

T (t�s

T

¹ui ~Fi ~ Su 6Z *t, Nui,T* !� Fi ~ tu 6Z *t, Nui,T* !!'

� ¹ui ~Fi ~ Su 6Z *t, Nui,T* !� Fi ~ tu 6Z *t, Nui,T* !!� MT vec~ Zui,T* � ui
†!~ Zui,T* � ui

†!'

� oP * ~1!,Pr-P, (A.1)
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as MT ~ Zui,T* � ui
†! � MT ~ Zui,T* � Zui,T ! � MT ~ Zui,T � ui

†! � OP * ~1! � O~1! � OP * ~1!,
Pr-P, by Theorem 2+2 in Goncalves and White ~2004!, and MT ~ Zui,T* � Zui,T ! � OP * ~1!,
Pr-P, as it converges in P *-distribution and because the term in square brackets is
OP * ~1!, Pr-P+ Thus, ZT

* ~1, k! can be written as

1

MT (t�s

T

~~1$ tu � Yt
*� Su%� ~F1~ Su 6Z *t,u1

†!� F1~ tu 6Z *t,u1
†!!!2

� ~1$ tu � Yt � Su%� ~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!!2 !

�
2

T (t�s

T

~~1$ tu � Yt
*� Su%� ~F1~ Su 6Z *t,u1

†!� F1~ tu 6Z *t,u1
†!!!

� ¹u1~F1~ Su 6Z *t, Nu1,T* !� F1~ tu 6Z *t, Nu1,T* !!'MT ~ Zu1,T* � u1
†!!

�
2

T (t�s

T

~~1$ tu � Yt � Su%� ~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!!

� ¹u1~F1~ Su 6Z t, Nu1,T !� F1~ tu 6Z t, Nu1,T !!'MT ~ Zu1,T � u1
†!! (A.2)

�
1

MT (t�s

T

~~1$ tu � Yt
*� Su%� ~Fk~ Su 6Z *t,uk

†!� Fk~ tu 6Z *t,uk
†!!!2

� ~1$ tu � Yt � Su%� ~Fk~ Su 6Z t,uk
†!� Fk~ tu 6Z t,uk

†!!!2 !

�
2

T (t�s

T

~~1$ tu � Yt
*� Su%� ~Fk~ Su 6Z *t,uk

†!� Fk~ tu 6Z *t,uk
†!!!

� ¹uk~Fk~ Su 6Z *t, Nuk,T* !� Fk~ tu 6Z *t, Nuk,T* !!'MT ~ Zuk,T* � uk
†!!

�
2

T (t�s

T

~~1$ tu � Yt � Su%� ~Fk~ Su 6Z t,uk
†!� Fk~ tu 6Z t,uk

†!!!

� ¹u1~F1~ Su 6Z t, Nuk,T !� Fk~ tu 6Z t, Nuk,T !!'MT ~ Zuk,T � uk
†!!� oP

*~1!,

Pr-P+

We begin by showing that for i � 1, + + + ,m, conditional on the sample and for all samples
except a set of probability measure approaching zero:

~a! The term the portion of ~A+2! preceding the first �20T in ~A+2! has the same
limiting distribution ~Pr-P ! as

1

MT (t�s

T

~~1$ tu � Yt � Su%� ~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!!2 �m1
2!+
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~b! The third and fourth lines of ~A+2! ~from the second �20T on! of ~A+2! have the
same limiting distribution ~Pr-P ! as

�
2

T (t�s

T

¹u1~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!'

� ~1$ tu � Yt � Su%� ~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!!MT ~ Zu1,T � u1
†!, Pr-P+

We begin by showing ~a!+ Given the block resampling scheme described in Sec-
tion 3+2, it is easy to see that

OF � E *� 1

MT (t�s

T

~1$ tu � Yt
*� Su%� ~F1~ Su 6Z *t,u1

†!� F1~ tu 6Z *t,u1
†!!!2�

�
1

MT (t�s

T

~1$ tu � Yt � Su%� ~F1~ Su 6Z t,u1
†!� F1~ tu 6Z t,u1

†!!!2 � O� l

MT
�, Pr-P+

For notational simplicity, just set tu � �`+ Needless to say, the same argument applies
to any generic tu � Su+ Recalling that each block, conditional on the sample, is i+i+d+

Var*� 1

MT (t�s

T

~~1$Yt
* � Su%� F1~ Su 6Z *t,u1

†!!2 !�
� E *�� 1

MT (t�s

T

~~1$Yt
*� Su%� F1~ Su 6Z *t,u1

†!!2 � OF!�2�� O� l

MT �
�

1

bl
E *��(

k�1

b

(
i�1

l

~~1$YIk�i
* � Su%� F1~ Su 6Z *Ik�i,u1

†!!2 � OF!�2�� O� l

MT �
�

1

l
E *��(

i�1

l

~~1$YI1�i
* � Su%� F1~ Su 6Z *I1�i,u1

†!!2 � OF!�2�� O� l

MT �
�

1

T (t�l

T�l

(
i��l

l

~~1$Yt � Su%� F1~ Su 6Z t,u1
†!!2 � OF!

� ~~1$Yt�i � Su%� F1~ Su 6Z t�i,u1
†!!2 � OF!� O� l

MT
�

� lim
Tr`

Var� 1

MT (t�s

T

~~1$Yt � Su%� F1~ Su 6Z t,u1
†!!2 !�� O� l

MT �, Pr-P, (A.3)

where the last equality follows from Theorem 1 in Andrews ~1991!, given Assumption
A and given the growth rate conditions on l+ Therefore, given Assumption A, by Theo-
rem 3+5 in Künsch ~1989!, ~a! holds+

We now need to establish ~b!+ First, note that given the mixing and domination con-
ditions in Assumption A, from Lemmas 4 and 5 in Goncalves and White ~2004!, it fol-
lows that
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2

T (t�s

T

~~1$Yt
* � Su%� F1~ Su 6Z *t,u1

†!!¹u1 F1~ Su 6Z *t, Nu1,T* !'

� ~1$Yt � Su%� F1~ Su 6Z t,u1
†!!¹u1 F1~ Su 6Z t, Nu1,T !' !

� oP
*~1!, Pr-P+

Thus, we can write the sum of the last two terms in equation ~A+2! as

�
2

T (t�s

T

~~1$Yt
* � Su%� F1~ Su 6Z *t,u1

†!!¹u1 F1~ Su 6Z *t, Nu1,T* !' !

� MT ~ Zu1,T* � Zu1,T !� oP * ~1!, Pr-P+

Also, by Theorem 2+2 in Goncalves and White ~2004!, there exists an « � 0 such that

Pr� sup
x�� p1

6P *~MT ~ Zu1,T* � Zu1,T ! � x!� P~MT ~ Zu1,T � u1
†!� x!6 � «�r 0+

Thus, MT ~ Zu1,T* � Zu1,T ! has the same asymptotic normal distribution as MT ~ Zu1,T � u1
†!,

conditional on the sample and for all samples except a set with probability measure
approaching zero+ Finally, again by the same argument used in Lemmas A4 and A5 in
Goncalves and White ~2004!,

1

T (t�s

T

~¹u1 F1~ Su 6Z *t, Nu1,T* !'~1$Yt
* � Su%� F1~ Su 6Xt

*,u1
†!!!

� mu1†
' � oP * ~1!, Pr-P,

where mui†
' � E~¹ui Fi ~ Su 6Z t,ui

†!~1$Yt � Su% � Fi ~ Su 6Z t,ui
†!!!+ Needless to say, the corre-

sponding terms for model k can be treated in the same manner+ Thus, ZT ~1, k!* has the
same limiting distribution as ZT ~1, k!, conditional on the sample and for all samples
except a set with probability measure approaching zero+ �
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