
TLP 17 (5–6): 961–973, 2017. C© Cambridge University Press 2017

doi:10.1017/S1471068417000345 First published online 30 August 2017

961

Achievements in answer set programming�

VLADIMIR LIFSCHITZ

University of Texas, Austin, TX, USA

(e-mail: vl@cs.utexas.edu)

submitted 18 July 2017; revised 20 July 2017; accepted 27 July 2017

Abstract

This paper describes an approach to the methodology of answer set programming that can

facilitate the design of encodings that are easy to understand and provably correct. Under

this approach, after appending a rule or a small group of rules to the emerging program, we

include a comment that states what has been “achieved” so far. This strategy allows us to set

out our understanding of the design of the program by describing the roles of small parts of

the program in a mathematically precise way.

KEYWORDS: answer set programming, teaching logic programming, programming method-

ology

1 Introduction

This paper describes an approach to the methodology of answer set programming

(Marek and Truszczynski 1999; Niemelä 1999) that can facilitate the design of

encodings that are easy to understand and provably correct. Under this approach,

after appending a rule or a small group of rules to the emerging program, the

programmer would include a comment that states what has been “achieved” so far,

in a certain precise sense.

Consider, for instance, the following solution to the 8 queens problem, adapted

from Gebser et al. (2012, Section 3.2)1.

1 % Program 8Queens

2

3 row (1..8).

4 col (1..8).

5 8 { queen(I,J) : col(I), row(J) } 8.

6 :- queen(I,J), queen(I,JJ), J!=JJ.

7 :- queen(I,J), queen(II ,J), I!=II.

8 :- queen(I,J), queen(II ,JJ), (I,J)!=(II ,JJ), |I-II|=|J-JJ|.

� This research was partially supported by the National Science Foundation under Grant IIS-1422455
1 A concise introduction to ASP can be found in Chapter 1 of that book. Examples of programs in this

paper are written in the input language of the grounder gringo, Version 5.

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

962 Vladimir Lifschitz

The first rule of 8Queens (Line 3), viewed as a one-rule program, has a unique stable

model S , which satisfies the following condition:

A ground atom of the form row (i) belongs to S iff i ∈ {1, . . . , 8}. (1.1)

Condition (1.1) holds also if S is the stable model of the first two rules of this pro-
gram. And it holds if S is any stable model of the first three rules, and so on, for all six

“prefixes” (initial segments) of the program. This is what we mean by achievement:

Once the programmer declares that a property “has been achieved,” he is committed

to maintaining this property of stable models until the program is completed.

After writing the second rule (Line 4), the programmer can claim that something

else has been achieved:

A ground atom of the form col (j) belongs to S iff j ∈ {1, . . . , 8}. (1.2)

This condition holds if S is a stable model of any prefix of the program that includes
the first two rules.

Additional properties achieved by adding the third rule can be expressed as

follows:

Set S contains exactly 8 ground atoms of the form queen(i, j).

For each of these atoms, i, j ∈ {1, . . . , 8}.
(1.3)

If a program is written in this manner, then every achievement documented in the

process of writing it describes a property shared by all stable models of the entire

program. In some cases, this list of achievements can serve as the skeleton of a proof

of its correctness, in the spirit of Edsger Dijkstra’s advice:

. . . one should not first make the program and then prove its correctness, because

then the requirement of providing the proof would only increase the poor

programmer’s burden. On the contrary: the programmer should let correctness proof

and program grow hand in hand (Dijkstra 1972).

Recording important achievements in the process of writing an ASP program

may be similar to recording important loop invariants in procedural programming:

It does not ensure the correctness of the program but helps the programmer move

toward the goal of proving correctness.

A preliminary report on this project was presented at the 2016 Workshop on

Answer Set Programming and Other Computing Paradigms.

2 Programs, prefixes, and achievements

In this paper, by an (ordered) program, we understand a list of rules R1, . . . , Rn

(n � 1) in the input language of an answer set solver, such as clingo (Gebser et al.

2015) or dlv (Eiter et al. 1998). The order of rules is supposed to reflect the order in

which the programmer writes them in the process of creating the program. It does

not affect the semantics of the program, but it is essential for understanding the

process of programming.

We restrict attention to programs without classical negation. (This limitation is

discussed in the conclusion.) Stable models of a program without classical negation

are sets of ground atoms that contain no arithmetic operations, intervals, or pools

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

Achievements in answer set programming 963

(Gebser et al. 2015, Sections 3.1.7, 3.1.9, 3.1.10). Such ground atoms will be called

precomputed2. An interpretation is a set of precomputed atoms.

The kth prefix of a program R1, . . . , Rn, where 1 � k � n, is the program R1, . . . , Rk .

We will express that a program Γ is a prefix of a program Π by writing Γ � Π. The

relation � is a total order on the set of prefixes of a program.

An achievement of a prefix Γ of Π is a property of sets of interpretations that

holds for all stable models of all programs Δ such that Γ � Δ � Π. For example, (1.1)

is an achievement of the first prefix of program 8Queens; (1.2) is an achievement

of its second prefix; and (1.3) is an achievement of its third prefix. Conditions (1.1)

and (1.2), and the conjunction of conditions (1.1)–(1.3), are achievements of the third

prefix as well. Any condition that holds for all sets of interpretations is trivially an

achievement of any prefix of any program.

The following three conditions are achievements of the last three prefixes of

8Queens:

Each column of the 8 × 8 chessboard includes at most one square (i, j)

such that the atom queen(i, j) belongs to S .
(2.1)

Each row of the 8 × 8 chessboard includes at most one square (i, j)

such that the atom queen(i, j) belongs to S .
(2.2)

Each diagonal of the 8 × 8 chessboard includes at most one square (i, j)

such that the atom queen(i, j) belongs to S .
(2.3)

Thus every stable model S of 8Queens satisfies all conditions (1.1)–(2.3).

3 Programs with input

In some programs, constants are used as placeholders for values provided by the

user (Gebser et al. 2015, Section 3.1.15). For example, the constant n is used as a

placeholder for an arbitrary positive integer in the following more general version

of 8Queens:

1 % Program NQueens

2

3 row (1..n).

4 col (1..n).

5 n { queen(I,J) : col(I), row(J) } n.

6 :- queen(I,J), queen(I,JJ), J!=JJ.

7 :- queen(I,J), queen(II ,J), I!=II.

8 :- queen(I,J), queen(II ,JJ), (I,J)!=(II ,JJ), |I-II|=|J-JJ|.

The value of a placeholder is one kind of input that an answer set solver may

expect in addition to the rules of the program. A definition of an “extensional

predicate” occurring in the bodies of rules is another kind. Consider, for example,

2 This terminology follows Gebser et al. (2015, Section 2.1), where “precomputed terms” are defined.
Calimeri et al. (2012, Section 2.1) talk about elements of the “Herbrand universe” of a program in the
same sense.

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

964 Vladimir Lifschitz

the following encoding of Hamiltonian cycles, adapted from Gebser et al. (2012,

Section 3.3):

1 % Program Hamiltonian

2

3 1 {in(X,Y) : edge(X,Y) } 1 :- vertex(X).

4 1 {in(X,Y) : edge(X,Y) } 1 :- vertex(Y).

5 reached(X) :- in(v0 ,X).

6 reached(Y) :- reached(X), in(X,Y).

7 :- not reached(X), vertex(X).

It needs to be supplemented by definitions of

• the predicate vertex/1, representing the set of vertices of a finite digraph G,
• the predicate edge/2, representing the set of edges of G,
• the placeholder v0, which is a vertex of G.

If i is a valid input for a program Π, then we can talk about models of Π that

are stable for input i, or “i-stable3.”

For a program with input, an achievement is defined as a relation between valid

inputs and sets of interpretations. Such a relation R will be called an achievement

of a prefix Γ of Π if R(i, S) holds for every valid input i and every stable model S

of any program Δ such that Γ � Δ � Π.

For example, the sentence

A ground atom of the form row (i) belongs to S iff i ∈ {1, . . . , n} (3.1)

expresses a relation between n and S that is an achievement of the first prefix of

NQueens . It is obtained from condition (1.1) by replacing 8 with n, and achievements

of the other prefixes of that program can be obtained in a similar way from

conditions (1.2)–(2.3).

The following two conditions are achievements of the first two prefixes of

Hamiltonian:

Every pair (x, y) such that the atom in(x, y) belongs to S is an edge

of G; for every vertex x of G there is a unique y such that the atom

in(x, y) belongs to S .

(3.2)

For every vertex y of G there is a unique x such that the atom in(x, y)

belongs to S .
(3.3)

Nothing interesting has been achieved by adding the third rule, but the following

condition is an achievement of the fourth prefix of the program:

The set of symbols x such that the atom reached (x) belongs to S

consists of the vertices x for which there exists a walk v0, . . . , vn such

that n � 1, v0 = v0, vn = x, and every atom of the form in(vi, vi+1)

belongs to S .

(3.4)

3 Programs with input are similar to lp-functions in the sense of Gelfond and Przymusinska (1996,
Section 3). The description of an lp-function specifies not only its input, but also its output; on the
other hand, the input of an lp-function includes predicates only, not placeholders.

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

Achievements in answer set programming 965

Finally, here is an achievement of the entire program:

For every vertex x of G, the atom reached (x) belongs to S . (3.5)

4 Records of achievement

A record of achievement for a program Π is a function that maps some (possibly

all) prefixes of Π, including Π itself, to their achievements. For instance, the

function that maps the prefixes of 8Queens to conditions (1.1)–(2.3) is a record

of achievement, as well as the function that maps the first, second, fourth and fifth

prefixes of Hamiltonian to conditions (3.2)–(3.5). Every program has a trivial record

of achievement that maps all its prefixes to the identically true condition.

A record of achievement a can be represented by including in the program, after

each prefix Γ in the domain of a, a comment that describes the condition a(Γ).

Here is the program NQueens with a record of achievement encoded in this way

by comments, and with an additional comment at the beginning that shows which

inputs for the program are considered valid:

1 % Program NQueens , with a record of achievement

2

3 % input: size n of the board

4

5 % A square on the board is represented as a pair ,

6 % column number and row number , both from the set

7 % {1,..,n}.

8

9 row (1..n).

10 % achieved: row/1 = {1,...,n}.

11

12 col (1..n).

13 % achieved: col/1 = {1,...,n}.

14

15 n { queen(I,J) : col(I), row(J) } n.

16 % achieved: Set queen /2 consists of n squares.

17

18 :- queen(I,J), queen(I,JJ), J!=JJ.

19 % achieved: Each column includes at most one square from

20 % queen /2.

21

22 :- queen(I,J), queen(II ,J), I!=II.

23 % achieved: Each row includes at most one square from

24 % queen /2.

25

26 :- queen(I,J), queen(II ,JJ), (I,J)!=(II ,JJ), |I-II|=|J-JJ|.

27 % achieved: Each diagonal includes at most one square from

28 % queen /2.

The comment in Line 10 is a concise reformulation of condition (3.1). It uses row/1

as shorthand for “the set of precomputed terms i such that the atom row (i) belongs

to S .” In the other comments, col/1 and queen/2 are understood in a similar way.

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

966 Vladimir Lifschitz

Program Hamiltonian with a record of achievement below uses another useful

convention: In Lines 11 and 12, we understand X and Y as metavariables for

precomputed terms. The comment in those lines is a reformulation of condition (3.3).

5 Completeness

If a is a record of achievement for a program Π, and Δ is a prefix of Π, then by a∗(Δ)

we denote the conjunction of conditions a(Γ) for all prefixes Γ of Δ that belong to

the domain of a. It is clear that condition a∗(Δ) is an achievement of Δ. In particular,

all stable models of Π satisfy condition a∗(Π). The converse is, generally, not true—it

is possible that an interpretation satisfying a∗(Π) is not a stable model of Π.

1 % Program Hamiltonian , with a record of achievement

2

3 % input: the set vertex /1 of vertices of a finite digraph G;

4 % the set edge/2 of edges of G; a vertex v0 of G.

5

6 1 {in(X,Y) : edge(X,Y) } 1 :- vertex(X).

7 % achieved: Set in/2 is a subset of edge /2; for every vertex

8 % X of G there is a unique Y such that in(X,Y).

9

10 1 {in(X,Y) : edge(X,Y) } 1 :- vertex(Y).

11 % achieved: For every vertex Y of G there is a unique X

12 % such that in(X,Y).

13

14 reached(X) :- in(v0 ,X).

15 reached(Y) :- reached(X), in(X,Y).

16 % achieved: Set reached /1 consists of the vertices that are

17 % reachable from v0 by a path of non -zero length

18 % in the subgraph of G with the set of edges in/2.

19

20 :- not reached(X), vertex(X).

21 % achieved: reached /1 = vertex /1.

The following notation and terminology will be used to discuss this issue. For any

prefix Γ of a program Π, by Preds(Γ), we denote the set consisting of the predicates

occurring in Γ and the input predicates of Π. For instance, if Γ is the first prefix of

Hamiltonian (rule in Line 6), then Preds(Π) consists of the predicates

vertex/1, edge/2, in/2. (5.1)

The expression Preds(I), where I is an interpretation, stands for the set of predicates
occurring in I . About a record of achievement a for a program Π, we will say that

it is complete if, for every Γ in the domain of a, all interpretations I satisfying a∗(Γ)

for which Preds(I) ⊆ Preds(Γ) are stable models of Γ.

The records of achievement for NQueens and Hamiltonian shown above are

complete. The completeness of the latter, for example, entails that

(a) any interpretation S such that atoms in S contain no predicates other than (5.1)

is a stable model of the first rule of Hamiltonian iff it satisfies condition (3.2);

(b) such an interpretation is a stable model of the first two rules of Hamiltonian iff

it satisfies conditions (3.2) and (3.3);

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

Achievements in answer set programming 967

(c) any interpretation S such that atoms in S contain no predicates other than

vertex/1, edge/2, in/2, reached/1

is a stable model of the first four rules of Hamiltonian iff it satisfies conditions

(3.2)–(3.4);

(d) such an interpretation is a stable model of the entire program iff it satisfies

conditions (3.2)–(3.5).

On the other hand, if we drop the word “unique” from the comment in Lines 7, 8

of that record of achievement then it will become incomplete.

6 Achievement-based answer set programming

Records of achievement in the two examples above are not only complete but also

detailed, in the sense that they include achievements for almost all prefixes of the

programs. The only rule in these programs that is not followed by an achievement

comment is the first rule in the recursive definition of reached . The role of that rule

cannot be properly explained unless we treat it as part of the definition.

Developing an ASP program along with a complete and detailed record of

achievement can be called “achievement-based” answer set programming. This

strategy allows us to set out our understanding of the design of the program by

describing the roles of individual rules, or small groups of rules, in a mathematically

precise way.

One of the advantages of this approach is that comments explaining what is

achieved by a group of rules at the beginning of a program help us start testing and

debugging it at an early stage, when only a part of the program has been written.

To this end, we can run an answer set solver to find some (or all) stable models of

the prefix that has been already written and check that they satisfy the conditions

in the available “achieved” comments. A mismatch would indicate that there is a

bug in the rules of the program written so far, or perhaps that the programmer’s

intentions have not been properly documented.

A complete record of achievement is particularly valuable when it is closely related

to the program’s specification, because from the completeness of such a record we

may be able to conclude that the program is correct. For instance, from property (d)

of Hamiltonian we can conclude that a set of edges of G is a Hamiltonian cycle iff

it has the form {(x, y) : in(x, y) ∈ S} for some stable model S of that program.

To further illustrate the idea of achievement-based ASP, we present below three

“real-life” ASP programs accompanied by complete, detailed records of achievement.

The first of them, program SCA (Brain et al. 2012, Figure 1), generates sequence

covering arrays4 of strength 3. Our version of SCA is slightly different from the

original program: The constraint in Line 19 here replaces the pair of rules

hb(N,X,Z) :- hb(N,X,Y), hb(N,Y,Z).

:- hb(N,X,X).

4 A sequence covering array of strength t is an array of permutations of symbols such that every ordering
of any t symbols appears as a subsequence of at least one row.

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

968 Vladimir Lifschitz

The reason why we chose to make this change is that the first of the two rules above

may temporarily destroy the irreflexivity of the relation of hbN that was true at the

previous step, that property is restored by the second rule. That is not in the spirit

of the achievement-based approach, which emphasizes the gradual accumulation of

properties that we would like to see in the complete program.

The other two examples are program Borda , adapted from Charwat and Pfandler

(2015, Encoding 1), which encodes the Borda rule for determining the winner in an

election with several candidates5, and program OBT , adapted from Brooks et al.

(2007, Section 1), which encodes ordered binary trees6.

1 % Program SCA

2

3 % input: the number s of symbols 1,...,s; the number n of

4 % rows 1,...,n.

5

6 sym (1..s).

7 % achieved: sym/1 = {1,...,s}.

8

9 row (1..n).

10 % achieved: row/1 = {1,...,n}.

11

12 1 {hb(N,X,Y); hb(N,Y,X)} 1 :- row(N), sym(X), sym(Y), X!=Y.

13 % For every row N, let hb_N be the binary relation on sym/1

14 % defined by the condition: X hb_N Y iff hb(N,X,Y).

15 % achieved: each relation hb_N is irreflexive; each pair of

16 % distinct symbols satisfies either X hb_N Y

17 % or Y hb_N X.

18

19 :- hb(N,X,Y), hb(N,Y,Z), not hb(N,X,Z).

20 % achieved: each relation hb_N is transitive.

21

22 covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).

23 % For every row N and every symbol X, by M_{N,X} we denote

24 % the symbol that is the X-th smallest w.r.t. hb_N.

25 % achieved: for any symbols X, Y, Z, covered(X,Y,Z) iff ,

26 % for some row N, (X,Y,Z) is a subsequence of

27 % (M_{N,1},...,M_{N,s}).

28

29 :- not covered(X,Y,Z), sym(X), sym(Y), sym(Z),

30 X!=Y, Y!=Z, X!=Z.

31 % achieved: covered(X,Y,Z) for any pairwise distinct symbols

32 % X, Y, Z.

5 Each voter ranks the list of candidates in order of preference. The candidate ranked last gets zero
points; next to last gets one point, and so on. The candidate with the most points is the winner.

6 An ordered binary tree is a rooted binary tree with the leaves 0, . . . , k and internal vertices k + 1, . . . , 2k
such that (i) every internal vertex is greater than its children, and (ii) for any two internal vertices x
and x1, x > x1 iff the maximum of the children of x is greater than the maximum of the children of x1.

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

Achievements in answer set programming 969

1 % Program Borda

2

3 % input: the number m of candidates 1,...,m in an election

4 % E; the set p/3 of triples (P,Pos ,C) such that , for

5 % a fixed ordering pr_1 ,..., pr_l of the distinct

6 % preference relations in the profile of E, candidate

7 % C is at position Pos in relation pr_P; the set

8 % votecount /2 of pairs (P,VC) such that relation pr_P

9 % occurs VC times in the profile of E.

10

11 candidate (1..m).

12 % achieved: candidate /1 = {1,...,m}.

13

14 posScore(P,C,X*VC) :- p(P,Pos ,C), X=m-Pos , votecount(P,VC).

15 % achieved: posScore(P,C,S) iff the voters who chose

16 % relation pr_P in election E contributed S points

17 % to candidate C under the Borda rule.

18

19 score(C,N) :- candidate(C), N=#sum{S:posScore(_,C,S)}.

20 % achieved: score(C,N) iff candidate C earned N points in

21 % election E under the Borda rule.

22

23 winner(C) :- score(C,M), M=#max{S:score(_,S)}.

24 % achieved: winner(C) iff the number of points earned by

25 % candidate C in election E is maximal among all

26 % candidates.

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

970 Vladimir Lifschitz

1 % Program OBT

2

3 % input: positive integer k.

4

5 leaf (0..k).

6 % achieved: leaf/1 = {0,...,k}.

7

8 vertex (0..2*k).

9 % achieved: vertex /1 = {0,...,2k}.

10

11 internal(X) :- vertex(X), not leaf(X).

12 % achieved: internal /1 = {k+1,...,2k}.

13

14 2 {edge(X,Y) : vertex(Y), X>Y} 2 :- internal(X).

15 % Let G be the digraph with the vertices vertex /1 and the

16 % edges edge /2.

17 % achieved: for every edge (X,Y) of G, X>Y; the out -degree

18 % of a vertex X in G is 2 if internal(X), and 0

19 % if leaf(X).

20

21 reachable(X,Y) :- edge(X,Y).

22 reachable(X,Y) :- edge(X,Z), reachable(Z,Y).

23 % achieved: reachable(X,Y) iff Y is reachable from X in G

24 % by a path of non -zero length.

25

26 :- vertex(X), X!=2*k, not reachable (2*k,X).

27 % achieved: every vertex of G other than 2k is reachable

28 % from 2k by a path of non -zero length.

29

30 :- reachable(X,X), vertex(X).

31 % achieved: G is acyclic.

32

33 max_child(X,Y) :- edge(X,Y), edge(X,Y1), Y > Y1.

34 % achieved: max_child(X,Y) iff Y is the largest child of X

35 % in G.

36

37 Y<Y1 :- max_child(X,Y), max_child(X1 ,Y1), Y>Y1 , X<X1.

38 % achieved: for any vertices X, X1 of G such that X<X1 , the

39 % largest child of X is smaller than the largest

40 % child of X1.

7 Achievements in teaching

The achievement-based approach was emphasized in a class on answer set program-

ming taught recently to a group of over 50 undergraduates at the University of

Texas at Austin. The idea of an achievement was explained more informally than

in this paper, but many examples were given. In most solutions to programming

assignments submitted for grading, students attempted to imitate the instructor’s use

of “input” and “achieved” comments, even though they were not instructed to do

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

Achievements in answer set programming 971

that. The degree of their success depended, of course, on their previous exposure

to logic and mathematics. When ASP programs written by students were discussed

in class, the instructor emphasized the difference between the correctness of the

program on the one hand, and the clarity and correctness of “input” and “achieved”

comments on the other.

Comments of these kinds can be used in exercises and test problems. In one case,

students were shown an “incomplete listing” of a graph coloring program:

1 % Color the vertices of a graph so that no two adjacent

2 % vertices share the same color.

3

4 % input: set vertex /1 of vertices of a graph G;

5 % set edge/2 of edges of G; set color /1 of colors.

6

7 1 {color(X,C) : color(C)} 1 :- vertex(X).

8 % achieved: for every vertex X there is a unique color C

9 % such that color(X,C).

10

11 ___

12 % achieved: no two adjacent vertices share the same color.

13

14 #show color /2.

The question was, “What rule would you place in Line 11?” On another occasion,

students were asked to write a one-rule program for which the following comments

would be appropriate:

1 % Calculate the number of classes taught today on each of

2 % the seven floors of the computer science building.

3

4 % input: set where /2 of all pairs (C,I) such that class C

5 % is taught on the I-th floor.

6

7 ___

8 % achieved: howmany(I,N) iff the number of classes taught

9 % on the I-th floor is N.

10

11 #show howmany /2.

8 Conclusion

In achievement-based ASP, we start writing a program by describing its inputs.

Then, after every rule or small group of rules, we include a comment describing

what has been achieved. Collectively these comments represent a complete, detailed

record of achievement.

As we are adding rules to an emerging ASP program, we deal at every step with

a single executable piece of code, unlike the non-executable pseudo-code formed in

the process of stepwise refinement of a procedural program, and unlike a collection

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

972 Vladimir Lifschitz

of executable subroutines formed in the process of bottom-up design. In the process,

we think of prefixes of the emerging program as if they were complete programs.

We describe their stable models in a way that relates them to the stable models of

the final product.

The programs discussed in this paper do not use classical negation (Gelfond

and Lifschitz 1990). In the presence of classical negation, answer sets consist of

“precomputed classical literals”—precomputed atoms and classical negations of such

atoms. Extending the definition of a complete record of achievement to such

programs is straightforward. On the other hand, many programs with classical

negation contain defaults (Gelfond and Kahl 2014, Chap. 5), such as the closed

world assumption and the commonsense law of inertia, and the achievement-

based approach may be not so useful in application to programs containing

defaults. A default does not “achieve” anything in the technical sense of

Section 2.

When ASP is used for representing dynamic domains, a very different methodology

can be recommended: First describe the domain in an action description language,

and then translate its causal laws into answer set programming (Gelfond and

Lifschitz 1993; Lifschitz and Turner 1999), (Gelfond and Kahl 2014, Chap. 8).

According to Gebser et al. (2012, Section 3.2),

[t]he basic approach to writing encodings in ASP follows a generate-and-test

methodology, also referred to as guess-and-check. . . A “generating” part is meant to

non-deterministically provide solution candidates, while a “testing” part eliminates

candidates violating some requirements. . . Both parts are usually amended by

“defining” parts providing auxiliary concepts.

Most programs discussed in this paper are designed in accordance with this basic

approach7. The advice to keep track of what has been achieved as you are adding

rules to your program differs from the “generate-and-test” advice in that it refers to

mathematical properties of stable models, and not to programmer’s intentions.

Acknowledgements

Thanks to Michael Gelfond, Amelia Harrison, Yuliya Lierler, Julian Michael,

Liangkun Zhao, and the anonymous referees for comments on earlier versions

of this paper. Conversations and exchanges of email messages with Mark Denecker,

Esra Erdem, Martin Gebser, Roland Kaminski, Johannes Oetsch, Dhananjay Raju,

and Mirek Truszczynski helped the author develop a better understanding of the

methodology of answer set programming.

7 Program Borda is an exception—it has no generating part and no testing part. Also, it is not clear
whether the designers of Hamiltonian intended the second rule for the generating part or for the testing
part. (The second rule is syntactically similar to the first, which is definitely a generate rule. On the
other hand, adding the second rule does not really generate new solution candidates; it eliminates some
of the candidates generated earlier.)

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

Achievements in answer set programming 973

References

Brain, M., Erdem, E., Inoue, K., Oetsch, J., Pührer, J., Tompits, H. and Yilmaz, C. 2012.

Event-sequence testing using answer-set programming. International Journal on Advances in

Software 5, 237–251.

Brooks, D. R., Erdem, E., Erdoğan, S. T., Minett, J. W., and Ringe, D. 2007. Inferring

phylogenetic trees using answer set programming. Journal of Automated Reasoning 39,

471–511.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,

N., Ricca, F. and Schaub, T. 2012. ASP-Core-2: Input language format [online]. URL:

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf [Accessed on

August 15, 2017].

Charwat, G. and Pfandler, A. 2015. Democratix: A declarative approach to winner

determination. In Proc. of the 4th International Conference on Algorithmic Decision Theory

(ADT).

Dijkstra, E. W. 1972. The humble programmer. Communications of the ACM 15, 859–866.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G. and Scarcello, F. 1998. The KR system

dlv: Progress report, comparisons and benchmarks. In Proc. of International Conference on

Principles of Knowledge Representation and Reasoning (KR), A. Cohn, L. Schubert, and

S. Shapiro, Eds. 406–417.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V. and Schaub, T. 2015. Abstract

gringo. Theory and Practice of Logic Programming 15, 449–463.

Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J.,

Schaub, T. and Thiele, S. 2015. Potassco User Guide, version 2.0 [online]. URL: https://

sourceforge.net/projects/potassco/files/guide/2.0/guide-2.0.pdf/download.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2012. Answer Set Solving in

Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and

Claypool Publishers.

Gelfond, M. and Kahl, Y. 2014. Knowledge Representation, Reasoning, and the Design of

Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press.

Gelfond, M. and Lifschitz, V. 1990. Logic programs with classical negation. In Proc. of

International Conference on Logic Programming (ICLP), D. Warren and P. Szeredi, Eds.

579–597.

Gelfond, M. and Lifschitz, V. 1993. Representing action and change by logic programs.

Journal of Logic Programming 17, 301–322.

Gelfond, M. and Przymusinska, H. 1996. Towards a theory of elaboration tolerance:

Logic programming approach. International Journal of Software Engineering and Knowledge

Engineering 6, 1, 89–112.

Lifschitz, V. and Turner, H. 1999. Representing transition systems by logic programs.

In Proc. of International Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR). 92–106.

Marek, V. and Truszczynski, M. 1999. Stable models and an alternative logic programming

paradigm. In The Logic Programming Paradigm: A 25-Year Perspective. Springer Verlag,

375–398.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273.

https://doi.org/10.1017/S1471068417000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000345

