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Shock detachment and drag in hypersonic flow
over wedges and circular cylinders
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In a recent publication, Hornung et al. (J. Fluid Mech., vol. 871, 2019, pp. 1097–1116)
showed that the shock wave stand-off distance and the drag coefficient of a cone in the
inviscid hypersonic flow of a perfect gas can be expressed as the product of a function of
the inverse normal-shock density ratio ε and a function of the cone-angle parameter η, thus
reducing the number of independent parameters from three (Mach number, specific heat
ratio and angle) to two. Analytical forms of the functions were obtained by performing
a large number of Euler computations. In this article, the same approach is applied to
a symmetrical flow over a wedge. It is shown that the same simplification applies and
corresponding analytical forms of the functions are obtained. The functions of ε are
compared with the newly determined corresponding functions for flow over a circular
cylinder.
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1. Introduction

One of the most important parameters in hypersonic flow is the inverse normal-shock
density ratio, which for a perfect gas is

ε = ρ∞
ρs

= γ − 1 + 2/M2∞
γ + 1

, (1.1)

where ρ is the density, γ is the ratio of specific heats and M is the Mach number. The
subscripts ∞ and s refer to the free stream and to the immediate post-normal-shock
condition, respectively.

In the flow over a wedge with given free-stream conditions, the shock wave is straight
and attached to the wedge tip when the wedge half-angle θ is sufficiently small. As θ is
increased, a point is reached at which the flow downstream of the shock is sonic so that
information about the length of the wedge from tip to shoulder can be communicated to
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(a) (b) (c)

Figure 1. Results of computations of flow over a wedge at M∞ = 10 and γ = 1.3 with θ = 48◦, 49◦ and 50◦,
showing (a–c) entirely supersonic flow with a straight attached shock, partly subsonic flow with a curved,
attached shock and flow with a detached shock. The white line is the sonic line. The grey shading in these
pseudo-schlieren images is proportional to a monotonic function of the density gradient.

the tip. The shock begins to curve and, at a slightly larger value of θ , detaches from the
tip. The results of the Euler computations for these three conditions are shown in figure 1.
An example of the importance of the parameter ε is the approximation given by Hayes &
Probstein (1959) for the values of θ and the shock angle β at detachment:

βd = arctan

√
1
ε
, θd = 2βd − π

2
. (1.2a,b)

Here the subscript d refers to the detachment condition. The exact values of these
detachment angles may be determined from

βde = arcsin

√
(γ + 1)M2∞/4 − 1 + √

γ + 1
√

(γ + 1)M4∞/16 + 1 + (γ − 1)M2∞/2
γ M2∞

(1.3)

θde = arctan

(
(M2∞ sin2 βde − 1)/ tan βde

1 + [(γ + 1)/2 − sin2 βde]M2∞

)
, (1.4)

see e.g. Chapman (2000). Figure 2 shows the quality of the approximation of Hayes
& Probstein (1959) by plotting exact values for Mach numbers between 4 and 10 and
γ between 1.05 and 1.4 together with the approximation versus ε. As ε increases, the
approximate value of θd is slightly above the exact curves, especially at the lower Mach
numbers.

The range of θ for which the shock is detached is of particular interest here. As in
Hornung, Schramm & Hannemann (2019), we introduce the variable

η = θ − θd

π/2 − θd
, (1.5)

such that η = 0 at detachment and η = 1 at θ = π/2. Because analytical formulae for the
exact detachment angles exist in the case of a wedge flow, we use the variable

ηe = θ − θde

π/2 − θde
(1.6)

in place of η.
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Shock detachment from a wedge
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Figure 2. Exact detachment angles for 4 � M∞ � 10 and 1.05 � γ � 1.4, plotted with black dashed lines,
compared with the approximation of Hayes & Probstein (1959) (1.2a,b) in red.

For the shock stand-off distance, Δ, which is of special interest, we again make the
hypothesis that it follows the functional form

Δ

H
= g(ε)f (ηe) (1.7)

as in Hornung et al. (2019). Here H is the height of the wedge measured from the symmetry
plane to the shoulder. To test the hypothesis, we perform a large number of computations
covering the parameter space (M∞, γ, θ). If the hypothesis is true for the case of a flow
over a wedge as it was for a cone flow, the results can be used to determine the functional
forms of g and f .

2. Discussion of results of computations

2.1. Shock stand-off distance
The parameter space was explored by computing the flow over wedges using the Euler
equations. Details about the computational technique are given in the Appendix. An
example of the results is presented in figure 3 for the case of M∞ = 5. Similar results were
also obtained for M∞ = 4, 7 and 10. Plotting the dimensionless shock stand-off distance
against ε in the case of θ = 90◦, (square slab), i.e. for ηe = 1, where f (ηe) = f (1) is a
constant, provides a partial test of the hypothesis for the function g(ε).

This is shown in figure 4. A fit of the points in figure 4 yields the interesting result where
all points fall on a unique curve given by

g(ε) = √
ε
(

1 + 3
2ε
)

, (2.1)

thus confirming the first part of the hypothesis, i.e. that a unique function g(ε) exists.
Again, as in the case of flow over cones, the leading term is proportional to

√
ε. An

explanation for this, which applies equally to the plane case, has been given on the basis
of a control volume argument in Hornung et al. (2019). The fact that all the results fall
on the same curve confirms the first part of the hypothesis. It is interesting that in the
corresponding function of ε for the 90◦ cone, the factor 3/2 that appears in (2.1) is 1/2.
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(a) (b) (c) (d )
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Figure 3. Pseudo-schlieren images of flow over a wedge at M∞ = 5. The grey shading in these images is
proportional to a monotonic function of the magnitude of the density gradient. The white line is the sonic line.
In rows from left to right, θ = 60◦, 70◦, 80◦ and 90◦. In columns from top to bottom, γ = 1.05, 1.1, 1.2 and
1.3. Similar sets of computations were made for M∞ = 4, 7 and 10.

To test the second part of the hypothesis, four plots of f (ηe) = Δ/[Hg(ε)] versus ηe are
shown in figure 5 for the four Mach numbers and the four γ values. All the computational
results fall on the same curve given by the unique function

f (ηe) = 2.2ηe − 0.3η2
e , (2.2)

thus confirming the second part of the hypothesis. Note, however, the fit is not as good at
M∞ = 4 as that for the other values of M∞. Had we used η instead of ηe, the deterioration
of the fit at the lower Mach numbers would have been even larger.
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Shock detachment from a wedge
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Figure 4. (a) Dimensionless shock stand-off distance for flow over a 90◦ wedge with M∞ = 4, 5, 7 and 10
and γ = 1.05, 1.1, 1.2 and 1.3. In the case of M∞ = 10, two cases of γ = 1.01 and 1.02, and with M∞ = 7,
one case with γ = 1.02 are added. (b) Corresponding plot for flow over a circular cylinder of radius R. In this
case, the results are fitted well by Δ/R = 2.14 ε(1 + ε/2). In Hornung (1972), the linear form Δ/R = 2.32 ε

was found, which is only slightly different.
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Figure 5. Four plots of f (ηe) versus ηe. Top, left to right: M∞ = 10 and 7. Bottom, left to right M∞ = 5 and
4. In all four plots the curve is the same and given by (2.2).

2.2. Drag coefficient
Hornung et al. (2019) showed that for flow over cones, the drag coefficient could also be
expressed in the form of (1.7). The drag coefficient for a wedge is written as

CD = 2D
γ p∞M2∞HL

, (2.3)
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Figure 6. (a) Drag coefficient for flow over a 90◦ wedge with M∞ = 4, 5, 7 and 10 and γ = 1.05, 1.1, 1.2
and 1.3. For M∞ = 10, two cases of γ = 1.01 and 1.02, and with M∞ = 7, one case with γ = 1.01 are added.
(b) Drag coefficient for flow over a circular cylinder with M∞ = 4, 5, 7 and 10 and γ = 1.05, 1.1, 1.2 and 1.3.

where the drag force is

D = 2L
∫ H

0
( p − p∞) dy. (2.4)

Here L is the transverse length of the wedge and y is the distance measured from the
symmetry plane of the wedge. Then, if the form of (1.7) holds for CD, expect that

CD = g1(ε)f1(ηe). (2.5)

The same set of computational results can now be used to check whether this is correct.
Again we use the case of ηe = 1, where f1(1) is a constant, to check whether g1(ε) is
unique. To this end, figure 6 shows a plot of CD versus ε for the 90◦ wedge and for the
circular cylinder. In both cases, all the results collapse onto a single line. For the 90◦
wedge,

CD = g1(ε) = 2 − 1.4ε, (2.6)

and for the circular cylinder,

CD = 1.3 − 5(ε − 0.085)2. (2.7)

In these two cases, the drag coefficients may be compared with the values from the
Newtonian approximation, which are 2.0 and 4/3 for the 90◦ cone and the circular cylinder,
respectively, both of which are fairly close to the curves of figure 6. To determine the form
of the function f1(ηe), figure 7 shows four plots of CD/g1(ε) versus ηe. Although the results
agreed approximately with

f1(ηe) = 0.85 + 0.15ηe, (2.8)

they were scattered fairly broadly around the line, so that the validity of the functional
form was not as convincing as in the case of the shock stand-off distance.

3. High-enthalpy effects

The present results were obtained from perfect-gas computations. However, it is possible
that they apply also to flows at high enthalpy, where vibrational excitation and dissociation
may occur and non-equilibrium effects become important. In the case of blunt bodies,

915 A100-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

18
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.187


Shock detachment from a wedge

 0

 0.2

 0.4

 0.6

 0.8

 1.0

0.2 0.4 0.6 0.8 1.0  0

 0.2

 0.4

 0.6

 0.8

 1.0

0.2 0.4 0.6 0.8 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1.0

0.2 0.4 0.6 0.8 1.0  0

 0.2

 0.4

 0.6

 0.8

 1.0

0.2 0.4 0.6 0.8 1.0

γ = 1.05

1.1

1.2

1.3

f1 (ηe)

f1 (ηe)

M∞ = 7M∞ = 10

M∞ = 4M∞ = 5

ηe ηe

(a) (b)

(c) (d )

Figure 7. Four plots of f1(ηe) versus ηe: (a,b) M∞ = 10 and 7; (c,d) M∞ = 5 and 4. In all four plots, the line
is the same and given by (2.6).

Wen & Hornung (1995) and Stulov (1969) showed that forming the density ratio with the
average density along the stagnation streamline, instead of with the post-normal-shock
density, causes such results to carry over to the high-enthalpy regime. This was shown
by applying the conservation of mass to a control volume. Thus, in the case of blunt
bodies, the manifold intricacies of high-enthalpy non-equilibrium flows influence the
shock stand-off distance only through their substantial effect on the stagnation-line density
profile. It would be interesting if this could be extended to the case of flow over a wedge,
an idea requiring extensive work to be tested.

4. Conclusions

It was shown that the reduction from three independent parameters to two in the parameter
space defining the dimensionless shock stand-off distance and drag coefficient, which
was previously found for axisymmetric hypersonic flow over cones, applies also to flow
over wedges in the detached-shock range. Useful analytical forms were found for these
relations by performing a large number of Euler computations and plotting the results in
an appropriate form. The results are also compared with new results for flow over a circular
cylinder.
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Appendix

The software system Amrita, constructed by James Quirk (see Quirk 1998), was used.
A detailed description of the features and phenomena encountered with some of the
algorithms used for Riemann solvers, including the one used here, has also been given
by Quirk (1994). An example of a test of the software against experiment may be found in
Quirk & Karni (1996).

Amrita is a system that automates and packages computational tasks in such a way
that the packages can be combined (dynamically linked) according to instructions written
in a high-level scripting language. The present application uses features of Amrita that
include the automatic construction of the Euler solver, documentation of the code, adaptive
mesh refinement according to simply chosen criteria, and scripting-language-driven
computation, archiving and post-processing of the results. The automation of the assembly
and sequencing of the tasks result in a dramatically reduced possibility of hidden errors.
This technique also makes computational investigations transparent and testable by others.
The ability to change one package at a time, without changing the rest of the scheme,
facilitates the detection of sources of error. In most of the work, the Euler solver generated
was an operator-split scheme with HLLE flux (after Harten, Lax & van Leer (1983) and
Einfeldt (1988)) and kappa-MUSCL reconstruction. In some cases with γ close to 1, the
carbuncle problem arose, and the more robust equilibrium flux method of Pullin (1980)
was used. The (x, y) plane was discretized by a Cartesian grid of 300 × 300 coarse-grid
cells that were adaptively refined by a factor of 3 to make an effective grid of 900 × 900
cells. The criterion for adaptation was a chosen threshold of the magnitude of the density
gradient. Solid boundaries are represented by a level set defined as the smallest distance of
a field point from the solid boundary. The grey shading of the visualizations is a monotonic
function of the magnitude of the density gradient.
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