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Abstract

We show a rigidity theorem for the Seiberg–Witten invariants mod 2 for families of spin
4-manifolds. A mechanism of this rigidity theorem also gives a family version of 10/8-
type inequality. As an application, we prove the existence of non-smoothable topological
families of 4-manifolds whose fiber, base space, and total space are smoothable as man-
ifolds. These non-smoothable topological families provide new examples of 4-manifolds
M for which the inclusion maps Diff(M) ↪→ Homeo(M) are not weak homotopy equiv-
alences. We shall also give a new series of non-smoothable topological actions on some
spin 4-manifolds.

1. Introduction

The Seiberg–Witten invariant is an integer-valued differential topological invariant of a Spinc

4-manifold, which reflects the smooth structure for various examples of 4-manifolds. Nevertheless,
if the Spinc structure is induced from a spin structure, one may expect a sort of ‘rigidity theorem’
for the Seiberg–Witten invariant mod 2. Namely, the value of the Seiberg–Witten invariant mod
2 may depend only on some underlying topological structure of the smooth manifold, such as on
its homotopy type. Such results have been obtained by Morgan and Szabó [MS97], Ruberman
and Strle [RS00], Bauer [Bau08] and Li [Li06b, LL01].

Various authors developed gauge theory not just for a single 4-manifold, but for families of
4-manifolds with many interesting applications, such as [Rub98, Rub99, Rub01, LL01, Szy10,
Bar19a, Nak10]. In particular, for a smooth family of 4-manifolds, the families Seiberg–Witten
invariant has been defined as a Z- or Z/2-valued invariant.

In this paper, we study a family version of rigidity results on the Z/2-valued Seiberg–Witten
invariant. Namely, for a given family of spin 4-manifolds with some topological conditions, we
consider the Z/2-valued families Seiberg–Witten invariant, and verify that it depends only on
weaker information than is a priori expected. Roughly speaking, we verify that the Z/2-valued
families Seiberg–Witten invariant is determined by the linearization of a family of Seiberg–Witten
equations. A mechanism of this rigidity theorem also gives a family version of Furuta’s 10/8-
inequality [Fur01] in a suitable situation.

This family version of 10/8-type inequality gives us the following topological applications:
we prove the existence of a non-smoothable family of 4-manifolds whose fiber, base space, and
the total space are smoothable as manifolds. To our knowledge, this interesting topological
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Rigidity of the Seiberg–Witten invariants for spin families

phenomenon has not been discussed so far. This non-smoothability result gives a new approach
to detecting homotopical difference between the diffeomorphism and homeomorphism groups of
4-manifolds. For example, let M be a smooth 4-manifold which is homeomorphic to K3#nS2 ×
S2 with 0 ≤ n ≤ 3. Then it follows from our non-smoothability result that the inclusion map
from the diffeomorphism group to the homeomorphism group

Diff(M) ↪→ Homeo(M)

is not a weak homotopy equivalence. This result has not been known even when M is diffeo-
morphic to K3#nS2 × S2 with n > 0. As another application, we shall also detect a new series
of non-smoothable topological actions on some spin 4-manifolds using the family version of the
10/8-inequality.

Let us summarize the statements of our main theorems and their applications. Henceforth,
all manifolds are assumed to be connected. Let B be a closed smooth manifold, M a closed
smooth 4-manifold equipped with a spin structure s and M → X → B be a fiber bundle whose
structure group is Diff+(M), the group of diffeomorphisms preserving orientation. Assume that
X admits a fiberwise spin structure sX whose fiber coincides with the given spin structure on M .
We call it a global spin structure modeled on s (See § 2.2). In this situation, we have two real
bundles over B: H+ → B and indD, where the fiber of H+ is H+(M) which is a maximal-
dimensional positive-definite subspace of H2(M ; R) with respect to the intersection form, and
indD is the virtual Dirac index bundle associated to X → B. Note that the Dirac operator D
is Pin(2)-equivariant since D is H-linear. We define the Pin(2)-action on H+ via the surjec-
tive homomorphism Pin(2)→ Pin(2)/S1 = {±1} and the multiplication by {±1} to real vector
spaces. Then indD and H+ determine an element in the Pin(2)-equivariant KO-group:

α = α(X, sX) := [indD]− [H+] ∈ KOPin(2)(B).

Let b+(M) := dimH+(M).
If b+(M) ≥ dimB + 2, we can define the (mod 2) families Seiberg–Witten invariant

FSWZ2(X, sX) ∈ Z/2

of (X, sX) (see § 2.2). The first main result in this paper claims that FSWZ2(X, sX) depends only
on α(X, sX) which is determined by the linearization of a family of Seiberg–Witten equations.

Theorem 1.1 (Theorem 4.1). Let M1 and M2 be oriented closed smooth 4-manifolds with spin

structures s1 and s2, respectively. Assume the following conditions:

• b1(M1) = b1(M2) = 0, b+(M1) = b+(M2) ≥ dimB + 2;

• −sign(Mi)/4− 1− b+(Mi) + dimB = 0 (i = 1, 2).

For i = 1, 2, let Xi → B be a smooth fiber bundle whose fiber is Mi equipped with a global

spin structure sXi modeled on si.

If α(X1, sX1) = α(X2, sX2) holds in KOPin(2)(B), then the equality

FSWZ2(X1, sX1) = FSWZ2(X2, sX2)

holds.
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In general, it is not easy to calculate FSWZ2(X, s), since it is defined by counting the solu-
tions to a system of nonlinear partial differential equations. Compared with FSWZ2(X, s), the
linearized data α(X, sX) is easier to handle. This allows us to obtain some interesting applications
described below.

Combining the rigidity result in Theorem 1.1 with a non-vanishing theorem for a specific
family of 4-manifolds in [BK20], we can obtain non-vanishing of the families Seiberg–Witten
invariants for some class of families. This non-vanishing result and a family version of the argu-
ment in [FKM01] give us a family version of 10/8-type inequality as follows. Let � be the unique
non-trivial real line bundle over S1, and πi : Tn = S1 × · · · × S1 → S1 be the projection to the
ith component. Let us define the real vector bundle ξn over Tn by

ξn = π∗1�⊕ · · · ⊕ π∗n�.

Theorem 1.2 (Corollary 4.3). Let M be a 4-manifold with sign(M) = −16 and b1(M) = 0.

Let s be a spin structure on M and f1, . . . , fn be self-diffeomorphisms on M whose supports

supp f1, . . . , supp fn are mutually disjoint. Let H+ → Tn be the bundle of H+(M) associated to

the multiple mapping torus of f1, . . . , fn. Suppose that each of f1, . . . , fn preserves s and that

there exists a non-negative integer a such that

H+∼=ξn ⊕ Ra,

where Ra denotes the trivial bundle over Tn with fiber Ra. Then the inequality

b+(M) ≥ n+ 3 (1)

holds.

Let us make two remarks on Theorem 1.2.

Remark 1.1. Denote by K3 the underlying smooth 4-manifold of a K3 surface. Recall that K3
admits no diffeomorphisms reversing orientation ofH+(K3), which was shown first by Donaldson
[Don90], and later proven also using Seiberg–Witten invariants (for example, see the proof of
[Nic00, Theorem 3.3.28]). This fact follows also from the case where n = 1 and M = K3 in
Theorem 1.2, and therefore Theorem 1.2 can be regarded as a generalization of this fact.

Remark 1.2. One may check that inequality (1) is sharp as follows. Let us consider the 4-manifold
M = K3#nS2 × S2. Let f1, . . . , fn be copies on nS2 × S2 of an orientation-preserving diffeo-
morphism on S2 × S2 which reverses orientation of H+(S2 × S2) and has a fixed disk. Then
f1, . . . , fn have mutually disjoint supports, and each of them reverses the orientation of H+(M).
Moreover, the bundle H+ → Tn associated to the multiple mapping torus of f1, . . . , fn is isomor-
phic to ξn ⊕ R3. Therefore M and f1, . . . , fn satisfy all the assumptions in Theorem 1.2. Since
b+(M) = n+ 3, this example ensures that inequality (1) is sharp.

Theorem 1.2 claims that, even when H+ for given f1, . . . , fn is just stably equivalent to the
above example, one still cannot eliminate the part corresponding to ‘nS2 × S2.’

As applications of Theorem 1.2 and its generalization, Theorem 4.2, we shall present two non-
smoothability results: non-smoothable families and non-smoothable actions. First we describe
the background to our study of non-smoothable families. One of the motivations of this study
is comparison between the diffeomorphism and homeomorphism groups of a given manifold.
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For lower-dimensional manifolds, it is known that there is no essential difference between these
two groups from a homotopical point of view: for an arbitrary orientable closed manifold M of
dimension no greater than 3, the inclusion

Diff(M) ↪→ Homeo(M) (2)

is known to be a weak homotopy equivalence, where Homeo(M) and Diff(M) are equipped with
the C0-Whitney topology and the C∞-Whitney topology, respectively. (One can check this fact
directly in both cases of dimension 1 and of dimension 2 with genus less than 2. The case of
dimension 2 and genus greater than 1 can be reduced to a consideration about the mapping class
groups (see, for example, [FM12]). For the three-dimensional case, see [Hat80].) Dimension 4 is
the smallest dimension in which the inclusion (2) may not be a weak homotopy equivalence.

Here we summarize known results in dimension 4. First, Donaldson’s result on his polynomial
invariant [Don90, § VI (i)] and Quinn’s result [Qui86, 1.1 Theorem] imply that the natural map
π0(Diff(K3))→ π0(Homeo(K3)) is not a surjection. This follows also from a property of the
Seiberg–Witten invariant (see [Nic00, Theorem 3.3.28], for example). Using Morgan and Szabó’s
rigidity result on the Seiberg–Witten invariant [MS97], one may also show that π0(Diff(M))→
π0(Homeo(M)) is not a surjection also for a homotopy K3 surface M . Ruberman [Rub99] gave
the first example of 4-manifolds M for which π0(Diff(M))→ π0(Homeo(M)) are not injections.
Ruberman’s work is based on one-parameter families of Yang–Mills anti-self-dual equations, and
this is the first striking application of gauge theory for families. Later, Baraglia and the sec-
ond author [BK20] generalized Ruberman’s result using 1-parameter families of Seiberg–Witten
equations, and it was confirmed that π0(Diff(M))→ π0(Homeo(M)) is not an injection for
M = n(K3#S2 × S2) with n ≥ 2 or M = 2nCP2 #m(−CP2) with n ≥ 2, m ≥ 10n+ 1. By a
totally different approach, Watanabe [Wat18] showed that π1(Diff(S4))→ π1(Homeo(S4)) is not
an injection using Kontsevich’s characteristic classes for sphere bundles.

In this paper we propose a new approach to the comparison problem between Diff(M)
and Homeo(M) in dimension 4. Our strategy is that, developing gauge theory for families, we
shall obtain a constraint on a smooth fiber bundle of a 4-manifold, and detect non-smoothable
topological families of smooth 4-manifolds. The existence of such a family implies that Diff(M) ↪→
Homeo(M) is not a weak homotopy equivalence for the fiber M . Here let us clarify the meaning
of ‘non-smoothable’ topological families. Let M be an oriented topological manifold admitting a
smooth structure, B be a smooth manifold and M → X → B be a fiber bundle whose structure
group is in Homeo(M). We say that the bundle X is non-smoothable as a family or X has no
smooth reduction if for any smooth structure on M there is no reduction of the structure group of
X to Diff(M) via the inclusion Diff(M) ↪→ Homeo(M). Namely, we say thatX is non-smoothable
as a family if there is no lift of the classifying map ϕ : B → BHomeo(M) of X to BDiff(M)
along the natural map BDiff(M)→ BHomeo(M) with respect to any smooth structure on M :

BDiff(M)

��

B

��������

ϕ
�� BHomeo(M)

Now we can describe our non-smoothability results. Let −E8 denote the (unique) closed
simply connected oriented topological 4-manifold whose intersection form is the negative-definite
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E8-lattice. For a subset I = {i1, . . . , ik} ⊂ {1, 2, . . . ,m} with cardinality k, denote by T kI the
k-torus embedded in the m-torus Tm defined as the product of the i1, . . . , ikth S1-components.
The following theorem claims that there exist non-smoothable families over the torus Tn for
n ∈ {1, . . . , 4} whose fibers are the topological (but smoothable) 4-manifolds 2(−E8)#mS2 × S2

with m = n+ 2. Moreover, we shall ensure that the total spaces of the families are smoothable
as manifolds.

Theorem 1.3 (Theorem 5.2). Let 3 ≤ m ≤ 6. Let M be the topological (but smoothable)

4-manifold defined by

M = 2(−E8)#mS2 × S2.

Then there exists a Homeo(M)-bundle

M → X → Tm

over the m-torus satisfying the following properties. Let I = {i1, . . . , ik} be an arbitrary subset

of {1, 2, . . . ,m} with cardinality k.

• The total space X admits a smooth manifold structure.

• If k ≤ m− 3, the restricted family

X|Tk
I
→ T kI

admits a reduction to Diff(M) for some smooth structure on M .

• If m− 2 ≤ k ≤ m, the restricted family

X|Tk
I
→ T kI

has no reduction to Diff(M) for any smooth structure on M .

Non-smoothability as families in Theorem 1.3 is detected by Theorem 4.2, which generalizes
Theorem 1.2. To apply this theorem, we need to calculate the Dirac index bundle. To do this,
we shall use (a variant of) the celebrated Novikov theorem on topological invariance of rational
Pontryagin classes. Smoothability as manifolds is verified using Kirby–Siebenmann theory.

Remark 1.3. As noted above, for a homotopy K3 surface M , it was shown that π0(Diff(M))→
π0(Homeo(M)) is not a surjection. Let M → X → S1 be the mapping torus for a representative
of a non-zero topological isotopy class in the cokernel of π0(Diff(M))→ π0(Homeo(M)). Then
X is an example of a non-smoothable family. Theorem 1.3 contains this simplest example M →
X → S1. To our knowledge, non-smoothable families over higher-dimensional base spaces and
the problem of smoothing of the total spaces have not been discussed so far.

From the last property of X in Theorem 1.3, non-smoothability as a family, we immediately
obtain the following corollary.

Corollary 1.1. For 0 ≤ n ≤ 3, let M be a smooth 4-manifold which is homeomorphic to

K3#nS2 × S2. Then the inclusion

Diff(M) ↪→ Homeo(M)

is not a weak homotopy equivalence.
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Here are three remarks on Corollary 1.1.

Remark 1.4. The result of Corollary 1.1 in the case where n = 0 follows also from the combination
of Morgan and Szabó [MS97] and Quinn [Qui86]. However, to the best of our knowledge, the
result in the case where n > 0 is new even when M is diffeomorphic to K3#nS2 × S2. To
see that the case where n = 0 follows from [MS97, Qui86], consider the unique spin structure
on a smooth 4-manifold homeomorphic to K3. This 4-manifold has non-zero Seiberg–Witten
invariant for the spin structure by [MS97], and from this we can deduce that there does not exist
an orientation-preserving diffeomorphism which reverses the orientation of H+.

Remark 1.5. We note that there exist exotic K3#nS2 × S2 not only for n = 0. To see the exis-
tence of exotic K3#nS2 × S2 for some positive n, we may use a result of Park and Szabó
[PS00]. By Theorem 1.1 or Proposition 3.2 of [PS00], we may ensure that there exist exotic
K3#2k(S2 × S2) for all k > 0.

Remark 1.6. By results of Wall [Wal64] and Quinn [Qui86], any algebraic automorphism of
the intersection form of K3#nS2 × S2 is realized both by a homeomorphism and a diffeo-
morphism for n ≥ 1. Therefore we cannot find any difference between Diff(K3#nS2 × S2) and
Homeo(K3#nS2 × S2) only using realizability of an automorphism on the intersection form.

Furthermore, combining Theorem 1.3 with an observation relating to results of Wall [Wal64]
and Quinn [Qui86] (Proposition 5.1), we can also obtain information about a sort of quotient
of Homeo(M) divided by Diff(M) for M = K3#S2 × S2. To be precise, since Diff(M) is not
closed in Homeo(M) with respect to a natural topology such as the C0-topology, we consider
the homotopy quotient

Homeo(M) � Diff(M) := (EDiff(M)×Homeo(M))/Diff(M).

Theorem 1.4 (Corollary 5.1). Let M = K3#S2 × S2. Then we have

π1(Homeo(M) � Diff(M)) 	= 0.

As another application, on the topological 4-manifold 2(−E8)#mS2 × S2 with m ≥ 3, we
shall construct non-smoothable Zm−2-actions. Note that the 4-manifold 2(−E8)#mS2 × S2 is
homeomorphic to K3#(m− 3)S2 × S2 and hence admits a smooth structure.

Theorem 1.5 (See Theorem 5.1). Let m ≥ 3. The topological (but smoothable) 4-manifold M

defined by

M = 2(−E8)#mS2 × S2

admits commuting self-homeomorphisms f1, . . . , fm satisfying the following properties. Let I =
{i1, . . . , ik} be an arbitrary subset of {1, 2, . . . ,m} with cardinality k.

• If k ≤ m− 3, then there exists a smooth structure on M such that fi1 , . . . , fik are

diffeomorphisms with respect to the smooth structure.

• If k ≥ m− 2, then there exists no smooth structure on M such that all fi1 , . . . , fik are

diffeomorphisms with respect to the smooth structure.

Non-smoothable group actions on 4-manifolds has been studied by many authors. The main
tool to detect them is equivariant gauge theory, but the third author of this paper found that
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gauge theory for families can be also used to study non-smoothable actions in [Nak10], and
this direction was developed by Baraglia [Bar19a]. The proof of Theorem 1.5 is based on a
technique different from [Nak10, Bar19a], and the result itself is new. We will compare the result
of Theorem 1.5 with previous research in Remark 5.1 in detail.

As a further research direction, once one can establish a Bauer–Furuta version of the gluing
result in [BK20], then we one get results on non-smoothable actions and families on any spin
4-manifold with signature −32 following the same strategy of this paper. However, we are also
considering developing a way to deal with more general signature and b+.

A brief outline of the contents of this paper is as follows. In § 2 we shall recall some materials
of the families Seiberg–Witten invariant. In § 3 we shall discuss when the tangent bundle along
fibers admits a fiberwise spin structure. In § 4 we shall prove the main results in this paper, the
rigidity theorem, and its consequences, such as a 10/8-type inequality. In § 5 we shall give two
applications, non-smoothable actions and families, of the results given in § 4. Sections 6 and 7
are devoted to proving some results needed to establish the applications in § 5. The main tool
in §§ 6 and 7 is Kirby–Siebenmann theory, and arguments there may be of independent interest
even outside the gauge-theoretic context. In § 6 we shall calculate the Dirac index bundle. More
precisely, we shall give a few sufficient conditions for families of spin 4-manifolds to have trivial
index bundles. In § 7 we shall show the smoothability as manifolds of the total spaces of the
non-smoothable families given in § 5.

Addendum
After the first version of this paper appeared on the arXiv, David Baraglia informed the second
author about a draft of his paper [Bar19b]. Adapting the construction of examples of families
in this paper for his constraints on families of 4-manifolds, he generalizes Corollary 1.1 of this
paper as Theorem 1.8 and Corollary 1.9 of [Bar19b]. We note that his way to prove these results
is different from ours: to prove his Theorem 1.8 and Corollary 1.9, Baraglia used a family version
of Donaldson’s diagonalization theorem (corresponding to Theorems 1.1 and 1.2 in [Bar19b]),
while we use a family version of the 10/8-inequality to prove Corollary 1.1.

2. Families Seiberg–Witten invariant

In this section we shall recall some materials of the families Seiberg–Witten invariant. In par-
ticular, we shall recall an interpretation of the families Seiberg–Witten invariant as a kind of
mapping degree in § 2.2.

2.1 Seiberg–Witten equations with j-action
First we recall some basics of the Seiberg–Witten equations on a spin 4-manifold in the unpa-
rameterized setting. A special feature of the Seiberg–Witten equations on a spin 4-manifold
is that the equations have an extra symmetry, written as the ‘j-action’, compared with the
Seiberg–Witten equations on a general Spinc 4-manifold. We refer the reader to [Mor96] for the
generality of the Seiberg–Witten equations, and to [Fur01, Fur, BF04] for the monopole maps
on spin 4-manifolds.

Let M be a closed Riemannian 4-manifold with a spin structure s. Let S = S+ ⊕ S− be
the spinor bundle. Note that S has a quaternionic structure; in particular, the multiplication
of j ∈ H is defined. The j-action is anti-linear with respect to the complex structure of S. Let
us abbreviate the tangent bundle TM to T and identify T with the cotangent bundle T ∗M
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by the metric. Let C(T ) be the Clifford bundle of T . As a vector bundle, the bundle C(T ) is
identified with the bundle of exterior product Λ∗T . The Clifford multiplication is given by a
bundle morphism

ρ : Λ∗T → EndR(S).

Namely, for v ∈ Λ∗Tx, ρ(v) is an endomorphism of Sx. Here Tx, Sx are the fibers over x. The
spinor bundle has a Z2-grading S = S+ ⊕ S−, and we have also Λ∗T = ΛevenT ⊕ ΛoddT . If v is
in ΛevenT , ρ(v) preserves the Z2-grading of S+ ⊕ S−. If v ∈ ΛoddT , then ρ(v) switches S+ and
S−. Note that the Clifford multiplication ρ(v) commutes with the j-action:

ρ(v)j = jρ(v).

The complexified Clifford multiplication is also defined,

ρ : Λ∗T ⊗R C→ EndC(S),

which anti-commutes with the j-action, that is, for v ⊗ c ∈ Λ∗T ⊗R C, we have

ρ(v ⊗ c)j = jρ(v ⊗ c̄).

The Levi-Civita connection on T induces a spin connection ∇0 on S, and the spin Dirac operator

D0 : Γ(S+)→ Γ(S−)

is defined by

D0 =
∑
i

ρ(ei)(∇0)ei ,

where {ei} is a local orthonormal frame of T . Then D0 commutes with j. Note that the spin
connection ∇0 induces a trivial flat connection A0 on L0 = detS+ ∼= M × C. The j-action on
S+ induces the j-action on L0 given by complex conjugation. Let A be a U(1)-connection on L0.
If we write A as A = A0 + a for an imaginary-valued 1-form a ∈ iΩ1(M), then the j-action on
L0 induces the j-action on U(1)-connections given by

j ·A = A0 − a.

For a U(1)-connection A = A0 + a, we have a unique Spinc(4)-connection ∇0 + a/2 on S which
induces the Levi-Civita connection on T and A on L0. We have the Dirac operator associated
with ∇0 + a/2 as follows:

DAφ = D0φ+ 1
2ρ(a)φ.

In fact, DA is a Dirac operator on the Spinc structure associated to the spin structure s. Note
that DA is j-equivariant:

D(j·A)(jφ) = jDAφ.

As mentioned above, ρ(v) for even degree v preserves the components S±. In particular, it can
be seen that ρ(v) for a self-dual 2-form v is an endomorphism of S+, that is, ρ(Λ2

+T ⊗ C) ⊂
EndC(S+).
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Proposition 2.1 [Mor96, Lemma 4.1.1]. For φ ∈ Γ(S+), define the traceless endomorphism

q(φ) by

q(φ) = φ⊗ φ∗ − |φ|
2

2
id .

Then q(φ) can be identified with a section of Λ2
+(T )⊗ iR.

Now we can write down the Seiberg–Witten equations:{
DAφ = 0,
F+
A = q(φ),

(3)

where F+
A is the self-dual part of the curvature of A. If we write A = A0 + a, then equations (3)

are rewritten as {
DA0φ+ 1

2ρ(a)φ = 0,

d+a− q(φ) = 0.

As we have already seen, the first equation is j-equivariant. Since we have

FjA = FA0−a = −da, q(jφ) = −q(φ),

the second equation is also j-equivariant.
The gauge transformation group G = Map(M,U(1)) acts on the space of U(1)-connections

of L0 and positive spinors by

u(A, φ) = (A− 2u−1du, uφ)

for u ∈ G. The Seiberg–Witten equations (3) are G-equivariant. The gauge action anti-commutes
with the j-action:

u(x)j = ju(x) for x ∈M.

The moduli space of solutions to the Seiberg–Witten equations is the set of gauge equivalence
classes of solutions:

M = {solutions to (3)}/G.
Roughly speaking, the Seiberg–Witten invariant is defined by ‘counting of #M’. Furthermore,
the number ‘#M’ can be interpreted as the ‘mapping degree’ of a map, called the monopole
map, whose zero set is essentiallyM. (The precise meaning of these will be explained in § 2.2 in
a parameterized setting.)

The monopole map is defined by

m : iΩ1(M)⊕ Γ(S+)→ i(Ω0
∗ ⊕ Ω+)(M)⊕ Γ(S−),

m(a, φ) = (d∗a, d+a− q(φ), DA0φ+ 1
2ρ(a)φ),

(4)

where Ω0∗(M) = Im(d∗ : Ω1(M)→ Ω0(M)). The map m is decomposed into the sum m = l + c of
the linear map l = (d∗, d+, DA0) and the quadratic part c given by c(a, φ) = (0,−q(φ), 1

2ρ(a)φ).
For the purpose of carrying out a suitable analysis, we take the L2

k-completion (k ≥ 4) of the
domain, and the L2

k−1-completion of the target, and extend m to the completed spaces. Denote
by U ′ and U the completed domain and target, respectively. Then m : U ′ → U is a smooth map

778

https://doi.org/10.1112/S0010437X2000771X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2000771X


Rigidity of the Seiberg–Witten invariants for spin families

between Hilbert spaces. The linear part l is a Fredholm map of index

−sign(M)
4

+ b1(M)− b+(M),

and c is a nonlinear compact map.
We take the L2

k+1-completion of the gauge group G. Then the G-action is smooth. The space
ker(d∗ : iΩ1(M)→ iΩ0(M)) is a global slice of the G-action at (0, 0), and we have

m−1(0) = {solutions to (3)} ∩ ker d∗.

The slice ker d∗ still has a remaining gauge symmetry. Let Harm(M,S1) be the kernel of the
composition of the maps

L2
k+1(Map(M,S1)) d→ L2

k(iΩ(M)) d∗+d+−−−−→ L2
k−1(i(Ω

0 ⊕ Ω+)(M)).

Denote by Harm(M,S1) the space of harmonic maps from M to S1. Then m is Harm(M,S1)-
equivariant, and we have

M = m−1(0)/Harm(M,S1).

We also have an identification

Harm(M,S1) ∼= S1 ×H1(M ; Z),

which is obtained by fixing a splitting of the exact sequence

1→ S1 → Harm(M,S1)→ H1(M ; Z)→ 0.

The monopole map m is also j-equivariant, when j acts on the spaces iΩ∗(M) of imaginary-
valued forms by multiplication by −1. The j action anti-commutes with the Harm(M,S1)-action
in the sense that

j(z, a) = (z̄,−a)j
for (z, a) ∈ S1 ×H1(M ; Z).

Set Pin(2) = 〈S1, j〉, the group generated by S1 and j in H. Assuming b1(M) = 0, we have
Harm(M,S1) = S1, and m is Pin(2)-equivariant. Since M = m−1(0)/S1, the j-action descends
to a Pin(2)/S1-action on M, where Pin(2)/S1 = {±1}.

2.2 Families Seiberg–Witten invariants
For a given family of 4-manifolds, one can define a family version of the Seiberg–Witten invariant
by counting the numbers of the parameterized moduli space of the Seiberg–Witten equations.
This invariant can be also interpreted as the mapping degree of a finite-dimensional approxima-
tion of a family of monopole maps. In this subsection we shall recall these arguments. See, for
example, [Bau08, LL01, BF04, BK19, Szy10] for references for this subsection.

Let M be a closed oriented smooth 4-manifold with a spin structure s, B be a closed smooth
connected manifold, and π : X → B be a locally trivial fiber bundle with fibers diffeomorphic
to M . We assume that the structure group of π : X → B is in the group of orientation-preserving
diffeomorphisms of M . In such a case we call π : X → B a smooth family of M . Let T (X/B)
be the tangent bundle along the fibers and choose a metric on T (X/B). We shall consider the
situation where T (X/B) admits a spin structure sX whose restriction on each fiber is isomorphic
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to s. We call such a spin structure sX a global spin structure modeled on s. If we start with a
4-manifold M with Spinc structure sc, a global Spinc structure modeled on sc is similarly defined.

Remark 2.1. As above, we say that a topological fiber bundle X → B is smooth if its structure
group has been reduced to Diff(M) from Homeo(M). On the other hand, since we assumed
that B is a smooth manifold, another option of the definition of a smooth fiber bundle is a
stronger one. Namely, one might assume some smoothness on the transition functions in the
following sense. Let {gαβ : Uα ∩ Uβ → Diff(M)} be the transition functions of X → B for some
open covering M =

⋃
αUα. We say that the transition functions are smooth if the map

(Uα ∩ Uβ)×M →M

given by

(b, x) �→ gαβ(b)x

is smooth. If the transition functions satisfy this smoothness, then the total space X is a smooth
manifold and the projection X → B is a smooth map. One might call X → B a smooth fiber
bundle only in this case.

However, it is in fact shown in [MW09] that these two definitions of a smooth fiber bundle
are equivalent to each other: if a topological fiber bundle X → B over a smooth manifold B has
a reduction to Diff(M), then, after replacing X with an isomorphic bundle, we may assume that
the transition functions of X satisfy the smoothness in the above sense.

Assume that b1(M) = 0 and that a global spin structure sX modeled on
s is given on π : X → B. Let m : U ′ → U be the Sobolev completed monopole map given in
§ 2.1. Recall that m is Pin(2)-equivariant since b1(M) = 0. Once we fix a fiberwise Riemannian
metric on X, we can obtain a family of monopole maps

μ̃ : A → C
by parameterizing the argument in § 2.1 over B. Here A and C are the Hilbert bundles over B
with fibers U ′ and U , and μ̃ is a fiber-preserving map whose restriction on each fiber is identified
with the monopole map m.

It is convenient to trivialize C ∼= B × U by the Kuiper–Segal theorem [Kui65, Seg69]. Define
μ : A → U by the composition of μ̃ with the projection C ∼= B × U → U . The map μ satisfies the
following compactness property.

Proposition 2.2 (cf. [BF04]). The preimage μ−1(O) of a bounded set O ⊂ U is contained in

some bounded disk bundle.

This can be verified straightforwardly by extending the argument in [BF04, Proposition 3.1]
since we have assumed that B is compact. By Proposition 2.2, the map μ can be extended to
the map

μ+ : TA → SU ,

where TA is the Thom space and SU is the one-point completion of U obtained by collapsing.
The family π : X → B induces a vector bundle

Rb+(M) → H+ → B
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whose fiber over b ∈ B is the space H+(Mb) of harmonic self-dual 2-forms on Mb = π−1(b). We
call H+ the bundle of H+(M). The isomorphism class of H+ is independent of the choice of
fiberwise Riemannian metric on X since the Grassmannian of maximal-dimensional positive-
definite subspaces of H2(M ; R) is contractible. We also have the index bundle indD ∈ KOG(B)
of the family of Dirac operators on the spin family X → B. Here we assume G = Pin(2) or
G = S1 ⊂ Pin(2). Let L : A → C be the family of linear parts of μ, which is a fiberwise linear
map whose restriction on each fiber is l in § 2.1. In § 4 we will use the element α ∈ KOG(B)
defined by

α := [indL] = [indD]− [H+] ∈ KOG(B).

Choose a finite-dimensional trivial vector subbundle F ′ = V = B × V ⊂ C so that F ′ contains
the fiberwise cokernel of L, and let F = L−1(F ′). Then α = [F ]− [F ′] holds and the image of
F under L is contained in V . On the other hand, the image of F under the nonlinear part
μ− L is not necessarily contained in V , and we shall project the image of μ on V . Let S(V ⊥)
be the unit sphere in the orthogonal complement V ⊥ of V . The inclusion SV → SU \ S(V ⊥) is
a deformation retract. Let ρV be a retracting map. A finite-dimensional approximation of the
family of monopole maps is defined by

fV = ρV ◦ μ|TF : TF → V.

By [BF04], the above construction defines a well-defined class [fV ] in the stable cohomotopy set

{T (indD −H+), S0}GU = colim
W⊂V ⊥

[
SW ∧ TF, SW ∧ SV ]G

. (5)

We call the class [fV ] the Bauer–Furuta invariant or the stable cohomotopy Seiberg–Witten
invariant of the family π : X → B.

In the case where G = S1, we shall define the (mod 2) degree homomorphism

deg : {TF, SV }S1

U → Z2

below, provided that

d := −sign(M)
4

− 1− b+(Mi) + dimB = 0.

The condition d = 0 is equivalent to

rankF + dimB − dimV = 1,

and therefore the preimage of fV is one-dimensional. For a finite-dimensional approximation fV
with sufficient large V such that (7) below holds, we let

FSWZ2(X, sX) = deg[fV ].

This definition coincides with the one in [BK19, § 2].
When G = S1, the universe U consists of C on which S1 acts by multiplication and the

trivial real one-dimensional S1-representation R as irreducible summands. In this case, the stable
cohomotopy set (5) is a group. The bundle F is an S1-equivariant bundle with fiber Cx+2a ⊕ Ry

over B and V = Cx ⊕ Ry+b, where x, y are non-negative integers and

a = −sign(M)
16

, b = b+(M).
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When G = Pin(2), the universe U consists of H on which Pin(2) acts by multiplication and the
real one-dimensional non-trivial Pin(2)-representation R̃ as irreducible summands. In order to
distinguish this universe from that in the case where G = S1, this Pin(2)-universe is henceforth
denoted by U ′. In this case, F is a Pin(2)-equivariant bundle with fiber Hx+a ⊕ R̃y over B and
V = Hx ⊕ R̃y+b for some non-negative integers x, y.

Suppose that
b+(M) ≥ dimB + 2. (6)

Let Ci be the mapping cone of the inclusion i : TFS
1
↪→ TF of the S1-fixed point set. We have

a long exact sequence associated with the cofiber sequence TFS
1 → TF → Ci:

{S1 ∧ TFS1
, SV }GU → {Ci, SV }GU → {TF, SV }GU → {TFS

1
, SV }GU .

Since both the first and the last terms are trivial by assumption (6), the cohomotopy invariant
[fV ] can be regarded as an element of {Ci, SV }GU . Following [Bau08], we let [TF, SV ]Gq be the
set of homotopy classes of maps g : TF → SV such that g|

TFS1 = fV |TFS1 . Then condition (6)
implies a natural bijective correspondence

[TF, SV ]Gq ∼= [TF/TFS
1
, SV ]G.

Since F is a finite-dimensional Pin(2)-equivariant vector bundle over a smooth compact con-
nected manifold B and V is a finite-dimensional Pin(2)-representation, the Thom space TF and
SV can be equipped with structures of Pin(2)-equivariant CW complexes. By the equivariant
Freudenthal suspension theorem [tDie11, Chapter II, (2.10)], we can choose sufficiently large F ,
V satisfying

{T (indD − [H+]), S0}GU ∼= [TF, SV ]Gq . (7)

To analyze [TF, SV ]Gq , it is convenient to use the equivariant obstruction theory (see the
appendix). Let U = (TF/S1) \N(TFS

1
), where N(TFS

1
) is an equivariant tubular neighbor-

hood of TFS
1

in TF/S1. Then U is a (possibly non-orientable) manifold with boundary.
Set k = dimSV . The condition d = 0 implies that dimU = k. Note that (TF/S1) \ TFS1

is Z2-equivariantly homotopic to U , where Z2 = Pin(2)/S1. Then we have the following
identifications:

Hk
S1(TF, TFS

1
;πkSV ) ∼= Hk(TF/S1, TFS

1
; Z) ∼= Hk(U, ∂U ; Z),

Hk
Pin(2)(TF, TF

S1
;πkSV ) ∼= Hk

Z2
(TF/S1, TFS

1
;πkSV ) ∼= Hk

Z2
(U, ∂U ;πkSV ),

where Hk
G(·, ·;πkSV ) are the Bredon cohomology groups with coefficient G-module πkSV . Let us

recall the following facts.

(F1) If we choose β0 ∈ [TF, SV ]Gq for each G = Pin(2) and S1, then the correspondence β �→
γG(β, β0) gives a bijective correspondence between

{TF, SV }GU
(∼= [TF, SV ]Gq

)
and

Hk
G(TF, TFS

1
;πkSV )

by Theorem A.2, where γG(β, β0) is the G-equivariant difference obstruction class.
(F2) Hk(U, ∂U ; Z) is isomorphic to Z if U is orientable, and Z2 if U is non-orientable.
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(F3) The forgetful map

ϕ̄ : Hk
Z2

(U, ∂U ;πkSV )→ Hk(U, ∂U ; Z) ∼= Z or Z2

is given by multiplication by 2 (Proposition A.2). In particular, ϕ̄(c) ≡ 0 mod2 for

c ∈ Hk
Pin(2)(TF, TF

S1
;πkSV ) ∼= Hk

Z2
(U, ∂U ;πkSV ).

Let β0 be the unit of the stable cohomotopy group {TF, SV }S1

U . By (F1), the correspondence
β �→ γS1(β, β0) for β ∈ {TF, SV }S1

U gives a bijective correspondence between {TF, SV }S1

U and
Hk
S1(TF, TFS

1
;πkSV ) which is identified with Hk(U, ∂U ; Z) ∼= Z or Z2. Define deg β ∈ Z2 by

deg β = γS1(β, β0) mod 2.

Since the degree deg β is the mod 2 difference obstruction class of maps essentially from a
manifold to a sphere with same dimension, this can be interpreted as a kind of mod 2 mapping
degree. We may assume β is represented by a map g : (TF/S1, TFS

1
)→ (SV , SV

S1

) which is
smooth on the complement of TFS

1
. By perturbing g, the image of g|

TFS1 is contained in

a subspace of SV
S1

of codimension b+(M)− dimB ≥ 2. A choice of a generic point v ∈ SV S1 \
(Im g|

TFS1 ) makes the preimage g−1(v) a compact 0-manifold. Then deg β is the number modulo
2 of elements in g−1(v).

Remark 2.2. For a single 4-manifold, the moduli space is always orientable and the Z-valued
Seiberg–Witten invariants can be defined. On the other hand, the moduli space for a family of
4-manifolds may be non-orientable. Therefore only the Z2-valued invariants can be defined in
general.

3. Spin families

Let M be a closed oriented smooth 4-manifold with a spin structure s, B be a closed manifold,
and π : X → B be a smooth family with fiber M . Let T (X/B) be the tangent bundle along the
fibers. In this subsection we shall discuss when T (X/B) admits a global spin structure modeled
on s defined in § 2.2.

Let Diff(M, [s]) be the group of orientation-preserving self-diffeomorphisms f : M →M for
which the pulled-back spin structures f∗s are isomorphic to s. The notation [s] indicates the
isomorphism class of s. When a diffeomorphism f belongs to Diff(M, [s]), we just say that f
preserves s for the sake of simplicity , although to be precise it should be said that f preserves
[s]. Let Aut(M, s) be the group of pairs (f, f̂), where f ∈ Diff(M, [s]) and f̂ is an automorphism
of s covering f . Then we have an exact sequence

1→ G(s)→ Aut(M, s)→ Diff(M, [s])→ 1, (8)

where G(s) is the gauge transformation group of the spin structure s, that is, the group of
automorphisms of s covering idM . Note that G(s) ∼= {±1}. Taking the classifying spaces, we
obtain a fibration

BG(s)→ BAut(M, s)→ BDiff(M, [s]).

The homotopy class of a map ρ̃ : B → BAut(M, s) corresponds to the isomorphism class of a
family π : X → B with a global spin structure on T (X/B) modeled on s. Suppose that a map
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ρ : B → BDiff(M, [s]) is given. Since BG(s) = BZ2
∼= RP∞, there exists a sole obstruction in

H2(B; Z/2) to lifting ρ to a map ρ̃ : B → BAut(M, s). Denote by O(ρ) the obstruction class.
Suppose that we have finitely many commuting orientation-preserving self-diffeomorphisms

f1, . . . , fn ∈ Diff(M, [s]). Then we can form the multiple mapping torus

X = Xf1,...,fn → Tn.

Let us denote also by O(f1, . . . , fn) the obstruction O(ρ) for such a family, where ρ : Tn →
BDiff(M, [s]) is the classifying map.

Proposition 3.1. The obstruction class O(f1, . . . , fn) ∈ H2(Tn; Z/2) is zero if and only if

f1, . . . , fn admit lifts f̂1, . . . , f̂n to the spin structure s which mutually commute.

Proof. If the lifts commute, then we can obviously construct a global spin structure by patching
a product spin structure on M × [0, 1]n by the lifts. Therefore O(f1, . . . , fn) = 0.

Conversely, suppose that O(f1, . . . , fn) = 0. Let C be the CW complex with one 0-cell and
one 1-cell which forms a circle. Let C1, . . . , Cn be copies of C. A cell structure of Tn is given by
the product of C1, . . . , Cn. Then

• the 1-skeleton of Tn is the wedge sum of C1, . . . , Cn, and
• there is a bijection between the set of 2-cells and the set of pairs (i, j) with i 	= j. Here each

pair (i, j) corresponds to a unique 2-cell Dij bounded by the wedge sum Ci ∨ Cj .
A choice of lifts f̂i for fi determines a global spin structure on π−1(1-skeleton) by identifying

the spin structures on the endpoints of the 1-cells via f̂i. The class O(f1, . . . , fn) is the obstruction
to extending such a spin structure on π−1(1-skeleton) to π−1(2-skeleton). To extend the spin
structure on π−1(Ci ∨ Cj) to π−1(Dij), the monodromy f̂if̂j f̂

−1
i f̂−1

j should be 1 ∈ Aut(M, s).
This completes the proof. �

Definition 3.1. Let (M, s) be a spin 4-manifold. Finitely many self-diffeomorphisms f1, . . . , fn
on M are called spin commuting when

(i) f1, . . . , fn commute with each other,
(ii) each fi preserves the orientation of M and the spin structure s,
(iii) O(f1, . . . , fn) = 0, or equivalently, there exist commuting lifts f̂1 · · · f̂n.

If spin commuting diffeomorphisms f1, . . . , fn are given, then we can form a multiple mapping
torus X = Xf1,...,fn with fibers M which admits a global spin structure sX modeled on s. We call
(X, sX) the spin mapping torus associated with the spin commuting diffeomorphisms f1, . . . , fn.

Let us give a sufficient condition for vanishing of O(f1, . . . , fn). For a self-diffeomorphism f

on M , the support of f is defined by

supp f = {x ∈M | f(x) 	= x},
and so is the support of an element of Aut(M, s) similarly.

Lemma 3.1. Let (M, s) be a spin manifold, and f1, . . . , fn be commuting diffeomorphisms on

M preserving the orientation of M and s. If supp f1, . . . , supp fn are mutually disjoint and

M \ supp fi is connected for each i, then O(f1, . . . , fn) = 0 holds.
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Proof. Because of Proposition 3.1, it suffices to show that there exist commuting lifts f̂1, . . . , f̂n
of f1, . . . , fn to the spin structure. Recall that we have an exact sequence (8). Let f̃1, . . . , f̃n ∈
Aut(M, s) be lifts of f1, . . . , fn. For each i ∈ {1, . . . , n}, the lift f̃i lives in the (spin) gauge group
outside supp fi:

f̃i|M\supp fi
∈ G(s|M\supp fi

) = Map(M \ supp fi,Z/2) ∼= Z/2 = {±1}.

Define a lift f̂i ∈ Aut(M, s) of fi by

f̂i =

{
f̃i if f̃i|M\supp fi

= 1,

−1 · f̃i if f̃i|M\supp fi
= −1.

Then f̂1, . . . , f̂n have disjoint supports each other, and hence mutually commute. �

We note that, on the other hand, the obstruction class O(f1, . . . , fn) may be non-trivial for
some example of f1, . . . , fn.

Example 3.1. An example of a multiple mapping torus X → Tn with non-zero O(f1, . . . , fn) is
given as follows. Let M be T 3 equipped with the spin structure s0 with trivial Spin(3)-bundle.
The two-to-one homomorphism h : Spin(3)→ SO(3) is given by the action of Spin(3) = Sp(1)
on Im H by conjugation. Then the multiplication by

h(i) =

⎛⎝1 0 0
0 −1 0
0 0 −1

⎞⎠ and h(j) =

⎛⎝−1 0 0
0 1 0
0 0 −1

⎞⎠
on R3 induces a pair (f1, f2) of commuting diffeomorphisms on T 3. Their lifts f̂1, f̂2 to s0

anticommute since ij = −ji. Therefore O(f1, f2) is not zero.

So far we have considered the case of diffeomorphisms, but we can also consider its topological
analogue. Namely, we can consider topological spin structures as discussed in [Nak10] and also
discuss an obstruction O(f1, . . . , fn) to the lifting problem to topological spin structures for given
commuting homeomorphisms f1, . . . , fn. By a parallel argument, we have a topological version
of Lemma 3.1.

Lemma 3.2. Let M be an oriented topological manifold, s be a topological spin structure on

M , and f1, . . . , fn be commuting homeomorphisms on M preserving the orientation of M and

s. If supp f1, . . . , supp fn are mutually disjoint, then O(f1, . . . , fn) = 0 holds.

4. Main results

In this section we shall give the main results in this paper and their consequences. Theorem 4.1
is a rigidity theorem for the families Seiberg–Witten invariants on families of spin 4-manifolds.
Combining Theorem 4.1 with Proposition 4.1, a non-vanishing of the families Seiberg–Witten
invariants shown in [BK20] for specific families, we obtain a non-vanishing result for more general
families as Corollary 4.1. Theorem 4.2 gives a constraint on b+ of the fibers of families of spin
4-manifolds satisfying certain conditions. This is a family analogue of Furuta’s 10/8-inequality
[Fur01].
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Theorem 4.1. Let B be a closed smooth manifold. Let M1 and M2 be oriented closed smooth

4-manifolds with spin structures s1 and s2, respectively, satisfying the following:

• b1(M1) = b1(M2) = 0, b+(M1) = b+(M2) ≥ dimB + 2.

• −sign(Mi)/4− 1− b+(Mi) + dimB = 0 (i = 1, 2).

For i = 1, 2, let Xi → B be a smooth fiber bundle with fibers Mi equipped with a global spin

structures sXi modeled on si, indDi be the virtual index bundle of the family of Dirac operators

for sXi and H+
i → B be the bundle of H+(Mi) associated to Xi. Set αi = [indDi]− [H+

i ] ∈
KOPin(2)(B). If α1 = α2, then we have

FSWZ2(X1, sX1) = FSWZ2(X2, sX2).

We shall use the following lemma to prove Theorem 4.1, which is fundamental in this section.

Lemma 4.1. In the setting of § 2.2, suppose that condition (6) holds. Consider the maps

{TF, SV }Pin(2)
U ′

ϕ−−−−→ {TF, SV }S1

U
deg−−−−→ Z2,

where ϕ is the forgetful map restricting Pin(2)-action to S1-action. Then the image of (deg ◦ϕ)
is {0} or {1}, and is determined by α = [F ]− [V ] ∈ KOPin(2)(B).

Proof. The class α determines {TF, SV }Pin(2)
U ′ , {TF, SV }S1

U , ϕ, and hence also the image of
(deg ◦ϕ). For β′1, β′2 ∈ {TF, SV }Pin(2)

U ′ , the additivity of difference obstruction classes implies that

degϕ(β′1)− degϕ(β′2) = γS1(ϕ(β′1), β0)− γS1(ϕ(β′2), β0) = γS1(ϕ(β′1), ϕ(β′2)).

Moreover, fact (F3) in § 2.2 implies that

γS1(ϕ(β′1), ϕ(β′2)) = ϕ̄(γPin(2)(β
′
1, β

′
2)) ≡

(2)
0.

Therefore the image of (deg ◦ϕ) is {0} or {1}. �

Proof of Theorem 4.1. We shall use the notation of § 2.2. As explained there, it follows that a
family of monopole maps for each (Xi, sXi) defines a class β′i in {TF, SV }Pin(2)

U ′ , where F and V
satisfy

[F ]− [V ] = α1 = α2.

Since the families Sieberg–Witten invariants for (Xi, sXi) are given by

FSWZ2(Xi, sXi) = degϕ(β′i),

Lemma 4.1 implies that FSWZ2(X1, sX1) = FSWZ2(X2, sX2). �

Remark 4.1. The idea of using that ϕ is given as multiplication by 2 has appeared in [Li06a,
Li06b, Bau08].

Remark 4.2. Let G = Pin(2). Since the G-action on B is trivial, we have an isomorphism

KOG(B) ∼= (KO(B)⊗R(G; R))⊕ (K(B)⊗R(G; C))⊕ (KSp(B)⊗R(G; H)),
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where R(G; F) is the free abelian group generated by irreducible G-representations over the
field F [Seg69]. In our case, [indD] is in the component KSp(B)⊗R(G; H), and [H+] is in
KO(B)⊗R(G; R). Furthermore, we may assume

[indD] = [indD]0 ⊗ h1, [H+] = [H+]0 ⊗ R̃,

where

• [indD]0 ∈ KSp(B) is the class of the index bundle ofD which is regarded as a non-equivariant
H-linear operator,

• h1 ∈ R(G; H) is a representation given by the multiplication by G on H,
• [H+]0 is the class of H+ in KO(B) and R̃ is the G-representation given by composition of

the projection G→ G/S1 = {±1} with multiplication on R.

We shall exhibit an example of families with non-zero families Seiberg–Witten invariants. Let
M0 = K3#n(S2 × S2) and s0 be the spin structure onM0 which is unique up to isomorphism. We
construct spin commuting diffeomorphisms f1, . . . , fn on M0 as follows. Let  be an orientation-
preserving self-diffeomorphism of S2 × S2 satisfying the following properties.

(i) There is a 4-ball B0 embedded in S2 × S2 such that the restriction of  on a neighborhood
N(B0) of B0 is the identity map on N(B0).

(ii)  reverses orientation of H+(S2 × S2).

One way to get such  is as follows. Let ′ be the orientation-preserving self-diffeomorphism on
S2 × S2 given by the direct product of complex conjugation on S2 = CP1. This diffeomorphism
′ acts on the intersection form by (−1)-multiplication, hence reverses the orientation of H+.
Obviously ′ admits a fixed point, and deforming ′ by isotopy near a fixed point, we can get
a fixed ball rather than a fixed point. Then the deformed diffeomorphism  satisfies the desired
properties.

Choose n disjoint 4-balls B1, . . . , Bn ⊂ K3. We assume M0 is constructed by removing
B1, . . . , Bn from K3 and gluing n copies of S2 × S2 \B0. The construction of fi is as follows.
Consider M0 as the connected sum of the summand of the ith S2 × S2 with the remaining part
M(i) := K3#(n− 1)S2 × S2. Define fi by

fi = ( on the ith S2 × S2)# idM(i)
.

Note that f1, . . . , fn obviously commute with each other. Note that fi preserves orientation of M .

Remark 4.3. Let H+
0 → Tn be the bundle of H+(M0). Let � be the unique non-trivial real line

bundle over S1 and πi : Tn = S1 × · · · × S1 → S1 be the projection to the ith S1. Let

ξn = π∗1�⊕ · · · ⊕ π∗n�.
Then H+

0
∼= ξn ⊕ R3.

The following calculation gives us instances of families with non-zero families Seiberg–Witten
invariants.

Proposition 4.1 [BK20]. For (M0, s0) and f1, . . . , fn as above, we have the following

assertions.
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(i) The set {f1, . . . , fn} is spin commuting. Let (X0, sX0) be the associated spin mapping torus.

(ii) [indD0] = [H] ∈ KOPin(2)(Tn), where indD0 is the Dirac index bundle of (X0, sX0).
(iii) FSWZ2(X0, sX0) = 1 ∈ Z2 = {0, 1}.

Proof. Lemma 3.1 implies assertion (1). Assertion (2) will be proved by Lemma 6.1 below. To
prove assertion (3), we use [BK20, Theorem 1.1]. Let N = n(S2 × S2), and assume M0 = K3#N .
Let H+

N be the bundle of H+(N). Then H+
N
∼= ξn. By [BK20, Theorem 1.1],

FSWZ2(X0, sX0) = SW (K3, s0|K3) · 〈wn(ξn), [Tn]〉 = 1

holds. �

Combining Remark 4.3, Theorem 4.1 and Proposition 4.1, we obtain the following corollary.

Corollary 4.1. Let M be a closed smooth spin 4-manifold such that we have a ring iso-

morphism H∗(M ; Q) ∼= H∗(M0; Q). Suppose that we have a smooth fiber bundle X → Tn with

fiber M and with a global spin structure sX modeled on the given spin structure on M . Let

indD be the Dirac index bundle of (X, sX) and H+ → Tn be the bundle of H+(M) associated

to X. Suppose that [indD] = [H] ∈ KOPin(2)(Tn) and H+ ∼= ξn ⊕ R3. Then we have

FSWZ2(X, sX) = 1.

Remark 4.4. Morgan and Szabó [MS97] prove the rigidity theorem that every homotopy K3
surface admits a Spinc structure with trivial determinant line bundle whose Seiberg–Witten
invariant is congruent to 1 modulo 2. Corollary 4.1 can be considered as a family version of the
Morgan–Szabó theorem.

The following theorem gives a family version of the 10/8-inequality for families with fiber
having sign = −16 and b1 = 0.

Theorem 4.2. Let M be a spin 4-manifold with sign(M) = −16 and b1(M) = 0. Suppose that

we have a smooth fiber bundle X → Tn with fiber M and with a global spin structure sX
modeled on the given spin structure on M . Let indD and H+ be as in Corollary 4.1. Suppose

[indD] = [H] and there exists a non-negative integer a such that

H+∼=ξn ⊕ Ra.

Then

b+(M) ≥ n+ 3

holds.

Proof. The proof is parallel to an argument in [FKM01, Proposition 2]. First, it follows from the
assumption on H+ that b+(M) ≥ n. Suppose n ≤ b+(M) < n+ 3. Then we have 0 ≤ a < 3. Let
indD0 and H+

0 be as in Proposition 4.1 and Remark 4.3. Choose a vector bundle ξ′ over Tn so
that

−[ξn] = [ξ′]− [Rl] in KOS1(Tn).
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Then, for some non-negative integers x, y, we have

[indD]− [H+] = [Hx+1 ⊕ Ry ⊕ ξ′]− [Hx ⊕ Ry+l+a],

[indD0]− [H+
0 ] = [Hx+1 ⊕ Ry ⊕ ξ′]− [Hx ⊕ Ry+l+3].

Let us consider the following commutative diagram.

{TF, SV⊕R̃3−a}Pin(2)
U ′

ϕ0

��������������

{TF, SV }Pin(2)
U ′

ι0
�������������

ϕ1 �������������
{TF, SV⊕R3−a}S1

U
deg−→ Z2

{TF, SV }S1

U

ι1

��������������

Here the ιi are induced from the inclusion V ↪→ V ⊕ R3−a, and the ϕi are the forgetful maps
restricting the Pin(2)-actions to S1-actions. We shall compare two compositions deg ◦ϕ0 ◦ ι0 and
deg ◦ι1 ◦ ϕ1 in the diagram.

Proposition 4.1 and Lemma 4.1 imply that the image of the composition deg ◦ϕ0 is {1} and
therefore the image of deg ◦ϕ0 ◦ ι0 is also {1}.

On the other hand, SV is S1-equivariantly contractible in SV⊕R3−a
, since we assumed that

a < 3 and the S1-action on SR3−a
is trivial. Therefore the image of the composition deg ◦ι1 ◦ φ1

should be {0}. This contradicts the commutativity of the diagram. �

In Lemma 6.1, we shall give a way to replace the assumption that [indD] = [H] in
Corollary 4.1 and Theorem 4.2 with a more geometric condition. Let us combine Lemma 6.1
with Corollary 4.1 and Theorem 4.2 here.

Corollary 4.2. Let (M, s) be an oriented closed smooth spin 4-manifold with H∗(M ; Q) ∼=
H∗(M0; Q) and f1, . . . , fn be diffeomorphisms on M . Suppose that each of fi preserves s and

that supp f1, . . . , supp fn are mutually disjoint. Then, by Lemma 3.1, there exist lifts of f1, . . . , fn
to the spin structure. Fix such lifts and form the spin mapping torus (X, sX). Let H+ → Tn be

the bundle of H+(M) for X. Suppose that H+ ∼= ξn ⊕ R3. Then we have

FSWZ2(X, sX) = 1.

Proof. By Lemma 6.1, either indD or −indD is represented by a trivial bundle, and indCD =
− sign(M)/8 = 2 by the index theorem. Therefore the assertion of the corollary follows from
Corollary 4.1. �

Corollary 4.3. Let (M, s) be an oriented closed spin smooth 4-manifold with sign(M) = −16
and let b1(M) = 0 and f1, . . . , fn be diffeomorphisms on M . Suppose that each of f1, . . . , fn
preserves s and that supp f1, . . . , supp fn are mutually disjoint. Let H+ → Tn be the bundle of

H+(M) associated with f1, . . . , fn. Suppose that there exists a non-negative integer a such that

H+ ∼= ξn ⊕ Ra. Then we have

b+(M) ≥ n+ 3.
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Proof. This follows from Lemma 3.1, Theorem 4.2, Lemma 6.1 and the index theorem as well as
the proof of Corollary 4.2. �

5. Applications

In this section we shall give two topological applications of our main results in the previous
section. The first application is to detect non-smoothable actions on 4-manifolds. The second is
to detect non-smoothable families. We note that most 4-manifolds M appearing in this section
have non-zero signature, and for such M , we have Diff+(M) = Diff(M) and Homeo+(M) =
Homeo(M).

Let us denote by −E8 the (unique) closed simply connected oriented topological
4-manifold whose intersection form is the negative-definite E8-lattice [Fre82, Theorem 1.7]. In
Theorem 5.1, for any m ≥ 3, we construct non-smoothable Zm−2-actions on the topological
4-manifold 2(−E8)#mS2 × S2. Notice that the 4-manifold 2(−E8)#mS2 × S2 is homeomorphic
to K3#(m− 3)S2 × S2 and hence admits a smooth structure.

Theorem 5.1. Let m ≥ 3. Then the topological (but smoothable) 4-manifold M defined by

M = 2(−E8)#mS2 × S2

admits commuting self-homeomorphisms f1, . . . , fm with the following properties.

• For any distinct numbers i1, . . . , im−3 ∈ {1, . . . ,m}, there exists a smooth structure on M for

which fi1 , . . . , fim−3 are diffeomorphisms.

• For any distinct numbers i1, . . . , im−2 ∈ {1, . . . ,m}, there exists no smooth structure on M

for which all of fi1 , . . . , fim−2 are diffeomorphisms.

Proof. Let us write the connected sum components of mS2 × S2 as

mS2 × S2 = #m
i=1(S

2 × S2) = #m
i=1Ni.

For each i ∈ {1, . . . ,m}, let

fi : Ni → Ni

be an orientation-preserving self-diffeomorphism given by a copy on Ni of  : S2 × S2 → S2 × S2

given in § 4. Since fi has a fixed ball, we can extend fi as a self-homeomorphism onto M by the
identity map outside Ni. Let us write fi : M →M also for the extended self-homeomorphism.
Note that obviously supp f1, . . . , supp fm are mutually disjoint.

We first show that, for any distinct numbers i1, . . . , im−3 ∈ {1, . . . ,m}, there exists a smooth
structure onM such that fi1 , . . . , fim−3 are diffeomorphisms with respect to the smooth structure.
For simplicity of notation, let us consider the case where i1 = 1, . . . , im−3 = m− 3. First, note
that Freedman’s theorem (see, for example, [FQ90]) implies that there exists a homeomorphism

ϕ : 2(−E8)#m
i=m−2Ni → K3.

For j ∈ {1, . . . ,m− 3}, denote by Bj the (topologically) embedded 4-ball in 2(−E8)#m
i=m−2Ni

which was used to define the extension of fj : Nj → Nj onto M . Let B′
1, . . . , B

′
m−3 ⊂ K3

be smoothly embedded disjoint 4-balls. We can construct a self-homeomorphism ψ on
2(−E8)#m

i=m−2Ni which maps Bj to ϕ−1(B′
j) for all j ∈ {1, . . . ,m− 3}: by taking a suitable
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isotopy, we may assume each ϕ−1(B′
j) is contained in the interior of Bj . Since the boundary

spheres of Bj and ϕ−1(B′
j) are locally flatly embedded, the annulus theorem [Qui82] implies

that Bj \ ϕ−1(B′
j) is homeomorphic to S3 × I. Then we can find an ambient isotopy which

moves Bj to ϕ−1(B′
j). We can extend the homeomorphism

ϕ ◦ ψ : 2(−E8)#m
i=m−2Ni → K3

to a homeomorphism

φ : M → K3#(m− 3)S2 × S2

by forming the connected sum along B1, . . . , Bm−3 and B′
1, . . . , B

′
m−3 with the identity map on

the (m− 3)-copies of S2 × S2. By construction, the composition

φ ◦ fj ◦ φ−1 : K3#(m− 3)S2 × S2 → K3#(m− 3)S2 × S2

is obviously a diffeomorphism for any j ∈ {1, . . . ,m− 3}. This means that fj is a diffeomorphism
on M equipped with the smooth structure of K3#(m− 3)S2 × S2 via φ.

It remains to show that fi1 , . . . , fim−2 are not smoothable at the same time for distinct
numbers i1, . . . , im−2 ∈ {1, . . . ,m}. Set n = m− 2. Assume that fi1 , . . . , fin are diffeomorphisms
for some smooth structure on M . Let H+ → Tn be the bundle of H+(M) associated with
fi1 , . . . , fin . For each k ∈ {1, . . . , n}, the diffeomorphism fik reverses the orientation of H+

for the ikth component of S2 × S2 of 2(−E8)#mS2 × S2 and fik acts trivially on H+ for the
remaining connected sum component. Thus we have H+ ∼= ξn ⊕ R2, and therefore we can apply
Corollary 4.3 to fi1 , . . . , fin . It follows from this corollary that b+(M) ≥ n+ 3 = m+ 1, but
obviously b+(M) = m. This is a contradiction.

This completes the proof of Theorem 5.1. �

Remark 5.1. Non-smoothable actions have been studied by many authors, but for groups hav-
ing several generators, there is only little previous work. Here we explain such work briefly
and compare it with Theorem 5.1. The third author [Nak10] constructed a non-smoothable
Z2-action on the connected sum of an Enriques surface and S2 × S2. Kato [Kat17] constructed
non-smoothable (Z/2)2-actions on certain spin 4-manifolds with |sign| ≥ 64. Baraglia [Bar19a]
constructed Z2-actions and (Z/2)2-actions on certain non-spin 4-manifolds. In these results, each
of the generators of Z2 or (Z/2)2 can be realized as a smooth diffeomorphism for some smooth
structure, so they are similar to Theorem 5.1 in this sense. However, Theorem 5.1 provides a
non-smoothable Zn-action for all n ≥ 2 and the 4-manifold acted on by Zn is different from that
in all of the work explained in this remark.

Let M be an oriented topological (but smoothable) manifold, B be a smooth manifold, and
M → X → B be a fiber bundle whose structure group is Homeo(M).

We say that the bundle X is smoothable as a family or X has a smooth reduction, if there
exists a smooth structure on M such that there is a reduction of the structure group of X to
Diff(M) with respect to the smooth structure via the inclusion Diff(M) ↪→ Homeo(M). If X is
not smoothable as a family, we say that X is non-smoothable as a family or X has no smooth
reduction.

Remark 5.2. For a topological fiber bundle X → B ×B′, if the restriction X|B → B is non-
smoothable as a family, then so is X → B ×B′.

791

https://doi.org/10.1112/S0010437X2000771X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2000771X


T. Kato, H. Konno and N. Nakamura

In Theorem 5.2, we shall construct a non-smoothable family whose fiber is the topological
4-manifold 2(−E8)#mS2 × S2. Here we use the following notation. Set [m] = {1, 2, . . . ,m}.
For the m-torus Tm and a subset I = {i1, . . . , ik} ⊂ [m] with cardinality k, denote by T kI the
embedded k-torus in Tm defined as the product of the i1th, . . . , ikth S1-components.

Theorem 5.2. Let 3 ≤ m ≤ 6. Let M be the topological (but smoothable) 4-manifold defined

by

M = 2(−E8)#mS2 × S2.

Then there exists a Homeo(M)-bundle

M → X → Tm

over the m-torus with the following properties. Let I = {i1, . . . , ik} ⊂ [m] be a subset with

cardinality k.

• The total space X admits a smooth manifold structure.

• If k ≤ m− 3, the restricted family

X|Tk
I
→ T kI

has a reduction to Diff(M) for some smooth structure on M .

• If m− 2 ≤ k ≤ m, the restricted family

X|Tk
I
→ T kI

has no reduction to Diff(M) for any smooth structure on M .

Proof. Let f1, . . . , fm be the commuting self-homeomorphisms on M constructed in the proof
of Theorem 5.1. Let M → X → Tm be the multiple mapping torus for f1, . . . , fm. Then X is
a Homeo(M)-bundle. Note that, because of Lemma 3.2, there exists a global topological spin
structure on the bundle X.

First, smoothability of X as a manifold will be verified in Proposition 7.1.
Second, we shall verify by contradiction that X|Tk

I
→ T kI has no reduction to Diff(M) for any

smooth structure on M if I = {i1, . . . , ik} with k ≥ m− 2. We shall show the non-smoothability
for m− 2 ≤ k ≤ 4, but this is enough also for general k ≥ m− 2 by Remark 5.2. Assume that
X|Tk

I
could be smoothable as a family for some smooth structure on M . Then the global topo-

logical structure induces a global spin structure and we have the family of Dirac operators
indD associated with X|Tk

I
. We shall show Lemmas 6.2 and 6.3 in § 6, and they ensure trivi-

ality indD = [H]. Moreover, the bundle of H+ associated with X|Tk
I

satisfies H+ ∼= ξk ⊕ Ra for
a = m− k, as explained in the proof of Theorem 5.1. Therefore we can apply Theorem 4.2 to
X|Tk

I
→ T kI , and the inequality b+(M) ≥ k + 3 ≥ m+ 1 should hold, but obviously b+(M) = m.

This is a contradiction.
Finally, let us check that X|Tk

I
→ T kI is smoothable as a family for I = {i1, . . . , ik} with

k ≤ m− 3. The restriction X|Tk
I

is the multiple mapping torus of fi1 , . . . , fik . By Theorem 5.1,
there exists a smooth structure on M such that fi1 , . . . , fik are diffeomorphisms. Therefore the
structure group of X|Tk

I
obviously reduces to Diff(M) with respect to this smooth structure. �

Remark 5.3. The assertion on non-smoothability of fi1 , . . . , fim−2 in Theorem 5.1 obviously
follows from Theorem 5.2.
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Remark 5.4. In the case of m = 3 in Theorem 5.2, the second condition does not provide any
additional information.

Remark 5.5. The non-smoothability of X given in Theorem 5.2 in the case where m = 3 fol-
lows from Morgan andSzabó [MS97] without using Theorem 5.2 as follows. The family X

in the case where m = 3 is a Homeo(M)-bundle M → X → T k with k ∈ {1, 2, 3} and M =
2(−E8)#3S2 × S2. This bundle is given as the multiple mapping torus for commuting homeo-
morphisms supported in the 3S2 × S2-components. Assume that the family X is smoothable as a
family. Let us take a smooth structure on M = 2(−E8)#3S2 × S2 for which the structure group
of X has a reduction to the diffeomorphism group. Consider the unique spin structure on the
smooth 4-manifold. This 4-manifold has non-zero Seiberg–Witten invariant for the spin struc-
ture by [MS97], and from this we can deduce that there does not exist a diffeomorphism which
reverses the orientation of H+. By restricting the family to S1 embedded into T k = (S1)k as the
first factor, we can get a smoothable family over the circle M → X|S1 → S1. Since this restricted
family is the mapping torus of the homeomorphism f1, the smoothability of X|S1 implies that
f1 is topologically isotopic to a diffeomorphism g on M . Since f1 reverses the orientation of
H+(M), so does g. This is a contradiction.

One can verify a slightly stronger result on the smoothability of X|S1 for any S1 embedded
in Tm in Theorem 5.2.

Proposition 5.1. Let 4 ≤ m ≤ 6 and let M → X → Tm be the Homeo(M)-bundle given in

Theorem 5.2. Then, for any homeomorphism ϕ : M → K3#(m− 3)S2 × S2 and any embedding

of S1 to Tm, the structure group ofX|S1 reduces to Diff(M), where Diff(M) is the diffeomorphism

group with respect to the smooth structure on M defined as that of K3#(m− 3)S2 × S2 via ϕ.

Proof. EquipM with a smooth structure through ϕ. Take an embedding of S1 into Tm. Note that
X|S1 can be regarded as the mapping torus of a homeomorphism g on M . Recall the following
two classical results.

• Every algebraic automorphism of the intersection form of M ∼= K3#(m− 3)S2 × S2 is
induced from a diffeomorphism by a result of Wall [Wal64].

• An algebraic automorphism of the intersection form corresponds to a topological isotopy class
by a result of Quinn [Qui86].

Therefore there exists a diffeomorphism on M which is topologically isotopic to g. This means
that the structure group of X|S1 reduces to Diff(M). �

Let us denote by Homeo(M) � Diff(M) the homotopy quotient :

Homeo(M) � Diff(M) := (EDiff(M)×Homeo(M))/Diff(M).

Corollary 5.1. We have

π1(Homeo(K3#S2 × S2) � Diff(K3#S2 × S2)) 	= 0.

Proof. Set M = K3#S2 × S2. The case where m = 4 of Theorem 5.2 and Proposition 5.1 implies
that the fundamental group of the homotopy fiber of the natural mapBDiff(M)→ BHomeo(M)
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is non-trivial. To finish the proof, just recall that this homotopy fiber is homotopy equivalent to
Homeo(M) � Diff(M). �

Remark 5.6. Note that the argument of the proof in Corollary 5.1 is valid also for the 4-manifold
as Z#S2 × S2 instead of K3#S2 × S2, where Z is an exotic K3. However, we do not know of
an example of Z such that Z#S2 × S2 is not diffeomorphic to K3#S2 × S2.

6. Calculation of the index bundle

In this section we shall provide a few ways to give a sufficient condition for the Dirac index bundle
associated with a given family of 4-manifolds to be trivial. The results given in this section have
been used in the previous sections.

Lemma 6.1. Let M be a closed spin 4-manifold. Let f1, . . . , fn be spin commuting diffeo-

morphisms on M . If supp f1, . . . , supp fn are mutually disjoint, then either the spin Dirac index

bundle indD associated with f1, . . . , fn or −indD is represented by a trivial bundle.

Proof. We shall use the excision formula of the index of families of Fredholm operators, and for
the sake of it, decompose M into n pieces of codimension-0 submanifolds

M = M1 ∪Y1 · · · ∪Yn−1 Mn

so that supp fi ⊂Mi for each i as follows. Set N0 := M . Let us define closed subsets A1, B1 ⊂
N0 by A1 := supp f1 and B1 := supp f2 � · · · � supp fn. By Urysohn’s lemma, we can take a
continuous function χ̃1 : N0 → [−1, 1] such that χ̃1(A1) = {−1} and χ̃1(B1) = {1}. By perturb-
ing χ̃1, we can get a smooth function χ1 : N0 → [−3/2, 3/2] such that χ1(A1) ⊂ [−3/2,−1]
and χ1(B1) ⊂ [1, 3/2]. By Sard’s theorem, for a generic point ε ∈ (−1, 1), the inverse image
Y1 := χ−1

1 (ε) is a three-dimensional closed submanifold of N0. Define M1 := χ−1
1 ([−3/2, ε])

and N1 := χ−1
1 ([ε, 3/2]). Then we get a decomposition into codimension-0 submanifolds of

N0 = M1 ∪Y1 N1 along Y1. Next, let us define closed subsets A2, B2 ⊂ N1 by A2 := supp f2 � Y1

and B2 := supp f3 � · · · � supp fn. By the same procedure, we can get a decomposition of
N1 into codimension-0 submanifolds along a three-dimensional submanifold Y2 of intN2:
N1 = M2 ∪Y2 N2. Note that Y1 is a closed 3-manifold. Proceeding inductively, we can get a
decomposition of M into codimension-0 submanifolds

M = M1 ∪Y1 · · · ∪Yn−1 Mn

along closed 3-manifolds Y1, . . . , Yn−1. By construction, each supp fi is contained in Mi. Let
Mi → Xi → S1 be the mapping cylinder of fi. This Xi is a bundle of a smooth 4-manifold with
boundary. Our multiple mapping cylinder M → X → Tn is regarded as the fiberwise sum of
π∗1X1, . . . , π

∗
nXn along trivial bundles Y1 × Tn → Tn, . . . , Yn−1 × Tn → Tn, where πi : Tn → S1

is the ith projection. Denote by M̂i the cylindrical 4-manifold obtained by gluing Mi with
∂Mi × [0,∞). Then we can get a bundle of a cylindrical 4-manifold M̂i → X̂i → S1, and can
define the family of spin Dirac operators Di on X̂i. Then, under suitable weighted Sobolev
norms (for example, see Donaldson’s book [Don02, § 3.3.1]), we can obtain

[indD] = [indπ∗1D1] + · · ·+ [indπ∗nDn] (9)

in KOPin(2)(Tn) by the excision formula of the index of families.
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Since [indDi] ∈ KSp(S1)⊗R(G; H) and KSp(S1) = KSp(pt) = Z, indDi or −indDi is rep-
resented by a trivial quaternion bundle in KOPin(2)(S1) (see Remark 4.2). Hence indD and
−indD are the same by (9). �

Remark 6.1. Note that we cannot apply Lemma 6.1 for the proof of Theorem 5.2.
To verify non-smoothability of X|Tk

I
as a family, we argue by contradiction, and for this

we assume that X|Tk
I

has a reduction to the diffeomorphism group with respect to some
smooth structure of the fiber. However this assumption does not guarantee that fi1 , . . . , fik
are diffeomorphisms, but just homeomorphisms.

Remark 6.2. One can deduce the assumption indD = [H] in Corollary 4.1 and Theorem 4.2
from the following stronger but more geometric condition, which is different from Lemma 6.1.
Assume that there exists a Riemannian metric on M which is invariant under the pull-backs
of all f1, . . . , fn. For example, this assumption is satisfied if all of f1, . . . , fn have finite order.
Indeed, the group generated by them is finite since f1, . . . , fn mutually commute, and then we
can obtain an invariant metric by taking the average of any metric by the action of this finite
group. Let us derive indD = [H] assuming the existence of an invariant metric g0 for f1, . . . , fn.
The metric g0 gives a ‘constant’ fiberwise metric on the mapping torus for f1, . . . , fn. Note
that we can employ this fiberwise metric in the process of a finite-dimensional approximation
of a family of Seiberg–Witten equations described in Section 2.2, since any genericity for the
metric is not necessary for the finite-dimensional approximation. Then the index bundle indD
is clearly trivial. Because of the usual index calculation, the complex rank of the fiber of indD
is |sign(M)|/8 = 2. Therefore we obtain indD = [H].

The index bundle is always trivial when the base space is a low-dimensional torus.

Lemma 6.2. Let (M, s) be a closed spin 4-manifold. Let B be a closed manifold and X → T k

be a fiber bundle with fibers M with a global spin structure sX modeled on s. Let [indD] ∈
KOPin(2)(T k) denote the class of the (virtual) index bundle of the family of spin Dirac operators

associated to X. If k ≤ 3, then [indD] or −[indD] is represented by a trivial quaternionic vector

bundle.

Before proving Lemma 6.2, we need some preliminaries. By Remark 4.2, we may assume that
[indD] is in KSp(Tn)⊗R(Pin(2); H) and can be written as

[indD] = [indD]0 ⊗ h1,

where [indD]0 ∈ KSp(Tn) is the class of the index bundle of D as an non-equivariant H-linear
operator, and h1 ∈ R(Pin(2); H) is the representation given by the multiplication of Pin(2) on
H. Then we have the following useful decomposition of the KSp-groups of Tn.

Proposition 6.1 [FK05, Lemma 31 and Remark 32]. For integers q and p with p ≥ 0, we have

an isomorphism

KSpq(Tn × Rp) ∼=
⊕
S⊂[n]

KSpq(RS × Rp),

where S runs through all the subsets of [n] = {1, 2, . . . , n} and RS is defined as follows. Let Rk

be the kth component of Rn. Then RS =
∏
k∈S Rk if S 	= ∅, and RS = {pt} if S = ∅.
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Proof. Consider the exact sequence

· · · −−−−→ KSpq((Tn, Tn−1)× Rp)
j∗−−−−→ KSpq(Tn × Rp)

h∗−−−−→ KSpq(Tn−1 × Rp) −−−−→ · · · . (10)

By using excision, the first term is identified with

KSpq((Tn, Tn−1)× (Rp ∪ {∞}, {∞})) ∼= KSpq(Tn−1 × Rp+1).

Then j∗ is identified with the push-forward map i! : KSpq(Tn−1 × Rp+1)→ KSpq(Tn × Rp)
induced from an open embedding i : R→ T 1 ⊂ Tn. Let π : Tn × Rp → Tn−1 × Rp be the pro-
jection. Then π∗ gives a right-inverse of h∗. Therefore the above sequence splits. Moreover, h∗ is
a surjection, and then j∗ turns out to be an injection. Thus we obtain an isomorphism

i! + π∗ : KSpq(Tn−1 × Rp+1)⊕KSpq(Tn−1 × Rp)
∼=→ KSpq(Tn × Rp).

By an induction on the cardinality |S| of S, the proposition is proved. �

Proof of Lemma 6.2. Note that KSp(pt) = Z, KSp(Rq) = 0 for q = 1, 2, 3 (see, for example,
[Swi17, Chapter 11]). If k ≤ 3, Proposition 6.1 implies that

KSp(T k) ∼= KSp(pt) ∼= Z.

This means that every element in KSp(T k) is represented by a trivial bundle and classified by its
rank over H if k ≤ 3. Therefore [indD]0, and hence [indD], is represented by a trivial bundle. �

The main part of this section is devoted to proving the following lemma. The argument is
based on the celebrated result by Novikov that the rational Pontryagin classes are topological
invariants.

Lemma 6.3. Let M → X → Tm be the topological bundle given in the proof of Theorem 5.2.

For I ⊂ [m] with k = |I| = 4, suppose X|T 4
I

has a smooth reduction. Then the Dirac index bundle

satisfies [indD] = [H].

Before giving the proof of Lemma 6.3, let us describe a strategy for the proof and give some
preliminaries. Denote X|T 4

I
by XI and T kI by TI . Suppose XI is smoothable as a family and a

smooth reduction is given. We will proceed in the following way.

• We verify that the forgetful map c : KSp(T 4)→ K(T 4) is injective.
• Hence it suffices to prove that the image of [indD] under c is represented by a trivial complex

bundle.
• Since the complex K-group of the base space TI is torsion-free, it suffices to prove that
Ch(indD), the image of indD under the Chern character, is in H0(TI ; Q).

• By the index theorem for families (13), it suffices to check p2
1 = 0 and pi = 0 for i ≥ 2, where

pi are the rational Pontryagin classes of the tangent bundle along the fibers T (XI/TI) of
XI → TI .

It is well known that the rational Pontryagin classes of a Rn-bundle depend only on its
topological type. In fact, the rational Pontryagin classes can be defined not only for a vector
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bundle, but also for a topological Rn-bundle whose structure group is in the group TOPn of self-
homeomorphisms on Rn preserving the origin. Furthermore, the rational Pontryagin classes of a
bundle are determined by the isomorphism classes as topological bundles, and do not depend on
vector bundle structures on them. (See Rudyak [Rud16, Chapter 3], for example. This generalizes
the Novikov’s theorem.) Therefore the rational Pontryagin classes pi of the tangent micro-bundle
along the fibers τ(XI/TI) are defined over the underlying topological Rn-bundle of T (XI/TI)
without using the smooth structure. We will prove the required properties of pi directly for
τ(XI/TI) from the construction of the topological bundle XI .

To proceed with the above strategy, we recall some classical objects in differential topology.

6.1 Universal Pontryagin classes
Let us recall the rational Pontryagin classes for topological Rn bundles (see [Rud16], for example).
It is known that the forgetful map α : BO → BTOP induces an isomorphism of their rational
cohomology groups

α∗ : H∗(BTOP ; Q)
∼=→ H∗(BO; Q).

Recall that H∗(BO; Q) is generated by the universal Pontryagin classes puniv
i . Then we have

H∗(BTOP ; Q) ∼= H∗(BO; Q) ∼= Q[puniv
1 , puniv

2 , . . .]

via the identification α∗. The stable class of a topological Rn-bundle ξ → B is classified by its
classifying map t : B → BTOP . Define the ith rational Pontryagin class pi(ξ) by

pi(ξ) = t∗puniv
i .

6.2 Rational localization
Below we utilize the Q-localizations BO[0] and BTOP [0] of BO and BTOP . The existence of
these Q-localizations is guaranteed by the fact that both of BO and BTOP are infinite loop
spaces, and hence H-spaces (see [BV68, Theorems A and C]). In general an H-space is a simple
space, and hence is a nilpotent space for which a Q-localization can be constructed (see, for
example, [MP12, Corollary 1.4.5 and § 5.3]).

6.3 Tangent micro-bundle
We clarify the notion of the tangent micro-bundle along the fibers of a topological bundle M →
X

π→ B. Denote the fiber of X over b ∈ B by Mb and define the space E by

E = {(x, y) ∈ X ×X | y ∈Mπ(x)}.
Note that E contains the diagonal set ΔX = {(x, x) |x ∈ X}. The tangent micro-bundle along
the fibers τ(X/B) of M → X→B is defined as

τ(X/B) : X Δ−−−−→ E
π1−−−−→ X, (11)

where Δ is the diagonal map and π1 is the projection to the first component. It is easy to check
the following properties of τ(X/B).

• The sequence (11) defines a micro-bundle in Milnor’s sense [Mil64]. (By the Kister–Mazur
theorem [Kis64], the micro-bundle determines a topological Rn-bundle which is unique up to
isomorphism.)
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• If the structure group of M → X → B is reduced to Diff(M) for some smooth structure on M ,
then τ(X/B) is the underlying micro-bundle of the tangent bundle along the fibers T (X/B).

Lemma 6.4. Let f : N → N be an orientation-preserving diffeomorphism on N = S2 × S2.

Assume that f has a fixed embedded ball B4 ⊂ N . Let Nf → S1 be the mapping torus of f .

Define a map

φ : (T k−1 ×Nf , T
k ×B4)→ (BO[0],pt)

as the composition of the classifying map T k−1 ×Nf → BO of the tangent bundle along the fibers

T ((T k−1 ×Nf )/T k) of the fiber bundle T k−1 ×Nf → T k and the natural map BO → BO[0].
Then φ is homotopic to the constant map onto (pt,pt) ⊂ (BO[0],pt).

Proof. Note that

πi(BO[0]) = πi(BO)⊗Q =

{
Q i = 0 mod 4,

0 i 	= 0 mod 4.

Let u : BO[0]→ BO[0] be the identity map and u0 : BO[0]→ {pt} ⊂ BO[0] be the map
onto a point in BO[0]. Then the primary difference obstruction δ(u, u0) is non-zero in
H4(BO[0];π4(BO[0])) ∼= H4(BO[0]; Q) ∼= Q[puniv

1 ]. Therefore there exists a non-zero number
r ∈ Q \ {0} such that rδ(u, u0) = puniv

1 .
In general, let N be an oriented closed and simply connected 4-manifold, τ : N → BO[0] be

the composition of the classifying map N → BO of the tangent bundle of N and the natural map
BO → BO[0], and τ0 : N → {pt} → BO[0] be the map onto a point of BO[0]. We claim that τ
is homotopic to τ0 if p1(N) = 0. Since πi(BO[0]) = 0 for 0 < i < 4 and H i(N ; Q) = 0 for i > 4,
the difference obstruction δ(τ, τ0) ∈ H4(N ;π4(BO[0])) is the sole obstruction to homotoping τ to
τ0. Because of the naturality of the obstruction class, we have p1(N) = τ∗puniv

1 = rτ∗δ(u, u0) =
rδ(τ, τ0) in H4(N ; Q). Therefore, if p1(N) = 0, we have δ(τ, τ0) = 0, and hence τ is homotopic to
the constant map τ0. In particular, if we take N = S2 × S2, since S2 × S2 has trivial signature,
we have p1(S2 × S2) = 0, and thus we can deduce that τ is homotopic to a constant map onto
a point in BO[0]. Similarly, if we fix an embedded ball B4 ⊂ S2 × S2 and fix a trivialization of
T (S2 × S2) over B4, we can conclude that the pairwise map τ : (S2 × S2, B4)→ (BO[0],pt) is
homotopic to the map onto (pt,pt) ⊂ (BO[0],pt).

Next, let f : N → N be an orientation-preserving diffeomorphism on N = S2 × S2. Assume
that f has a fixed embedded ball B4 ⊂ N . Let Nf → S1 be the mapping torus of f . By the Serre
spectral sequence, one can easily see thatH4(Nf ; Q) ∼= H4(N ; Q), and p1(T (Nf/S

1)) corresponds
to p1(N) via this isomorphism, therefore we have p1(T (Nf/S

1)) = 0. Using T (Nf/S
1) instead of

T (N) in the last paragraph, we can see that the composition τf : Nf → BO[0] of the classifying
map Nf → BO of T (Nf/S

1) and the natural map BO → BO[0] is homotopic to a constant
map onto a point in BO[0]. Similarly, the map τf : (Nf , S

1 ×B4)→ (BO[0],pt) is homotopic
to the constant map onto (pt,pt) ⊂ (BO[0],pt). Let φ : T k−1 ×Nf → BO[0] be the composition
of the classifying map of T ((T k−1 ×Nf )/T k)→ T k−1 ×Nf and the natural map BO → BO[0].
Since φ = p∗τf , where p : T k−1 ×Nf → Nf , we have that φ is homotopic to a constant map, and
similarly φ : (T k−1 ×Nf , T

k−1 × S1 ×B4)→ (BO[0],pt) is homotopic to the constant map onto
(pt,pt) ⊂ (BO[0],pt). �
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To proceed the proof of Lemma 6.3, let us describe several facts about K-theory. Firstly, it
is easy to see that the complex K-group of Tn admits a direct sum decomposition

K(Tn) ∼=
⊕
S⊂[n]

K(RS). (12)

(The proof is parallel to that of Proposition 6.1.)
Let c : KSp(B)→ K(B), cS : KSp(RS)→ K(RS) be the forgetful maps which forget the

quaternion structures.

Lemma 6.5. The forgetful map c : KSp(Tn)→ K(Tn) is identified with the direct sum of the

forgetful maps cS : KSp(RS)→ K(RS):

c =
∑
S⊂[n]

cS .

Proof. The forgetful map c builds a bridge between the exact sequence (10) and the corresponding
exact sequence of the complex K-groups, which gives rise to the following commutative diagram.

KSp(Tn−1 × R)⊕KSpq(Tn−1) i!+π
∗−−−−→∼= KSp(Tn)

c

⏐⏐� c

⏐⏐�
K(Tn−1 × R)⊕K(Tn−1) i!+π

∗−−−−→∼= K(Tn)

Thus c : KSp(Tn)→ K(Tn) is identified with the direct sum of the forgetful maps:

KSp(Tn−1 × R)⊕KSp(Tn−1)→ K(Tn−1 × R)⊕K(Tn−1)

via the isomorphisms i! + π∗. The lemma is proved by induction. �

Proof of Lemma 6.3. Suppose XI is smoothable as a family and a smooth reduction is given.
Let T (XI/TI)→ XI be the tangent bundle along the fibers. By Proposition 6.1 and (12), we
have the splittings

KSp(T 4) ∼= KSp(pt)⊕KSp(R4) ∼= Z⊕ Z,

K(T 4) ∼= K(pt)⊕K(R4) ∼= Z⊕ Z.

Since cS : KSp(RS)→ K(RS) is injective if S = ∅ or |S| = 4, Lemma 6.5 implies that the forgetful
map c : KSp(T 4)→ K(T 4) is injective. Therefore, in order to verify [indD] = [H], it suffices to
check that c([indD]) = [C2].

SinceK(T k) is torsion-free, the Chern character Ch : K(T k)→ Heven(T k; Q) is also injective.
The index theorem for families [AS71, Theorem (5.1)] gives the equality

Ch(c([indD])) =
∫

fiber
Â(T (XI/TI)), (13)

and the integrand is expressed by a polynomial of rational Pontryagin classes, and so belongs
to H4∗(TI ; Q). Denote by pi = pi(T (XI/TI)) ∈ H4i(XI ; Q) the ith rational Pontryagin classes of
T (XI/TI).
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Once we have seen the vanishings p2
1 = 0 and pi = 0 for i ≥ 2 in H∗(XI ; Q), then the Â-genus

of T (XI/TI) is given by Â(T (XI/TI)) = 1− p1/24. Then Ch(c([indD])) is in H0(TI ; Q) = Q and
actually it coincides with − sign(M)/8 = 2. This implies c([indD]) = [C2].

Therefore it suffices to verify that p2
1 = 0 and pi = 0 for i ≥ 2. Note that pi = 0 holds for

i ≥ 3, since rankR T (XI/TI) = 4. Therefore we just need to check that p2
1 = 0 and p2 = 0. We

shall verify such vanishings directly in the topological category from the construction of X as
follows.

SetM ′ = 2(−E8)#(m− k)S2 × S2 andW = T k ×M ′. Let τM ′ and τ(W/T k) be the tangent
micro-bundle of M ′ and that along the fibers of W , respectively. Thus we have τ(W/T k) ∼=
π∗2τM ′, where π2 : W →M ′ is the projection. Therefore it follows from degree reasoning that

p1(τ(W/T k))2 = 0, pi(τ(W/T k)) = 0 for i ≥ 2. (14)

Now decompose XI as

XI =
(
T k × (

M ′ \ �ki=1B
4
i

)) ∪ k⊔
i=1

(
T k−1 × (

Nfi \ S1 ×B4
i

))
,

where N = S2 × S2 and B4
i are embedded balls. Let

κ : XI → T k ×M ′

be the collapsing map which collapses each T k−1 × (Nfi \ S1 ×B4
i ))-part into T k × ∗. Let ψ :

XI → BTOP [0] be the composition of the classifying map XI → BTOP of the tangent micro-
bundle along the fibers τ(XI/TI) with the natural map BTOP → BTOP [0]. Let ψ′ : T k ×M ′ →
BTOP [0] be the similarly defined map. By Lemma 6.4, the restriction

ψ : (T k−1 ×Nfi , T
k ×B4

i )→ (BTOP [0],pt)

is homotopic to the constant map onto (pt,pt) ⊂ (BTOP [0],pt). Then the following diagram is
homotopy-commutative.

XI

ψ
��

κ

��

BTOP [0]

T k ×M ′
ψ′

������������

Thus we have
pi = ψ∗puniv

i = κ∗(ψ′)∗puniv
i = κ∗pi(τ((T k ×M ′)/T k).

By combining this with (14), we obtain p2
1 = 0 and pi = 0 for i ≥ 2. This completes the proof of

the lemma. �

Remark 6.3. One can verify c([indD]) = [C2] in a more general setting. In fact, the following can
be shown by an argument above: for arbitrary m, let M and f1, . . . , fm be as in Theorem 5.1.
Let M → X → Tm be the multiple mapping torus for f1, . . . , fm. If XI → TI is smoothed as a
family for any I ⊂ [m], then we have c([indD]) = [C2].

On the other hand, for the proof of Theorem 5.2, we need indD = [H], but the forgetful map
c : KSp(Rq)→ K(Rq) is not injective if q ≡ 5, 6 mod 8. This is reason why the argument of the
proof of Theorem 5.2 is valid only when m ≤ 6, k ≤ 4.
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7. Smoothing of the total spaces

In this section we give a proof of the smoothability of the total spaces of the non-smoothable
families in Theorem 5.2. A basic tool in this section is Kirby–Siebenmann theory [KS77]. We
refer the reader to Rudyak’s expository book [Rud16] or the ‘Essays’ [KS77].

Lemma 7.1. The topological 5-manifold S1 × 2(−E8) admits a smooth structure.

Proof. For a topological manifold W , let us denote by Δ(W ) ∈ H4(W ; Z/2) the Kirby–
Siebenmann invariant. If W is of dimension 5 and written as W = S1 ×N for a simply con-
nected and closed topological 4-manifold N , we have H4(W ; Z/2) ∼= H4(N ; Z/2) by the Künneth
theorem, and Δ(W ) corresponds to Δ(N) via this isomorphism. This follows from the definition
of the Kirby–Siebenmann invariant as an obstruction class (see, for example, [Rud16, § 3.4]).
Since the Kirby–Siebenmann invariant is additive with respect to the connected sum of topologi-
cal 4-manifolds, we have Δ(2(−E8)) = 0, and thus we get Δ(S1 × 2(−E8)) = 0. Recall that, for a
closed topological manifold of dimension 5, the Kirby–Siebenmann invariant is the only obstruc-
tion to the smoothability. (This follows from the celebrated theorem TOP/PL � K(Z/2, 3) by
Kirby and Siebenmann, stated in [Rud16, page xii], and πk(TOP/PL) = πk(PL/DIFF ) for
k < 7 [KS77, p. 318].) Therefore this proves that S1 × 2(−E8) is smoothable. �

Following Schultz’s survey [Sch], we give a smoothing result of a topological embedding of a
circle into a higher-dimensional smooth manifold.

Lemma 7.2. Let W be a smooth manifold of dimension d ≥ 5, and f : S1 × Rd−1 →W be a

topological embedding, that is, a homeomorphism onto its image. Then there exists a topological

isotopy

{Ft : S1 × Rd−1 → f(S1 × Rd−1) ⊂W}t∈[0,1]

such that F0 = f holds and F1 : S1 × Rd−1 →W is a smooth embedding.

Proof. Set U := f(S1 × Rd−1). We can equip the open topological manifold U with the smooth
structure defined as the restriction of the smooth structure of W , and also with the smooth
structure coming from the standard smooth structure of S1 × Rd−1 via f . By Kirby–Siebenmann
theory (see [KS77, p. 194], and note that ‘concordant implies isotopy’ in dim ≥ 5), there is a
bijection from the set of smoothing of U up to isotopy to [U, TOP/O] ∼= [S1, TOP/O], which is
just a single point since TOP/O is known to be 2-connected. Hence smoothing of U is unique
up to isotopy. Therefore there exist a diffeomorphism

g : S1 × Rd−1 → U,

where U is equipped with the restricted smooth structure of W , and a topological isotopy

Ft : S1 × Rd−1 → U

such that F0 = f and F1 = g. �

The following proposition is the goal of this section.

Proposition 7.1. The total spaces X of the non-smoothable families given in Theorem 5.2 are

smoothable as manifolds.
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Proof. Set W = S1 × 2(−E8), which admits a smooth structure by Lemma 7.1. Henceforth we
fix a smooth structure on W . Fix a point p ∈ 2(−E8) and whose disk-like neighborhood B4 ⊂
2(−E8). Then the map S1 →W given by t �→ (t, p) induces a topological embedding f : S1 ×
R4 →W . Note that Tn × (2(−E8) \B4) = Tn−1 × (W \ S1 ×B4), where S1 ×B4 is the image
of f . By Lemma 7.2, f can be deformed into a smooth embedding g : S1 × R4 →W via a
topological isotopy. This gives a homeomorphism

ϕ : X1 → X ′
1,

where

X1 := (Tn × 2(−E8)) \ (Tn−1 × f(S1 × R4)),

X ′
1 := (Tn × 2(−E8)) \ (Tn−1 × g(S1 × R4)).

Note that, although X1 is just a topological manifold, X ′
1 is a smooth manifold.

Let f1, . . . , fm be the homeomorphisms used in the construction of X in Theorem 5.2. Recall
that they act trivially on 2(−E8), and smoothly on mS2 × S2. Let E → Tn be the mapping
torus of mS2 × S2 by commuting diffeomorphism f1, . . . , fm. Let D4 be a fixed ball common
for all of f1, . . . , fm. (If necessary, we may find such a ball by deforming f1, . . . , fm by smooth
isotopy.) Then X can be regarded as a topological manifold obtained by gluing the topological
manifold X1 and a smooth manifold X2 := E \ (Tn ×D4) via a homeomorphism. Since X1 is
homeomorphic to a smooth manifold X ′

1 via ϕ, the topological manifold X = X1 ∪X2 is also
homeomorphic to a smooth manifold, that is, X is smoothable as a manifold. �
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Appendix. Equivariant obstruction theory

In this appendix, for the reader’s convenience, we summarize some basic materials of equivariant
obstruction theory. See tom Dieck’s book [tDie11] for details. Henceforth we denote by G a
compact Lie group.

A.1 G-CW complexes
A G-CW complex is a CW complex X whose n-cells are of the forms G/Hσ ×Dn, where
Hσ ⊂ G are closed subgroups of G and D0 = {pt}. Here the characteristic map of each cell
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is assumed to be a G-map G/Hσ × Sn−1 → Xn−1, where Xn−1 denotes the (n− 1)-skeleton
of X.

For a pair of G-CW complexes (X,A), we always assume that G acts on X\A freely. Consider
the long exact sequence of homology groups over Z:

· · · → Hn+1(Xn+1, Xn) ∂−→ Hn(Xn, Xn−1)→ · · · .
Let G0 ⊂ G be the identity component. Then G/G0 acts on each Hn(Xn, Xn−1), and hence

Cn(X,A) := Hn(Xn, Xn−1)

is a Z[G/G0]-module. Let M be a Z[G/G0]-module. Then we have the cochain complex

C∗
G(X,A) := HomZ[G/G0](C∗(X,A);M)

whose cohomology group H∗
G(X,A;M) is called the Bredon cohomology.

Lemma A.1. There is a chain isomorphism

C∗(X,A) ∼= C∗(X/G0, A/G0).

Proof. Let φ : �jG× (Dn
j , S

n−1
j )→ (Xn, Xn−1) be the characteristic maps. By excision, we have

the isomorphisms

⊕jHn(G× (Dn
j , S

n−1
j )) ∼= Hn(Xn, Xn−1).

The former is isomorphic to

⊕jHn(G/G0 × (Dn
j , S

n−1
j )) ∼= Hn(Xn/G0, X

n−1/G0)

by another excision. �

Corollary A.1. We have

Hn
G(X,A;M) ∼= Hn

G/G0
(X/G0, A/G0;M).

Let Y be a path connected G-space. Assume, moreover, that Y is n-simple in the sense
that the action of π1(Y, y0) on πn(Y, y0) is trivial. Then we have a one-to-one correspondence
between πn(Y, y0) and [Sn, Y ], the space of free homotopy of maps. The G-action on Y induces
a homomorphism G/G0 → Aut(πn(Y )), which gives a Z[G/G0]-module structure on πn(Y ).

Example A.1. Let G = Pin(2). Then G0 = S1 and G/G0 = Z2. Let V be a finite-dimensional
unitary representation of G with dimV = n. The one-point compactification SV of V naturally
admits a G-action, and hence Z2 acts on

M := πn(SV ) ∼= Z

through the quotient homomorphism G→ G/G0 = {±1}.
Let U be a manifold on which G acts freely. We shall consider the pair (X,A) = (U, ∂U).

Define a bundle l over U/G with fiber Z by

l := U ×G Z→ U/G.
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Then we have isomorphisms

Hn
G(U, ∂U ;M) ∼= Hn

Z2
(U/G0, ∂U/G0;M) ∼= Hn(U/G, ∂U/G; l).

A.2 G-equivariant obstruction class
Let X,Y be path connected G-spaces. Assume also that Y is n-simple.

Theorem A.1. For n ≥ 1, there is an exact sequence

[Xn+1, Y ]G → im
(
[Xn, Y ]G → [Xn−1, Y ]G

) Cn+1−−−→ Hn+1
G (XA;πnY ).

A sketch of the construction of the map Cn+1 above is as follows. Fix [h] ∈ [Xn, Y ]G. Let us
consider the diagram

Hn+1(Xn+1, Xn)
ρ←− πn+1(Xn+1, Xn) ∂−→ πn(Xn) h∗−→ πn(Y ) = [Sn, Y ],

where ρ is the Hurewicz homomorphism. Since Y is n-simple, we have that ker ρ = 〈x− αx |α ∈
π1(Xn)〉 and that h∗ ◦ ∂(x− αx) = 0. Thus we obtain a well-defined cochain

Cn+1(h) ∈ Cn+1
G (X,A;πn(Y )) = HomZ[G/G0](Cn+1(X,A);πn(Y ))

= HomZ[G/G0](Hn+1(Xn+1, Xn);πn(Y ))

given by Cn+1(h) := h∗ ◦ ∂ ◦ ρ−1. This construction gives a map

Cn+1 : [Xn, Y ]G → Cn+1
G (X,A;πn(Y )),

which induces Cn+1 in Theorem A.1.

Proposition A.1. Let Y be an (n− 1)-connected and n-simple space. Then an arbitrary con-

tinuous map f : A→ Y is extendable to a continuous map f̃ : Xn → Y . Moreover, any two such

extensions are homotopic to each other relative to A.

Let f : A→ Y be a continuous map. The primary obstruction class is given by

γ(f) := Cn+1(f̃) ∈ Hn+1
G (X,A;πn(Y )),

where f̃ : Xn → Y is an extension. Define

(X∗, A∗) := (I, ∂I)× (X,A) = (X × I, I ×A ∪ ∂I ×X).

Given F : I ×A ∪ ∂I ×X → Y , let us denote fi = F |{i}×X for i = 0, 1. The difference obstruc-
tion class between f0 and f1 is defined by

γ(f0, f1) := Cn+1(F ) ∈ Hn+1
G (X∗, A∗;πn(Y )) ∼= Hn

G(X,A;πn(Y )),

where the last isomorphism is the suspension isomorphism.

Theorem A.2. Fix a map f∗ : X → Y . Let us denote

[X,Y ]GA := {G-homotopy classes rel A of f : X → Y with f |A = f∗|A} .
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Then we have a one-to-one correspondence

[X,Y ]GA ↔ Hn
G(X,A;πn(Y ))

given by f ↔ γ(f, f∗).

A.3 The image of a forgetful map
Let U be an n-dimensional compact (possibly non-orientable) manifold with boundary ∂U 	= ∅.
Assume that Z2 acts freely on the pair (U, ∂U). Let π be the quotient map

π : (U, ∂U)→ (Ū , ∂̄U) = (U/Z2, ∂U/Z2).

Consider a real n-dimensional representation V of Z2. For Y = SV , Z2 acts on πn(Y ) ∼= Z.

Proposition A.2 (cf. [tDie11, II.4]). The image of the forgetful map

ϕ : Hn
Z2

(U, ∂U ;πn(Y ))→ Hn(U, ∂U ; Z)

is 2Z ⊂ Z ∼= Hn(U, ∂U ; Z) if U is orientable, and is {0} if U is non-orientable.

Proof. Let us consider the bundle

l := U ×Z2 πn(Y )→ Ū .

Since the Z2-action on (U, ∂U) is free, the Bredon cohomology Hn
Z2

(U, ∂U ;πn(Y )) is identified
with the l-coefficient cohomology Hn(Ū , ∂̄U ; l), and we have the following commutative diagram.

Hn
Z2

(U, ∂U ;πn(Y ))
∼=−−−−→ Hn(Ū , ∂̄U ; l)

ϕ

⏐⏐� ⏐⏐�π∗
Hn(U, ∂U ; Z) Hn(U, ∂U ; Z)

Then the conclusion follows from the next commutative diagram.

Hn(Ū , ∂̄U ; l) −−−−→ Hn(Ū , ∂̄U ; l ⊗ Z2)
∼=−−−−→ Hom(Hn(Ū , ∂̄U ; Z2),Z2) ∼= Z2

π∗
⏐⏐� ⏐⏐� 0

⏐⏐�
Hn(U, ∂U ; Z) −−−−→ Hn(U, ∂U ; Z2)

∼=−−−−→ Hom(Hn(U, ∂U ; Z2),Z2) ∼= Z2

Here the right vertical map is zero since it is induced from the quotient map of the double cover
(U, ∂U)→ (Ū , ∂̄U). �
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