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Abstract. Let 0< a < b < 1 and let T be the doubling map. Set J (a, b) := {x ∈
[0, 1] : T n x 6∈ (a, b), n ≥ 0}. In this paper we completely characterize the holes (a, b)
for which any of the following scenarios hold: (i) J (a, b) contains a point x ∈ (0, 1); (ii)
J (a, b) ∩ [δ, 1− δ] is infinite for any fixed δ > 0; (iii) J (a, b) is uncountable of zero
Hausdorff dimension; (iv) J (a, b) is of positive Hausdorff dimension. In particular, we
show that (iv) is always the case if

b − a <
1
4

∏
∞

n=1
(1− 2−2n

)≈ 0.175 092

and that this bound is sharp. As a corollary, we give a full description of first- and second-
order critical holes introduced by N. Sidorov [Supercritical holes for the doubling map.
Preprint, see http://arxiv.org/abs/1204.1920] for the doubling map. Furthermore, we show
that our model yields a continuum of ‘routes to chaos’ via arbitrary sequences of products
of natural numbers, thus generalizing the standard route to chaos via period doubling.

1. Introduction
The study of dynamical systems with holes, i.e. the characterization of points which do not
fall into certain predetermined sets under iteration by a map, poses interesting questions
both about arithmetic properties of points and their dynamical interpretation [24]. There
is a growing body of work describing the effect of holes on hyperbolic systems [4–7] and
expanding maps [24, 25]. In [14] (see also [1]) the problem of symmetric holes about
x = 1

2 for the doubling map T : [0, 1] → [0, 1] given by the formula

T x =

{
2x, x ∈ [0, 1/2],

2x − 1, x ∈ (1/2, 1],

was studied, and in particular it was shown that if the hole is of the form (α, 1− α) then
below a certain threshold (α = 1

3 ) the only points that do not fall into the hole are the fixed
points x = 0 and x = 1, whilst if α is large enough, so that the hole is small enough, then the
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set of points that do not fall in the hole is uncountable. This latter threshold is specified by
a number related to the Thue–Morse sequence that is familiar from the standard kneading
theory of unimodal maps or Lorenz maps [8, 11, 23].

The aim of this paper is to generalize these results to asymmetric holes, revealing
the complex structure of the two thresholds mentioned above, which become curves in
parameter space. The methods used to describe these thresholds rely on analogous results
from the theory of piecewise increasing maps of the interval, and in many ways the results
presented here can be seen as ‘translations’ of similar results in [9, 10, 12, 14, 17].

So, let 0< a < b < 1 and put

J (a, b)= {x ∈ [0, 1] : T n x /∈ (a, b) for all n ≥ 0}.

Our goal is to study the size of the set J (a, b) for all pairs (a, b). To do so, we
introduce the symbolic set 6 := {0, 1}N and the one-sided shift σ :6→6 given by
σ(w1, w2, w3, . . .)= (w2, w3, . . .). As is well known, Tπ = πσ , where

π(w1, w2, . . .)=

∞∑
n=1

wn2−n,

and π :6→ [0, 1] is one-to-one except for a set of sequences ending with 0∞ or 1∞.
We begin our investigation with a simple lemma which will help us reduce the range for

a and b.

LEMMA 1.1.
(i) If a < 1/4, b > 1/2 or a < 1/2, b > 3/4, then J (a, b)= {0, 1}.
(ii) If b < 1/2 or a > 1/2, then dimH J (a, b) > 0.

Proof. (i) Suppose that a < 1/4 and x ∈ J (a, b). Then π−1(a, b) contains the cylinder
[w1 = 0, w2 = 1]. Hence the dyadic expansion of x cannot contain 01, which implies x =
0 or 1, because if the dyadic expansion of x ends with 10∞, it can be replaced with 01∞,
which lies in (a, b). The case b > 3/4 is analogous, with the cylinder [w1 = 1, w2 = 0]
instead, so we omit the proof.

(ii) This is essentially proved in [25, Proposition 1.5], but we will repeat the argument
for the reader’s convenience.

Assume that [a, b] ⊂ (0, 1/2) (the case [a, b] ⊂ (1/2, 1) is completely analogous). Fix
n ≥ 2 and consider the following subshift of finite type:

6n = {w ∈6 : wk = 0 H⇒ wk+ j = 1, j = 1, . . . , n}.

When each 0 in the dyadic expansion of some x ∈ (0, 1) is succeeded by at least n
consecutive 1s, this means that x ≥ (2−2

+ 2−3
+ · · · + 2−n)/(1− 2−n−1). Thus,

π(6n)⊂

[ 1
2 − 2−n−1

1− 2−n−1 , 1
)
,

which implies that π(6n)⊂ J (a, b) for all n large enough. The topological entropy htop

of the subshift σ |6n is positive, whence

dimH J (a, b)≥ dimH π(6n)= htop(σ |6n )/log 2> 0. 2
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FIGURE 1. (a, b)-plane with 1
4 < a < 1

2 and 1
2 < b < 3

4 showing the regions D0 and D1. The upper or left-hand
boundary is an approximation to ∂D0 using rotation numbers p/q , q = 2, . . . , 7, and the lower, right-hand curve
is an upper bound for ∂D1 using the same rotation numbers together with a second level of renormalization with

rotation numbers p/q , q = 2, 3, 4, in the 1/2 box.

Thus, we may confine ourselves to the case (a, b) ∈ (1/4, 1/2)× (1/2, 3/4). Put

D0 = {(a, b) ∈ (1/4, 1/2)× (1/2, 3/4) : J (a, b) 6= {0, 1}}

and
D1 = {(a, b) ∈ (1/4, 1/2)× (1/2, 3/4) : J (a, b) is uncountable}.

The main result of the paper is the following theorem.

THEOREM 1.2. We have

{(a, b) ∈ (0, 1/2)× (1/2, 1) : dimH J (a, b) > 0} = {(a, b) : b < χ(a)},

where χ is given by Theorem 2.13.

Theorem 2.13 requires too many preliminaries to be quoted here. Instead, we present
Figure 1 which may serve as a good graphic illustration of Theorem 1.2.

The structure of the paper is as follows. In §2 we give a full description of D0

(Theorem 2.7) and D1 (Theorem 1.2). In §3 we apply our results to give a full description
of first- and second-order critical holes for T introduced in [25]. In §4 we introduce
an iterated function system which is naturally associated with our model and prove
a claim which links our model to the well-known ‘transition to chaos’ phenomenon
(Proposition 4.4). In the same section we describe the set of pairs (a, b) for which J (a, b)
is an uncountable set of zero Hausdorff dimension (Theorem 4.6). Finally, in Appendix A
we give proofs of some technical results from §2.
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2. Main construction
2.1. Definitions and lemmas for extremals. We need several auxiliary results first whose
proofs are given in Appendix A. A pair (s, t) of finite words with alphabet {0, 1}, where
s1 = 0 and t1 = 1, is extremal if and only if the inequalities

s∞ � σ ks∞ ≺ t∞, k = 1, . . . , |s| − 1,
s∞ ≺ σ `t∞ � t∞, `= 1, . . . , |t | − 1,

(2.1)

do not hold. In dynamical systems theory this implies that the pair (s∞, t∞) is the kneading
invariant of an expanding Lorenz map [17].

We will use the notation s(0, 1) and t (0, 1) if the choice of alphabet is needed explicitly.
Thus if T ∈ {0, 1}n , i.e. T = T (0, 1), then T (s, t) is the sequence of zeros and ones
obtained by replacing each 0 in T (0, 1) by the string s and each 1 in T (0, 1) by t . From
here on any sequence denoted by s or S starts with zero and every sequence t or T starts
with one. We need the following proposition.

PROPOSITION 2.1. If (s, t) and (S, T ) are extremal pairs, then so is (S(s, t), T (s, t)).

Proof. See Appendix A. 2

Note that we do not actually need that (S, T ) are well ordered or that the lengths of s
and t are equal, although this is the case in the application we have in mind. This result is
essentially part of the argument in [14], though the proof below is considerably shorter.

Assume now that t is a cyclic permutation of s, i.e. there exists ` ∈ {1, . . . , N − 1} such
that

s`+1 · · · sN s1 · · · s` = t1 · · · tN .

Put, for any sequence (n1, n2, . . .) ∈ N∞,

w(n1, n2, . . .)= sn1s1 · · · s`s
n2s1 · · · s` · · · .

Fix n ∈ N and define

Wn = {σ jw(n1, n2, . . .) | ni ∈ {n, n + 1} for all i and j ≥ 0}.

Clearly, σWn =Wn . Since we have ni ∈ {n, n + 1}without restrictions, the number of 0–1
words of length N which can be extended to sequences in Wn grows exponentially with N ,
whence htop(σ |Wn ) > 0.

PROPOSITION 2.2. For any 0–1 word u ∈ (st∞, ts∞) there exists n ∈ N such that

Wn ∩ (s
∞, u)=∅.

Proof. See Appendix A. 2

2.2. Introducing the functions. Following [18], put, for a ∈ (1/4, 1/2),

φ(a)= sup{b : J (a, b) 6= {0, 1}},

χ(a)= sup{b : J (a, b) is uncountable}.

We will show that

D0 = {(a, b) ∈ (1/4, 1/2)× (1/2, 3/4) : b ≤ φ(a)}
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(Theorem 2.7) and

D1 = {(a, b) ∈ (1/4, 1/2)× (1/2, 3/4) : b < χ(a) or b ≤ χ(a)}.

(Whether J (a, χ(a)) is countable or uncountable depends on a in a non-trivial way—see
Proposition 4.5 below.)

The function φ was studied in detail in [2]. For the reader’s convenience we will provide
an explicit formula for φ as a by-product of our investigation. Our main concern will be
the function χ . Clearly, φ(a)≥ χ(a) for all a ∈ (0, 1/2), and both functions are non-
decreasing. Below we will show that the equality holds if and only if a belongs to a subset
of (1/4, 1/2) of zero Hausdorff dimension—see Proposition 3.1.

THEOREM 2.3. [18, Theorem 2] We have

{(a, b) ∈ (1/4, 1/2)× (1/2, 3/4) : dimH J (a, b) > 0} = {(a, b) : b < χ(a)}.

Thus, if we give an explicit formula for χ , this will lead to a full description of all pairs
(a, b) for which dimH J (a, b) > 0.

2.3. Symbolic background. We need some definitions and basic results from
combinatorics on words—see [19, Ch. 2] for a detailed exposition. For any two finite words
u = u1 · · · uk and v = v1 · · · vn we write uv for their concatenation u1 · · · ukv1 · · · vn . In
particular, um

= u · · · u (m times) and u∞ = uuu · · · = limn→∞ un , where the limit is
understood in the topology of coordinatewise convergence.

From here on, by a ‘word’ we will mean a word whose letters are zeros and ones. Let
w be a finite or infinite word. We say that a finite word u is a factor of w if there exists k
such that u = wk · · · wk+n for some n ≥ 0. For a finite word w let |w| stand for its length
and |w|1 stand for the number of 1s in w. The 1-ratio of w is defined as |w|1/|w|. For an
infinite word w1w2 · · · the 1-ratio is defined as limn→∞ |w1 · · · wn|1/n (if it exists).

We say that a finite or infinite word w is balanced if, for any n ≥ 1 and any two factors
u, v of w of length n, we have ||u|1 − |v|1| ≤ 1. An infinite word is called Sturmian if
it is balanced and not eventually periodic. A finite word w is cyclically balanced if w2

is balanced (and, therefore, w∞ is balanced). It is well known that if u and v are two
cyclically balanced words with |u| = |v| = q and |u|1 = |v|1 = p and gcd(p, q)= 1, then
u is a cyclic permutation of v. Thus, there are only q distinct cyclically balanced words of
length q with p 1s.

We say that a finite or infinite word u is lexicographically smaller than a word v (and
write u ≺ v) if either u1 < v1 or there exists n ≥ 1 such that ui ≡ vi for i = 1, . . . , n and
un+1 < vn+1.

For any r = p/q ∈Q ∩ (0, 1) we define the substitution ρr on two symbols as follows:
ρr (0)= ω−r , the lexicographically largest cyclically balanced word of length q with 1-ratio
r beginning with 0, and ρr (1)= ω+r , the lexicographically smallest cyclically balanced
word of length q with 1-ratio r beginning with 1.

Remark 2.4. There is an explicit way to construct ω±r for any given r . Namely, let
r = p/q ≤ 1/2 have a continued fraction expansion [d1 + 1, . . . , dn] with dn ≥ 2 and
d1 ≥ 1 (in view of r ≤ 1/2). We define the sequence of 0–1 words given by r as follows:
u−1 = 1, u0 = 0, uk+1 = udk+1

k uk−1, 0≤ k ≤ n − 1. The word un has length q and is called
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the nth standard word given by r . Given an irrational γ ∈ (0, 1/2) with the continued
fraction expansion γ = [d1 + 1, d2, . . .], the word u∞ defined as the limit of the un is
called the characteristic word given by γ .

Let w1 · · · wq := un . Then

ω−r = 01w1 · · · wq−2,

ω+r = 10w1 · · · wq−2.

For r ∈Q ∩ (1/2, 1) we have ω±r = h(ω∓1−r ), where h(0)= 1, h(1)= 0 and h(w1 · · · wn)

= h(w1) · · · h(wn).

Example 2.5. We have ρ2/5(0)= 01010, ρ2/5(1)= 10010, ρ3/5(0)= 01101, ρ3/5(1)=
10101.

2.4. The function φ. Put, for any r ∈Q ∩ (0, 1),

1(r)= [(ω−r )
∞, ω−r (ω

+
r )
∞
].

(From here on we will not distinguish between x ∈ [0, 1] and its dyadic expansion, in order
to simplify our notation.) It was shown by the second author in [25] that

S := (1/4, 1/2)
∖ ⋃

r∈Q∩(0,1)
1(r) (2.2)

has zero Hausdorff dimension. We now give an explicit formula for φ for all a ∈
(1/4, 1/2)\S .

PROPOSITION 2.6. If a ∈1(r) for some r ∈Q ∩ (0, 1), then φ(a)≡ (ω+r )
∞. Thus, φ is

piecewise constant with an infinite countable set of plateaus and the exceptional set S .

Proof. This is a simple consequence of [2, Theorem 7]; however, our proof is
straightforward, and it should help the reader to understand better the more difficult case
of the function χ .

Within this proof let s := ω−r , t := ω+r . The pair (s, t) is extremal by construction,
where J (s∞, t∞)⊃ {T k(s∞) : k ≥ 0}. In fact, we have an equality here (see [25,
Corollary 3.6]), whence φ(s∞)≥ t∞. On the other hand, by the same result, J (s∞, b)=
{0, 1} for any b > t∞, which implies φ(s∞)= t∞.

Now let r = p/q in the least terms. We have that if a ∈ (s∞, st∞], then T q(a) ∈
[s∞, t∞], whence J (a, b)= {0, 1} for any b > t∞, i.e. φ(a) cannot be larger than φ(s∞)
for a in this range. 2

As a corollary we obtain a full description of the set D0.

THEOREM 2.7. We have

D0 = {(a, b) ∈ (1/4, 1/2)× (1/2, 3/4) : b ≤ φ(a)},

where φ is given by Proposition 2.6.

Proof. It suffices to show that J (a, φ(a)) is infinite. For a ∈ S this follows from
Propositions 3.1 and 4.5 below. If a ∈1(r) for some r , then the claim follows from
Proposition 2.6 and the fact that J (s∞, t∞) is infinite [25, Corollary 3.6]. 2
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2.5. The function χ . Now let r= (r1, r2, . . .) be a finite or infinite vector with each
component ri ∈Q ∩ (0, 1). We define the sequences of 0–1 words parametrized by r as
follows:

sn = ρr1 · · · ρrn (0),

tn = ρr1 · · · ρrn (1).

Example 2.8. For r1 = 1/2, r2 = 1/3 we have s2 = ρ1/2ρ1/3(0)= ρ1/2(010)= 011001
and t2 = ρ1/2(100)= 100101.

Remark 2.9. This construction appeared in [3] in connection with the study of T -invariant
sets.

Put

1(r1, . . . , rn)= [s
∞
n , sn t∞n ],

1̃(r1, . . . , rn)= [sn tns∞n , sn t∞n ].

Let ri = pi/qi for 1≤ i ≤ n and put Qn = q1 · · · qn . Since |ρr ( j)| = q for j = 0, 1, we
have |sn| = |tn| = Qn .

LEMMA 2.10. Fix (r1, . . . , rn−1). Then, for any rn ∈Q ∩ (0, 1),

1(r1, . . . , rn)⊂ 1̃(r1, . . . , rn−1). (2.3)

Furthermore,

1(r1, . . . , rn) ∩1(r
′

1, . . . , r ′n)=∅ if (r1, . . . , rn) 6= (r
′

1, . . . , r ′n). (2.4)

Finally,
dimH Sn(r1, . . . , rn−1)= 0, (2.5)

where

Sn(r1, . . . , rn−1) := 1̃(r1, . . . , rn−1)

∖ ⋃
rn∈Q∩(0,1)

1(r1, . . . , rn). (2.6)

Proof. Note that since ρr (0) is the largest among the cyclic permutations of the same word
which begin with 0, sn always begins with sn−1tn−1 and, similarly, tn always begins with
tn−1sn−1. Let sn = sn−1tn−1w and tn = tn−1sn−1w, wherew is constructed from the blocks
sn−1, tn−1. Thus,

sn−1tn−1wsn−1tn−1w · · · � sn−1tn−1s∞n−1,

sn−1tn−1(tn−1sn−1w)
∞
≺ sn−1t∞n−1,

which proves (2.3).
Let us now prove (2.4). Consider first the case n = 1. Since s = 01w, t = 10w for some

w, the length of [s∞, ts∞] is 1/4, whence

st∞ − s∞ = 2−q(t∞ − s∞),

t∞ − s∞ = 1
4 + st∞ − s∞,

1214 P. Glendinning and N. Sidorov
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whence the length of [s∞, t∞] is 2q/(4(2q
− 1)). Hence the length of 1(p/q) is

1/(4(2q
− 1)). Therefore,

∑
q≥2

1≤p<q
gcd(p,q)=1

|1(p/q)| =
∞∑

q=2

ϕ(q)

4(2q − 1)
, (2.7)

where ϕ is Euler’s totient function. As is well known,

∞∑
q=1

ϕ(q)xq

1− xq =
x

(1− x)2
, |x |< 1 (2.8)

(see [16, Theorem 309]). Substituting x = 1/2 into (2.8), we infer that the sum in (2.7)
equals 1/4, which means that the 1(p/q) do not overlap for different pairs (p, q).

Now suppose that n ≥ 2. It suffices to consider r ′1 = r1, . . . , r ′n−1 = rn−1 and r ′n > rn .
We need to show that

sn t∞n ≺ (s
′
n)
∞. (2.9)

We have sn = S(sn−1, tn−1), s′n = S′(sn−1, tn−1) and tn = T (sn−1, tn−1). By the above,
S(0, 1)T (0, 1)∞ ≺ (S′(0, 1))∞, which means that the left-hand side has 0 and the right-
hand side 1 at the first symbol where they disagree. Since sn−1 begins with 0 and tn−1

with 1, this implies (2.9).
To prove (2.5), note that for n = 1 the set S consists precisely of the points whose

dyadic expansion is of the form 01w, where w is a characteristic word for some irrational
γ ∈ (0, 1/2)—see [25, §2]. Since for any characteristic word w its prefix w1 · · · wN

is balanced, the Hausdorff dimension of S is zero, in view of the fact that the number
of balanced words of length N grows polynomially with N—see, for example, [22,
Corollary 18].

For n ≥ 2 the set Sn is the set of points whose dyadic expansion is of the form
sn−1tn−1w, where w is a characteristic word with 0 replaced with sn−1 and 1 with tn−1.
Clearly, the set which consists of such words has polynomial growth as well, whence (2.5)
follows. 2

Put S1 = S and

Sn =
⋃

r1,...,rn−1
ri∈Q∩(0,1),1≤i≤n

Sn(r1, . . . , rn−1).

PROPOSITION 2.11. The set S :=
⋃

n≥1 Sn has zero Hausdorff dimension.

Proof. This follows from (2.5) and the fact that dimH
⋃
∞

j=1 E j = sup j∈N dimH E j . 2

The following key result is a generalization of [14, Lemma 12], where it was proved
for the case r= (1/2, 1/2, . . .). Note that our proof for the general case is completely
different from that for the special case in question.

LEMMA 2.12. The set J (s∞n , t∞n ) is infinite countable for any r1, . . . , rn .

The doubling map with asymmetrical holes 1215

https://doi.org/10.1017/etds.2013.98 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2013.98


Proof. Let us first recall a well-known property of cyclically balanced words. Namely,
let {w0, . . . , wq−1} be the set of cyclically balanced words of length q with p 1s with
w0 ≺ · · · ≺ wq−1. Then there exists p′ such that

σ(w∞j )= w
∞

j+p′ mod q , 0≤ j ≤ q − 1; (2.10)

see, for example, [15]. In particular, σ(w∞j−p′−1)= w
∞

q−1 and σ(w∞j−p′)= w
∞

0 .
We now prove the claim by induction. For n = 1 this is [25, Corollary 3.6]; assume that

the claim holds for all k ≤ n and prove it for n = k + 1. Note first that it suffices to show
that, for all x ∈ (s∞k , s∞k+1) ∪ (t

∞

k+1, t∞k ), except for a countable set, x /∈ J (s∞k+1, t∞k+1).

Put within this proof Tk = T Qk , σk = σ
Qk and consider the set {σ j

k (s
∞

k+1) : j ≥ 0}
(whose cardinality is clearly qk+1) and label its elements x0 ≺ · · · ≺ xq−1, where q :=
qk+1. Suppose that xq−p′−1 = s∞k+1 and xq−p′ = t∞k+1.

Put Ji = [xi , xi+1] for i = 0, 1, . . . , q − 2. Then (2.10) implies that, for any i 6=
q − p′ − 1,

Tk(Ji )= Ji+p′ mod q ,

and in particular for all i 6= q − p′ − 1 there exists j ≤ q − 1 such that T j
k (Ji )= Jq−p′−1.

Consequently, if x ∈ [x0, xq−1] there exists v ≥ 0 such that

T vk (x) ∈ [xq−p′−1, xq−p′ ] = [s
∞

k+1, t∞k+1].

Thus, there can be only countably many x ∈ (x0, xq−1) whose trajectories do not fall into
the hole (s∞k+1, t∞k+1).

It suffices to consider x ∈ (s∞k , x0) (the case x ∈ (xq−1, s∞k+1) is similar). Clearly,
Tk |[s∞k ,x0] is a homeomorphism on its image with Tk(s∞k )= s∞k and Tk(x0)= x p′ ∈

[x0, xq−1]. Hence for any x ∈ [s∞k , x0] there exists j such that T j (x) ∈ [x0, xq−1], and
we are done. 2

Now let r= (r1, r2, . . .) ∈ (Q ∩ (0, 1))N and put

s(r)= lim
n→∞

ρr1 · · · ρrn (0),

t(r)= lim
n→∞

ρr1 · · · ρrn (1).

THEOREM 2.13. Any a ∈ (1/4, 1/2) falls into one of the following four categories.
(i) Let sn = ρr1 · · · ρrn (0), tn = ρr1 · · · ρrn (1). We have

χ(a)≡ tns∞n for all a ∈ [s∞n , sn tns∞n ]. (2.11)

Furthermore, χ(a) < tns∞n for any a < s∞n and χ(a) > tns∞n for any a > sn tns∞n , so
this is an actual plateau of the function χ .

(ii) If a ∈ S , then χ(a)= a + 1/4.
(iii) If a ∈ Sn(r1, . . . , rn−1) for n ≥ 2, then χ(a)= a + (1− 2−Qn−1)(tn−1 − sn−1).
(iv) If there exists (r1, r2, . . .) such that a ∈ 1̃(r1, . . . , rn) for all n ≥ 1, then a = s(r),

and χ(a)= t(r).

Proof. (i) Let us first prove (2.11). Since χ is non-decreasing, it suffices to show that

tns∞n � χ(s
∞
n ) (2.12)
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FIGURE 2. Part of the map T Qn .

and
tns∞n � χ(sn tns∞n ). (2.13)

Note that by Proposition 2.1 and induction on n, the pair (sn, tn) is extremal. Hence by
Proposition 2.2,

dimH J (s∞n , w) > 0, s∞n ≺ w ≺ tns∞n ,

which proves (2.12). To prove (2.13) note first that for any w ∈ (s∞n , sn tns∞n ) there exists
j ≥ 0 such that σ j Qn (w) ∈ [s∞n , tns∞n ]; see Figure 2.

Hence J (sn tns∞n , tns∞n )\J (s∞n , tns∞n ) is countable. Similarly, for anyw ∈ (tns∞n , t∞n )
there exists k ≥ 0 such that σ k Qn (w) ∈ (s∞n , tns∞n ). Therefore, J (sn tns∞n , tns∞n )\J (s∞n ,
t∞n ) is at most countable. Now (2.13) follows from Lemma 2.12.

To prove the second part of (i), assume first that a < s∞n . In view of (2.4) and (2.5), one
can always find r ′n such that 1(r1, . . . , rn−1, r ′n) lies between a and s∞n . Hence

χ(a)≤ χ(s′n t ′n(s
′
n)
∞)= t ′n(s

′
n)
∞ < tns∞n = χ(s

∞
n ).

Similarly, χ(a) > tns∞n for any a > sn tns∞n .
(ii) See Proposition 3.1 below.
(iii) We have

χ(a) = a + tns∞n − s∞n
= a + tn − sn

= a + (1− 2−Qn−1)(tn−1 − sn−1).
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(iv) For each n ≥ 1 we have s∞n < a < sn t∞n , whence χ(s∞n )≤ χ(a)≤ χ(sn t∞n ). It
suffices to recall that χ(s∞n )= tns∞n and χ(sn t∞n )= tnsn t∞n and pass to the limit as
n→∞. 2

This proves Theorem 1.2 stated in the Introduction.

COROLLARY 2.14. The function χ is piecewise constant on a subset of (1/4, 1/2) whose
complement S ∪ {s(r) : r ∈ (Q ∩ (0, 1))N} is nowhere dense.

Remark 2.15. The set {s(r) : r ∈ (Q ∩ (0, 1))N} is studied in detail in §4.1 below.
In particular, we show that its Hausdorff dimension is approximately 0.4732—see
Proposition 4.2 below.

COROLLARY 2.16. The boundary of D1 is given by the formula

∂D1 = {(a, χ(a)) : a ∈ (1/4, 1/2)} ∪ {(1− χ(1− b), b) : b ∈ (1/2, 3/4)},

where the values of χ can be obtained explicitly via Theorem 2.13.

3. Critical holes
3.1. Further properties of φ and χ .

PROPOSITION 3.1. We have φ(a)= χ(a) for a ∈ (1/4, 1/2) if and only if a ∈ S .

Proof. First let a ∈ S ; then a can be approximated by the intervals 1(r) with an arbitrary
precision. On each 1(r)= [s∞, st∞] we have, by Proposition 2.6 and Theorem 2.13,
φ(a)≡ t∞ and ts∞ ≤ χ(a)≤ t∞. By making |t | = q sufficiently large, we conclude that
χ(a)≥ φ(a)− δ for any given δ > 0, which proves the claim.

Now suppose that a /∈ S ; then a ∈1(r) for some r . Again, φ(a)= t∞ for any
a ∈ [s∞, st∞], whence, in view of (2.2) and the monotonicity of χ , it suffices to show
that

χ(st∞)= tst∞ ≺ t∞.

In turn, this is a consequence of χ(sts∞)= ts∞ and the reciprocity of χ . 2

LEMMA 3.2. Let n ≥ 2, r= (r1, . . . , rn) and sn, tn as above. Then the length of the
interval [s∞n , t∞n ] is equal to

1
4(1− 2−Qn )

·

n−1∏
j=1

(1− 2−Q j ),

where, as above, Q j = q1 · · · q j .

Proof. Since sn = sn−1tn−1w and tn = tn−1sn−1w,

tn − sn = tn−1sn−1 − sn−1tn−1

= (1− 2−Qn−1)(tn−1 − sn−1),

in view of |tn−1| = |sn−1| = Qn−1. Consequently,

tn − sn = (1− 2−Qn−1) · · · (1− 2−Q1)(t1 − s1)=
1
4
·

n−1∏
j=1

(1− 2−Q j ). (3.1)
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Now the claim follows from

t∞n − s∞n = (1− 2−Qn )−1(tn − sn). 2

PROPOSITION 3.3. We have

a + 1
4 ≤ φ(a)≤ a + 1

3 , a ∈ ( 1
4 ,

1
2 ), (3.2)

and
a + 1− 2a∗ ≤ χ(a)≤ a + 1

4 , a ∈ ( 1
4 ,

1
2 ), (3.3)

where a∗ = limn→∞ ρ
n
1/2(0)≈ 0.412 454, i.e. the dyadic expansion of the Thue–Morse

sequence sometimes called the Thue–Morse constant [26]. Furthermore, all these bounds
are sharp.

Proof. Let us begin with (3.2). We know that φ(a)= a + 1/4 for all a ∈ S , so consider
a ∈1(r) for some r . Put, as usual, s = ω−r , t = ω+r . By Proposition 2.6, φ(a)≡ t∞ for
all a ∈1(r)= [s∞, st∞], whence

inf
a∈1(r)

(φ(a)− a) = φ(st∞)− st∞ = t∞ − st∞

= t − s = 1/4,

and

sup
a∈1(r)

(φ(a)− a) ≤ φ(s∞)− s∞ = t∞ − s∞

=
2q

4(2q − 1)
.

Clearly, the right-hand side has maximum equal to 1/3 at q = 2.
Now let us prove (3.3). Since the complement of

⋃
r 1(r) is nowhere dense, it suffices

to study the minima and maxima of χ on the 1(r). In view of Theorem 2.13 and (3.1), we
have, for a ∈1(r),

χ(a)− a ≤ tns∞n − s∞n = tn − sn

=
1
4
·

n−1∏
j=1

(1− 2−Q j )≤
1
4

and

χ(a)− a ≥ tns∞n − sn tns∞n = tnsn − sn tn

=
1
4
(1− 2−Qn ) ·

n−1∏
j=1

(1− 2−Q j )

=
1
4
·

n∏
j=1

(1− 2−Q j )≥
1
4
·

n∏
j=1

(1− 2−2 j
).

(We use the fact that Q j ≥ 2 j with the equality only if q j ≡ 2 for all j , which corresponds
to r j ≡ 1/2.) Therefore,

χ(a)− a ≥
1
4
·

∞∏
j=1

(1− 2−2 j
)= 1− 2a∗,

with the equality at r= (1/2, 1/2, . . .), i.e. at a = a∗. 2
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3.2. First- and second-order critical holes. Recall the following definitions from [25].

Definition 3.4. We say that (a0, b0) is a first-order critical hole (FOCH) if the following
conditions are satisfied:
(i) for any hole (a, b) such that a < a0, b > b0, we have J (a, b)= {0, 1};
(ii) for any hole (a, b) such that a > a0, b < b0, we have J (a, b) 6= {0, 1}.

Example 3.5. An interval (1/3, b) is a FOCH if and only if b ∈ [7/12, 2/3]. This can be
easily proved by hand but also follows from Theorem 3.7 below with r = 1/2.

Definition 3.6. We say that (a0, b0) is a second-order critical hole (SOCH) if the following
conditions are satisfied:
(i) for any hole (a, b) such that a < a0, b > b0, the set J (a, b) is (finite or infinite)

countable;
(ii) for any hole (a, b) such that a > a0, b < b0, we have that dimH J (a, b) > 0.

As an application of our results on φ and χ , we can now fully describe all first- and
second-order critical holes for the doubling map. Note first that (a, φ(a)) is a FOCH for
any a ∈ (0, 1/2) by definition; however, it is possible for (a, b) to be a FOCH for b < φ(a)
if a /∈ S .

THEOREM 3.7. Each FOCH for the doubling map is one of the following:
• (a, 1/2) or (1/2, 1− a) for any a ∈ (0, 1/4];
• (a, a + 1/4), where a ∈ S ;
• (s∞, b), where s = ω−r for some r ∈Q ∩ (0, 1) and b ∈ [ts∞, t∞] with t = ω+r ;
• (a, t∞) with a ∈ (s∞, st∞].
Consequently, the length of each FOCH can take an arbitrary value between 1/4 and 1/2.

Proof. The case a ≤ 1/4 is covered by Lemma 1.1(ii), so we assume that a ∈ (1/4, 1/2).
Suppose first that a /∈ S . Then there exists r ∈Q ∩ (0, 1) such that a ∈ [s∞, st∞]. Recall
that, by Proposition 2.6, φ(a)= t∞.

First let a 6= s∞ and let (a, b) be a FOCH. Then b cannot be smaller than t∞, otherwise
there exists ε > 0 such that J (a − ε, b + ε) 6= {0, 1}. On the other hand, if b is larger than
t∞, there exists ε > 0 such that J (a + ε, b − ε)= {0, 1}, which contradicts (a, b) being
a FOCH.

If a = s∞, then, similarly, b cannot exceed t∞. Suppose that b is less than ts∞; then,
by Proposition 2.13, there exists ε > 0 such that J (a − ε, ts∞ − ε) is uncountable, which
is a contradiction.

Finally, suppose that a ∈ S and b < a + 1/4. Then for any ε > 0 there exists r such
that the interval [s∞, st∞] is at a distance less than ε from a with st∞ < a. Thus, if (a, b)
were a FOCH, this would contradict the first part of our proof. The case b > a + 1/4 is
similar, so we omit the proof. 2

THEOREM 3.8. Each SOCH is one of the following:
• (a, 1/2) or (1/2, 1− a) for any a ∈ (0, 1/4];
• (a, a + 1/4), where a ∈ S ;
• (a, a + (1− 2−Qn−1)(tn−1 − sn−1)), where a ∈ Sn(r1, . . . , rn−1) for some (r1,

. . . , rn−1) ∈ (Q ∩ (0, 1))n−1 and Sn(r1, . . . , rn−1) is given by (2.6);
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• (s∞n , b), where sn = ρr1 · · · ρrn (0) and b ∈ [tnsn t∞n , t∞n ] with tn = ρr1 · · · ρrn (1);
• (a, tns∞n ) with a ∈ (s∞n , sn tns∞n ];
• (s(r), t(r)) for some r ∈ (Q ∩ (0, 1))N.

Proof. Again, assume first that a /∈ Sn(r1, . . . , rn−1), which means a ∈ [s∞n , sn tns∞n ].
Similarly to the proof of Theorem 3.7, suppose first that a > s∞n and infer in the same
manner that b must be equal to χ(a)= tns∞n , since otherwise (a, b) would not be a SOCH.
The case a = s∞n is treated in the same way as above.

If a ∈ Sn(r1, . . . , rn−1), we can approximate a by some [sn, sn tns∞n ] from below and
from above and prove that b cannot differ from χ(a) given by Theorem 2.13. We leave the
details to the reader.

Finally, if a ∈ 1̃(r1, . . . , rn) for all n ≥ 1, then a = s(r) for some r. We have a >
sn tns∞n , whence b ≥ t(r). On the other hand, there exists rn+1 such that a < s∞n+1, whence
b ≤ tn+1s∞n+1, and by taking the limit, b ≤ t(r). 2

COROLLARY 3.9. The smallest length of a SOCH is 1− 2a∗ ≈ 0.175 092. Consequently,
dimH J (a, b) > 0 if b − a < 1− 2a∗. Assuming a ∈ (1/4, 1/2), the maximum length of a
SOCH is 1/4 and it is attained if and only if a ∈ S .

4. Miscellaneous
4.1. The underlying iterated function system. One can associate an iterated function
system (IFS) with our model. Namely, for any r ∈ (0, 1) ∩Q, let Fr : [0, 1] → [0, 1] be
the function which acts on the dyadic expansion of x by replacing each 0 with ω−r and each
1 with ω+r . The following result is straightforward.

LEMMA 4.1. The function Fr is discontinuous at each dyadic rational and continuous
everywhere else. The set Fr ([0, 1]) is a Cantor set of Hausdorff dimension 1/q.

Now, for each r= (r1, r2, . . .) and each x ∈ [0, 1], we put

8r(x) := lim
n→∞

Fr1 · · · Frn (x).

It is obvious that†

8r(x)=


π(s(r)), x < 1/2,

π(t(r)), x > 1/2,

not defined, x = 1/2.

Thus, unlike a conventional IFS (which consists of continuous functions and is usually
assumed to ‘contract on average’), in our model 8r(x) depends on x , albeit in a mild way.
The attractor (= invariant set) of this IFS is defined in the usual way, namely,

� := {π(s(r)) : r ∈ (Q ∩ (0, 1))N} ∪ {π(t(r)) : r ∈ (Q ∩ (0, 1))N}.

PROPOSITION 4.2. The set � is a Cantor set of Hausdorff dimension s which is a unique
solution of the equation

∞∑
q=2

ϕ(q)

4qs = 1, (4.1)

† In this subsection we prefer to distinguish between w ∈6 and π(w) ∈ [0, 1].
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with the numerical value s ≈ 0.473 223.

Proof. By our construction, Fr1 · · · Frn (0) ∈ 1̃(r1, . . . , rn), whence

� ∩ (0, 1/2)=
∞⋂

n=1

⋃
r1,...,rn

1̃(r1, . . . , rn).

Let us have a look at 1̃(r1, . . . , rn) as a subset of 1̃(r1, . . . , rn−1). We have

|1̃(r1, . . . , rn)|

|1̃(r1, . . . , rn−1)|
=

4−Qn (t∞n − s∞n )

4−Qn−1(t∞n−1 − s∞n−1)

= 4−qn
(1− 2−Qn−1)2

1− 2−Qn

∼ 4−qn . (4.2)

Thus, although � ∩ (0, 1/2) is not literally self-similar, it is ‘asymptotically self-similar’
(in view of (4.2)). Hence by a version of the famous Hutchinson formula for countable IFS
(see, for example, [21, Theorem 3.15]), dimH (� ∩ (0, 1/2))= s, where∑

rn

4−qns
= 1. (4.3)

More precisely, � ∩ (0, 1/2) can be approximated by self-similar sets from above and
below with an arbitrary precision, and then the result in question can be applied to both
sequences yielding (4.3). This proves (4.1), since the case of � ∩ (1/2, 1) is identical. 2

One can also endow this IFS with a natural probability measure. Namely, for r = p/q ∈
Q ∩ (0, 1) with 1≤ p < q and (p, q)= 1, put

P(r)=
1

2q − 1
.

The identity
∑
∞

q=2 ϕ(q)/(2
q
− 1)= 1 implies that P is indeed a probability measure on the

rationals between 0 and 1. We denote by the same letter the product measure P× P× · · ·
on (Q ∩ (0, 1))N.

Now the push-down measure ν supported by the attractor � is defined as follows:

ν(E)=

{
P{r :8r(0) ∈ E}, E ⊂ (0, 1/2),

P{r :8r(1) ∈ E}, E ⊂ (1/2, 1),

and ν(E) := ν(E ∩ (0, 1/2))+ ν(E ∩ (1/2, 1)) for a general Borel set E ⊂ (0, 1). Since
the Hausdorff dimension of a measure cannot exceed the Hausdorff dimension of its
support, we have dimH ν < 0.473 223. In particular, ν is singular.

It would be interesting to find out more about this IFS, especially about its attractor �
and the invariant measure ν. For instance, is it true that dimH ν = dimH �?

4.2. An intermediate set. One can ask about the set of (a, b) such that J (a, b) is
infinite. However, as such this question is trivial, since if x ∈ J (a, b) ∩ (0, 1/2), then
2−n x ∈ J (a, b) for any n ≥ 1 as well, i.e. J (a, b) is automatically infinite.
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To fix this, consider the map Ta,b : J (a, b)→ J (a, b) defined as the restriction of T to
J (a, b). If x ∈ [0, a] for a < 1/2, then T x ∈ [0, 2a], and T x ∈ [2b − 1, 1] for x ∈ [b, 1]
with b > 1/2. Hence the interval [2b − 1, 2a] is the attractor for Ta,b. Now we define

D̃0 = {(a, b) : J (a, b) ∩ [2b − 1, 2a] is infinite}.

Clearly, D1 ( D̃0 ( D0, i.e. D̃0 is an intermediate set. Similarly to the functions φ and χ ,
we define

ψ(a)= sup{b : J (a, b) ∩ [2b − 1, 2a] is infinite}, (4.4)

so D̃0 = {(a, b) : b <ψ(a)}.
It is not difficult to give an explicit formula for ψ(a) for all a, similarly to

Proposition 2.6 and Theorem 2.13. Namely, when a ∈ S , in view of χ(a)≤ ψ(a)≤ φ(a)
and Proposition 3.1, we have ψ(a)= a + 1/4.

If a ∈ [s∞, sts∞] for some r (again, we denote s = ω−r , t = ω+r ), then ψ(a)= χ(a)=
ts∞, since for a ∈ [s∞, sts∞] and b ∈ [ts∞, t∞], the set J (a, b) is a q-cycle together
with its preimages, so it becomes a finite set when intersected with any interval which does
not contain 0 or 1.

If a ∈ [sts∞, st∞], we need to look at level 2. Here J (s∞2 , t∞2 ) (where s2 = s2(r1, r2)

and similarly t2) contains a q1q2-cycle, and one can show that the orbit of s N
1 s∞2 lies outside

(s∞2 , t∞2 ) but inside the attractor for any N ∈ N—see Proposition 4.5 below. This implies
that ψ(a)= t∞2 for any a ∈ [s∞2 , s2t∞2 ].

Consequently,
3

16 ≤ ψ(a)− a ≤ 1
4 ,

both bounds being sharp. (The lower one is attained at a with the dyadic expansion
0110(01)∞, for which ψ(a) has the expansion 10(01)∞.)

Thus, whilst φ is determined on level 1 and χ may require an infinite descent, ψ is
determined on level 1 or 2. Note also that one can replace [2b − 1, 2a] in (4.4) with
[δ, 1− δ] for an arbitrary δ ∈ (0, 2b − 1] and this will not change any value of ψ . We
leave the details to the interested reader.

As a result, we obtain the following claim.

PROPOSITION 4.3. If b − a < 3
16 , then for any fixed δ > 0 the set J (a, b) ∩ [δ, 1− δ] is

infinite.

4.3. Many routes to chaos. Consider first the family of symmetric holes {(a, 1− a) :
a ∈ (1/4, 1/2)}. Here, as we increase a from 1/4 to 1/2, we obtain cycles for the map
Ta,1−a in the standard Sharkovskiı̆ order—see [1]. For instance, the 2-cycle appears at
a = 1/3, then we obtain a 4-cycle at a = 2/5, etc., until we hit a∗ which, as we know, has
the property that dimH J (a, 1− a) > 0 for any a ∈ (a∗, 1/2). This is usually referred to
as a route to chaos via period doubling.

Asymmetric holes provide us with a continuum of other routes to chaos. Namely,
fix a parameter r= (r1, r2, . . .) ∈ (Q ∩ (0, 1))N with ri = pi/qi and put, as above, Qn =
q1 · · · qn and sn = sn(r1, . . . , rn), tn = tn(r1, . . . , rn) for n ≥ 1.
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FIGURE 3. (u, v)-plane with u = b + a, v = 1
4 + b − a, showing the numerically computed approximation to

∂D1 using p/q with q ≤ 7 and the p/q-renormalizations with q = 2, 3, 4 in the 1/2 box.

Each such r yields its own route to chaos which formalizes the observations of [10] for
Lorenz-like maps. They identify three different routes to chaos. First the standard Thue–
Morse type for which maps on the boundary have a countably infinite set of periodic orbits
with periods related by consecutive products (with no restriction on the possible products)
realized. Second, there is the irrational rotation route to chaos (see also [23]) at which a
map on the boundary of chaos has a finite set of periodic orbits and an orbit which, for an
induced map, is an irrational rotation. Both these possibilities occur at points, i.e. they are
of codimension two. The third possibility is the generic case, occurring on the horizontal
lines and vertical jumps of χ(a). Here the map has a finite set of periodic orbits similar to
the intermittent route of MacKay and Tresser [20] in circle maps. From the point of view
of routes to chaos the parametrization in terms of the hole (a, b) is a little unfortunate,
in that the continuous curve has discontinuities in this coordinate representation, i.e. the
jumps in χ(a). It is much more natural to work in coordinates (b − a, b + a) in which
case the boundary is a continuous graph as shown in Figure 3.

In terms of our notation these results translate to the following statements.

PROPOSITION 4.4. If a ∈ (s∞n , s∞n+1) and b ∈ (t∞n+1, t∞n ), then Ta,b has a k-cycle if and
only if k ∈ {Q1, . . . , Qn+1}.

Proof. It follows from the proof of Lemma 2.12 that the set Xn := J (s∞n+1, t∞n+1)\J (s∞n ,
t∞n ) is contained in the set of preimages of s∞n+1 and t∞n+1. Therefore, the only purely
periodic points in Xn are s∞n+1 and t∞n+1 themselves, both of period Qn+1. 2

Thus, each rectangle (s∞n , s∞n+1)× (t
∞

n+1, t∞n ) in the (a, b)-plane is frequency locked
and can be perceived as an ‘Arnold tongue’ (see [10, 20]).
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If we treat a and b as two material points moving towards each other in such a way that
whenever a = s∞n , necessarily b = t∞n (and arbitrary speeds between these milestones),
then we obtain the cycles for Ta,b in the following order: q1, q1q2, q1q2q3, etc.—until
a = s(r) and b = t(r). From this point on, the map Ta,b becomes chaotic, in the spirit
of [10].

It would be interesting to construct meaningful analogues of the classical Sharkovskiı̆
order for each r. (The classical one corresponds to r= (1/2, 1/2, . . .).) One possible way
to do it could be to preserve the speed ratio for a and b at s(r) and t(r) respectively and
continue at the same ratio inside the chaotic region.

We finish the section with a detailed study of the case b = χ(a).

PROPOSITION 4.5. The set J (a, χ(a)) is uncountable of zero Hausdorff dimension if and
only if a ∈ S or a = s(r) for some r ∈ (Q ∩ (0, 1))N.

Proof. The fact that dimH J (a, χ(a))= 0 follows immediately from [18, Theorem 2].
Assume first that a ∈ S and put Xγ = {T na : n ≥ 0}. As was shown in [25, §2], the

(symbolic) set Xγ is the Sturmian system given by γ , i.e. the set of all Sturmian sequences
with the 1-ratio γ . Furthermore, the dyadic expansion of a is the largest element of Xγ
which begins with 0, while χ(a)= a + 1/4 is the smallest element which begins with 1.
Hence Xγ ∩ (a, χ(a))=∅, i.e. J (a, χ(a))⊃ Xγ . Now the claim of the theorem follows
from the well-known fact that Xγ has the cardinality of the continuum—see, for example,
[19, Ch. 2].

If a ∈ [s∞n , sn tns∞n ] for some (r1, . . . , rn), then J (a, χ(a)) is countable by
Lemma 2.12. By monotonicity, the same is true for any a ∈ Sn(r1, . . . , rn−1).

Finally, assume that a = s(r). Then χ(a)= t(r), and we claim that J (s(r), t(r)) is
uncountable. More precisely,

si1
1 si2

2 · · · ∈ J (s(r), t(r)), im ≥ 1, m ≥ 1. (4.5)

To prove this, note that by Lemma A.1 below,

σ k(sn)s
∞
n ≺ s∞n , σ k(tn)s

∞
n ≺ s∞n , (4.6)

for any n ≥ 1 and any k ∈ {1, . . . , Qn − 1}, provided the left-hand side of (4.6) begins
with 0. We need to show that

σ k(si1
1 si2

2 · · · )≺ s(r)

if the left-hand side begins with 0 and �t(r) otherwise for any k ≥ 0. Both cases are
similar, so we assume the left-hand side to begin with 0.

If k ≤ (i1 − 1)q1, then by (4.6) it is less than s∞1 ≺ s(r). If (i1 − 1)q1 < k < i1q1, then
by the same inequality and in view of the fact that s2 consists of blocks s1 and t1, the left-
hand side is less than s∞2 ≺ s(r). Applying the same argument for larger values of k yields
(4.5), whence J (s(r), t(r)) has the cardinality of the continuum. 2

As an immediate corollary we obtain the following theorem.

THEOREM 4.6. The set J (a, b) is uncountable of zero Hausdorff dimension if and only if
a ∈ S and b = a + 1/4 or a = s(r) and b = t(r) for some r ∈ (Q ∩ (0, 1))N.
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A. Appendix
A.1. Proof of Proposition 2.1. We start with a preparatory lemma which generalizes the
reflection property proved in our earlier paper [13, Lemma 7].

LEMMA A.1. Suppose that (s, t) is an extremal pair with |s| = N. If

σ j s∞ ≺ s∞, for some j ∈ {1, . . . , N − 1}, (A.1)

and
s j+1 · · · sN = s1 · · · sN− j (A.2)

then sN− j+1 = 1. An analogous statement holds for shifts of t .

Proof. Suppose that the assumptions (A.1) and (A.2) of the lemma hold but that sN− j+1 =

0. Then since the first N − j symbols of σ j s∞ and s∞ are equal, applying σ N− j on both
sides of (A.1) does not change the inequality and so

σ N− j (σ j s∞)= s∞ ≺ σ N− j s∞ = sN− j+1 · · ·. (A.3)

But if sN− j+1 = 0 then this implies that s∞ ≺ σ N− j s∞ ≺ t∞ for any t starting with one,
contradicting the assumption that (s, t) is extremal (cf. (2.1)). 2

Let
IL = [s

∞, st∞], IR = [ts
∞, t∞] (A.4)

and note that any word constructed by concatenating s and t is in IL ∪ IR , in particular
S(s, t)∞ ∈ IL and T (s, t)∞ ∈ IR .

LEMMA A.2. We have

σ k IL ∩ (s
∞, t∞)=∅, k = 1, . . . , |s| − 1, (A.5)

with a similar equation holding for IR .

Proof. To prove (A.5) note that the first symbols of both endpoints of σ k IL are equal if
k ∈ {1, . . . , |s| − 1|}.

Suppose that the first symbol is one and σ k IL does not satisfy the claim for this k. Then
the left endpoint of σ k IL is less than t∞, i.e. σ ks∞ ≺ t∞. But since σ ks∞ starts with a
one this contradicts the assumption that (s, t) is extremal.

Now suppose that the first symbol is zero and σ k IL does not satisfy the claim for this k.
Then by a similar argument

s∞ ≺ σ kst∞. (A.6)

Let N = |s|. If there is a difference in the first N − k terms of these two sequences
(non-empty since k < N ), then s∞ ≺ σ ks A for any infinite word A and in particular
s∞ ≺ σ ks∞, contradicting the extremality of (s, t). Hence the first N − k symbols are the
same, i.e. s1 · · · sN−k = sk+1 · · · sN . But this, together with the fact that (s, t) is extremal,
means that Lemma A.1 applies and so sN−k+1 = 1. Applying σ N−k to both sides of (A.6),
noting that the first N − k terms are equal, implies that

σ N−ks∞ ≺ t∞

and since sN−k+1 = 1, s∞ ≺ σ N−ks∞, and so we obtain a contradiction once again, thus
establishing the claim. 2
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These lemmas make the proof of Proposition 2.1 relatively simple.

Proof of Proposition 2.1. By Lemma A.2, σ k S(s, t)∞ is either less than or equal to s∞

or greater than or equal to t∞ for k = 1, . . . , |s| − 1, and so strictly less than S(s, t)∞

or strictly greater than T (s, t)∞. This (together with the equivalent statement for IR)
implies immediately that if an iterate of the shift of either S(s, t)∞ or T (s, t)∞ is between
S(s, t)∞ and T (s, t)∞, contradicting extremality, then an appropriate shift of S(0, 1)∞ or
T (0, 1)∞ would lie between S(0, 1)∞ and T (0, 1)∞, contradicting the assumption that
(S, T ) is extremal.

To see this in more detail, suppose that S(s, t)= st p1s p2 · · · t pn , where the last pn may
be zero (meaning no extra symbols and the end is a power of s). Then S(s, t) ∈ IL and
σ k S(s, t) ∈ σ k(IL) for i = 1, . . . , |s| − 1 and so by the lemma are outside the interval
(s∞, t∞) and hence also outside (S(s, t)∞, T (s, t)∞) as required for extremality. Thus
the first time we might get a contradiction of extremality is for σ |s|S(s, t), where

σ |s|S(s, t)∞ = P1(s, t)S(s, t)∞ = t p1 s p2 · · · t pn S(s, t)∞,

where P1(0, 1)= σ S(0, 1). On the other hand,

S(s, t)∞ ≺ P1(s, t)S(s, t)∞ ≺ T (s, t)∞

if and only if

S(0, 1)∞ ≺ P1(0, 1)S(0, 1)∞ = σ S(0, 1)∞ ≺ T (0, 1)∞

and such a relation would contradict the assumption that (S, T ) are extremal. Further
iterates can be treated the same way. 2

A.2. Proof of Proposition 2.2. Let v ∈Wn ; note first that if j ≤ (n1 − 1)N , then (2.1)
clearly yields the claim.

Assume that k := j − (n1 − 1)N ∈ {1, . . . , `− 1}. Then by (2.1),

σ kv = sk+1 · · · sN s1 · · · s` · · · ≺ s∞ or � t∞,

since sk+1 · · · sN s1 · · · sk ≺ s if sk+1 = 0 and � t otherwise.
Assume now that k = `. By the definition of `,

u′ := σ `v = tsn2s1 · · · s`s
n3 · · · .

If n is chosen in such a way that tsn
≺ u, then u′ � u.

Now assume that ` < k < `+ N ; in view of Lemma A.2 and by continuity of the shift,
if z ≺ ts∞ is sufficiently close to ts∞, then σ j z is either less than s∞ or greater than t∞.
(So we increase our n if necessary.)

Finally, let k = `+ N . We have σ kv = sn2s1 · · · s`sn3 · · ·, i.e. we are back where we
started. 2
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