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In this paper, we present a new pricing model for vulnerable options, with time-
varying variances for each asset described by Generalized Autoregressive Conditional
Heteroscedasticity processes and correlated with the return of the asset. By connecting
the underlying asset and the counterparty’s assets through the market factor channel, the
proposed model also captures stochastic correlation between the underlying asset return
and the return of the counterparty’s assets. The correlation depends on the levels of the
variances of both assets and the market index as well. In the proposed framework, the
closed-form solution for vulnerable options is derived and numerical results are presented
to investigate the impact of counterparty default risk.

Keywords: GARCH models, stochastic correlation, stochastic volatility, vulnerable options

1. INTRODUCTION

Since the pioneering work on option pricing by Black and Scholes [2] and Merton [23],
an extensive empirical literature has documented the empirical biases of the option valua-
tion model and much research has modified the Black–Scholes model in order to incorporate
stochastic volatility. More precisely, if the Black–Scholes model is correct, the implied volatil-
ity should be constant as in the Black–Scholes model, but it has been widely recognized
that it is not always the case.

Continuous-time stochastic volatility models (see, e.g., Heston [15] and Hull and White
[17]) have been proposed to take stochastic volatility into consideration. In a parallel
development, the discrete-time Generalized Autoregressive Conditional Heteroscedasticity
(GARCH) models (see, e.g., Bollerslev [3], Duan [10], Heston and Nandi [16], and Ritchken
and Trevor [25]) have also been investigated. Especially, the continuous-time stochastic
volatility models, including Heston [15], Hull and White [17] and Scott [26] can in fact be
approximated by GARCH processes (see, e.g., Duan [11] and Nelson [24]). GARCH pro-
cesses are considered to take into account the volatility clustering phenomenon by Bollerslev
[3] and are used to price options by Duan [10]. Ritchken and Trevor [25] develop an efficient
lattice algorithm to price European and American options under GARCH processes. The
authors also show that the algorithm is easily extended to price options under generalized
GARCH processes, with many of the existing stochastic volatility bivariate diffusion models
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appearing as limiting cases. Duan, Gauthier, and Simonato [12] provide a series approxi-
mation. Heston and Nandi [16] derive a closed-form solution for European option prices
in a GARCH model, and empirical analysis on S&P 500 index options shows the out-of-
sample valuation errors from the GARCH model are substantially lower than the ad hoc
Black–Scholes model studied in Dumas, Fleming, and Whaley [13], where a separate implied
volatility for each option is used to fit to the smile in implied volatilities. Christoffersen et
al. [6] present a new GARCH model for the valuation of European options, in which the
volatility of returns consists of two components: a fully persistent long-run component, and
a short-run component with a zero mean. In a successive paper, Christoffersen, Jacobs,
and Ornthanalai [5] propose an interesting and useful class of GARCH-jump models, and
find very strong support for time-varying jump intensities using the time-series of S&P
500 returns. However, GARCH-jump models are difficult to implement and test (see, e.g.,
Christoffersen et al. [5] and Durham Geweke, and Ghosh [14]).

In recent years, the over-the-counter (OTC) derivatives market has experienced tremen-
dous development. With the immense development of the OTC derivatives market (The
statistics in the ISDA survey, published in January 2015, show that the total OTC deriva-
tives notional outstanding approximated US$691.5 trillion at the end of June 2014.), the
significant counterparty default risk (Counterparty default risk is the risk in a financial
contract that one counterparty defaults and fails to make the agreed payments. Default
risk has been one of the risks participants in the OTC market have to face, see, for exam-
ple, Arora, Gandhi, and Longstaff [1]). should by no means be ignored especially after the
harrowing experience of the subprime mortgage crisis in 2007–2008. As a consequence, the
issue of credit exposure must be taken seriously when valuing credit-sensitive OTC contracts
such as credit default swaps (CDS), forwards and European options. Actually, counterparty
default risk has been considered when pricing credit derivatives (see, e.g., Brigo, Capponi,
and Pallavicini [4] and Crépey ( [8,9])) and valuing European options (see, e.g., Johnson and
Stulz [18], Tian et al. [28] and Wang [30]). In addition, European options with counterparty
default risk are called as vulnerable options. Adopting structural approaches to describe
credit risk, Johnson and Stulz [18] first incorporate credit risk into the option pricing model
with the assumption that the option is the sole liability of the counterparty and derive
the prices of vulnerable options. Klein [20] extends the result of Johnson and Stulz [18]
by allowing the option writer to hold other liabilities, which rank equally with payments
under the option. Based on the framework of Johnson and Stulz [18] and Klein [20], many
other factors such as stochastic interest rate, rare shocks, stochastic volatility, and stochas-
tic default barriers, are considered to illustrate the impacts of these factors on the prices
of vulnerable options. For instance, Liao and Huang [22] investigate the stochastic interest
rate case and provide a closed-form valuation formula for vulnerable options. Tian et al.
[28] incorporate jump processes to describe the discontinuous changes in the asset prices
and investigate the impact of jump risk on vulnerable option prices. Wang and Wang [29]
provide a pricing model for vulnerable options with stochastic volatility risk, in which the
volatility of returns consists of two components: long-term volatility assumed to be constant
and short-term volatility described by a mean-reverting process. Klein and Inglis [21] extend
the model of Klein [20] by incorporating the potential liability of the written option into
the default boundary.

In this paper, we consider the pricing issue of vulnerable options under GARCH mod-
els. We start by specifying the dynamic of the market index, representing the market risk,
and connect the dynamics of the underlying asset and the counterparty’s assets through
the market factor channel. In this way, the returns of the underlying asset and the coun-
terparty’s assets are correlated with each other. Compared with the previous literature
on vulnerable options, this paper has the following characteristics. First, we use GARCH
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processes to describe the variances of all asset prices and the proposed model captures
stochastic nature of volatility. There are few papers focusing on stochastic volatility when
valuing vulnerable options. To our best knowledge, Yang, Lee, and Kim [33] and Wang and
Wang [29] are the exceptions, where the authors adopt different kinds of continuous-time
stochastic volatility models. Especially, Yang et al. [33] obtain an analytic approximation
formula for vulnerable option prices using multiscale asymptotic analysis and Wang and
Wang [29] derive a pricing formula of vulnerable options in a special case of their model.
Different from these two studies, we work under GARCH models and get the closed-form
solution for vulnerable options. In addition, stochastic correlation is also considered in this
paper. Wang [31] presents a pricing model for vulnerable options in a GARCH model, where
counterparty credit risk is considered in a reduced form model. Second, the proposed model
is much easier to implement using historical asset prices, but it is not possible to exactly
filter a volatility variable from asset prices in a continuous-time stochastic volatility model.
In the numerical part, we implement the model using daily closing prices for the S&P 500
index, Microsoft Corporation stock and Bank of America Corporation stock for the period
from January 3, 1995 to December 31, 2009, and illustrate the impact of counterparty
default risk. Microsoft Corporation stock is one of the most popular S&P 500 stocks held
by 50 largest mutual funds and hedge funds in America (For more details, please visit the
website http://www.forbes.com/sites/liyanchen/2015/11/30/google-and-microsoft-top-the-
most-popular-mutual-fund-stocks/#481966c5185e). Bank of America Corporation stock is
also the S&P 500 index component. Here we take these two companies as an example and for
any other stocks we can obtain numerical results similarly. Third, the proposed model cap-
tures stochastic nature of correlation between returns and volatility for each asset. Fourth,
the proposed model is flexible in modeling stochastic correlation between the underlying
asset return and the return of the counterparty’s assets. Lastly, the closed-form solution for
vulnerable options is also derived in the proposed GARCH model.

The remainder of this paper is organized as follows. In Section 2, GARCH models with
stochastic correlation between the underlying asset return and the return of the counter-
party’s assets are proposed. Moreover, we derive an explicit pricing formula for vulnerable
European options. Section 3 presents numerical results to illustrate the impact of coun-
terparty default risk. Finally, concluding remarks are contained in Section 4. The detailed
proofs are shown in the Appendix.

2. THE MODEL

In this section, we deal with the pricing issue of vulnerable European options under GARCH
models. To connect the dynamics of the underlying asset and the counterparty’s assets
through the market factor channel, here we begin by specifying the values of the mar-
ket index, representing a common risk factor. Besides retaining the attractive features
of GARCH models, our formulation captures the time-varying correlation between the
underlying asset return and the return of the counterparty’s assets.

Assume that the uncertainty of the economy is described by a probability space
(Ω,F , P), equipped with an information flow {Ft}t≥0, where P is a real-world probability
measure. Suppose that the dynamic of the market index follows a GARCH process,

⎧⎪⎪⎨
⎪⎪⎩

0 ln M(t) = lnM(t − 1) + r +
(

λm − 1
2

)
hm(t) +

√
hm(t)Zm(t),

hm(t) = wm + bmhm(t − 1) + am

(
Zm(t − 1) − cm

√
hm(t − 1)

)2

,

(2.1)
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where M(t) denotes the value of the market index at the close of day t, r is the risk-free
interest rate and λm denotes the market price of risk. Shocks to the returns are generated
by a standard normal disturbance Zm(t), and h(t) is the conditional variance, which is
known at the end of day t − 1. This GARCH process is first used by Heston and Nandi
[16] to investigate index options and has been extended by Christoffersen et al. [6] and
Christoffersen et al. [5]. Here we focus on the version of the Heston and Nandi model, and
the results can be applied to the extended version in Christoffersen et al. [6].

Based on the assumption of the market index, we suppose that the underlying asset
price follow: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ln S(t) = lnS(t − 1) + r +
(

λs − 1
2

)
hs(t) +

√
hs(t)Zs(t)

+
(

βsλm − 1
2
β2

s

)
hm(t) + βs

√
hm(t)Zm(t),

hs(t) = ws + bshs(t − 1) + as

(
Zs(t − 1) − cs

√
hs(t − 1)

)2

,

(2.2)

where S(t) denotes the underlying asset price at the close of day t and r is the risk-free
interest rate. Shocks to the returns of the underlying asset consist of two parts: idiosyn-
cratic shocks, corresponding to Zs(t), and common shocks, corresponding to Zm(t), where
Zs(t) and Zm(t) are independent standard normal variables. The conditional variance cor-
responding to idiosyncratic shocks is denoted by hs(t), which is also known at the end of
day t − 1, and λs denotes the market price of risk, stemming from idiosyncratic shocks.
The parameter βs describes the effect of common shocks on the underlying asset return.
Motivated by the capital asset pricing model (CAPM), we also adopt the beta to represent
the underlying asset’s sensitivity to systematic risk or market risk, and the value of βs can
be represented by

Covt−1

(
ln M(t)

M(t−1) , ln
S(t)

S(t−1)

)
Vart−1

(
ln M(t)

M(t−1)

) =
Covt−1

(√
hm(t)Zm(t),

√
hs(t)Zs(t) + βs

√
hm(t)Zm(t)

)
Vart−1

(√
hm(t)Zm(t)

)

=
Covt−1

(√
hm(t)Zm(t), βs

√
hm(t)Zm(t)

)
Vart−1

(√
hm(t)Zm(t)

)
= βs, (2.3)

where we have used the fact that Zs(t) and Zm(t) are independent. The form of βs is
consistent with that in the CAPM. Shocks to the returns of the underlying asset include
idiosyncratic shocks and common ones, and the total conditional variance of lnS(t) is given
by hs(t) + β2

s hm(t), also consisting of two parts.
Now we turn to describe the dynamic of the counterparty’s assets. Analogously, suppose

that the value of the counterparty’s assets is driven by the following process:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ln V (t) = lnV (t − 1) + r +
(

λv − 1
2

)
hv(t) +

√
hv(t)Zv(t)

+
(

βvλm − 1
2
β2

v

)
hm(t) + βv

√
hm(t)Zm(t),

hv(t) = wv + bvhv(t − 1) + av

(
Zv(t − 1) − cv

√
hv(t − 1)

)2

,

(2.4)
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where V (t) represents the value of the counterparty’s assets and r is the risk-free interest
rate. Similarly, shocks to the returns of the counterparty’s assets also consist of idiosyncratic
and common components, and Zv(t) is a standard normal variable independent of Zs(t) and
Zm(t). The parameter βv describes the effect of the common component on the value of the
counterparty’s assets, and captures the sensitivity of the counterparty’s assets to systematic
risk, stated as follows:

βv =
Covt−1

(
ln M(t)

M(t−1) , ln
V (t)

V (t−1)

)
Vart−1

(
ln M(t)

M(t−1)

) . (2.5)

In the proposed model, we use the same class of conditional variance processes for
all asset prices. This kind of variance processes converge weakly to a square-root process
of Cox, Ingersoll and Ross [7] (see Heston and Nandi [16] for more details), which is a
continuous-time stochastic volatility process used in Heston [15] and many other studies
in the option pricing literature. In addition, the proposed model can capture stochastic
nature of variance, leverage effects, and stochastic correlation between the returns of the
underlying asset and the counterparty’s assets as shown in the following subsections.

2.1. Leverage Effects

From the dynamic of the market index in (2.1), using the values of the market index, we
can observe disturbance processes Zm(t) as follows:

Zm(t) =
ln M(t)

M(t−1) − r − (λm − 1
2 )hm(t)√

hm(t)
, (2.6)

which in turn implies that the conditional variance hm(t + 1) can be observed at time t,

hm(t + 1) = wm + bmhm(t) + am

(
Zm(t) − cm

√
hm(t)

)2

= wm + bmhm(t) + am

⎛
⎝ ln M(t)

M(t−1) − r − (λm − 1
2 )hm(t)√

hm(t)
− cm

√
hm(t)

⎞
⎠

2

.

Note that disturbance processes Zm(t) and the conditional variance hm(t + 1) depends on
the value of ln M(t)

M(t−1) .
In contrast to the continuous-time stochastic volatility models, GARCH models have an

obvious advantage that volatility or variance is observable from the history of asset prices.
Moreover, the relation between the return and variance is described as follows:

Covt−1(hm(t + 1), ln M(t)) = −2amcmhm(t).

Positive values for am and cm imply a negative correlation between returns and variance.
From the dynamic of the underlying asset in (2.2), the underlying asset price together

with Zm(t) can also provide us with observable disturbance processes Zs(t):

Zs(t) =
ln S(t)

S(t−1) − r − (λs − 1
2 )hs(t) − (βsλm − 1

2β2
s )hm(t)√

hs(t)
− βs

√
hm(t)Zm(t)√

hs(t)
,
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and the conditional variance for idiosyncratic shocks,

hs(t + 1) = ws + bshs(t − 1) + as

(
Zs(t) − cs

√
hs(t)

)2

= ws + bshs(t − 1) + as

(
ln S(t)

S(t−1) − r − (λs − 1
2 )hs(t) − (βsλm − 1

2β2
s )hm(t)√

hs(t)

− βs

√
hm(t)Zm(t)√

hs(t)
− cs

√
hs(t)

)2

.

Analogously, the conditional variance for individual shocks is observable from the history
of the counterparty’s assets prices,

hv(t + 1) = wv + bvhv(t − 1) + av

(
Zv(t − 1) − cv

√
hv(t − 1)

)2

= wv + bvhv(t − 1) + av

(
ln V (t)

V (t−1) − r − (λv − 1
2 )hv(t) − (βsλm − 1

2β2
s )hm(t)√

hv(t)

− βs

√
hm(t)Zm(t)√

hv(t)
− cv

√
hv(t)

)2

.

As illustrated above, the proposed model is much easier to implement using historical
prices of the market index, the underlying asset and the counterparty’s assets. It captures
stochastic nature of volatility for each asset and correlation between returns and variance
as well. Moreover, stochastic correlation between the underlying asset return and the return
of the counterparty’s assets is captured in the proposed model.

2.2. Stochastic Correlation

From the dynamics of the underlying asset and the counterparty’s assets in (2.2) and
(2.4), one gets that the covariance of the underlying asset return with the return of the
counterparty’s assets is given by

Covt

(
ln

S(t + 1)
S(t)

, ln
V (t + 1)

V (t)

)
= Covt(βs

√
hm(t + 1)Zm(t + 1), βv

√
hm(t + 1)Zm(t + 1))

= βsβvhm(t + 1),

where we have used the fact that Zm(t + 1), Zs(t + 1) and Zv(t + 1) are independent of
each other.

The correlation between the underlying asset return and the return of the counterparty’s
assets is determined by βs and βv and depends on the current level of the variance of the
market index. This implies that the correlation coefficient between two returns is given by

ρt =
Covt(ln

S(t+1)
S(t) , ln V (t+1)

V (t) )√
Vart(ln

S(t+1)
S(t) )

√
Vart(ln

V (t+1)
V (t) )

=
βsβvhm(t + 1)√

hs(t + 1) + β2
s hm(t + 1)

√
hv(t + 1) + β2

vhm(t + 1)
. (2.7)
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Note that the correlation coefficient is time-varying and depends on current levels of the
variances of both assets and the market index as well. Hence, the proposed model displays
not only leverage effects of each asset but also stochastic correlation between two assets.

2.3. Equivalent Martingale Measures (EMMs)

To derive vulnerable option prices, we need to determine an EMM. To this end, define
the following conditional Radon–Nikodym derivative (The form of the Radon–Nikodym
derivative is motivated by the affine structure of the pricing kernel; see, e.g., Christoffersen
et al. [5].),

L(t + 1) :=
dQ

dP

∣∣∣
Ft

=

exp

{
θm

√
hm(t + 1)Zm(t + 1) + θs

√
hs(t + 1)Zs(t + 1)

+θv

√
hv(t + 1)Zv(t + 1)

}

Et

[
exp

{
θm

√
hm(t + 1)Zm(t + 1) + θs

√
hs(t + 1)Zs(t + 1)

+θv

√
hv(t + 1)Zv(t + 1)

}] , (2.8)

where Zm(t + 1), Zs(t + 1) and Zv(t + 1) are the normal shocks to returns of the market
index, the underlying asset and the counterparty’s assets, respectively. hi(t + 1), i = m, s, v
are the conditional variances, known at time t. To ensure that Q is an EMM, we should put
the conditions on the Radon–Nikodym derivative. The following result gives a necessary
and sufficient condition such that the martingale condition is satisfied.

Proposition 2.1: The martingale condition holds if and only if

θm = −λm, θs = −λs, θv = −λv.

Moreover, Zi(t) + λi

√
hi(t) is a standard normal distribution under the EMM Q, for i =

m, s, v.

Proof: See the Appendix. �

In the following, we identify the risk-neutral dynamics under the EMM Q and the result
is as follows.

Proposition 2.2: The dynamic of the market index M(t) admits the following form
under Q,

⎧⎪⎨
⎪⎩

ln M(t) = lnM(t − 1) + r − 1
2
hm(t) +

√
hm(t)Z∗

m(t),

hm(t) = wm + bmhm(t − 1) + am

(
Z∗

m(t − 1) − (cm + λm)
√

hm(t − 1)
)2

,

(2.9)

where Z∗
m(t) := Zm(t) + λm

√
hm(t) is a standard normal variable under Q, shown in

Proposition 2.1.
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The dynamic of the underlying asset S(t) takes the form as follows under Q,

⎧⎪⎨
⎪⎩

ln S(t) = lnS(t − 1) + r − 1
2
hs(t) +

√
hs(t)Z∗

s (t) − 1
2
β2

s hm(t) + βs

√
hm(t)Z∗

m(t),

hs(t) = ws + bshs(t − 1) + as

(
Z∗

s (t − 1) − (cs + λs)
√

hs(t − 1)
)2

,

(2.10)
where Z∗

s (t) := Zs(t) + λs

√
hs(t) is a standard normal variable under Q, shown in Propo-

sition 2.1.
The dynamic of the counterparty’s assets V (t) admits the following form under Q,

⎧⎪⎨
⎪⎩

ln V (t) = lnV (t − 1) + r − 1
2
hv(t) +

√
hv(t)Z∗

v (t) − 1
2
β2

vhm(t) + βv

√
hm(t)Z∗

m(t),

hv(t) = wv + bvhv(t − 1) + av

(
Z∗

v (t − 1) − (cv + λv)
√

hv(t − 1)
)2

,

(2.11)
where Z∗

v (t) := Zv(t) + λv

√
hv(t) is a standard normal variable under Q, shown in Propo-

sition 2.1.

Proof: See the Appendix. �

Up to now, we have determined an EMM Q and got the risk-neutral dynamics. In the
following, we will derive the values of vulnerable European options using the generating
functions.

2.4. Vulnerable Option Prices

In this subsection, we derive the values of vulnerable European call options (Due to the
similarity between call and put options, we only show specific calculations and numerical
analysis for vulnerable European call options in this paper.) with strike price K and maturity
T , based on the risk-neutral dynamics in Proposition 2.2. To this end, we first focus on the
payoff of vulnerable options. In contrast to options without counterparty default risk, the
payoff of vulnerable options depends on whether default occurs or not.

Following Klein [20], and Wang, Song, and Wang [32], we consider counterparty default
risk with structural approaches, that is, a credit loss occurs if the market value of the assets
of the counterparty, V (T ), is less than some amount D (It should be noted that the option
is not often the only liability of the option issuer. Following Klein [20], we also allow the
option issuer to have other liabilities, which rank equally with the option and denote by
D the amount of all the outstanding claims. Default occurs when the option issuer fails
to make the payment under the option or other liabilities. That is, the value of the option
issuer’s assets is less than the amount of all the outstanding claims D.). Here D is set to the
amount of all the outstanding claims. Once a credit loss occurs at exercise time T , αV (T )
is paid as the deadweight costs due to the bankruptcy or reorganization, and the remaining
value of (1 − α)V (T ) is paid to the holders of the option and other liabilities. Then the
recovery is (1−α)V (T )

D , with the amount of all the outstanding claims D.
If there is no default at maturity T , it is equal to the payoff on a vanilla European call

option. Mathematically, this part of the payoff equals

1{V (T )>D}(S(T ) − K)+.
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When a credit loss occurs at exercise time T , only a proportion of the payoff can be recovered,
and the corresponding payoff is given by

1{V (T )≤D}
(1 − α)V (T )

D
(S(T ) − K)+.

Denote the value of a vulnerable option by C∗, which is represented by,

C∗ = e−r(T−t)
E

Q
t

[
(S(T ) − K)+

(
1(V (T ) ≥ D) +

(1 − α)V (T )
D

1(V (T ) < D)
)]

, (2.12)

where E
Q
t [ ] denotes the conditional expectation given the information at time t.

Now we turn to derive the closed-form solution for the generating function of S(T ) and
V (T ) and use it to calculate option prices in (2.12). Let f(t;T, φ1, φ2) denote the conditional
generating function of S(T ) and V (T ),

f(t;T, φ1, φ2) = E
Q
t [S(T )φ1V (T )φ2 ].

Let x(t) = lnS(t) and y(t) = lnV (t), and f(t;T, φ1, φ2) is also the conditional moment
generating function of x(T ) and y(T ), that is,

f(t;T, φ1, φ2) = E
Q
t [eφ1x(T )+φ2y(T )].

The explicit expression of f(t;T, φ1, φ2) is given below.

Proposition 2.3: The moment generating function of x(T ) and y(T ), with the notations
x(T ) = lnS(T ) and y(T ) = lnV (T ), admits the following form,

f(t;T, φ1, φ2) = exp
{

φ1x(t) + φ2y(t) + A(t;T, φ1, φ2) + B1(t;T, φ1, φ2)hs(t + 1)

+ B2(t;T, φ1, φ2)hv(t + 1) + B3(t;T, φ1, φ2)hm(t + 1)
}

,

where A(t;T, φ1, φ2), B1(t;T, φ1, φ2), B2(t;T, φ1, φ2), and B3(t;T, φ1, φ2) are given by

A(t;T, φ1, φ2) = (φ1 + φ2)r + wsB1(t + 1;T, φ1, φ2) + wvB2(t + 1;T, φ1, φ2)

+ wmB3(t + 1;T, φ1, φ2) + A(t + 1;T, φ1, φ2)

− 1
2

ln(1 − 2asB1(t + 1;T, φ1, φ2)) − 1
2

ln(1 − 2avB2(t + 1;T, φ1, φ2))

− 1
2

ln(1 − 2amB3(t + 1;T, φ1, φ2)),

B1(t;T, φ1, φ2) = bsB1(t + 1;T, φ1, φ2) − 1
2
φ1 + φ1(cs + λs) − 1

2
(cs + λs)2

+
(1/2)(φ1 − (cs + λs))2

1 − 2asB1(t + 1;T, φ1, φ2)
,
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B2(t;T, φ1, φ2) = bvB2(t + 1;T, φ1, φ2) − 1
2
φ2 + φ2(cv + λv) − 1

2
(cv + λv)2

+
(1/2)(φ2 − (cv + λv))2

1 − 2avB2(t + 1;T, φ1, φ2)
,

B3(t;T, φ1, φ2) = bmB3(t + 1;T, φ1, φ2) − 1
2
φ1β

2
s − 1

2
φ2β

2
v + (φ1βs + φ2βv)(cm + λm)

− 1
2
(cm + λm)2 +

(1/2)(φ1βs + φ2βv − (cm + λm))2

1 − 2amB3(t + 1;T, φ1, φ2)
,

and these coefficients can be obtained recursively using the terminal conditions,

A(T ;T, φ1, φ2) = B1(T ;T, φ1, φ2) = B2(T ;T, φ1, φ2) = B3(T ;T, φ1, φ2) = 0.

Proof: See the Appendix. �

Based on the expression of the moment generating function f(t;T, φ1, φ2), we can have
the characteristic function of the logarithm of asset prices, which can be used to calculate
the density and derive option prices. In particular, the vulnerable option price in (2.12) is
obtained.

Proposition 2.4: The price of vulnerable options with strike price K and maturity T is
given by

C∗ = e−r(T−t)
[
f(t;T, 1, 0)Π1(t;T ) − KΠ2(t;T )

+
1 − α

D
f(t;T, 1, 1)Π3(t;T ) − 1 − α

D
Kf(t;T, 0, 1)Π4(t;T )

]
, (2.13)

where the closed form of f(t;T, φ1, φ2) is derived in Proposition 2.3 and Π1(t;T ), Π2(t;T ),
Π3(t;T ) and Π4(t;T ) are given in (A.7)–(A.10).

Proof: See the Appendix. �

Thanks to the explicit expression of the generating function, we have obtained the
closed-form solution for vulnerable options under the proposed GARCH model. In the pro-
posed framework, the market index is used to connect the dynamics of the underlying
asset and the assets of the counterparty, and the model captures stochastic nature of the
correlation between the returns of these assets.

3. NUMERICAL RESULTS

In this section, we investigate the impact of counterparty default risk on vulnerable option
prices. The derived formula in (2.13) is used to obtain the values of vulnerable options. In
addition, we contrast vulnerable option prices with the values of vanilla options (Vanilla
option prices can be obtained by taking D → 0, that is, there is no possibility of default.
Alternatively, we can obtain the pricing formula using the moment generating function of
x(T ) = lnS(T ).) to show the impact of counterparty default risk.
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Table 1. MLEs using an estimation sample of daily returns, 1995–2009. We use daily
closing prices for the period from January 3, 1995 to December 31, 2009. The interest
rate is approximated by daily yields of 3-month Treasury bills. Robust standard errors are
obtained using the outer product of the gradient at the optimum parameter values.

Parameter Estimate Standard error

S&P 500 Index λm 1.576 1.574

wm 3.000 × 10−15 8.576 × 10−9

bm 8.500 × 10−1 6.348 × 10−4

am 3.921 × 10−6 1.726 × 10−8

cm 1.755 × 102 1.534

Microsoft Corporation λs 1.017 8.808 × 10−1

ws 9.319 × 10−11 6.487 × 10−9

bs 9.497 × 10−1 2.310 × 10−5

as 1.874 × 10−5 1.052 × 10−8

cs 4.385 × 10−4 8.804 × 10−1

Bank of America Corporation λv 3.862 × 10−1 1.203

wv 3.483 × 10−12 1.120 × 10−9

bv 9.058 × 10−1 9.342 × 10−6

av 3.051 × 10−5 3.169 × 10−9

cv 2.665 × 10−3 1.203

GARCH process parameters are obtained by empirically estimating (2.1), (2.2), and
(2.4). We use daily closing prices for the S&P 500 index, Microsoft Corporation stock and
Bank of America Corporation stock for the period from January 3, 1995 to December 31,
2009. Additionally, the daily time-series of 3-month Treasury bills are used as our proxy
for the interest rate. The market betas βs and βv in (2.3) and (2.5) are estimated directly
using returns data, that is, βs = 1.950 and βv = 1.276. Table 1 presents maximum likelihood
estimates (MLEs) of the physical model parameters. For each parameter, we also report its
robust standard error obtained using the outer product of the gradient at the optimum
parameter value.

Based on the estimated parameters, we now have the risk-neutral dynamics of the mar-
ket index and two assets in (2.9)–(2.11). For the initial variances of the S&P 500 index
and each asset, we set them to the ones calculated from the returns data, respectively.
The annualized variance for the S&P 500 index is 7.596 × 10−3, corresponding to annual-
ized volatility of 0.087. The annualized total variances for two assets are 3.384 × 10−2 and
2.395 × 10−2, respectively. To obtain the value of vulnerable options, the values for default
boundary D and deadweight cost α are also needed. These two parameters are crucial in
observing the impact of counterparty default risk, and we examine different situations by
setting the default boundary D to a simple n multiple of its initial asset value V (0) = 100
(Actually, the default boundary affects the value of vulnerable option only through the ratio
of default boundary to its initial asset value.). We set n = 0.4, 0.5, 0.6 and α = 0.3, 0.4, 0.5
to investigate the impact of counterparty default risk.

Without loss of generality, we set the current price of the underlying asset to 100 and
the interest rate to 0.02. We consider three moneyness cases by setting strike prices to
K = 90, 100, 110, corresponding to in-the-money (ITM), at-the-money (ATM) and out-of-
the-money (OTM) options, respectively, and four maturity cases, being 0.5, 1.0, 2.0, and
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Table 2. The difference between option prices without counterparty default risk and vulnerable option prices. We use the MLEs in
Table 1 to price options. Panel A shows the differences when the default boundary is 40% of the counterparty’ asset value. Panels B and
C correspond to the ratios of 50 and 60%, respectively. The values in the column labeled ’Prices’ are vanilla option prices.

Panel A, D = 40 Panel B, D = 50 Panel C, D = 60

Maturiy Strike Prices α = 0.3 α = 0.4 α = 0.5 α = 0.3 α = 0.4 α = 0.5 α = 0.3 α = 0.4 α = 0.5

0.5 90 20.22 0.0007 0.0008 0.0010 0.0105 0.0132 0.0159 0.0712 0.0892 0.1071
0.5 100 15.14 0.0004 0.0005 0.0006 0.0061 0.0077 0.0093 0.0438 0.0549 0.0660
0.5 110 11.11 0.0002 0.0003 0.0004 0.0035 0.0045 0.0054 0.0267 0.0335 0.0403

1.0 90 26.91 0.0250 0.0310 0.0369 0.1251 0.1534 0.1818 0.3854 0.4691 0.5527
1.0 100 22.40 0.0175 0.0216 0.0258 0.0902 0.1108 0.1315 0.2855 0.3480 0.4104
1.0 110 18.59 0.0123 0.0152 0.0181 0.0654 0.0804 0.0954 0.2121 0.2587 0.3054

2.0 90 36.07 0.2472 0.2959 0.3446 0.6343 0.7530 0.8717 1.2475 1.4695 1.6915
2.0 100 32.21 0.1997 0.2393 0.2789 0.5209 0.6191 0.7172 1.0372 1.2233 1.4094
2.0 110 28.81 0.1625 0.1949 0.2273 0.4305 0.5121 0.5937 0.8669 1.0236 1.1802

5.0 90 52.89 1.6551 1.8894 2.1237 2.6923 3.0533 3.4144 3.8655 4.3592 4.8530
5.0 100 50.08 1.4942 1.7070 1.9198 2.4444 2.7744 3.1044 3.5251 3.9785 4.4319
5.0 110 47.51 1.3557 1.5499 1.7441 2.2296 2.5324 2.8352 3.2284 3.6463 4.0642
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Figure 1. The difference between option prices without counterparty default risk and
vulnerable option prices with alternative maturities. We use the MLEs in Table 1 and assume
K = 100 and D = 40 to price options. The solid, dotted, and dot-dashed lines correspond
to α = 0.3, α = 0.4, and α = 0.5, respectively.
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Figure 2. The difference between option prices without counterparty default risk and
vulnerable option prices with alternative maturities. We use the MLEs in Table 1 and assume
K = 100 and D = 50 to price options. The solid, dotted, and dot-dashed lines correspond
to α = 0.3, α = 0.4, and α = 0.5, respectively.

5.0 years. Table 2 reveals the difference between option prices without counterparty default
risk and vulnerable option prices for each parameter combination. The values in the column
labeled ‘Prices’ are those of the options without counterparty default risk. From Table 2,
we can see that default risk has little impact when maturity is quite short, and observe that
the impact of counterparty default risk becomes more and more pronounced as the life of
the option increases, especially when the default boundary is higher. These impacts can be
observed more clearly in Figures 1–3. The counterparty defaults more likely with a longer
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Figure 3. The difference between option prices without counterparty default risk and
vulnerable option prices with alternative maturities. We use the MLEs in Table 1 and assume
K = 100 and D = 60 to price options. The solid, dotted, and dot-dashed lines correspond
to α = 0.3, α = 0.4, and α = 0.5, respectively.

maturity, reducing vulnerable option prices and hence corresponding to wide differences.
For instance, the difference is 0.4104 for an ATM option with a maturity of 1.0 year, while
the one is 4.4319 for 5.0-year options, with D = 60 and α = 0.5 (Panel C). In addition,
the values of the default boundary D and deadweight cost α have significant effects on
option prices intuitively, since they affect directly the loss once default events occur. The
quantitative impact of counterparty default risk should be taken into account when the
long-term option is issued by a highly leveraged firm.

Up to now, we have focused on the case with initial variances calculated from the returns
data. In the following, we investigate in detail differences between option prices without
counterparty default risk and vulnerable option prices with alternative initial variances.
Table 3 shows the differences with alternative initial total variances for the underlying
asset. Intuitively, a higher initial total variance leads to a higher vanilla option value and a
larger loss once default occurs. Hence, the difference increases when the initial total variance
of the underlying asset rises. Similarly, a higher initial total variance of the counterparty’s
assets corresponds to larger default risk and an increase of the differences, as shown in
Table 4.

In Table 5, we consider the case with alternative initial variances of the S&P 500 index
and the constant total variances of two assets. It is interesting to find that the difference
rises with an increase of the initial variance of the S&P 500 index. Increasing the initial
variance of the S&P 500 index does not change the total risk for the underlying asset and
the counterparty’s assets (since the total variances of two assets are kept constants), but
indeed increases the proportion of market risk, which corresponds to a higher correlation
coefficient between two assets. The positive correlation coefficient ensures that the values
of two assets move in the same direction more likely, corresponding to a smaller effect of
credit risk on vulnerable options and hence a smaller difference. In a word, the impact of
counterparty default risk becomes more significant when increasing idiosyncratic risk of the
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Table 3. The differences between option prices without counterparty default risk and vulnerable option prices with alternative initial
variance for the underlying asset. We use the MLEs in Table 1 and take D = 60 to price options. Panel A shows the differences for the
initial variance being 90% of the one calculated from the returns data. Panels B and C correspond to the ratios of 100% and 115%,
respectively.

Panel A, 90% Panel B, 100% Panel C, 115%
Maturity
(Years) Strike α = 0.3 α = 0.4 α = 0.5 α = 0.3 α = 0.4 α = 0.5 α = 0.3 α = 0.4 α = 0.5

0.5 90 0.0711 0.0890 0.1069 0.0712 0.0892 0.1071 0.0714 0.0894 0.1073
0.5 100 0.0437 0.0548 0.0659 0.0438 0.0549 0.0660 0.0439 0.0551 0.0662
0.5 110 0.0266 0.0334 0.0402 0.0267 0.0335 0.0403 0.0268 0.0336 0.0404

1.0 90 0.3852 0.4688 0.5523 0.3854 0.4691 0.5527 0.3858 0.4695 0.5533
1.0 100 0.2853 0.3477 0.4101 0.2855 0.3480 0.4104 0.2859 0.3484 0.4109
1.0 110 0.2118 0.2585 0.3051 0.2121 0.2587 0.3054 0.2124 0.2591 0.3059

2.0 90 1.2471 1.4691 1.6910 1.2475 1.4695 1.6915 1.2481 1.4702 1.6923
2.0 100 1.0369 1.2229 1.4089 1.0372 1.2233 1.4094 1.0378 1.2239 1.4101
2.0 110 0.8666 1.0232 1.1798 0.8669 1.0236 1.1802 0.8675 1.0242 1.1809

5.0 90 3.8651 4.3588 4.8525 3.8655 4.3592 4.8530 3.8661 4.3560 4.8537
5.0 100 3.5247 3.9781 4.4314 3.5251 3.9785 4.4319 3.5257 3.9792 4.4326
5.0 110 3.2280 3.6459 4.0638 3.2284 3.6463 4.0642 3.2290 3.6470 4.0650
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Table 4. The differences between option prices without counterparty default risk and vulnerable option prices with alternative initial
variance for the counterparty’s assets. We use the MLEs in Table 1 and take D = 60 to price options. Panel A shows the differences for
the initial variance being 90% of the one calculated from the returns data. Panels B and C correspond to the ratios of 100% and 115%,
respectively.

Panel A, 90% Panel B, 100% Panel C, 115%
Maturity
(Years) Strike α = 0.3 α = 0.4 α = 0.5 α = 0.3 α = 0.4 α = 0.5 α = 0.3 α = 0.4 α = 0.5

0.5 90 0.0710 0.0889 0.1067 0.0712 0.0892 0.1071 0.0716 0.0896 0.1076
0.5 100 0.0436 0.0547 0.0658 0.0438 0.0549 0.0660 0.0440 0.0552 0.0663
0.5 110 0.0266 0.0334 0.0401 0.0267 0.0335 0.0403 0.0268 0.0337 0.0405

1.0 90 0.3850 0.4686 0.5521 0.3854 0.4691 0.5527 0.3861 0.4699 0.5536
1.0 100 0.2852 0.3476 0.4100 0.2855 0.3480 0.4104 0.2861 0.3486 0.4111
1.0 110 0.2117 0.2583 0.3050 0.2121 0.2587 0.3054 0.2125 0.2592 0.3060

2.0 90 1.2469 1.4689 1.6908 1.2475 1.4695 1.6915 1.2483 1.4705 1.6926
2.0 100 1.0367 1.2227 1.4087 1.0372 1.2233 1.4094 1.0380 1.2241 1.4103
2.0 110 0.8665 1.0231 1.1797 0.8669 1.0236 1.1802 0.8676 1.0243 1.1811

5.0 90 3.8649 4.3586 4.8522 3.8655 4.3592 4.8530 3.8665 4.3602 4.8540
5.0 100 3.5245 3.9779 4.4312 3.5251 3.9785 4.4319 3.5259 3.9794 4.4329
5.0 110 3.2278 3.6457 4.0636 3.2284 3.6463 4.0642 3.2292 3.6472 4.0652
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Table 5. The differences between option prices without counterparty default risk and vulnerable option prices with alternative initial
variance for the S & P500 index. We use the MLEs in Table 1 and take D = 60 to price options. Panel A shows the differences for the
initial variance being 90% of the one calculated from the returns data. Panels B and C correspond to the ratios of 100% and 115%,
respectively.

Panel A, 90% Panel B, 100% Panel C, 115%
Maturity
(Years) Strike α = 0.3 α = 0.4 α = 0.5 α = 0.3 α = 0.4 α = 0.5 α = 0.3 α = 0.4 α = 0.5

0.5 90 0.0715 0.0895 0.1075 0.0712 0.0892 0.1071 0.0708 0.0886 0.1064
0.5 100 0.0440 0.0552 0.0663 0.0438 0.0549 0.0660 0.0435 0.0545 0.0655
0.5 110 0.0268 0.0337 0.0405 0.0267 0.0335 0.0403 0.0265 0.0332 0.0340

1.0 90 0.3862 0.4700 0.5537 0.3854 0.4691 0.5527 0.3844 0.4678 0.5512
1.0 100 0.2861 0.3487 0.4112 0.2855 0.3480 0.4104 0.2847 0.3470 0.4092
1.0 110 0.2125 0.2593 0.3061 0.2121 0.2587 0.3054 0.2114 0.2579 0.3044

2.0 90 1.2485 1.4707 1.6929 1.2475 1.4695 1.6915 1.2459 1.4677 1.6895
2.0 100 1.0381 1.2244 1.4106 1.0372 1.2233 1.4094 1.0358 1.2217 1.4075
2.0 110 0.8678 1.0246 1.1813 0.8669 1.0236 1.1802 0.8657 1.0222 1.1786

5.0 90 3.8668 4.3607 4.8545 3.8655 4.3592 4.8530 3.8636 4.3571 4.8506
5.0 100 3.5263 3.9799 4.4334 3.5251 3.9785 4.4319 3.5232 3.9765 4.4297
5.0 110 3.2295 3.6476 4.0657 3.2284 3.6463 4.0642 3.2266 3.6444 4.0621
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underlying asset or the counterparty’s assets. Increasing the proportion of market risk drops
the impact of counterparty default risk.

4. CONCLUSION

In this paper, we propose a new pricing model for vulnerable options, where the variances of
all asset prices are described by GARCH processes and the dynamics of the underlying asset
and the counterparty’s assets are connected through the market factor channel. The pro-
posed model captures stochastic nature of volatility for each asset and correlation between
returns and volatility. Moreover, the correlation between the underlying asset return and the
return of the counterparty’s assets is time-varying and depends on the level of the variance
of the market index. We derive the closed-form solution for vulnerable options and present
the numerical results to show the impact of counterparty default risk on option prices.
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APPENDIX

Proof of Proposition 2.1: Under the EMM Q, the expected return of M(t), S(t), and V (t) from time t
to t + 1 must be equal to risk-free interest rate, that is,

Et

[
L(t + 1)

M(t + 1)

M(t)

]
= er, (A.1)

Et

[
L(t + 1)

S(t + 1)

S(t)

]
= er, (A.2)

Et

[
L(t + 1)

V (t + 1)

V (t)

]
= er, (A.3)

where L(t) is the Radon–Nikodym derivative defined in (2.8).
Substituting the expression of L(t + 1) in (2.8) into (A.1) yields,

Et

[
L(t + 1)

M(t + 1)

M(t)

]

= Et

⎡
⎣ eθm

√
hm(t+1)Zm(t+1)+θs

√
hs(t+1)Zs(t+1)+θv

√
hv(t+1)Zv(t+1)

Et

[
eθm

√
hm(t+1)Zm(t+1)+θs

√
hs(t+1)Zs(t+1)+θv

√
hv(t+1)Zv(t+1)

] M(t + 1)

M(t)

⎤
⎦

=
Et

[
eθm

√
hm(t+1)Zm(t+1)+θs

√
hs(t+1)Zs(t+1)+θv

√
hv(t+1)Zv(t+1) M(t+1)

M(t)

]
Et

[
eθm

√
hm(t+1)Zm(t+1)+θs

√
hs(t+1)Zs(t+1)+θv

√
hv(t+1)Zv(t+1)

]

=
Et

[
eθm

√
hm(t+1)Zm(t+1) M(t+1)

M(t)

]
Et

[
eθm

√
hm(t+1)Zm(t+1)

] ,
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where we have used the fact that Zs(t + 1) and Zv(t + 1) are independent of Zm(t + 1), given the infor-

mation at time t. Recall the dynamics of the market index in (2.1) and Zm(t + 1) is a standard normal
variable, the form of (A.1) continues to be

Et

[
L(t + 1)

M(t + 1)

M(t)

]

=
Et

[
eθm

√
hm(t+1)Zm(t+1)+r+(λm− 1

2 )hm(t+1)+
√

hm(t+1)Zm(t+1)
]

Et

[
eθm

√
hm(t+1)Zm(t+1)

]

=
Et

[
e(θm+1)

√
hm(t+1)Zm(t+1)+r+(λm− 1

2 )hm(t+1)
]

Et

[
eθm

√
hm(t+1)Zm(t+1)

]

=
e

1
2 (θm+1)2hm(t+1)+r+(λm− 1

2 )hm(t+1)

e
1
2 θ2

mhm(t+1)

= e(θm+λm)hm(t+1)+r,

which implies that θm = −λm.

Similarly, substituting the expression of L(t + 1) in (2.8) into (A.2), one gets that

Et

[
L(t + 1)

S(t + 1)

S(t)

]

= Et

⎡
⎣ eθm

√
hm(t+1)Zm(t+1)+θs

√
hs(t+1)Zs(t+1)+θv

√
hv(t+1)Zv(t+1)

Et

[
eθm

√
hm(t+1)Zm(t+1)+θs

√
hs(t+1)Zs(t+1)+θv

√
hv(t+1)Zv(t+1)

] S(t + 1)

S(t)

⎤
⎦

=
Et

[
eθm

√
hm(t+1)Zm(t+1)+θs

√
hs(t+1)Zs(t+1)+θv

√
hv(t+1)Zv(t+1) S(t+1)

S(t)

]
Et

[
eθm

√
hm(t+1)Zm(t+1)+θs

√
hs(t+1)Zs(t+1)+θv

√
hv(t+1)Zv(t+1)

]

=
Et

[
eθm

√
hm(t+1)Zm(t+1)+θs

√
hs(t+1)Zs(t+1) S(t+1)

S(t)

]
Et

[
eθm

√
hm(t+1)Zm(t+1)+θs

√
hs(t+1)Zs(t+1)

] ,

where we have used the fact that Zv(t + 1) is independent of Zm(t + 1) and Zs(t + 1), given the information
at time t. Substituting the expression of S(t + 1) implies

Et

[
L(t + 1)

S(t + 1)

S(t)

]

=
Et

[
e(θm+βs)

√
hm(t+1)Zm(t+1)+(θs+1)

√
hs(t+1)Zs(t+1)+r+(λs− 1

2 )hs(t+1)+(βsλm− 1
2 β2

s )hm(t+1)
]

Et

[
eθm

√
hm(t+1)Zm(t+1)+θs

√
hs(t+1)Zs(t+1)

]

=
e

1
2 (θm+βs)

2hm(t+1)+ 1
2 (θs+1)2hs(t+1)+r+(λs− 1

2 )hs(t+1)+(βsλm− 1
2 β2

s )hm(t+1)

e
1
2 θ2

mhm(t+1)+ 1
2 θ2

shs(t+1)

= e(θm+λm)hm(t+1)+(θs+λs)hs(t+1)+r

= e(θs+λs)hs(t+1)+r,

where the fact that Zm(t + 1) and Zs(t + 1) are independent standard normal variables has been used. The
above expression implies that θs = −λs. Analogously, we can obtain that θv = −λv .

Girsanov’s Theorem immediately gives us that Z∗
i (t) := Zi(t) + λi

√
hi(t) is a standard normal variable

under the EMM Q, for i = m, s, v. �
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Proof of Proposition 2.2: Recall that Z∗
i (t) := Zi(t) + λi

√
hi(t) is a standard normal variable under the

EMM Q, for i = m, s, v. Hence, rewrite the spot return of the value of the market index in the following
form:

ln M(t) = ln M(t − 1) + r +

(
λm − 1

2

)
hm(t) +

√
hm(t)Zm(t)

= ln M(t − 1) + r − 1

2
hm(t) +

√
hm(t)(Zm(t) + λm

√
hm(t))

= ln M(t − 1) + r − 1

2
hm(t) +

√
hm(t)Z∗

m(t).

For the variance process of the market index, we have

hm(t) = wm + bmhm(t − 1) + am

(
Zm(t − 1) − cm

√
hm(t − 1)

)2

= wm + bmhm(t − 1) + am

(
Z∗

m(t − 1) − (cm + λm)
√

hm(t − 1)
)2

.

Therefore, under the EMM Q, the dynamic of the market index is given by⎧⎪⎪⎨
⎪⎪⎩

ln M(t) = ln M(t − 1) + r − 1

2
hm(t) +

√
hm(t)Z∗

m(t),

hm(t) = wm + bmhm(t − 1) + am

(
Z∗

m(t − 1) − (cm + λm)
√

hm(t − 1)
)2

,

(A.4)

where Z∗
m(t) is a standard normal variable under the EMM Q.

Similarly, rewrite the spot return of the underlying asset as follows:

ln S(t) = ln S(t − 1) + r +

(
λs − 1

2

)
hs(t) +

√
hs(t)Zs(t)

+

(
βsλm − 1

2
β2
s

)
hm(t) + βs

√
hm(t)Zm(t)

= ln S(t − 1) + r − 1

2
hs(t) +

√
hs(t)(Zs(t) + λs

√
hs(t))

− 1

2
β2
s hm(t) + βs

√
hm(t)(Zm(t) + λm

√
hm(t))

= ln S(t − 1) + r − 1

2
hs(t) +

√
hs(t)Z

∗
s (t) − 1

2
β2
s hm(t) + βs

√
hm(t)Z∗

m(t),

where we have used the fact that Z∗
m(t) := Zm(t) + λm

√
hm(t) and Z∗

s (t) := Zs(t) + λs

√
hs(t).

For the variance process of the underlying asset, one gets that

hs(t) = ws + bshs(t − 1) + as

(
Zs(t − 1) − cs

√
hs(t − 1)

)2

= ws + bshs(t − 1) + as

(
Z∗

s (t − 1) − (cs + λs)
√

hs(t − 1)
)2

.

Therefore, we have obtained the dynamic of the underlying asset under Q,⎧⎪⎪⎨
⎪⎪⎩

ln S(t) = ln S(t − 1) + r − 1

2
hs(t) +

√
hs(t)Z

∗
s (t) − 1

2
β2
s hm(t) + βs

√
hm(t)Z∗

m(t),

hs(t) = ws + bshs(t − 1) + as

(
Z∗

s (t − 1) − (cs + λs)
√

hs(t − 1)
)2

,

(A.5)

where Z∗
m(t) and Z∗

s (t) are standard normal variables under the EMM Q.

Analogously, the risk-neutral dynamic of counterparties’ assets is given below:⎧⎪⎪⎨
⎪⎪⎩

ln V (t) = ln V (t − 1) + r − 1

2
hv(t) +

√
hv(t)Z∗

v (t) − 1

2
β2

vhm(t) + βv

√
hm(t)Z∗

m(t),

hv(t) = wv + bvhv(t − 1) + av

(
Z∗

v (t − 1) − (cv + λv)
√

hv(t − 1)
)2

,

(A.6)

where Z∗
m(t) and Z∗

v (t) are independent standard normal variables under Q. �
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Proof of Proposition 2.3: Let x(t) = ln S(t) and y(t) = ln V (t). Denote by f(t; T, φ1, φ2) the conditional

moment generating function of x(T ) and y(T ) or equivalently the conditional generating function of S(T )
and V (T ). By definition of the moment generating function, one gets that

f(t; T, φ1, φ2) = Et

[
eφ1x(T )+φ2y(T )

]
.

In the following, we show that the moment generating function has the log-linear form as follows:

f(t; T, φ1, φ2) = exp
{

φ1x(t) + φ2y(t) + A(t; T, φ1, φ2) + B1(t; T, φ1, φ2)hs(t + 1)

+ B2(t; T, φ1, φ2)hv(t + 1) + B3(t; T, φ1, φ2)hm(t + 1)
}

.

For convenience, we use the more parsimonious notation f(t) to indicate f(t; T, φ1, φ2), and similarly for
A(t), B1(t), B2(t), and B3(t).

At time T , x(T ) and y(T ) are known and we have that f(T ) = exp{φ1x(T ) + φ2y(T )}, which gives us
the terminal conditions

A(T ) = B1(T ) = B2(T ) = B3(T ) = 0.

Applying the law of iterated expectations to f(t), we get that

f(t) = Et

[
eφ1x(T )+φ2y(T )

]
= Et

[
Et+1

[
eφ1x(T )+φ2y(T )

]]
= Et

[
f(t + 1)

]
= Et

[
exp

{
φ1x(t + 1) + φ2y(t + 1) + A(t + 1) + B1(t + 1)hs(t + 2)

+ B2(t + 1)hv(t + 2) + B3(t + 1)hm(t + 2)
}]

.

Substituting the dynamics of x(t + 1), y(t + 1), hs(t + 2), hv(t + 2) and hm(t + 2) gives

f(t) = Et

[
exp

{
φ1x(t) + φ1r − 1

2
φ1hs(t + 1) + φ1

√
hs(t + 1)Z∗

s (t + 1)

− 1

2
φ1β2

s hm(t + 1) + φ1βs

√
hm(t + 1)Z∗

m(t + 1)

+ φ2y(t) + φ2r − 1

2
φ2hv(t + 1) + φ2

√
hv(t + 1)Z∗

v (t + 1)

− 1

2
φ2β2

vhm(t + 1) + φ2βv

√
hm(t + 1)Z∗

m(t + 1) + A(t + 1)

+ B1(t + 1)
(
ws + bshs(t + 1) + as(Z

∗
s (t + 1) − (cs + λs)

√
hs(t + 1))2

)
+ B2(t + 1)

(
wv + bvhv(t + 1) + av(Z∗

v (t + 1) − (cv + λv)
√

hv(t + 1))2
)

+ B3(t + 1)
(
wm + bmhm(t + 1) + am(Z∗

m(t + 1) − (cm + λm)
√

hm(t + 1))2
)}]

.

Define Ψs, Ψv and Ψm in the following forms:

Ψs = φ1

√
hs(t + 1)Z∗

s (t + 1) + asB1(t + 1)
(
Z∗

s (t + 1) − (cs + λs)
√

hs(t + 1)
)2

,

Ψv = φ2

√
hv(t + 1)Z∗

v (t + 1) + avB2(t + 1)
(
Z∗

v (t + 1) − (cv + λv)
√

hv(t + 1)
)2

,

Ψm = (φ1βs + φ2βv)
√

hm(t + 1)Z∗
m(t + 1) + amB3(t + 1)

(
Z∗

m(t + 1) − (cm + λm)
√

hm(t + 1)
)2

.
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Then rearranging terms implies that

f(t) = Et

[
exp

{
φ1x(t) + φ1r − 1

2
φ1hs(t + 1) − 1

2
φ1β2

s hm(t + 1)

+ φ2y(t) + φ2r − 1

2
φ2hv(t + 1) − 1

2
φ2β2

vhm(t + 1) + A(t + 1)

+ B1(t + 1)
(
ws + bshs(t + 1)

)
+ B2(t + 1)

(
wv + bvhv(t + 1)

)

+ B3(t + 1)
(
wm + bmhm(t + 1)

)
+ Ψs + Ψv + Ψm

}]

= Et

[
exp

{
φ1x(t) + φ2y(t) + (φ1 + φ2)r + wsB1(t + 1) + wvB2(t + 1) + wmB3(t + 1) + A(t + 1)

+

(
bsB1(t + 1) − 1

2
φ1

)
hs(t + 1) +

(
bvB2(t + 1) − 1

2
φ2

)
hv(t + 1)

+

(
bmB3(t + 1) − 1

2
φ1β2

s − 1

2
φ2β2

v

)
hm(t + 1) + Ψs + Ψv + Ψm

}]

= exp
{

φ1x(t) + φ2y(t) + (φ1 + φ2)r + wsB1(t + 1) + wvB2(t + 1) + wmB3(t + 1) + A(t + 1)

+

(
bsB1(t + 1) − 1

2
φ1

)
hs(t + 1) +

(
bvB2(t + 1) − 1

2
φ2

)
hv(t + 1)

+

(
bmB3(t + 1) − 1

2
φ1β2

s − 1

2
φ2β2

v

)
hm(t + 1)

}
Et

[
exp{Ψs + Ψv + Ψm}

]
.

In the following, we focus on Et

[
exp{Ψs + Ψv + Ψm}

]
, which in turn gives us the form of f(t). Note that

Z∗
s (t + 1) is a standard normal variable, we have that

Et [exp{Ψs}] = Et

[
exp

{
φ1

√
hs(t + 1)Z∗

s (t + 1) + asB1(t + 1)
(
Z∗

s (t + 1) − (cs + λs)
√

hs(t + 1)
)2
}]

= Et

[
exp

{
asB1(t + 1)

(
Z∗

s (t + 1) −
(
cs + λs − φ1

2asB1(t + 1)

)√
hs(t + 1)

)2

+ asB1(t + 1)
(
(cs + λs)

2 −
(
cs + λs − φ1

2asB1(t + 1)

)2)
hs(t + 1)

}]

= exp

{
asB1(t + 1)

(
(cs + λs)

2 −
(
cs + λs − φ1

2asB1(t + 1)

)2
)

hs(t + 1)

}

× Et

[
exp

{
asB1(t + 1)

(
Z∗

s (t + 1) −
(

cs + λs − φ1

2asB1(t + 1)

)√
hs(t + 1)

)2
}]

= exp{asB1(t + 1)
(
(cs + λs)

2 −
(
cs + λs − φ1

2asB1(t + 1)

)2)
hs(t + 1)}

× exp

⎧⎪⎨
⎪⎩−1

2
ln(1 − 2asB1(t + 1)) +

asB1(t + 1)
(
cs + λs − φ1

2asB1(t+1)

)2
hs(t + 1)

1 − 2asB1(t + 1)

⎫⎪⎬
⎪⎭ ,

where in the last equality we have used the fact

Eea(Z+b)2 = e
− 1

2 ln(1−2a)+ ab2
1−2a ,

with Z being a standard normal variable.
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Completing some algebra shows that the coefficient of hs(t + 1) becomes

asB1(t + 1)

(
(cs + λs)

2 −
(

cs + λs − φ1

2asB1(t + 1)

)2
)

+
asB1(t + 1)

(
cs + λs − φ1

2asB1(t+1)

)2

1 − 2asB1(t + 1)

= asB1(t + 1)(cs + λs)
2 +

2a2
sB1(t + 1)2

(
cs + λs − φ1

2asB1(t+1)

)2

1 − 2asB1(t + 1)

= asB1(t + 1)(cs + λs)
2 +

2((cs + λs)asB1(t + 1) − φ1
2

)2

1 − 2asB1(t + 1)

=
asB1(t + 1)(1 − 2asB1(t + 1))(cs + λs)2 + 2

(
(cs + λs)asB1(t + 1) − φ1

2

)2

1 − 2asB1(t + 1)

=
asB1(t + 1)(cs + λs)2 − 2a2

sB1(t + 1)2(cs + λs)2 + 2
(
(cs + λs)asB1(t + 1) − φ1

2

)2

1 − 2asB1(t + 1)

=
asB1(t + 1)(cs + λs)2 − 2φ1asB1(t + 1)(cs + λs) + 1

2
φ2

1

1 − 2asB1(t + 1)

= φ1(cs + λs) − 1

2
(cs + λs)

2 +
1
2
(φ1 − (cs + λs))2

1 − 2asB1(t + 1)
.

Therefore, we have that

Et[exp{Ψs}] = exp

{
−1

2
ln(1 − 2asB1(t + 1))

+

(
φ1(cs + λs) − 1

2
(cs + λs)

2 +
1
2
(φ1 − (cs + λs))2

1 − 2asB1(t + 1)

)
hs(t + 1)

}
.

Similarly, one gets that

Et[exp{Ψv}] = exp

{
−1

2
ln(1 − 2avB2(t + 1))

+

(
φ2(cv + λv) − 1

2
(cv + λv)2 +

1
2
(φ2 − (cv + λv))2

1 − 2avB2(t + 1)

)
hv(t + 1)

}
,

Et[exp{Ψm}] = exp

{
−1

2
ln(1 − 2amB3(t + 1))

+

(
(φ1βs + φ2βv)(cm + λm) − 1

2
(cm + λm)2

+
1
2
(φ1βs + φ2βv − (cm + λm))2

1 − 2amB3(t + 1)

)
hm(t + 1)

}
.

Hence, A(t), B1(t), B2(t), and B3(t) are given by

A(t) = (φ1 + φ2)r + wsB1(t + 1) + wvB2(t + 1) + wmB3(t + 1) + A(t + 1) − 1

2
ln(1 − 2asB1(t + 1))

− 1

2
ln(1 − 2avB2(t + 1)) − 1

2
ln(1 − 2amB3(t + 1)),

B1(t) = bsB1(t + 1) − 1

2
φ1 + φ1(cs + λs) − 1

2
(cs + λs)

2 +
1
2
(φ1 − (cs + λs))2

1 − 2asB1(t + 1)
,

B2(t) = bvB2(t + 1) − 1

2
φ2 + φ2(cv + λv) − 1

2
(cv + λv)2 +

1
2
(φ2 − (cv + λv))2

1 − 2avB2(t + 1)
,
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B3(t) = bmB3(t + 1) − 1

2
φ1β2

s − 1

2
φ2β2

v + (φ1βs + φ2βv)(cm + λm)

− 1

2
(cm + λm)2 +

1
2
(φ1βs + φ2βv − (cm + λm))2

1 − 2amB3(t + 1)
.

Up to now, we have obtained

f(t; T, φ1, φ2) = exp
{

φ1x(t) + φ2y(t) + A(t) + B1(t)hs(t + 1) + B2(t)hv(t + 1) + B3(t)hm(t + 1)
}

.

These coefficients can be obtained recursively using the terminal conditions,

A(T ) = B1(T ) = B2(T ) = B3(T ) = 0.

�

Proof of Proposition 2.4: Recall the moment generating function of x(T ) and y(T ) in Proposition 2.3,
with the notations x(t) = ln S(t) and y(t) = ln V (t),

f(t; T, φ1, φ2) = Et

[
eφ1x(T )+φ2y(T )

]
.

In the following, we derive vulnerable option prices using the characteristic function f(t; T, iφ1, iφ2).
Given the information at t, denote the joint density function of x(T ) = ln S(T ) and y(T ) = ln V (T ) by
g(x, y), and rewrite the form of option prices C∗ in (2.12) as follows:

C∗ = e−r(T−t)
E

Q
t

[
(S(T ) − K)+

(
1(V (T ) ≥ D) +

(1 − α)V (T )

D
1(V (T ) < D)

)]

= e−r(T−t)
E

Q
t

[
(ex(T ) − K)+

(
1(y(T ) ≥ ln D) +

1 − α

D
ey(T )1(y(T ) < ln D)

)]

= e−r(T−t)

∫ ∞

−∞

∫ ∞

−∞
(ex − K)+

(
1(y ≥ ln D) +

1 − α

D
ey1(y < ln D)

)
g(x, y)dydx

= e−r(T−t)

∫ ∞

ln K

∫ ∞

−∞
(ex − K)

(
1(y ≥ ln D) +

1 − α

D
ey1(y < ln D)

)]
g(x, y)dydx

:= e−r(T−t)
[
A1 + A2 + A3 + A4

]
,

where

A1 =

∫ ∞

ln K

∫ ∞

ln D
exg(x, y)dydx,

A2 = −K

∫ ∞

ln K

∫ ∞

ln D
g(x, y)dydx,

A3 =
1 − α

D

∫ ∞

ln K

∫ ln D

−∞
ex+yg(x, y)dydx,

A4 = −1 − α

D
K

∫ ∞

ln K

∫ ln D

−∞
eyg(x, y)dydx.

Now we calculate A1–A4 respectively, which then give us the closed-form solution for vulnerable options.
First, let us focus on the term A1. Rewrite it as follows:

A1 =

∫ ∞

ln K

∫ ∞

ln D
exg(x, y)dydx,

=

∫∞
ln K

∫∞
ln D exg(x, y)dydx∫∞

−∞
∫∞
−∞ exg(x, y)dydx

∫ ∞

−∞

∫ ∞

−∞
exg(x, y)dydx

=

∫∞
ln K

∫∞
ln D exg(x, y)dydx∫∞

−∞
∫∞
−∞ exg(x, y)dydx

f(t; T, 1, 0)

:= Π1(t; T )f(t; T, 1, 0),
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where Π1(t; T ) ∈ [0, 1]. Define a new probability measure Q1 by the following Radon-Nikodym derivative:

dQ1

dQ
=

ex(T )∫∞
−∞

∫∞
−∞ exg(x, y)dydx

,

and the characteristic function of x(T ) and y(T ) under Q1 is given by

f1(t; T, iφ1, iφ2) =
1

f(t; T, 1, 0)

∫ ∞

−∞

∫ ∞

−∞
ex × eiφ1x+iφ2yg(x, y)dydx

=
f(t; T, iφ1 + 1, φ2)

f(t; T, 1, 0)
,

where we have used the definition of f(t; T, φ1, φ2). Utilizing the Radon–Nikodym derivative implies

Π1(t; T ) =

∫∞
ln K

∫∞
ln D exg(x, y)dydx∫∞

−∞
∫∞
−∞ exg(x, y)dydx

=

∫∞
−∞

∫∞
−∞ exg(x, y)1(x ≥ ln K, y ≥ ln D)dydx∫∞

−∞
∫∞
−∞ exg(x, y)dydx

= Q1(x(T ) ≥ ln K, y(T ) ≥ ln D).

From standard probability theory (see, e.g., Kendall and Stuart [19] and Shephard [27]), one obtains that the
distribution function F1(x(T ), y(T ); x, y) corresponding to the joint characteristic function f1(t; T, iφ1, iφ2)
is given by

F1(x(T ), y(T ); x, y) = −1

4
+

1

2
F1(x(T ); x) +

1

2
F1(y(T ); y)

− 1

2π2

∫ ∞

0

∫ ∞

0

(
Re

[
e−iφ1x−iφ2yf1(t; T, iφ1, iφ2)

φ1φ2

]

−Re

[
e−iφ1x+iφ2yf1(t; T, iφ1,−iφ2)

φ1φ2

])
dφ1dφ2,

where Re[ ] denotes the real part of a complex number, F1(x(T ); x) and F1(y(T ); y) are the marginal
distributions for x(T ) and y(T ),

F1(x(T ); x) =
1

2
− 1

π

∫ ∞

0
Re
[ e−iφ1xf1(t; T, iφ1, 0)

iφ1

]
dφ1,

and

F1(y(T ); y) =
1

2
− 1

π

∫ ∞

0
Re
[ e−iφ2xf1(t; T, 0, iφ2)

iφ2

]
dφ2.

Hence, we have that

Π1(t; T ) = Q1(x(T ) ≥ ln K, y(T ) ≥ ln D)

= 1 − F1(x(T ); ln K) − F1(y(T ); ln D) + F1(x(T ), y(T ); ln K, ln D),

that is,

Π1(t; T ) =
1

4
+

1

2π

∫ ∞

0
Re
[ e−iφ1 ln Kf1(t; T, iφ1, 0)

iφ1

]
dφ1

+
1

2π

∫ ∞

0
Re
[ e−iφ2 ln Df1(t; T, 0, iφ2)

iφ2

]
dφ2

− 1

2π2

∫ ∞

0

∫ ∞

0

(
Re
[ e−iφ1 ln K−iφ2 ln Df1(t; T, iφ1, iφ2)

φ1φ2

]

− Re
[ e−iφ1 ln K+iφ2 ln Df1(t; T, iφ1,−iφ2)

φ1φ2

])
dφ1dφ2. (A.7)
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As for A2, we can rewrite it as follows:

A2 = −K

∫ ∞

ln K

∫ ∞

ln D
g(x, y)dydx,

= −KQ(x(T ) ≥ ln K, y(T ) ≥ ln D).

Since we have obtained the characteristic function f(t; T, iφ1, iφ2) of x(T ) and y(T ) under Q, the
corresponding distribution function F (x(T ), y(T ); x, y) can be derived and hence it holds that

Π2(t; T ) := Q(x(T ) ≥ ln K, y(T ) ≥ ln D)

= 1 − F (x(T ); ln K) − F (y(T ); ln D) + F (x(T ), y(T ); ln K, ln D)

=
1

4
+

1

2π

∫ ∞

0
Re
[ e−iφ1 ln Kf(t; T, iφ1, 0)

iφ1

]
dφ1

+
1

2π

∫ ∞

0
Re
[ e−iφ2 ln Df(t; T, 0, iφ2)

iφ2

]
dφ2

− 1

2π2

∫ ∞

0

∫ ∞

0

(
Re
[ e−iφ1 ln K−iφ2 ln Df(t; T, iφ1, iφ2)

φ1φ2

]

− Re
[ e−iφ1 ln K+iφ2 ln Df(t; T, iφ1,−iφ2)

φ1φ2

])
dφ1dφ2. (A.8)

Similarly, we can deal with A3.

A3 =
1 − α

D

∫ ∞

ln K

∫ ln D

−∞
ex+yg(x, y)dydx

=
1 − α

D

∫∞
ln K

∫ ln D
−∞ ex+yg(x, y)dydx∫∞

−∞
∫∞
−∞ ex+yg(x, y)dydx

f(t; T, 1, 1)

:=
1 − α

D
Π3(t; T )f(t; T, 1, 1)

=
1 − α

D
f(t; T, 1, 1)Q3(x(T ) ≥ ln K,−y(T ) ≥ − ln D)

where

dQ3

dQ
=

ex(T )+y(T )∫∞
−∞

∫∞
−∞ ex+yg(x, y)dydx

.

Next, we derive the characteristic function f3(t; T, iφ1, iφ2) of x(T ) and −y(T ) under Q3, that is,

f3(t; T, iφ1, iφ2) = E
Q3
t

[
eiφ1x(T )+iφ2(−y(T ))

]

= E
Q
t

[
ex(T )+y(T )∫∞

−∞
∫∞
−∞ ex+yg(x, y)dydx

eiφ1x(T )+iφ2(−y(T ))

]

=
1∫∞

−∞
∫∞
−∞ ex+yg(x, y)dydx

E
Q
t

[
e(iφ1+1)x(T )+(1−iφ2)y(T )

]

=
f(t; T, iφ1 + 1, 1 − iφ2)

f(t; T, 1, 1)
.
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Denote by F3(x(T ),−y(T ); x, y) the corresponding distribution function of of x(T ) and −y(T ) under Q3.

Then one gets that

Π3(t; T ) := Q3(x(T ) ≥ ln K,−y(T ) ≥ − ln D)

= 1 − F3(x(T ); ln K) − F3(−y(T );− ln D) + F3(x(T ),−y(T ); ln K,− ln D)

=
1

4
+

1

2π

∫ ∞

0
Re

[
e−iφ1 ln Kf3(t; T, iφ1, 0)

iφ1

]
dφ1

+
1

2π

∫ ∞

0
Re

[
eiφ2 ln Df3(t; T, 0, iφ2)

iφ2

]
dφ2

− 1

2π2

∫ ∞

0

∫ ∞

0

(
Re

[
e−iφ1 ln K+iφ2 ln Df3(t; T, iφ1, iφ2)

φ1φ2

]

−Re

[
e−iφ1 ln K−iφ2 ln Df3(t; T, iφ1,−iφ2)

φ1φ2

])
dφ1dφ2. (A.9)

Analogously, it holds that

A4 = −1 − α

D
K

∫ ∞

ln K

∫ ln D

−∞
eyg(x, y)dydx

= −1 − α

D
K

∫∞
ln K

∫ ln D
−∞ eyg(x, y)dydx∫∞

−∞
∫∞
−∞ eyg(x, y)dydx

f(t; T, 0, 1)

:= −1 − α

D
KΠ4(t; T )f(t; T, 0, 1)

= −1 − α

D
Kf(t; T, 0, 1)Q4(x(T ) ≥ ln K,−y(T ) ≥ − ln D),

where

dQ4

dQ
=

ey(T )∫∞
−∞

∫∞
−∞ eyg(x, y)dydx

.

Therefore, the characteristic function f4(t; T, iφ1, iφ2) of x(T ) and −y(T ) under Q4 is given by

f4(t; T, iφ1, iφ2) = E
Q4
t

[
eiφ1x(T )+iφ2(−y(T ))

]

= E
Q
t

[
ey(T )∫∞

−∞
∫∞
−∞ eyg(x, y)dydx

eiφ1x(T )+iφ2(−y(T ))

]

=
1∫∞

−∞
∫∞
−∞ eyg(x, y)dydx

E
Q
t

[
eφ1x(T )+(1−iφ2)y(T )

]

=
f(t; T, iφ1, 1 − iφ2)

f(t; T, 0, 1)
,

and one gets that

Π4(t; T ) := Q4(x(T ) ≥ ln K,−y(T ) ≥ − ln D)

=
1

4
+

1

2π

∫ ∞

0
Re

[
e−iφ1 ln Kf4(t; T, iφ1, 0)

iφ1

]
dφ1

+
1

2π

∫ ∞

0
Re

[
eiφ2 ln Df4(t; T, 0, iφ2)

iφ2

]
dφ2

− 1

2π2

∫ ∞

0

∫ ∞

0

(
Re

[
e−iφ1 ln K+iφ2 ln Df4(t; T, iφ1, iφ2)

φ1φ2

]

−Re

[
e−iφ1 ln K−iφ2 ln Df4(t; T, iφ1,−iφ2)

φ1φ2

])
dφ1dφ2. (A.10)
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Up to now, we have obtained the closed-form for vulnerable option prices C∗ in (2.12) as follows:

C∗ = e−r(T−t)
[
A1 + A2 + A3 + A4

]
= e−r(T−t)

[
f(t; T, 1, 0)Π1(t; T ) − KΠ2(t; T )

+
1 − α

D
f(t; T, 1, 1)Π3(t; T ) − 1 − α

D
Kf(t; T, 0, 1)Π4(t; T )

]
,

where Π1(t; T ), Π2(t; T ), Π3(t; T ), and Π4(t; T ) are given in (A.7)–(A.10). �
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