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Abstract

Let G(n) = Sp(n, 1) or SU(n, 1). We classify conjugation orbits of generic pairs of loxodromic elements
in G(n). Such pairs, called ‘nonsingular’, were introduced by Gongopadhyay and Parsad for SU(3, 1).
We extend this notion and classify G(n)-conjugation orbits of such elements in arbitrary dimension. For
n = 3, they give a subspace that can be parametrized using a set of coordinates whose local dimension
equals the dimension of the underlying group. We further construct twist-bend parameters to glue such
representations and obtain local parametrization for generic representations of the fundamental group of
a closed (genus g ≥ 2) oriented surface into G(3).
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1. Introduction

Let F = H or C, where H denotes the division ring of Hamilton’s quaternions. Let
G(n), or simply G, denote the group SU(n, 1; F) that acts as the isometry group of the
F-hyperbolic space Hn

F
. Usually we denote SU(n, 1;C) = SU(n, 1) and SU(n, 1;H) =

Sp(n, 1). This paper concerns the problem of classifying G-conjugation orbits of
loxodromic pairs in G × G. The G-conjugation orbit space can be identified with
the character variety or the deformation space X(F2, G) = Hom(F2, G)/G, where G
acts on Hom(F2, G) by inner automorphisms and F2 = 〈x, y〉 is the free group with
generators x and y. In [GK2], we obtained a local parametrization of a representation
ρ : F2 → Sp(n, 1), where both ρ(x) and ρ(y) are semisimple. When G = SU(n, 1), for
loxodromic pairs such a local parametrization is available from the work [GP18B].
A main idea used in these works was to project fixed points of a pair of loxodromic
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elements onto the moduli space of G-congruence classes of an ordered tuple of points
on ∂Hn

F
. Counting eigenvalues without multiplicities, a loxodromic element of G has

precisely two null eigenspaces and n − 1 lines spanned by eigenvectors of positive
norm. In [GK2, GP18B], the n − 1 lines spanned by these positive-definite eigenvectors
were projected to the boundary ∂Hn

F
. This associated tuple of points on ∂Hn

F
along

with the spectrum data essentially classified the pair. The difficulty to generalize the
work from the complex hyperbolic isometries to the quaternionic hyperbolic setup
arose due to the fact that the eigenvalues of an element in Sp(n, 1) are not uniquely
defined, but they appear in similarity classes. So, the conjugacy invariants available
in Sp(n, 1) are not well behaved unlike their complex counterpart. We avoided this
difficulty by associating a combination of spatial and numerical invariants to obtain
the local parametrizations in [GK2, GK1].

Following the classical construction of the Fenchel–Nielsen coordinates on the
Teichmüller space, especially for the loxodromic representations in low dimensions,
one may like to have the local (real) dimension (or the ‘degrees of freedom’) of
the coordinates to add up to the dimension of X(F2, G), which is the same as
the (real) dimension of the Lie group G. We call such a parameter system as
being of ‘Fenchel–Nielsen type’. The coordinate systems obtained in [GK2, GP18B],
however, do not add up to the dimension of the underlying group even for n = 3. In
general, it is unlikely that a Fenchel–Nielsen-type parameter system can be obtained
for arbitrary pairs as shown in [GL17]. However, it may be possible to associate
Fenchel–Nielsen-type coordinates (at least locally) to special subsets of the character
variety. Parker and Platis obtained such a parameter system for irreducible loxo-
dromic representations X(F2, SU(2, 1)). In [GK1], we obtained Fenchel–Nielsen-type
coordinates for irreducible loxodromic representations in X(F2, Sp(2, 1)). For generic
loxodromic representations in X(F2, SU(3, 1)), called ‘nonsingular’, such a system of
parameters is obtained from the work [GP18A]. In [GP18B, Section 7.2], a version
of nonsingularity was defined for generic loxodromic pairs in SU(n, 1). It was proved
that such a pair projects to a unique point on the moduli space of SU(n, 1)-congruence
classes of ordered tuples of boundary points.

In this paper, we extend the notion of nonsingular pairs to SU(n, 1; F) and
classify such pairs by associating a system of parameters. The associated numerical
invariants are comparable to the complex cross ratios used in [CuG12]. These
invariants are obtained directly from the spectrum data of the pairs. However, in
the quaternionic setting, the quaternionic versions of the cross ratios are not enough
to classify such pairs. A set of spatial parameters, called ‘projective points’, needs
to be associated. When one fixes the numerical invariants, these spatial parameters
come from the fiber over the space of the numerical invariants. This generalizes
the parametrization obtained in [GK1, Corollary 1.5], though, unlike the Sp(2, 1)
case, we do not know the precise domains of the numerical invariants. Restricting
the classification to SU(3, 1; F), we obtain a Fenchel–Nielsen-type parameter system
for generic loxodromic representations in X(F2, SU(3, 1; F)). As an application, we
obtain local parametrization for generic representations of a closed genus-g surface
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[3] Local coordinates for hyperbolic pairs 59

group into Sp(3, 1), where g ≥ 2. This extends the work in [GP18A] over the
quaternions.

Now we define the ‘generic’ representations which are investigated in this paper
and describe the results obtained. Let Fn,1 be the vector space Fn+1 equipped with a
nondegenerate Hermitian form 〈·, ·〉 of signature (n, 1). Then Hn

F
is the projectivization

of the set of vectors v such that 〈v, v〉 < 0. The boundary ∂Hn
F

is the projectivization of
the null vectors. The projection of a vector v is denoted by v on the projective space.
A k-dimensional totally geodesic subspace of Hn

F
, which is also called an Fk-plane, is

the projectivization of a copy of Fk,1 in Fn,1. An F1-plane is simply called an F-line,
and an Fn−1-plane is simply called an F-hyperplane. The boundary of an Fk-plane is
called an Fk-chain. A point v on the projective space is polar to an Fn−1-plane C if
the lift of C in Fn,1 is the orthogonal complement of v. In particular, we must have
〈v, v〉 > 0. The positive vector v is polar to an Fn−1-chain L if L is the boundary of an
F

n−1-plane C that is polar to v.
An element A in G is called hyperbolic (or loxodromic) if it has exactly two fixed

points on ∂Hn
F
. Such an A has two eigenvalue classes represented by reiθ, r−1eiθ, r < 1,

θ ∈ [−π, π], and the rest of the n − 1 classes are represented by eiφ1 , . . . , eiφn−1 , φi ∈
[−π, π]. An element A in G is regular if the eigenvalue classes are mutually disjoint.

Let A be a regular hyperbolic element. We denote by aA and rA the null eigenvectors
of A corresponding to the classes reiθ and r−1eiθ, respectively. Let xj,A, 1 ≤ j ≤ n − 1, be
the eigenvector to eiφj . The eigenvector xj,A is positive-definite, that is, 〈xj,A, xj,A〉 > 0
for 1 ≤ j ≤ n − 1. Note that A fixes xj,A on FPn. For a hyperbolic (or loxodromic) ele-
ment A in SU(n, 1), the characteristic polynomial determines the conjugacy class, and
the traces tr(Aj), 1 ≤ j ≤ [(n + 1)/2], determine the coefficients of the characteristic
polynomial. For A ∈ Sp(n, 1), there is a natural complex representation AC of A in
GL(2(n + 1),C). The tuple of the coefficients of the characteristic polynomial of AC
gives the real trace of A, denoted by trR(A).

In this paper we use the following definition.

DEFINITION 1.1. An element A ∈ Sp(n, 1) is loxodromic if it is hyperbolic and has no
real eigenvalue.

For a loxodromic element A in Sp(n, 1), the real trace trR(A) is an element of
R

n+1. Marché and Will in [MW12] have used flags in H2
C
∪ ∂H2

C
to give a set

of local coordinates to generic elements on the PU(2, 1) character variety of the
fundamental group of a punctured oriented surface. Taking motivation from their
work, we use certain flags to define the generic pairs that we investigate in this
paper.

DEFINITION 1.2. A flag is a triple (p, C,Π), where p is a point on Π ∩ ∂Hn
F
, C is an

F-line containing p on the boundary of C, Π is an F-hyperplane and C ⊂ Π.
Thus, a positive point x on FPn along with a boundary point p and an F-line C define

a flag.
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DEFINITION 1.3. Given a loxodromic element A, we associate canonical flags to A
given by Fj,A = (aA, LA, Wj,A), 1 ≤ j ≤ n − 1, where LA is the line joining aA and rA,
and Wj,A is the projectivization of x⊥j,A.

DEFINITION 1.4. Two flags (p, C,Π) and (p′, C′,Π′) are said to form a generic pair if
the following holds.

(i) p does not belong to the boundary of C′ and p′ does not belong to the boundary
of C.

(ii) ∂C is disjoint from ∂Π′ and ∂C′ is disjoint from ∂Π.

DEFINITION 1.5. Let A, B be two loxodromic elements in SU(n, 1; F). The pair (A, B)
is called weakly nonsingular if:

1. A and B do not have a common fixed point;
2. the elements A and B are regular;
3. n − 2 of the canonical flags of A form generic pairs with n − 2 of the canonical

flags of B.

DEFINITION 1.6. A pair (A, B) of loxodromic elements in SU(n, 1; F) is called
nonsingular if it is weakly nonsingular and the null fixed points of A and B do not
belong to the boundary of the same proper totally geodesic hyperplane. We note that
the last condition of nonsingularity implies that (A, B) is necessarily irreducible, that
is, 〈A, B〉 neither fixes a point nor preserves a proper Fk-plane.

The above definition generalizes the ‘nonsingular’ pairs defined in [GP18A]. The
terminology ‘nonsingularity’ in [GP18A] was motivated from the property that the
mixed cross ratios were nonzero for such a pair. Similar considerations are implicit in
the above definition as well.

Corresponding to the boundary fixed points of (A, B), we already have the con-
jugacy invariants given by the cross ratios and the angular invariants. We recall
here that for four distinct points z1, z2, z3 and z4 in ∂Hn

F
, the usual cross ratio is

defined by

X(z1, z2, z3, z4) = 〈z3, z1〉〈z3, z2〉−1〈z4, z2〉〈z4, z1〉−1, (1-1)

where zi is a lift of zi in Fn,1. These cross ratios were introduced by Korányi and
Reimann for points on ∂Hn

C
in [KR87]; also see [Gol99]. Platis has investigated

quaternionic versions of these cross ratios in [Pla14]. The complex cross ratios are
independent of the chosen lifts of zi and are conjugacy invariants. However, the
quaternionic cross ratios are not independent of the chosen lifts of the points; therefore,
they are not well-defined conjugacy invariants. But similarity classes of the cross ratios
are independent of the chosen lifts. Accordingly, (X) and |X| are the conjugacy
invariants associated to the quaternionic cross ratios. Also, unlike the complex case,
quaternionic cross ratios do not classify a quadruple of boundary points up to
Sp(n, 1)-congruence.
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It can be seen that modulo the symmetric group action on the four boundary fixed
points of (A, B), only three such cross ratios are needed to determine the others under
the permutation. We denote these cross ratios by

X1(A, B) = X(aA, rA, aB, rB), X2(A, B) = X(aA, rB, aB, rA), X3(A, B) = X(rA, rB, aB, aA).

Platis proved in [Pla14] that for n ≥ 3, the set of cross ratios (X1,X2,X3) of a quadruple
of points on ∂Hn

F
forms a five-dimensional semi-algebraic subset of R5.

In the quaternionic setup, Cartan’s angular invariant associated to a triple (z1, z2, z3)
on Hn

H
∪ ∂Hn

H
is given by the following expression, see [AK07, Cao16],

A(z1, z2, z3) = arccos
(−〈z1, z2, z3〉)
|〈z1, z2, z3〉|

, (1-2)

where 〈z1, z2, z3〉 = 〈z1, z2〉〈z2, z3〉〈z3, z1〉. The quaternionic angular invariants are
independent of the chosen lifts of zi and are conjugacy invariants. So, there are angular
invariants that correspond to the quadruple of the boundary fixed points. We denote
these angular invariants by

A1(A, B) = A(aA, rA, aB), A2(A, B) = A(aA, rA, rB), A3(A, B) = A(rA, aB, rB).

In [Cao16], Cao proved that an ordered quadruple of points on ∂Hn
H

is determined up to
Sp(n, 1)-congruence by the similarity classes of the cross ratios and the above angular
invariants.

In order to classify a weakly nonsingular pair (A, B), we would require more
invariants. For this, we extend the above definition of the cross ratio by taking one
(or more) of the points zi to be points on FPn corresponding to the positive-definite
eigenvectors of A and B. We call such invariants generalized cross ratios. We
also define generalized Goldman’s eta invariants that correspond to two boundary
points and a hyperplane; see [Gol99, Section 7.3.1]. The set of numerical invariants
considered here comes from the Gram matrix associated to the pair (A, B). For
(A, B) in Sp(n, 1), it is the similarity classes of these numerical quantities which
are conjugacy invariants. So, the real parts and the moduli of the quantities are the
conjugacy invariants associated to the Sp(n, 1) conjugation orbit of (A, B). However,
these numerical invariants do not classify the pair (A, B) completely. Rather, there is a
whole fiber of points that corresponds to a fixed tuple of numerical invariants. These
fibered elements correspond to the product of copies of CP1 that we call projective
points of (A, B). Each of these CP1 represents an eigenspace of A or B, and a point
on the given CP1 corresponds to an ‘eigenset’. We note here that corresponding to
a regular loxodromic element, there are n projective points, one each for the n − 1
space-like eigenvectors and one for the null eigenvectors. With these terminologies,
we have the following theorem, where we refer to Section 4.2 for the precise list of the
numerical invariants mentioned here.

THEOREM 1.7. Let ρ : F2 → Sp(n, 1) be a representation such that (ρ(x), ρ(y)) is
weakly nonsingular. Then ρ is determined uniquely in the character variety by
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trR(ρ(x)), trR(ρ(y)), the angular invariant A(aρ(x), rρ(x), aρ(y)), the projective points and
the Sp(1)-conjugation orbit of the (unordered) tuple consisting of the usual cross
ratios, the generalized cross ratios and Goldman’s eta invariants.

The following theorem follows by restricting the proof of the above theorem over
complex numbers.

THEOREM 1.8. Let ρ : F2 → SU(n, 1) be a representation such that (ρ(x), ρ(y)) is
weakly nonsingular. Then ρ is determined uniquely in the character variety by tr(ρ(x)j),
tr(ρ(y)j), 1 ≤ j ≤ [(n + 1)/2], the angular invariant A(aρ(x), rρ(x), aρ(y)), the usual cross
ratios, the generalized cross ratios and Goldman’s eta invariants.

Theorem 1.8 is implicit in the work [GP18B] and the above statement was noted in
an older version: arXiv: 1705.10469v2.

However, the degrees of freedom of the parameters in the above classification do
not add up to the dimension of the group even in lower dimensions. We would like
to further obtain a smaller subfamily of invariants that might be sufficient for the
classification. First, we consider the group SU(n, 1). In the following, we use a method
that is similar to the one used in [GP18A]. We only need the following generalized
cross ratios to classify a nonsingular pair. For 1 ≤ k ≤ n − 2, let

αk(A, B) = X(aA, rA, aB, xk,B), βk(A, B) = X(aB, rB, aA, xk,A).

By the definition of nonsingularity, the above quantities are nonzero and well
defined. In the case of SU(n, 1), Cunha and Gusevskii proved in [CuG10] that
the moduli space of an ordered quadruple of points (p1, p2, p3, p4) on ∂Hn

C
is

determined by a point on a five-dimensional subspace of R5 that consists of the points
(A(p1, p2, p3),X1(p1, p2, p3, p4),X(p1, p4, p3, p2)) satisfying some semi-algebraic
equation. We use a point on this ‘Cunha–Gusevskii variety’. We have the following
result in this set up that generalizes [GP18A, Theorem 1.1].

THEOREM 1.9. Let (A, B) be a nonsingular pair in SU(n, 1). Then the SU(n, 1)
conjugation orbit of (A, B) is uniquely determined by the following parameters:

• tr(Aj), tr(Bj), 1 ≤ j ≤ [(n + 1)/2];
• the cross ratios Xk(A, B), k = 1, 2;
• the angular invariant A(aA, rA, aB);
• the α-invariants αk(A, B) and the β-invariants βk(A, B), 1 ≤ k ≤ n − 2.

Restating the above theorem in terms of representations, we have the following
result.

THEOREM 1.10. Let ρ : F2 → SU(n, 1) be a representation such that (ρ(x), ρ(y)) is
nonsingular. Then the point ρ in X(F2, SU(n, 1)) is uniquely determined by the
following parameters:

• tr(ρ(x)j), tr(ρ(y)j), 1 ≤ j ≤ [(n + 1)/2];
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• the cross ratios Xk(ρ(x), ρ(y)), k = 1, 2;
• the angular invariant A(aρ(x), rρ(x), aρ(y));
• the α-invariants αk(ρ(x), ρ(y)) and the β-invariants βk(ρ(x), ρ(y)), 1 ≤ k ≤ n − 2.

Thus, the local dimension of the coordinates adds up to at most 6n − 1: for the traces
at most n + 1 contributing at most 2n + 2; for the point on the cross ratio variety 5; for
the α- and β-invariants 4(n − 2) = 2 × (n − 2)-α-invariants + 2 × (n − 2)-β-invariants;
the total adds up to 2n + 2 + 5 + 4(n − 2) = 6n − 1.

A particularly interesting case appears when n = 3. In this case, the traces of
loxodromics form a real three-dimensional family and the above parameters add up
to 15, the dimension of SU(3, 1).

COROLLARY 1.11 [GP18A, Theorem 1.1]. Let ρ : F2 → SU(3, 1) be a representation
such that (ρ(x), ρ(y)) is nonsingular. Then the point ρ in X(F2, SU(n, 1)) is uniquely
determined by the following 15-dimensional parameter system:

• tr(ρ(x)), tr(ρ(y));
• σ(ρ(x)), σ(ρ(y));
• Xk(ρ(x), ρ(y)), k = 1, 2, 3;
• α1(ρ(x), ρ(y)), β1(ρ(x), ρ(y)),

where for an element g ∈ SU(3, 1), σ(g) = (tr2(g) − tr(g2))/2.

However, for n ≥ 4, the local dimension of the above parameter system is less than
the dimension of the underlying group. With larger n, the upper bound 6n − 1 of the
dimension of the parameter system becomes smaller in comparison to the dimension
of SU(n, 1), which is n2 + 2n.

Now we consider the quaternionic case. An advantage of Theorem 1.7 is that the
numerical invariants used there do not depend on the choices of the lifts of points of
HP

n to Hn,1, and they serve as well-defined conjugacy invariants. But the similarity
classes of αk(A, B) and βk(A, B) do not determine the Gram matrix of (A, B) uniquely.
This calls for some adjustment in the choices of the invariants. One way to avoid
this difficulty is to adopt the convention of fixing a frame of reference. We adopt the
convention of fixing the lift of the attracting fixed points. We take the standard lift, see
Section 2, of the attracting fixed point of A in the pair (A, B). After this restriction, the
numerical quantities αk(A, B) and βk(A, B) are well-defined invariants, and the usual
cross ratios are uniquely assigned to (A, B). A comparable convention of fixing a frame
of reference was used by Gou and Jiang in [GJ17] in their understanding of the moduli
space of ordered quadruples on ∂Hn

H
. In view of the chosen frame of reference, we

have the following result.

THEOREM 1.12. Let ρ : F2 → Sp(n, 1) be a representation such that (ρ(x), ρ(y)) is
nonsingular. We adopt the convention of taking the standard lift of the fixed point
aρ(x). Then the point ρ in X(F2, Sp(n, 1)) is determined by the following parameters:

• trR(ρ(x)), trR(ρ(y));
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• the angular invariants Ak(ρ(x), ρ(y));
• the usual cross ratios Xk(ρ(x), ρ(y)), k = 1, 2, 3;
• the α-invariants αk(ρ(x), ρ(y)) and the β-invariants βk(ρ(x), ρ(y)), 1 ≤ k ≤ n − 2;
• the projective points (p1(ρ(x)), . . . , pn(ρ(x))), (p1(ρ(y)), . . . , pn(ρ(y))).

The degrees of freedom of the above set of coordinates add up to at most
14n − 6 (for each real trace n + 1, contributing 2 × (n + 1) = 2(n + 1); for the point
on the cross ratio variety 5; for three angular invariants 3; for the projective points
4n = 2 × (2n projective points); for the α- and β-invariants 8(n − 2) = 2 × 4(n − 2)).
For n = 3, the degrees of freedom add up to 36, which is the dimension of Sp(3, 1).

COROLLARY 1.13. Let ρ : F2 → Sp(3, 1) be a representation such that (ρ(x), ρ(y))
is nonsingular. Then the point ρ in X(F2, Sp(3, 1)) is determined by the following
parameters:

• trR(ρ(x)), trR(ρ(y)), k = 1, 2, 3;
• the angular invariants Ak(ρ(x), ρ(y));
• the usual cross ratios Xk(ρ(x), ρ(y));
• α1(ρ(x), ρ(y)), β1(ρ(x), ρ(y));
• the projective points (p1(ρ(x)), p2(ρ(x)), p3(ρ(x))), (p1(ρ(y)), p2(ρ(y)), p3(ρ(y))).

This motivates us to construct a gluing process to glue such a representation and
associate coordinates to generic surface group representations into Sp(3, 1). Let Σg

denote a closed, connected, orientable surface of genus g ≥ 2. Let π1(Σg) denote the
fundamental group of Σg. Choose C = {γj}, j = 1, 2, . . . , 3g − 3, a maximal family of
simple closed curves on Σg such that no γj is homotopically trivial and no two are
homotopically equivalent. The homotopy types of the curves may be considered to be
elements of π1(Σg). We also assume that g of the curves γj correspond to two boundary
components of the same three-holed sphere. Consider discrete, faithful representations
ρ : π1(Σg)→ SU(3, 1; F) such that the 3g − 3 group elements ρ(γj) are loxodromic and
each of the groups 〈ρ(γk), ρ(γl)〉 obtained from the given decomposition is nonsingular.
We call such a representation nonsingular. We construct ‘twist-bend’ parameters to
glue such a representation. Complex hyperbolic twist-bends for representations into
SU(3, 1) were constructed in [GP18A]. However, the method in [GP18A] does not
generalize to Sp(3, 1). Here, we generalize the approach used in [GK1] to construct
the twist-bend parameters. We have noted the construction for representations into
Sp(3, 1) for emphasizing the quaternionic hyperbolic case. The same method restricts
to SU(3, 1) as well, thus providing an alternative approach to the construction of
twist-bends in the complex hyperbolic case. Then, using standard arguments as in
[PP08, GK2], we have the following result.

THEOREM 1.14. Let Σg be a closed orientable surface of genus g ≥ 2 with a simple
curve system C = {γj}, j = 1, 2, . . . , 3g − 3. Let ρ : π1(Σg)→ Sp(3, 1) be a nonsingular
representation of the surface group π1(Σg) into Sp(3, 1). There are 72g − 72 real
parameters that determine ρ in the character variety Hom(π1(Σg), Sp(3, 1))/Sp(3, 1).
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When considering the representations into SU(3, 1), we recover [GP18A,
Theorem 1.3].

THEOREM 1.15. For g ≥ 2, let Σg be a closed orientable surface of genus g with a sim-
ple curve system C = {γj}, j = 1, 2, . . . , 3g − 3. Let ρ : π1(Σg)→ SU(3, 1) be a nonsin-
gular representation of the surface group π1(Σg) into SU(3, 1). There are 30g − 30 real
parameters that determine ρ in the character variety Hom(π1(Σg), SU(3, 1))/SU(3, 1).

Structure of the paper. In Section 2, we briefly recall basic notions and notation. We
follow similar notation as in our earlier papers [GK1, GK2]. We recall and re-interpret
the projective points in Section 3. In Section 4, we prove Theorem 1.7. In Section 5,
we prove Theorem 1.9 and Theorem 1.12. The twist-bend parameters are constructed
in Section 6 and a sketch of the proof of Theorem 1.15 is given in Section 6.

2. Preliminaries

2.1. Matrices over the quaternions. Let V be a right vector space over H and
T be a right linear transformation of V. After choosing a basis of V, such a linear
transformation can be represented with an n × n matrix MT over H, where n = dimV.
The map T is invertible if and only if MT is invertible. Suppose that λ ∈ H∗ is a (right)
eigenvalue of T . Let v be an eigenvector to λ. Note that for μ ∈ H∗,

T(vμ) = T(v)μ = (vλ)μ = (vμ)μ−1λμ.

Thus, the eigenvalues of T occur in similarity classes and, if v is a λ-eigenvector,
then vμ ∈ vH is a μ−1λμ-eigenvector. Thus, the eigenspace vH is not uniquely assigned
to a single eigenvalue, but to the similarity class of λ. So, the similarity classes
of eigenvalues are conjugacy invariants over the quaternions, and the notion of
characteristic or minimal polynomial is not well defined. Each similarity class of
eigenvalues contains a unique pair of complex-conjugate numbers. We choose one of
these complex numbers, reiθ, θ ∈ [0, π], to be the representative of its similarity class.
We may refer to a similarity class representative as ‘the eigenvalue of T’, though it
should be understood that our reference is to the similarity class. At places where we
need to distinguish between the similarity class and a representative, we denote the
similarity class of an eigenvalue representative λ by [λ].

2.2. The hyperbolic space. Let F = H or C. LetV = Fn,1 be the n-dimensional right
vector space over F equipped with the Hermitian form of signature (n, 1) given by

〈z, w〉 = w∗Hz = w̄n+1z1 + w̄2z2 + · · · + w̄nzn + w̄1zn+1,

where ∗ denotes conjugate transpose. The matrix of the Hermitian form is given by

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 In−1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
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where In−1 is the identity matrix of rank n − 1. We consider the following subspaces
of Hn,1 :

V− = {z ∈Fn,1 : 〈z, z〉 < 0}, V+ = {z ∈ Fn,1 : 〈z, z〉 > 0},
V0 = {z ∈ Fn,1 \ {0} : 〈z, z〉 = 0}.

A vector z in Fn,1 is called positive, negative or null depending on whether z belongs to
V+, V− or V0. Let P : Fn,1 \ {0} −→ FPn be the right projection onto the quaternionic
projective space. The image of a vector z is denoted by z. The quaternionic hyperbolic
space Hn

F
is defined to be P(V−). The ideal boundary ∂Hn

F
is defined to be P(V0). So,

we can write Hn
F
= P(V−) as

Hn
F
= {(w1, . . . , wn) ∈ Hn : 2(w1) + |w2|2 + · · · + |wn|2 < 0},

where, for a point z =
[
z1 z2 . . . zn+1

]T
∈ V− ∪ V0, wi = ziz−1

n+1 for i = 1, . . . , n.
This is the Siegel domain model of Hn

F
. Similarly, one can define the ball model

by replacing H with an equivalent Hermitian form H′ given by the diagonal matrix:
H′ = diag(−1, 1, . . . , 1). We mostly use the Siegel domain model here.

There are two distinguished points in V0, which we denote by o and∞, given by

o =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ∞ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then we can write ∂Hn
H
= P(V0) as

∂Hn
F
\ {∞} = {(z1, . . . , zn) ∈ Hn : 2(z1) + |z2|2 + · · · + |zn|2 = 0}.

Note that Hn
F
= Hn

F
∪ ∂Hn

F
.

Given a point z of Hn
F
\ {∞} ⊂ FPn, we may lift z = (z1, . . . , zn) to a point z in V,

called the standard lift of z. It is represented in projective coordinates by

z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
z1
...

zn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

The Bergman metric in Hn
F

is defined in terms of the Hermitian form given by

ds2 = − 4
〈z, z〉2

det

[
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

]
.

If z and w in Hn
F

correspond to vectors z and w in V−, then the Bergman metric is also
given by the distance ρ:

cosh2
(
ρ(z, w)

2

)
=
〈z, w〉〈w, z〉
〈z, z〉〈w, w〉 .
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More information on the basic formalism of the quaternionic hyperbolic space may
be found in [ChGr].

2.3. Isometries. Let U(n, 1; F) be the isometry group of the Hermitian form 〈·, ·〉.
Each matrix A in U(n, 1; F) satisfies the relation A−1 = H−1A∗H, where A∗ is the
conjugate transpose of A. The isometry group of Hn

F
is the projective unitary group

PU(n, 1; F), the group U(n, 1) modulo the center. We denote U(n, 1;C) = U(n, 1) and
U(n, 1;H) = Sp(n, 1).

2.4. Hyperbolic elements in SU(n, 1; F). Let A be hyperbolic in SU(n, 1; F). Let
aA ∈ ∂Hn

F
be the attracting fixed point of A that corresponds to the eigenvalue reiθ,

r < 1, and let rA ∈ ∂Hn
F

be the repelling fixed point corresponding to the eigenvalue
r−1eiθ. Let aA and rA lift to eigenvectors aA and rA, respectively. Let xj,A be an
eigenvector corresponding to eiφj , j = 1, . . . , n − 1. The points xj,A, j = 1, . . . , n − 1 on
P(V+) are the space-like (or positive-definite) projective fixed points of A. Define
EA(r, θ, φ1, . . . , φn−1) as

EA(r, θ, φ1, . . . , φn−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

reiθ 0 . . . 0 0
0 eiφ1 . . . 0 0

. . .
0 0 . . . eiφn−1 0
0 0 . . . 0 r−1eiθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2-1)

Let CA =
[
aA x1,A . . . xn−1,A rA

]
be the matrix corresponding to the eigenvectors.

We can choose CA to be an element of Sp(n, 1) by normalizing the eigenvectors:

〈aA, rA〉 = 1, 〈xi,A, xi,A〉 = 1, i = 1, . . . , n − 1.

Then A = CAEA(r, θ, φ1, . . . , φn−1)C−1
A .

LEMMA 2.1 [ChGr]. Two hyperbolic elements in SU(n, 1; F) are conjugate if and only
if they have the same similarity classes of eigenvalues.

DEFINITION 2.2. Let A be a hyperbolic element in SU(n, 1; F). Let λ represent an
eigenvalue from the similarity class of eigenvalues [λ] of A. Let x be a λ-eigenvector.
Then x defines a point x on FPn that is either a point on ∂Hn

F
or a point in P(V+).

The lift of x in Fn,1 is the quaternionic line xF. We call x a projective fixed point of A
corresponding to [λ]. If A is regular, it fixes exactly n + 1 points on P(V) and thus it
has n + 1 projective fixed points.

REMARK 2.3. We emphasize here that the projective fixed points of A are not the same
as the projective points of A. The notion of the projective points of A is elaborated in
Section 3.

LEMMA 2.4. The group Sp(n, 1) can be embedded in the group GL(2n + 2,C).
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PROOF. Write H = C ⊕ jC. For A ∈ Sp(n, 1), express A = A1 + jA2, where A1, A2 ∈
Mn+1(C). The correspondence A �→ AC, where

AC =
[
A1 −A2

A2 A1

]
, (2-2)

embeds Sp(n, 1) into GL(2n + 2,C). �

The following lemma is a special case of [GP13, Theorem 3.1].

LEMMA 2.5. Let A be an element in Sp(n, 1). Let AC be the corresponding element in
GL(2n + 2,C). The characteristic polynomial of AC is of the form

χA(x) =
2n+2∑
j=0

ajx2(n+1)−j,

where a0 = 1 = a2n+2 and, for 1 ≤ j ≤ n + 1, aj = a2(n+1)−j. Write χA(x) = xn+1g(x + x−1).
Let Δ be the negative of the discriminant of the polynomial gA(t) = g(x + x−1). Then
A is regular loxodromic if and only if Δ > 0 and

∑n
j=0 aj � − 1

2 an+1 �
∑n

j=0(−1)n+1−jaj.
The conjugacy class of A is determined by the real numbers aj, 1 ≤ j ≤ n + 1.

PROOF. Note that g(x + x−1) =
∑n

j=0(xn+1−j + x−(n+1−j)) + an+1. It is proved in [GP13,
Theorem 3.1] that A is regular hyperbolic if and only if Δ > 0. Now A has
no eigenvalue ±1 if and only if g(±2) � 0, that is, an+1 + 2

∑n
j=0 aj � 0 � an+1 +

2
∑n

j=0(−1)n+1−jaj. �

DEFINITION 2.6. Let A be a regular loxodromic element in Sp(n, 1). The (n + 1)-
tuple of real numbers (a1, . . . , an+1) as in Lemma 2.5 is called the real trace of A
and we denote it by trR(A).

2.5. Useful results. We use the following result by Cao [Cao16] that determines
quadruples of points on ∂Hn

H
. We refer to [Cao16, AK07] for the basic notions

of angular invariants. For the notation used in the following statement, see [GK2,
Section 2].

THEOREM 2.7 [Cao16]. Let Z = (z1, z2, z3, z4) and W = (w1, w2, w3, w4) be two
quadruples of pairwise distinct points in ∂Hn

H
. Then there exists an isometry

h ∈ Sp(n, 1) such that h(zi) = wi, i = 1, 2, 3, 4, if and only if the following conditions
hold.

1. For j = 1, 2, 3, Xj(z1, z2, z3, z4) and Xj(w1, w2, w3, w4) belong to the same
similarity class.

2. A(z1, z2, z3) = A(w1, w2, w3), A(z1, z2, z4) = A(w1, w2, w4) and A(z2, z3, z4) =
A(w2, w3, w4).

Cao also proved that, for n ≥ 3, the moduli space of Sp(n, 1)-congruence classes of
points is homeomorphic to a semi-algebraic subspace of C3 × R × R defined by these
invariants.
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In the complex hyperbolic set up, the moduli space of ordered quadruples of points
was obtained by Cunha and Gusevskii. We recall their result.

THEOREM 2.8 [CuG10]. Let Z = (z1, z2, z3, z4) and W = (w1, w2, w3, w4) be two
quadruples of pairwise distinct points in ∂Hn

C
. Then there exists an isometry

h ∈ SU(n, 1) such that h(zi) = wi, i = 1, 2, 3, 4, if and only if the following conditions
hold.

1. A(z1, z2, z3) = A(w1, w2, w3).
2. X(z1, z2, z3, z4) = X(w1, w2, w3, w4) and X(z1, z4, z2, z3) = X(w1, w4, w2, w3).

Further, these invariants (X(z1, z2, z3, z4),X(z1, z4, z2, z3),A(z1, z2, z3)) form a
semi-algebraic subset of C2 \ {{0} × R} that is homeomorphic to the moduli space.

3. Projective points

3.1. Projective points. We recall the concept of projective points from [GK1]. Let
T be an invertible matrix over H. Let λ ∈ H \ R be a chosen eigenvalue of T in
the similarity class [λ]. Identify the [λ]-eigenspace with H. Consider the λ-eigenset:
Sλ = {x ∈ V | Tx = xλ}. Note that this set is xZ(λ) that is a copy of C in H. Now identify
H with C2. Two nonzero quaternions q1 and q2 are equivalent if q2 = q1c, c ∈ C \ 0.
This equivalence relation projects H to the one-dimensional complex projective space
CP

1, the [λ]-eigensphere. Since [λ] is a conjugacy invariant of T , so also is the
[λ]-eigensphere CP1.

Let v be the projection of the [λ]-eigenspace. Then, for each point on CP1, there is a
choice of the lift v of v that spans a complex line in vH. This choice of v corresponds
to the eigenset of the eigenvalue λ of v, and the corresponding point on the eigensphere
CP

1 is called a projective point of [λ].

3.2. Projective points and loxodromic elements. Now suppose that A is a regular
loxodromic element in Sp(n, 1). If aA and rA are the fixed points of A, then we can
determine the projective point corresponding to rA if we know the projective point
corresponding to aA on CP1. So, we require a single projective point corresponding to
the pair (aA, rA) on CP1. Here we have used the fact that Z(λ) = Z(λ̄−1). Similarly, the
projective points of x1,A, . . . , xn−1,A correspond to the centralizers Z(μ1), . . . , Z(μn−1),
respectively.

The following classification of loxodromic elements in Sp(n, 1) follows from [GK2,
Section 4.1].

LEMMA 3.1. Let A and A′ be regular loxodromic elements in Sp(n, 1). Then A = A′ if
and only if they have the same projective fixed points, the same real trace and the same
projective points.

The above lemma may be interpreted as follows. Let C be the Sp(n, 1) conjugacy
classes of regular loxodromic elements. It follows from Lemma 2.1 that the real traces
classify a point on C and, up to conjugacy, we can assume that elements of C have the
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same projective fixed points. Let T be the set of real traces (a1, . . . , an) ∈ Rn given by
Δ−1(0,∞), where Δ : C → (0,∞) is the discriminant function in Lemma 2.5. There is a
natural projection map p : C → T . However, p−1(t) is not unique. The map p has fiber
(CP1)n = CP1 × · · · × CP1. A point on this (CP1)n determines a loxodromic element
uniquely up to relabelling of fixed points.

In the case of SU(n, 1) an easier version of the above lemma holds true.

LEMMA 3.2. Let A and A′ be regular loxodromic elements in SU(n, 1). Then A = A′

if and only if they have the same projective fixed points and the same characteristic
polynomial, where having the same characteristic polynomial is equivalent to the
condition of having the same eigenvalues.

4. Weakly nonsingular pairs

In this section, we mostly work with the group Sp(n, 1). However, the arguments
restrict over SU(n, 1) with slight modifications and hence are omitted.

4.1. Gram matrix associated to a pair. Let (A, B) be a weakly nonsingular pair in
Sp(n, 1). Condition (3) in Definition 1.5 implies that we may assume, by re-arranging
the indices if necessary, that

〈xk,A, aB〉 � 0, 〈xk,B, aA〉 � 0, 〈rA, xk,B〉 � 0, 〈rB, xk,A〉 � 0 for 1 ≤ k ≤ n − 2.

We normalize the eigenvectors such that for 1 ≤ k ≤ n − 2,

〈aA, rA〉 = 〈aA, aB〉 = 〈aA, rB〉 = 〈aA, xk,B〉 = 〈aB, xk,A〉 = 1, |〈aB, rA〉| = 1, (4-1)

and 〈rA, xk,B〉 � 0 � 〈rB, xk,A〉.
For simplicity of notation, we write:

• p1 = aA, p2 = rA, p3 = aB, p4 = rB;
• for 5 ≤ j ≤ n + 2, pj = xj−4,A;
• for n + 3 ≤ j ≤ 2n, pj = xj−(n+2),B;
• p2n+1 = xn−1,A, p2n+2 = xn−1,B.

Since the eigenvectors of A ∈ Sp(n, 1) form an orthonormal basis for Hn,1, it follows
that if C(pi) = p′i for 1 ≤ i ≤ 2n, then C(pj) = p′j for j = 2n + 1, 2n + 2. For this reason,
we associate to (A, B) the Gram matrix (gij), gij = 〈pi, pj〉, of the ordered (2n)-tuple
p = (p1, p2, . . . , p2n). In view of the normalized eigenvectors, the Gram matrix has the
form G(p) = (gij), where:

1. g11 = g22 = g33 = g44 = 0; g12 = g13 = g14 = 1 = |g23|;
2. for 5 ≤ j ≤ n + 2, g1j = 0, g2j = 0; and, for n + 3 ≤ k ≤ 2n, g1k = 1, g2k � 0;
3. for 5 ≤ j ≤ n + 2, g3j = 1, g4j � 0; and, for n + 3 ≤ k ≤ 2n, g3k = 0, g4k = 0;
4. for 5 ≤ j, k ≤ n + 2, j < k, gjk = 0; and, for n + 3 ≤ k, j ≤ 2n, gjk = 0, j < k,

gjk = 0.

We call G a normalized Gram matrix associated to (A, B).
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LEMMA 4.1. Suppose that the Gram matrix G(p) is a normalized Gram matrix for p
with respect to the lift p = (p1, p2, . . . , p2n). Let G(p′) be the normalized Gram matrix
with respect to the lift p′ = (p1λ1, . . . , p2nλ2n) of p. Then λ1 = λ2 = · · · = λ2n and λ1 ∈
Sp(1).

PROOF. We have 〈p1λ1, pkλk〉 = 1; thus, λkλ1 = 1 for k = 2, 3, 4 because 〈p1, pk〉 = 1.
Now, from |〈p2λ2, p3λ3〉| = 1, we have |λ3||λ2| = 1 as |〈p2, p3〉| = 1. Thus, we have
|λ1| = 1, so λ1 ∈ Sp(1). Therefore, by λkλ1 = 1, for k = 2, 3, 4, we have λ1 = λ2 = λ3 =

λ4 and λ1 ∈ Sp(1).
By 〈p3λ3, pjλj〉 = 1, for j = 5, 6, . . . , n + 2, we have λjλ3 = 1. Thus, λ3 = λj for

j = 5, 6, . . . , n + 2 satisfies |λ3| = 1. Also, from the relations 〈p1λ1, pkλk〉 = 1, for
k = n + 3, n + 4, . . . , 2n, we can see that λkλ1 = 1 for k = n + 3, n + 4, . . . , 2n. Now
|λ1| = 1 gives λ1 = λk for k = n + 3, n + 4, . . . , 2n. So, we have λ1 = λ2 = · · · = λ2n and
λ1 ∈ Sp(1). �

The Gram matrix G(p) is well defined up to a scalar action of Sp(1). We denote the
Sp(1) orbit of entries of G(p) as OG(p). The following theorem follows using similar
arguments as in the proof of [GK2, Lemma 8.9].

LEMMA 4.2. Let (A, B) and (A′, B′) be two weakly nonsingular pairs of loxodromic
elements in Sp(n, 1). Let p = (p1, . . . , p2n) and p′ = (p′1, . . . , p′2n) be the associated
tuples to the pairs, respectively. Then there exists C ∈ Sp(n, 1) such that C(pi) = p′i ,
i = 1, . . . , 2n, if and only if OG(p) = OG(p′).

REMARK 4.3. We note further that, if we keep the lift of a chosen point pj from the
same hyperplane, for example if we always take pj to be standard, then it follows
from Lemma 4.1 that there is a unique normalized Gram matrix associated to the
tuple p.

4.2. Conjugacy invariants. We consider the following invariants associated to the
tuple p.

1. Angular invariant: A(p1, p2, p3).
2. Usual cross ratios: X1(A, B) = X(p1, p2, p3, p4), X2(A, B) = X(p1, p3, p2, p4).
3. Generalized cross ratios:

For n + 3 ≤ k ≤ 2n, X2k(A, B) = X(p1, p2, p3, pk).
For 5 ≤ j ≤ n + 2, X4j(A, B) = X(p3, p4, p1, pj).
For 5 ≤ j ≤ n + 2, n + 3 ≤ k ≤ 2n, Xjk(A, B) = X(p3, pk, p2, pj).
Note that we have denoted X2k(A, B) by αk(A, B) and X4j(A, B) by βj(A, B) in

Section 1.
4. Goldman’s eta invariants:

For 5 ≤ j ≤ n + 2, ηj(A, B) = η(p3, p4; pj) = 〈p3, pj〉〈p3, p4〉−1〈pj, p4〉〈pj, pj〉−1.
For n + 3 ≤ k ≤ 2n, ηk(A, B) = η(p1, p2; pk) = 〈p1, pk〉〈p1, p2〉−1〈pk, p2〉〈pk, pk〉−1.
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We note that using our notation earlier, X2j(A, B) = αj(A, B) and X4k(A, B) =
βk(A, B). However, we slightly change the notation here in order to have uniformity
in the symbols.

LEMMA 4.4. Let (A, B) be a weakly nonsingular pair in Sp(n, 1). Suppose that the
Gram matrix G(p) = (gij) is a normalized Gram matrix associated to (A, B) with
respect to the lift p = (p1, p2, . . . , p2n). Then the Gram matrix is determined by the
invariants listed above.

PROOF. The proof is obtained by computing the invariants in view of the normalized
Gram matrix and

A = arg(−g23), that is, g23 = −eiA,

X1 = g23
−1g24, X2 = g−1

23 g34,

X2k = g23
−1g2k, X4j = g4j,

Xjk = g23g−1
2k gjk, 5 ≤ j ≤ n + 2, n + 3 ≤ k ≤ 2n,

ηj = g−1
34 g4jg

−1
jj , ηk = g2kg−1

kk .

This clearly shows the result. �

4.3. Classification of weakly nonsingular pairs.

THEOREM 4.5. Let (A, B) be a weakly nonsingular pair of loxodromic elements
in Sp(n, 1). Then (A, B) is determined uniquely up to conjugacy in Sp(n, 1) by
the real traces, the angular invariant A(aA, rA, aB), the Sp(1) conjugation orbit of
the (unordered) tuple of the above conjugacy invariants (2)–(4) and the projective
points.

PROOF. Let (A, B) and (A′, B′) be loxodromic elements in Sp(n, 1). Suppose that
p = (p1, . . . , p2n) and p′ = (p′1, . . . , p′2n) are the associated tuples to the pairs, respec-
tively. Assume that A(p1, p2, p3) = A(p1

′, p2
′, p3

′) and the Sp(1) conjugation orbits of
the (unordered) tuple of the above conjugacy invariants (2)–(4) with respect to (A, B)
and (A′, B′) are equal. So, there exists μ ∈ Sp(1) such that

μX1(A, B)μ̄ = X1(A′, B′), μX2(A, B)μ̄ = X2(A′, B′), μX2k(A, B)μ̄ = X2k(A′, B′),

μX4j(A, B)μ̄ = X4j(A′, B′), μXjk(A, B)μ̄ = Xjk(A′, B′), μηj(A, B)μ̄ = ηj(A′, B′),

μηk(A, B)μ̄ = ηk(A′, B′).

By Lemma 4.4, we have DG(p)D−1 = G(p′), where D = diag(μ, μ, . . . , μ). That is,
OG(p) = OG(p′). Then, by Lemma 4.2, there exists C ∈ Sp(n, 1) such that C(pi) = p′i
for 1 ≤ i ≤ 2n + 2. In particular, CAC−1 and A′ have the same projective fixed points.
Since they have the same real traces, they belong to the same conjugacy class. By
Lemma 3.1, CAC−1 = A′ if and only if they have the same projective points. Similarly,
CBC−1 = B′. �
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REMARK 4.6. Let I denote the tuple of real numbers given by the above invariants,
and let T denote the set of real traces of regular loxodromics. LetW denote the set
of weakly nonsingular representations in X(F2, Sp(n, 1)). Clearly, by Lemma 4.4, there
is a well-defined map p :W→ T × T × I. However, given a point t in the image
p(W), p−1(t) is not a unique point, but a product of 2n copies of CP1 corresponding
to the projective points.

4.3.1. Proof of Theorem 1.7. This is a restatement of the above theorem where ρ(x) =
A, ρ(y) = B.

4.3.2. Proof of Theorem 1.8. This follows from the above by restricting everything
over C.

5. The nonsingular pairs

LEMMA 5.1. Let A, B be loxodromic elements in SU(n, 1) such that (A, B) is nonsin-
gular. Denote A(A, B) = A(aA, rA, aB). Let (A′, B′) be a nonsingular and loxodromic
pair such that the following holds.

(i) For k = 1, 2, Xk(A, B) = Xk(A′, B′) and A(A, B) = A(A′, B′).
(ii) For 1 ≤ j ≤ n − 2, αj(A′, B′) = αj(A, B) and βj(A′, B′) = βj(A, B).

Then there exists an element C in SU(n, 1) such that C(aA) = aA′ , C(rA) = rA′ ,
C(xk,A) = xk,A′ and C(aB) = aB′ , C(rB) = rB′ , C(xk,B) = xk,B′ .

PROOF. We follow similar arguments as in the proof of [GP18A, Lemma 5.1].
Since Xk(A, B) = Xk(A′, B′),A(A, B) = A(A′, B′) k = 1, 2, by Theorem 2.8, it fol-

lows that there exists C ∈ SU(n, 1) such that C(aA) = aA′ , C(rA) = rA′ , C(aB) = aB′

and C(rB) = rB′ . Let 1 ≤ k ≤ n − 2. Since αk(A, B) = αk(A′, B′),

〈xk,B, rA〉〈xk,B, aA〉−1〈aB, aA〉〈aB, rA〉−1 = 〈xk,B′ , rA′ 〉〈xk,B′ , aA′ 〉−1〈aB′ , aA′ 〉〈aB′ , rA′ 〉−1.

Let

〈C−1(xk,B′), rA〉
−1〈xk,B, rA〉 = 〈C−1(xk,B′), aA〉−1〈xk,B, aA〉 = λ.

This implies that

〈xk,B − C−1(xk,B′)λ, rA〉 = 0, (5-1)

〈xk,B − C−1(xk,B′)λ, aA〉 = 0. (5-2)

On the other hand, note that

〈xk,B − C−1(xk,B′)λ, rB〉 = 〈xk,B, rB〉 − 〈C−1(xk,B′), rB〉λ = 0 − 〈xk,B′ , rB′ 〉λ = 0. (5-3)

Similarly,

〈xk,B − C−1(xk,B′)λ, aB〉 = 0. (5-4)

Let LA and LB denote the two-dimensional time-like subspaces of Cn,1 with {aA, rA}
and {aB, rB} the respective bases of LA and LB that represent the complex lines.
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Thus, it follows from (5-1)–(5-4) that v = xk,B − C−1(xk,B′)λ is orthogonal to both
LA and LB. We must have 〈v, v〉 > 0. Thus, v is polar to the (n − 1)-dimensional totally
geodesic complex subspace that is represented by V = v⊥. Since Cn,1 = V ⊕ Cv, LA

and LB must be subsets in V. Thus, the fixed points of A and B belong to the boundary
of the totally geodesic subspace P(V). This is a contradiction to the nonsingularity
of (A, B). Hence, we must have v = 0, that is, C(xk,B) = xk,B′λ. Thus, C(xk,B) = xk,B′ .
Consequently, C(xn−1,B) = xn−1,B′ .

Similarly, βj(A, B) = βj(A′, B′) implies that C(xj,A) = xj,A′ for 1 ≤ j ≤ n − 1. This
proves the lemma. �

5.1. Proof of Theorem 1.9. If (A, B) and (A′, B′) are conjugate, then it is clear that
they have the same invariants.

Conversely, suppose that (A, B) and (A′, B′) are nonsingular pairs of loxodromics
such that αk(A, B) = αk(A′, B′), βk(A, B) = βk(A′, B′), 1 ≤ k ≤ n − 2, Xi(A, B) =
Xi(A′, B′), i = 1, 2, A(A, B) = A(A′, B′). By Lemma 5.1, it follows that there
exists C ∈ SU(n, 1) such that C(aA) = aA′ , C(rA) = rA′ , C(xk,A) = xk,A′ and C(aB) =
aB′ , C(rB) = rB′ , C(xk,B) = xk,B′ , 1 ≤ k ≤ n − 1. Therefore, A′, respectively B′, and
CAC−1, respectively CBC−1, have the same fixed points. Since they also have the same
family of traces, CAC−1 = A′. Similarly, CBC−1 = B′. This completes the proof.

5.2. Proof of Theorem 1.12. The following lemma follows by mimicking the proof
of Theorem 5.1; the only difference is that instead of Theorem 2.8, one has to apply
Theorem 2.7 in the proof.

LEMMA 5.2. Let A, B be loxodromic elements in Sp(n, 1) such that (A, B) is non-
singular. Suppose that the lifts of the attracting fixed points of a loxodromic element
are always assumed to be standard. Let (A′, B′) be a nonsingular pair such that the
following holds.

(i) For k = 1, 2, 3, Xk(A, B) = Xk(A′, B′) and Ak(A, B) = Ak(A′, B′).
(ii) For 1 ≤ j ≤ n − 2, αj(A′, B′) = αj(A, B) and βj(A′, B′) = βj(A, B).

Then there exists an element C in Sp(n, 1) such that C(aA) = aA′ , C(rA) = rA′ ,
C(xk,A) = xk,A′ and C(aB) = aB′ , C(rB) = rB′ , C(xk,B) = xk,B′ .

Now Theorem 1.12 follows using the same arguments as above or in the proof of
Theorem 1.7.

6. The twist-bend parameters and surface group representations

6.1. The twist-bend parameters. Suppose that 〈A, B〉 is a nonsingular (0, 3) group
in Sp(3, 1), that is, A, B and B−1A−1 are loxodromic and 〈A, B〉 is free. We also assume
that (A, B) is nonsingular. We want to attach two such nonsingular subgroups to get a
group that is freely generated by three generators. Now two cases are possible. The first
case corresponds to the case when two different three-holed spheres (or pairs of pants)
are attached along their boundary components. This gives a (0, 4) group generated by
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three elements. The second case corresponds to the case when two of the boundary
components of the same three-holed sphere are glued. In this case gluing two (0, 3)
groups gives a (1, 1) group that is a group generated by two loxodromic elements and
their commutator. This process is called ‘closing a handle’. To get more details of these
terminologies and the gluing process, we refer to [PP08].

Let 〈A, B〉 and 〈C, D〉 be two nonsingular (0, 3) groups in Sp(3, 1) such that the
boundary components associated to A and D are compatible. Here compatibility means
A = D−1. A three-dimensional quaternionic hyperbolic twist-bend corresponds to an
element K in Sp(3, 1) that commutes with A and conjugates 〈C, D〉; see [PP08, Section
8.1]. We assume that up to conjugacy, A fixes 0, ∞ and it is of the form E(r, θ, φ1, φ2).
Since K commutes with A, it is also of the form K = E(t,ψ, ξ1, ξ2); see [Gon13]. Thus,
K is either a boundary elliptic or a hyperbolic element.

It follows that there is a total of 10 real parameters associated to K, the real trace
(t,ψ, ξ1, ξ2), along with six real parameters associated to the projective points. If t =
1, then K is a boundary elliptic and the eigenvalue [eiψ] has multiplicity two. The
projective points for these eigenvalues can be defined as before. There are exactly one
negative-type and two positive-type eigenvalues of K. Since K commutes with A, the
projective points of K are determined by the projective points of A. Hence, there are
three projective points of K to determine it. Consequently, we have 10 real parameters
associated to a twist-bend K. We denote these parameters by κ = (t,ψ, ξ1, ξ2, k1, k2, k3),
where k1 = p1(K), k2 = p2(K), k3 = p3(K) are the projective points of the similarity
classes of eigenvalues of K.

The parameters κ = (t,ψ, ξ1, ξ2, k1, k2, k3) obtained in this way are called the
twist-bend parameters. Note that the twist-bend is a relative invariant as it always
has to be chosen with respect to some fixed group 〈A, B, C〉 that one has to specify
before applying the twist-bend. When we write A = QE(r, θ, φ1, φ2)Q−1, if the matrix
K = QE(t,ψ, ξ1, ξ2)Q−1, then we say that the twist-bend parameters κ are oriented
consistently with A.

To obtain conjugacy invariants to quantify the twist-bend parameters, we define the
following numerical objects corresponding to κ:

X̃1(κ)=X(aA, rA, aB, K(rC)), X̃2(κ)=X(aA, K(rC), aB, rA), X̃3(κ)=X(rA, K(rC), aB, aA);

Ã1(κ) = A(aA, rA, K(rC)), Ã3(κ) = A(rA, K(rC), aB).

LEMMA 6.1. Let A, B, C be loxodromic transformations of H3
H

such that 〈A, B〉
and 〈A−1, C〉 are nonsingular (0, 3) subgroups of Sp(3, 1). We further assume that
aB, rC do not lie on a proper totally geodesic subspace joining aA and rA. Let
K = EK(t,ψ, ξ1, ξ2, k1, k2, k3) and K′ = EK′(t′,ψ′, ξ′1, ξ′2, k′1, k′2, k′3) represent twist-bend
parameters that are oriented consistently with A. If

[X̃1(κ)] = [X̃1(κ′)], [X̃2(κ)] = [X̃2(κ′)], [X̃3(κ)] = [X̃3(κ′)];

Ã1(κ) = Ã1(κ′), Ã3(κ) = Ã3(κ′);

and k1 = k′1, k2 = k′2, k3 = k′3, then K = K′.
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PROOF. Without loss of generality, we assume that aA = o and rA = ∞. In view of the
conditions

[X̃1(κ)] = [X̃1(κ′)], [X̃2(κ)] = [X̃2(κ′)], [X̃3(κ)] = [X̃3(κ′)] and

Ã1(κ) = Ã1(κ′), Ã3(κ) = Ã3(κ′)

and noting that Ã2(κ) and Ã2(κ′) are trivially equal, following similar arguments as
in the proof of [Cao16, Theorem 5.2], we have f in Sp(3, 1) such that f (aA) = aA,
f (rA)= rA, f (aB) = aB and f (EK(rC)) = EK′(rC). Since f fixes three points on the
boundary, it must be of the form

f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
μo 0 0 0
0 μo 0 0
0 0 μ1 0
0 0 0 μ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

The boundary fixed point set of such a transformation always bounds a proper totally
geodesic subspace of H3

H
. Since aB does not lie on a proper totally geodesic subspace

joining aA and rA, we must have f = ±I. Thus, it follows that EK(rC) = EK′(rC). Now,
by using the fact that EKE−1

K′ has the three fixed points aA = o, rA = ∞ and rC together
with the condition that rC does not lie on a totally geodesic subspace joining aA

and rA, we have EK = EK′ .
Hence, K and K′ are conjugate with the same attracting and the same repelling

points. So, by Lemma 3.1, K = K′ if and only if they have the same projective points
and the same fixed points. This completes the proof. �

6.2. Proof of Theorem 1.15. After we have Theorem 1.12 and Lemma 6.1, the proof
of Theorem 1.15 follows by mimicking the arguments in [PP08, GK1]. We sketch it
here.

Let Σg \ C be the complement of the curve system C in Σg. This is a disjoint
union of 2g − 2 three-holed spheres. Each of the three-holed spheres corresponds to a
nonsingular (0, 3) subgroup of Sp(3, 1). By Corollary 1.13, a (0, 3) subgroup 〈A, B〉 is
determined up to conjugacy by the 36 real parameters. While attaching two three-holed
spheres, we attach two (0, 3) groups subject to the compatibility condition that a
peripheral element in one group is conjugate to the inverse of a peripheral element
in the other group. This gives a (0, 4) group that can be seen to be determined by 72
real parameters. Proceeding in this way, attaching 2g − 2 of the above (0, 3) groups,
we get a surface with 2g handles, and it is determined by 36(2g − 2) = 72g − 72 real
parameters obtained from the attaching process. The handles correspond to the g
curves that in turn correspond to the two boundary components of the three-holed
spheres. Now there are g quaternionic constraints that are imposed to close these
handles: one of the peripheral elements of each of these (0, 3) groups must be
conjugate to the inverse of the other peripheral element. Note that, corresponding
to each peripheral element, there are 10 natural real parameters: the real trace and
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two projective points. So, the number of real parameters reduces to 72g − 72 − 10g =
62g − 72. But there are g twist-bend parameters κi = (si,ψi, ξi1 , ξi2 , k1i, k2i, k3i), one for
each handle, and each contributes 10 real parameters. Thus, we need 62g − 72 + 10g =
72g − 72 real parameters to determine ρ up to conjugacy.

This proves the theorem.
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