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We consider the Robin Laplacian in the domains Ω and Ωε, ε > 0, with sharp and
blunted cusps, respectively. Assuming that the Robin coefficient a is large enough,
the spectrum of the problem in Ω is known to be residual and to cover the whole
complex plane, but on the contrary, the spectrum in the Lipschitz domain Ωε is
discrete. However, our results reveal the strange behaviour of the discrete spectrum
as the blunting parameter ε tends to 0: we construct asymptotic forms of the
eigenvalues and detect families of ‘hardly movable’ and ‘plummeting’ ones. The first
type of the eigenvalues do not leave a small neighbourhood of a point for any small
ε > 0 while the second ones move at a high rate O(| ln ε|) downwards along the real
axis R to −∞. At the same time, any point λ ∈ R is a ‘blinking eigenvalue’, i.e., it
belongs to the spectrum of the problem in Ωε almost periodically in the | ln ε|-scale.
Besides standard spectral theory, we use the techniques of dimension reduction and
self-adjoint extensions to obtain these results.

Keywords: Laplace operator; robin condition; spectral problem; cuspidal domain;
eigenvalue; residual spectrum

1. Introduction

1.1. Formulation of the problems.

We consider a family of spectral problems for the Laplace operator with the
Robin condition

−Δuε(x) = λεuε(x), x ∈ Ωε, (1.1)

∂νuε(x) = auε(x), x ∈ ∂Ωε, (1.2)
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Figure 1. Problem domain with a cusp (a) and domain with a blunted cusp (b).

in the domain (figure 1b)

Ωε = Ω � Πε ⊂ R
n, n � 2, (1.3)

where ε ∈ (0, ε0] is a small parameter, a ∈ R a constant, λε the spectral parameter,
∂ν is the outward normal derivative,

Πd = {x = (y, z) ∈ R
n−1 × R : z = xn ∈ (0, d), η = z−2y ∈ ω}, d > 0, (1.4)

ω is a domain in R
n−1 with Lipschitz boundary and compact closure ω = ω ∪ ∂ω,

and Ω is assumed to coincide with the cusp Πd in a neighbourhood of the coordinate
origin O (figure 1a). The domain Ω is Lipschitz everywhere, except at the point O.

For ε > 0 the domain (1.3) is Lipschitz and the spectrum of the problem
(1.1)–(1.2) is discrete, consisting of the monotone increasing unbounded sequence
of eigenvalues

λε
1 < λε

2 � λε
3 � . . . � λε

m � . . . → +∞. (1.5)

As studied for example in [3], it is possible to define a limit problem (ε = 0) in the
cuspidal domain Ω = Ω0,

−Δu(x) = λu(x), x ∈ Ω , ∂νu(x) = au(x), x ∈ ∂Ω, (1.6)

Moreover, it is known that if the constant coefficient in (1.2) is non-positive, this
problem has discrete spectrum. When a is positive, it was proven in [24] that the
discrete spectrum constitutes the whole spectrum σ of (1.6) only in the case a < a†,
while σ becomes the residual spectrum and covers the whole complex plane C in
the case

a � a† =
(

n − 3
2

)2 |ω|
|∂ω| , (1.7)

where |ω| = mesn−1ω is the volume of the cross-section and |∂ω| = mesn−2∂ω is
the area of its boundary.

1.2. State of art

When the parameter a is positive, it is not clear how to present a reasonable
weak formulation of the limit problem (ε = 0) in the cusp. The Robin Laplacian has
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been studied in arbitrary domains in different ways. Using a variational approach,
a possible start is to consider the quadratic form

u �→ ‖∇u;L2(Ω)‖2 − ‖a1/2u,L2(∂Ω)‖2,

defined on its natural domain, as shown in [1, § 3] and [4]. In these works, measures
on the boundary are considered, including our case a > 0. For a domain with a
cusp, the resulting operator is not necessarily self-adjoint. If the cusp is, roughly,
less sharp than quadratic, then the form is bounded from below, and the spectrum is
discrete (see [16,22,24] and, e.g., [11] for a recent study of the corresponding eigen-
value sequence itself). But, as it was shown in [22,24], the nature of the problem
operator may become completely different, as it may lose its semi-boundedness,
if the cusp is sharper than quadratic, see also [4, § 5]. For the critical case of a
quadratic cusp (1.4) considered here, the spectrum is discrete if and only if a < a†,
while the spectrum becomes residual and fills in the whole complex plane when
a � a†, see [24].

Let us review the Steklov problem related to (1.1)–(1.2). In the paper [21] it was
shown that the spectrum (subset of R+) of the Steklov problem in a domain with a
peak type boundary singularity is either discrete or may contain a continuous com-
ponent depending on the sharpness of the peak. Related to this, the linear water
wave problem, which contains the Steklov condition on a part of the boundary, was
considered in [23] in domains with rotational cusps: a formulation of the problem
as a Fredholm operator of index zero was given with the help of appropriate radia-
tion conditions, and it was proven that the continuous spectrum is non-empty and
consist of the ray [λ†,+∞) ⊂ R with a certain cut-off point λ† � 0.

The reference [25] contains a study of the Laplace equation

−Δuε(x) = 0, x ∈ Ωε, (1.8)

with the spectral Steklov and Dirichlet boundary condition

∂νuε(x) = λεuε(x), x ∈ ∂Ωε
� ωε,

uε(x) = 0, x ∈ ωε, (1.9)

where ωε = {x ∈ Πd : x = ε} is the end of the blunted cusp. The spectrum of this
problem is discrete and similar to (1.5). According to [21], the spectrum of the
limit Steklov problem (ε = 0) in the cuspidal domain Ω is continuous and equals
[λ†,+∞) with the cut-off value λ† = a†, (1.7), while it was discovered in [25] that
the eigenvalues λε

m > λ† of the Steklov–Dirichlet in Ωε behave ‘strangely’ as ε →
+0, namely they ‘glide’ within the semi-axis (λ†,+∞) at a high rate O(| ln ε|),
which, however, slows down near λ† so as to make λε

m ‘parachute’ smoothly on
λ†. Moreover, each point λ > λ† constitutes a ‘blinking’ eigenvalue of the problem
(1.8), (1.9), namely, for every λ > λ† there exists a positive sequence {εk(λ)}∞k=1

tending to 0 such that λ becomes a true eigenvalue for the problem (1.8), (1.9) in
the domain Ωε for some ε close to εk(λ), for any k. This phenomenon can be used
to construct a singular Weyl sequence at λ for the Steklov problem operator in Ω,
which provides a novel mechanism to form the continuous spectrum from a family
of discrete spectra.
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1.3. Outline of the paper

The asymptotic expansions of the solutions of the problem (1.6) near the tip O
were derived in detail in [24] and will be reproduced in §§ 2.1–2.3, and although
they are the same as in the case of the Steklov problem in [25], the rest of
the material is quite different. In § 2.4 we determine all self-adjoint extensions
of the Robin-Laplacian, which is originally defined in the small domain (2.19).
However, none of the extensions is lower semi-bounded (for general results on non-
semi-bounded sesquilinear, see [5,18]), which somehow reflects the fact that the
spectrum of the problem (1.6) covers the whole complex plane C, see [24]. Some
of these extensions Aθε• have a peculiar property, namely their eigenfunctions leave
a relatively small discrepancy in the Robin condition at the end of the blunted
cusp, see § 4.1, and thus can be regarded as good candidates to model the singu-
larly perturbed problem (1.1), (1.2), cf. the argumentation in [8]. This plan will
be realized in §§ 4.2–4.4, where it is shown that a small neighbourhood of any
point of the spectrum of the extension Aθε• contains an eigenvalue of the problem
(1.1), (1.2) in Ωε.

An important property is that the extension parameter θε
• in (4.4) depends peri-

odically on the quantity | ln ε|, hence, the spectrum σ(Aθε•) gains the same property.
Among the eigenvalues of σ(Aθε•) there exist the so-called stable eigenvalues, which
are hardly movable and are generated by ‘trapped modes’, i.e., solutions of the
problem (1.6) in the Sobolev space H1(Ω). However, according to theorem 3.3
there certainly exist also eigenvalues of σ(Aθε•) which are generated by ‘diffraction’
solutions (3.5) of the problem (1.6), move downwards at a high speed along the real
axis according to the formulas (3.18) and (4.4), and therefore are called ‘plummet-
ing’. In other words, the spectrum σ(Aθε•) is indeed periodic in | ln ε|, although as a
set only, because some points of it move purposefully to a fixed direction as ε → +0.
Such a situation may occur only in a situation when the model operator is not lower
semi-bounded. This does not happen in the case of the Steklov problem, which is
investigated in [25] and characterized by the phenomenon of ‘gliding’ eigenvalues
(see the end of § 1.2).

2. Theorem on asymptotics in the cuspidal domain

Section 2 is devoted to the study of the solutions of the non-homogenous ver-
sion (2.1)–(2.2) of the problem (1.6), with a given right-hand side f ∈ L2(Ω).
The solutions will be formally derived using asymptotic analysis, and the valid-
ity of the solution will be stated in theorem 2.2, which has been proven in
[24]. The leading term of any solution is a linear combination (2.8) of two solu-
tions w± of an Euler ordinary differential equation, but the requirement that the
problem operator corresponding to (2.1)–(2.2) is self-adjoint, will bind the two
coefficients b± of (2.8) via the relation (2.22) containing one parameter θ ∈ [0, 2π)
in the coefficient eiθ only. This also provides a parametrization of all self-adjoint
extensions of the problem operator, theorem 2.4. The considerations of § 2 will
be applied in § 3 to the homogeneous problem (2.1)–(2.2), i.e. to the spectral
problem (1.6).
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2.1. Formal asymptotics

We aim to present the asymptotics of solutions of the problem

−Δu − λu(x) = f(x), x ∈ Ω, (2.1)

∂νu − au(x) = 0, x ∈ ∂Ω, (2.2)

where a satisfies (1.7), and first of all, we will describe a formal procedure under the
assumptions that the boundary ∂ω is smooth and the right-hand side f vanishes
near the cuspidal tip O.

Since the diameter O(ζ2) of the cross-section

ωζ = {(y, z) ∈ Πd : z = ζ}, 0 < ζ 
 d,

is much less than its distance ζ to the tip O, it is logical to accept the standard
asymptotic ansatz in thin domains, see e.g. [17, Ch. 14],

u(x) = w(z) + W (η, z) + · · · , (2.3)

where the dots stand for inessential higher order terms, η = z−2y is the ‘rapid’
variable used in (1.4), and the power-law functions

w(z) = zμw0, W (η, z) = zμ+2W0(η), (2.4)

where W0 ∈ H1(ω), are to be determined. We insert the ansatz (2.3) into the
differential equation (2.1),

(−Δ − λ)(w(z) + W (η, z))

= μ(μ − 1)zμ−2w0 + μ(μ − 1)zμW0(η) + zμ+2z−4ΔηW0(η) + · · · = f,

extract terms of order zμ−2 as z → +0, and thus obtain the relation

−ΔηW (η, z) = z4∂2
zw(z), η ∈ ω. (2.5)

The normal derivative on the lateral side Γd = {x : η ∈ ∂ω, z ∈ (0, d)} of the cusp
Πd equals

∂ν = (1 + 4z2|η · ν′(η)|2)−1/2(z−2ν′(η) · ∇η − 2zη · ν′(η)∂z + 2(η · ν′(η))(η · ∇η)),

where ν′(η) is the unit normal vector on the boundary of the domain ω ⊂ R
n−1

and the central dot stands for the scalar product in the Euclidean spaces. Hence,
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by considering the order zμ in the boundary condition (2.2), we derive the relation

ν′(η) · ∇ηW (η, z) = 2η · ν′(z)z3∂zw(z) + az2w(z), η ∈ ∂ω. (2.6)

Using the formula ∫
∂ω

η · ν′(η) dsη =
∫

ω

∇η · η dη = (n − 1)|ω|

we see that the compatibility condition in the Neumann problem (2.5), (2.6) reads as

0 = z4

∫
ω

∂2
zw(z) dη +

∫
∂ω

(2η · ν′(η)z3∂zw(z) + az2w(z)) dsη

= |ω|z4∂2
zw(z) + 2(n − 1)|ω|z3∂zw(z) + az2|∂ω|w(z)

and turns into the ordinary differential equation of Euler type

− d
dz

(
z2(n−1) dw

dz
(z)

)
= Az2(n−2)w(z), z > 0, (2.7)

where

A = a
|∂ω|
|ω| .

The general solution of the equation (2.7) is of the form

w(z) = b+w+(z) + b−w−(z), b± ∈ C, (2.8)

where we have in the case a > a†, (1.7),

w±(z) = w0z
±iμ0−n+3/2 with μ0 =

√
A −

(
n − 3

2

)2

> 0, (2.9)

and in the case a = a†, A = (n − 3/2)2

w±(z) = w0z
−n+3/2(ln z ∓ i). (2.10)

The normalization factor w0 and the peculiar form of (2.10) will be clarified later on.
Since the compatibility condition in the problem (2.5)–(2.6) is fulfilled, there

exists a solution W defined up to an additive constant with respect to η. To make
the solution unique, we impose the orthogonality condition∫

ω

W (η, z) dη = 0. (2.11)
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2.2. Weak formulation of the problem

We introduce the weighted Sobolev space V 1
β (Ω) as the completion of the linear

space C∞
c (Ω � O) (infinitely differentiable functions vanishing in a neighbourhood

of the point O) with respect to the norm

‖u;V 1
β (Ω)‖ = (‖rβ∇u;L2(Ω)‖2 + ‖rβ−1u;L2(Ω)‖2)1/2 (2.12)

where r = dist (x,O) and β ∈ R is a weight index. The weighted Lebesgue space
V 0

β (Ω) is endowed with the norm ‖rβu;L2(Ω)‖.

Remark 2.1. The norm (2.12) is the same as the classical Kondratiev norm [10],
but the reason for the use of this norm in [24] as well as in the present paper is
not the conventional one, since the shape of the domain Ω near the singularity
point O is not conical nor angular as in Kondratiev’s works. This can be seen
for example in the asymptotic ansatz for solutions: W0 being in H1(ω), the sum
w(z) + W (z−2y, z), see (2.4), belongs to V 1

β (Πd), if and only if

β > −Re μ − n + 3/2

even in the case w = 0. However, if w = 0 and W0(η) is independent of the fast
variable η = z−2y, the condition for the space V 1

β (Πd) to include W becomes much
less restrictive:

β > −Re μ − n − 1/2.

According to [24], the weak formulation of the problem (2.1)–(2.2) for the
unknown u ∈ V 1

β (Ω) reads as the integral identity

(∇u,∇v)Ω − λ(u, v)Ω − a(u, v)Ω = f(v) ∀ v ∈ V 1
−β(Ω), (2.13)

where f ∈ V 1
−β(Ω)∗ is an (anti)linear functional on V 1

−β(Ω), in particular

f(v) = (f, v)Ω with f ∈ V 0
β+1(Ω). (2.14)

Here (·, ·)Ω is the natural scalar product in L2(Ω) (the notation will be used in the
paper also for other domains in place of Ω), extended by density to the duality
between the spaces V 0

β (Ω) and V 0
−β(Ω). According to definition (2.12) and the

weighted trace inequality [24, lemma 2.2]

‖rβu;L2(∂Ω)‖ � c‖u;V 1
β (Ω)‖,

all expressions in the integral identity (2.13) are properly defined so that it
determines a continuous mapping

V 1
β (Ω) 
 u �→ Tβ(λ)u = f ∈ V 1

−β(Ω)∗.

We observe that for every β, T−β(λ) is the adjoint operator of Tβ(λ). In § 3 we use
the arguments of [24] to describe the properties of T±β(λ) in the particular case
β = 1.
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2.3. Theorem on asymptotics

We consider the problem (2.1)–(2.2) with the right-hand side

f ∈ L2(Ω) ⊂ V 1
−1(Ω)∗ (2.15)

(i.e. β = −1 in (2.14)) and its solution u ∈ V 1
1 (Ω) ⊂ L2(Ω).

The following assertion was verified in [24].

Theorem 2.2. If (1.7) and (2.15) hold true, the above-mentioned solution has the
asymptotic form

u(x) = χ(x)(w(z) + W (z−2y, z)) + ũ(x), (2.16)

where χ is a smooth cut-off function which is equal to 1 in Πd/2 and 0 in Ωd,
see (1.4) and (1.3). The term w in (2.16) is the linear combination (2.8) with
some coefficients b± and terms (2.9) or (2.10), and W ∈ H1(Ω) is the solution of
the problem (2.5), (2.6), (2.11). The coefficients b± and the remainder ũ ∈ V 1

−1(Ω)
satisfy the estimate

(|b+|2 + |b−|2 + ‖ũ;V 1
−1(Ω)‖2)1/2 � c(‖f ;L2(Ω)‖ + ‖u;V 1

1 (Ω)‖), (2.17)

here the factor c > 0 is independent of f and u.

Remark 2.3. According to formulas (2.9), (2.10) and remark 2.1, the detached
asymptotic term on the right of (2.16) belongs to the space V 1

γ (Ω) with any γ > 0,
but it is not contained in V 1

−1(Ω). Furthermore, as for second derivatives we have
∇2w ∈ V 0

γ+1(Π
d) and ∇2W ∈ V 0

γ+2(Π
d), but in general ∇2W /∈ V 0

γ+1(Π
d). As it was

verified in [24], for the solution u there holds ∇2u ∈ V 1
1+2(Ω) and ∇2ũ ∈ V 1

−1+2(Ω).
We emphasize that the term W , generated by (2.9), (2.8) and (2.6) is defined up
to the addendum

b0
+z+iμ−n+7/2 + b0

−z−iμ−n+7/2

which is independent of η and belongs to V 1
1 (Ω) and can therefore be omitted in

the asymptotic representation (2.16); this was the very reason for imposing the
orthogonality condition (2.11).

All these peculiarities again underline the difference of the conical [10] and
cuspidal [24] irregularities of boundaries.

By V1
±1(Ω) we denote the weighted space with detached asymptotics (see [20,

Ch. 6], [19, § 3] and others), which consists of functions of the form (2.16) and
endow it with the norm on the left of (2.17); the Hilbertian structure of this norm
can also be identified with the direct product

C
2 × V 1

−1(Ω) 
 (b±, ũ), (2.18)

although these will not be used later on.
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2.4. Symmetric and self-adjoint operators

As in [23] we associate to the problem (2.1)–(2.2) the symmetric operator A in
L2(Ω), which has the differential expression −Δ and the domain

D(A) = {u ∈ V 1
−1(Ω) : Δu ∈ L2(Ω), ∂nu = au on ∂Ω � O}. (2.19)

Notice that the inclusions in (2.19) assure that u ∈ H2(Ω � O) and therefore the
trace of ∂nu is properly defined on ∂Ω � O. By theorem 2.2, see also [24, proposi-
tion 3.11], the adjoint operator A∗ has the same differential expression but a larger
domain

D(A∗) = {u ∈ V 1
1 (Ω) : Δu ∈ L2(Ω), ∂nu = au on ∂Ω � O}.

In view of theorem 2.2 on asymptotics, the dimension of the quotient space
D(A∗)/D(A) equals 2.

In order to describe the self-adjoint extensions of the operator A we reproduce a
calculation from [24, § 3.4]. Let ζ > 0 and let u1, u2 ∈ D(A∗). We apply the Green
formula in the domain Ωζ and send ζ to +0, to get

(A∗u1, u2)Ω − (u1,A∗u2)Ω

= lim
ζ→+0

∫
ωζ

(u2(y, z)∂zu
1(y, z) − u1(y, z)∂zu2(y, z))

∣∣∣
z=ζ

dy; (2.20)

see (2.14) for the notation. Substituting here V 1
1 (Ω) 
 uj �→ ũj ∈ V 1

−1(Ω) at least
for one of the indices j = 1, 2 makes the limit on the right of (2.20) equal to zero,
due to the decay of the functions in V 1

−1(Ω) as z → +0. Hence, we can replace in
(2.20) the functions uj by wj + W j of the representation formula (2.16). For the
same reason, since W j has the additional factor z2, cf. (2.4), we can also neglect
this term and write (2.20) in the form

(A∗u1, u2)Ω − (u1,A∗u2)Ω

= lim
ζ→+0

ζ2(n−1)

∫
ω

(w2(ζ)∂zw
1(ζ) − w1(ζ)∂zw2(ζ)) dη.

Finally, we fix the normalization factor in (2.9) and (2.10),

w0 =

{√
2μ0|ω| for a > a†,√
2|ω| for a = a†,

and obtain

(A∗u1, u2)Ω − (u1,A∗u2)Ω = i(b2
+b1

+ − b2−b1
−), (2.21)

where bj
± are the coefficients of the linear combination wj , see (2.8).

Assume that u1 and u2 belong to the domain of some self-adjoint operator
obtained as a restriction of A∗. Then, the left-hand side of (2.21) must vanish,
and we recall a traditional argument in [26] on the null spaces of symplectics
forms and conclude that the coefficients must be related as bj

− = eiθbj
+ for some
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θ ∈ [0, 2π), as this indeed annuls the form (2.21). These observations lead to the
following assertions.

Theorem 2.4. The restriction Aθ, where θ ∈ [0, 2π), of the operator A∗ to the
subspace

{u ∈ D(A∗) : b+ = eiθb−} (2.22)

is a self-adjoint extension of the operator A. Moreover, the domain of any
self-adjoint extension of A equals (2.22) for some parameter θ ∈ [0, 2π).

3. Spectra of self-adjoint extensions

In this section, we consider eigenfunctions of the problem (1.6) by applying the
results of § 2 to the homogeneous equation (2.1)–(2.2). Examples of eigenfunctions
belonging to the space V 1

−1(Ω) of (2.12), with some decay as x → O, are investi-
gated in § 3.2. However, more important will be the eigenfunctions (3.5) in V 1

1 (Ω),
the asymptotic form of which comes from theorem 2.2 and formula (2.21), and
in particular depend on the parameter Θ(λ) ∈ [0, 2π) in the ‘scattering coefficient’
eiΘ(λ). The crucial relation of Θ(λ) to the geometric parameter ε will be made clear
in § 4, see, e.g., (4.4), (4.17).

The dependence of the eigenfunctions on the spectral parameter is treated in
§ 3.3.

3.1. Operator kernels

We fix the parameter λ, assume (1.7), and compare the Fredholm operators
T+1(λ) and T−1(λ), which are adjoint to each other and therefore

dimkerT±1(λ) = dim cokerT∓1(λ) ⇒ IndT+1(λ) = −Ind T−1(λ). (3.1)

Clearly, V 1
−1(Ω) ⊂ V 1

+1(Ω) and

kerT−1(λ) ⊂ kerT+1(λ). (3.2)

Furthermore, theorem 2.2 on asymptotics shows that

IndT+1(λ) = 2 + IndT−1(λ) (3.3)

where 2 is nothing but the number of the detached terms in formula (2.16), see
(2.8) with free constants b±. From (3.1) and (3.3) we deduce that Ind T±(λ) = ±1,
and taking (3.2) into account yields

kerT+1(λ) = kerT−1(λ) ⊕Z, dimZ = 1.

Any non-zero function Z ∈ Z = kerT+1(λ) � ker T−1(λ), i.e. a solution of the homo-
geneous problem (2.1)–(2.2) belonging to V 1

1 (Ω), has the representation (2.16) with
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the linear combination (2.8); the generalized Green formula (2.21) with u1 = u2 = Z
yields the equality

0 = i|b+|2 − i|b−|2. (3.4)

If b± = 0, we arrive at the contradiction

Z ∈ V 1
−1(Ω) ⇒ Z ∈ kerT−1(λ).

Thus, none of the coefficients b± vanishes, and in view of (3.4) we can write b− = 1,
b+ = eiΘ(λ) for some Θ(λ) ∈ [0, 2π) and thus choose a particular solution

Zλ(x) = χ(x)(w−(z) + W−(z−2y, z) + eiΘ(λ)(w+(z) + W+(z−2y, z)) + Z̃λ(x).
(3.5)

where and Z̃λ ∈ V 1
−1(Ω).

Remark 3.1. The singular functions (2.9) and (2.10) can be interpreted as ‘waves’
travelling along the axis of the cusp, cf. [23] for a physical argument in a similar
geometric situation. Although such an interpretation is not directly needed in our
paper, it is convenient to use the corresponding physical terminology, namely to call
solutions in ker T−1(λ) ‘trapped modes’ and to consider eiΘ(λ) as the ‘scattering
coefficient’ in the ‘diffraction’ solution (3.5).

All functions u ∈ kerT1(λ) ⊂ V 1
1 (Ω) ⊂ L2(Ω) belong to the domain (2.20) of A∗,

because the inclusion Δu = −λu ∈ L2(Ω) really occurs. Hence, a trapped mode is
an eigenvector corresponding to its eigenvalue λ for every self-adjoint operator Aθ

of theorem 2.4. Furthermore, it can be readily seen that in the case θ = Θ(λ) there
appears a second eigenvector (3.5) of Aθ.

3.2. Examples of trapped modes

Following the ideas of [6] and [21] we assume that the domain Ω is mirror
symmetric with respect to the plane {x1 = 0}, i.e.,

Ω = {x : (−x1, x2, . . . , xn) ∈ Ω} (3.6)

and restrict the problem (2.1)–(2.2) with f = 0 to the half Ω+ = {x ∈ Ω : x1 > 0}
of the domain (3.6),

−Δu+(x) = λ+u+(x), x ∈ Ω+, (3.7)

∂νu+(x) = au+(x), x ∈ (∂Ω)+ = ∂Ω+ \ Σ, (3.8)

where we impose the artificial Dirichlet condition

u+(x) = 0, x ∈ Σ, (3.9)

on the middle plane Σ = {x ∈ Ω : x1 = 0}.
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Lemma 3.2. Assume that the function u+ ∈ H1
loc(Ω+ � O) satisfies the inclusion

∇u+ ∈ L2(Ω+) and the Dirichlet condition (3.9). Then, the following weighted
inequality is valid:

‖r−2u+;L2(Ω+)‖ + ‖r−1u+;L2((∂Ω)+)‖ � c‖∇u+;L2(Ω+)‖. (3.10)

Proof. It suffices to verify (3.10) in the cusp Πd
+ = {x ∈ Πd : x1 > 0} and on the

surface Γd
+ = {x ∈ Γd : x1 > 0}. To this end, we write lower-dimensional inequalities

in the half-section ωζ
+ = {y ∈ ωζ : y1 > 0},

ζ−4

∫
ωζ

+

|u+(y, ζ)|2 dy � c

∫
ωζ

+

|∇yu+(y, ζ)|2 dy

ζ−2

∫
∂ωζ

+

|u+(y, ζ)|2 dsy � c

∫
ωζ

+

|∇yu+(y, ζ)|2 dy (3.11)

coming from the Dirichlet condition (3.9) and the coordinate dilatation y �→ η =
ζ−2y. The proof is completed by integrating (3.11) in ζ ∈ (0, d) and taking into
account that dsx = (1 + 4z2|η · ν′(η)|2)1/2 dsydz. �

The variational formulation of the problem (3.8)–(3.9),

(∇xu+,∇xv+)Ω+ − a(u+, v+)(∂Ω)+ = λ(u+, v+)Ω+ ∀ v+ ∈ H1
0 (Ω+; Σ) (3.12)

is posed in the Sobolev space H1
0 (Ω+; Σ) ⊂ H1(Ω) of functions vanishing on Σ. Since

the weight r−1 in the second norm of (3.10) is large when x → O, the embedding
H1

0 (Ω+,Σ) ⊂ L2(Ω+) is compact, and therefore the whole left-hand side of (3.12)
is lower semi-bounded. We deduce that the spectrum of the variational problem
(3.12) or the differential problem (3.8)–(3.9) is discrete and consists of the monotone
unbounded sequence of normal eigenvalues

λ1
+ < λ2

+ � λ3
+ � . . . � λm

+ � . . . → +∞. (3.13)

The corresponding eigenfunctions um
+ ∈ H1

0 (Ω+,Σ), m = 1, 2, , . . ., have smooth,
odd extensions over the Dirichlet surface Σ to Ω. The extensions belong to H1(Ω)
and thus become eigenfunctions of the original problem (1.6), due to the symmetry
of the domain (3.6). Using (3.10) we conclude that the extended eigenfunctions um

belong to V 0
−2(ω) and therefore to V 1

−1(Ω), by theorem 2.6 of [24]. In this way the
eigenvalues (3.13) are embedded into the residual spectrum of the operator A. They
also belong to the point spectrum of any self-adjoint extension Aθ of theorem 2.4.

It would be possible to show, using a general result of [12,15], that the eigen-
functions of the problem (1.6) belonging to V 1

−1(ω) decay exponentially as O(e−δ/r)
for some δ > 0, although this argument would require lengthy additional compu-
tations contained in [13, Ch. 10] and [24, §1.5]. However, theorem 2.6 of [24], the
proof of which is much simpler, directly implies that a solution u of (1.6) belongs
to ∈ V 1

−β(Ω) for all β ∈ R+, i.e., it gets a super-power decay rate, which will be
sufficient for our purposes.
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3.3. A peculiar property of the scattering coefficient

Let us consider the solution Zλ+δ of (1.6), when λ is replaced by the perturbation
λ + δ, where δ is a small parameter with an arbitrary sign. We accept the sim-
plest asymptotic ansätze with respect to small δ for this solution and its scattering
coefficient:

Zλ+δ(x) = Zλ(x) + δZ ′
λ(x) + Ẑλ+δ(x), (3.14)

Θ(λ + δ) = Θ(λ) + δΘ′(λ) + Θ̂(λ + δ).

Both Zλ+δ and Θ(λ + δ) depend smoothly on δ, so that we only need to compute
the correction terms, while the estimates of the remainders are evident due to the
general perturbation theory, cf. [9].

We derive the following problem for the function Z ′
λ by inserting (3.14) to (1.6)

with λ �→ λ + δ and extracting terms of order O(δ):

−ΔZ ′
λ(x) − λZ ′

λ(x) = Zλ(x), x ∈ Ω,

∂νZ ′
λ(x) = aZ ′

λ(x), x ∈ ∂Ω � O. (3.15)

Using the formulas (3.5) with λ and λ �→ λ + δ, and the Taylor formula

eiΘ(λ+δ) = eiΘ(λ)(1 + iδΘ′(λ) + O(δ2)),

we derive the representation

Z ′
λ(x) = iΘ′(λ)eiΘ(λ)χ(x)(w+(z) + W†(z−2y, z)) + Z̃ ′

λ(x) (3.16)

where Z̃ ′
λ ∈ V 1

−1(Ω) and the incoming wave w− does not appear. The problem (3.15)
has a solution of the form (3.16). Indeed, since the solution (3.5) is originally defined
up to a trapped mode in ker T−1(λ), the orthogonality conditions

(Zλ, v)Ω = 0 ∀ v ∈ ker T−1(λ) (3.17)

can be satisfied, and because of the Fredholm property of T±1(λ), they guaran-
tee the existence of a solution of the problem (3.15) belonging to V 1

1 (Ω); the
solution is defined up to an addentum in kerT1(λ), in particular, up to the
term cλZλ. By theorem 2.2, this general solution has the representation (2.16)
with w = b+(λ)w+ + b−(λ)w−, see (2.8). Setting cλ = −b−(λ) gives (3.16) and the
orthogonality conditions (3.17).

We now insert the functions Z ′
λ and Zλ into Green’s formula in Ωζ and take the

limit ζ → +0 as in (2.20) and (2.21). The inhomogeneous equation in (3.15) implies

‖Zλ;L2(Ω)‖2 = lim
ζ→+0

‖Zλ;L2(Ωζ)‖2

= − lim
ζ→+0

∫
ωζ

(Zλ(y, ζ)∂zZ
′
λ(y, ζ) − Z ′

λ(y, ζ)∂zZλ(y, ζ)) dy

= i(−1 · 0 + eiΘ(λ)iΘ′eiΘ(λ)) = −Θ′.

Let us formulate the result.
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Theorem 3.3. There holds the formula

∂λΘ(λ) = −‖Zλ;L2(Ω)‖2 < 0, (3.18)

where Zλ is the solution (3.5) of the problem (1.6), with (1.7), subject to the subject
to the orthogonality conditions (3.17).

The relation (3.18) means that the growth of the spectral parameter λ in (3.16)
makes the scattering coefficient eiΘ(λ) run along the unit circle {z ∈ C : |z| = 1}
counter-clockwise. Unfortunately, our calculation does not allow to control the run-
ning speed, because the solution Zλ is normalized by the unit coefficient of the
incoming wave w+, while the norm ‖Zλ;L2(Ω)‖ depends on the function Zλ in the
whole domain.

4. Asymptotics of eigenvalues in the domain with a blunted cusp

In § 4.1, the parameter θ will be chosen such that, given ε > 0, the eigenfunction cor-
responding to θ approximatively satisfies the Robin boundary condition on the end
surface of the blunted cusp. This will create the desired connection of the spectra
of the limit problem and the one on the blunted cusp: we obtain the formula (4.4)
for the parameter θ, and this allows us to specify the behaviour of the eigenvalues
as described already in § 1.3.

4.1. Formal procedure

We consider a solution of the limit problem (1.6), with (1.7), of the form (2.16)
and use the coefficients b± in (2.8) to satisfy the boundary condition (1.2) at the end
ωε of the blunted cusp (1.3). We denote here by dots terms which are inessential for
our present asymptotic analysis and postpone their estimates to the next sections.

In the case a > a† we apply formulas (2.9), (2.6) and obtain

∂νu(y, ε) + au(y, ε) = w0

(
+iμ0 − n +

3
2

+ εa

)
b+ε+iμ0−n+1/2

+ w0

(
−iμ0 − n +

3
2

+ εa

)
b−ε−iμ0−n+1/2 + . . . . (4.1)

Hence, the main asymptotic term in (4.1) vanishes provided

b+ = B(ε)b−, B(ε) =
−iμ0 + εa − n + 3/2
+iμ0 + εa − n + 3/2

ε−2iμ0 . (4.2)

The coefficient B(ε) is unimodular and thus

B(ε) = eiT (ε) with T (ε) = T0(ε) − 2μ0 ln ε ∈ R,

T0(ε) = −i ln
(
−iμ0 + εa − n + 3/2
+iμ0 + εa − n + 3/2

)
, (4.3)

so that T0(ε) is a smooth real function of ε (the moduli of the numerator and
denominator in the quotient on the right of (4.3) are the same so that the real part
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of the logarithm vanishes), and μ0 is as in (2.9) (notice that μ0 = 0 for a = a†).
Comparing (4.2), (4.3) with (2.22), we see that the self-adjoint extension Aθε• of
theorem 2.4, with the parameter

θε
• = T (ε) = T0(ε) − 2μ0 ln ε (mod 2π) (4.4)

is the first candidate to model the problem (1.1)–(1.2).
In the case a = a† we use formula (2.10) and arrive at the relation

∂zu(y, ε) + au(y, ε) = w0

((
−n +

3
2

+ εa

)
(ln ε − i) + 1

)
ε−n+1/2b+

+ w0

((
−n +

3
2

+ εa

)
(ln ε + i) + 1

)
ε−n+1/2b− + · · · .

(4.5)

Deleting the main asymptotic term in (4.5) gives the relation

b− = B†(ε)b+, B†(ε) =
+i + ln ε − 2(2n − 3 − εa)−1

−i + ln ε − 2(2n − 3 − εa)−1
=: eiT†(ε).

The corresponding parameter

θε
• = T†(ε) (4.6)

of the appropriate self-adjoint extension Aθε• for modelling the problem (1.1)–(1.2)
behaves in a very different way as ε → +0 in comparison with the function (4.4),
which is ‘almost linear’ in ln ε, namely we have

B†(ε) = 1 + O(| ln ε|−1), T† = O(| ln ε|−1) as ε → +0.

4.2. Operator formulation of the problem

We consider the integral identity [14]

(∇uε,∇vε)Ωε − a(uε, vε)∂Ωε = λε(uε, vε)Ωε ∀ vε ∈ H1(Ωε) (4.7)

for the problem (1.1)–(1.2); notice that Ωε is a Lipschitz domain.
The following inequality, where c is independent of uε ∈ H1(Ωε), can be verified

along the same lines as proposition in [21]:

‖r−1uε;L2(Ωε)‖ � c‖uε;H1(Ωε)‖.

Thus, the standard norm of H1(Ωε) is equivalent with the weighted norm
‖·;V 1

0 (Ωε)‖, uniformly in ε, see (2.12).
We need some estimates in order to write an abstract formulation of (4.7).

Lemma 4.1. The trace inequalities

‖uε;L2(∂Ωε
� ωε)‖2 � c(δ‖∇uε;L2(Ωε)‖2 + (1 + δ−1)‖r−1uε;L2(Ωε)‖2), (4.8)

‖uε;L2(ωε)‖ � c
√

ε‖uε;V 1
0 (Ωε)‖ (4.9)

hold true with constants c depending on neither uε ∈ H1(Ωε) nor ε ∈ (0, ε0).
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Proof. The inequality (4.9) is verified in [25], lemma 5.1. Concerning (4.8), it is
enough to check the statement for smooth real-valued functions and by replac-
ing Ωε �→ Πd

� Πε and ∂Ωε �→ Γd
� Γε. To this end we make the coordinate

compression η �→ y = z2η, cf. (1.4), in the standard trace inequality

‖U ;L2(∂ω)‖2 � cω‖U ;H1(ω)‖ ‖U ;L2(ω)‖

and obtain

‖uε;L2(∂ωz)‖2

� cωz−2(z2‖∇yuε;L2(ωz)‖2 + ‖uε;L2(ωz)‖2)1/2‖uε;L2(ωz)‖
� cω(z‖∇yuε;L2(ωz)‖ + z−1‖uε;L2(ωz)‖)z−1‖uε;L2(ωz)‖

� Cω

(
δ‖∇yuε;L2(ωz)‖2 +

(
1 +

1
δ

)
‖r−1uε;L2(ωz)‖2

)
(4.10)

Here we replaced z with d in front of ∇yuε, inserted z−1 as r−1 inside the Lebesgue
norms of uε, and applied the Cauchy inequality 2ab � δa2 + δ−1b2. Finally, (4.8)
follows by integrating in z ∈ (ε, d) the inequality obtained in (4.10). �

We introduce in the Hilbert space Hε = H1(Ωε) the new scalar product

〈uε, vε〉ε = (∇uε,∇vε)Ωε
− a(uε, vε)∂Ωε

+ �ε−2(uε, vε)Ωε
; (4.11)

the properties of a scalar product follow for a large enough � > 0 from lemma 4.1
and the obvious relation r > ε in Ωε. Moreover, we can and do fix � such that

‖uε;Hε‖2 = 〈uε, uε〉ε � ε−2‖uε;L2(Ωε)‖2. (4.12)

We define the operator Kε in Hε by the identity

〈Kεuε, vε〉ε = (uε, vε)Ωε ∀ uε, vε ∈ Hε, (4.13)

so that Kε becomes positive, continuous and symmetric, hence, self-adjoint. More-
over, it is compact, and by [2, theorem 10.1.5.], its essential spectrum coincides
with {μ = 0}, and according to (4.11) and (4.13), problem (4.7) is equivalent with
the abstract equation

Kεuε = kεuε in Hε

with the new spectral parameter

kε = (�ε−2 + λε)−1 (4.14)

The discrete spectrum of Kε,

kε
1 � kε

2 � . . . � kε
m � . . . → +0, (4.15)

is related to the eigenvalue sequence (1.5) via formula (4.14).
The next assertion is known as the lemma on ‘near eigenvalues’, [27], and it

follows from the spectral decomposition of a resolvent, see [2, Ch. 6].
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Lemma 4.2. Let uε
• ∈ H1(Ωε), uε

• �= 0, and kε
• ∈ R satisfy

‖Kεuε
• − kε

•u
ε
•;Hε‖ = δε

•‖uε
•;Hε‖, δε

• ∈ [0, kε
•). (4.16)

Then, there exists an eigenvalue kε
m belonging to the sequence (4.15) such that

|kε
• − kε

m| � δε
•.

4.3. Error estimates for the approximation of the spectrum in Ωε

We fix a spectral parameter λ ∈ R, assume (1.7) and consider the solution (3.5) of
the problem (1.6) with the scattering coefficient eiΘ(λ), and find a positive sequence
{εk}k∈N tending to 0 such that

Θ(λ) = T0(εk) − 2μ0 ln εk (mod2π). (4.17)

Then, uεk• = Zλ is an eigenfunction corresponding to the eigenvalue λ of the self-
adjoint extension Aθ

εk• of theorem 2.4. Notice that the exponent Θ(λ) depends
continuously on the parameter λ (to see this recall that the space V1

±(Ω) ⊃ D(A∗)
can be identified with the direct product (2.18) and apply general results on non-
selfadjoint linear operators in [7, Ch. 1], [9, Ch. 4]), and therefore

‖Zλ;V1
±1(Ω)‖ � CZ , ‖Zλ;L2(Ω)‖ � cZ > 0 (4.18)

uniformly with respect to λ in a compact set. We have

‖uεk• ;L2(Πε)‖2 � cε
2(1−γ)
k ‖zγ−1uεk• ;L2(Πε)‖2

� c‖ε2(1−γ)
k uεk• ;V 1

γ (Ω)‖2 � cε
2(1−γ)
k ‖Zλ;V1

±1(Ω)‖

where γ ∈ (0, 1) and D(Aθ
εk• ) ⊂ D(A∗) ⊂ V 1

γ (Ω), cf. remark 2.1. This, (4.12) and
(4.18) imply

‖uεk• ;Hε‖2 � ε−2
k ‖uεk• ;L2(Ωε)‖2

� ε−2
k (‖uεk• ;L2(Ω)‖2 − ‖uεk• ;L2(Πε)‖2) � 1

2
c2
Zε−2

k (4.19)

for large enough k, since uεk• = Zλ.
We are going to prove that the problem (1.1)–(1.2) with a > a† in the domain

Ωεk has an eigenvalue λεk in the vicinity of λ. In what follows we write ε instead of
εk. The threshold case a = a† as well as other eigenvalues with stable asymptotics
will be considered in §4.4.
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According to (4.14) we set

kε
• = (�ε−2 + λ)−1. (4.20)

To compute the factor δε
• in (4.16), we use the definition of the norm of a Hilbert

space, (4.11) and (4.13), and write

‖Kεuε
• − kε

•u
ε
•;Hε‖ = sup

∣∣〈Kεuε
• − kε

•u
ε
•, v

ε〉ε|

= ε2(� + ε2λ)−1 sup |(�ε−2 + λ)(uε
•, v

ε)Ωε − (∇uε
•,∇vε)Ωε

+ a(uε
•, v

ε)∂Ωε − �ε−2(uε
•, v

ε)Ωε |

= ε2(� + ε2λ)−1 sup |(Δuε
• + λuε

•, v
ε)Ωε + (∂nuε

• − auε
•, v

ε)∂Ωε |.
(4.21)

Here, the supremum is taken over the unit ball {vε ∈ Hε : ‖vε;Hε‖ � 1} and the
Green formula was applied. Furthermore, on the last line the scalar product in
L2(Ωε) is null, and also

(∂nuε
• − auε

•, v
ε)∂Ωε�ωε = 0.

So we are left with only

Iε
•(vε) = −

∫
ωε

vε(y, ε)(∂zu
ε
•(y, ε) + auε

•(y, ε)) dy. (4.22)

According to our preparatory calculation (4.1) of the parameter θε
• in (4.4), the

main asymptotic term w− + eiΘ(λ)w+ disappears in the integrand in (4.22) so that
the integral itself reduces to the sum

Iε
W (vε) + Ĩε(vε) = −

∫
ωε

vε(y, ε)
(

d

dz
+ a

)
W (z−2y, z)

∣∣∣
z=ε

dy

−
∫

ωε

vε(y, ε)(∂zũ
ε
•(y, ε) + aũε

•(y, ε)) dy.

Recalling the form (2.4) of the correction terms W−(z−2y, z) + eiΘ(λ)W+(z−2y, z)
we get

d
dz

W (z−2y, z) = − 2
z3

y · ∇ηW (z−2y, z) +
∂W

∂z
(z−2y, z)

= −2zμ−1y · ∇ηW0(z−2y) + zμ+1W0(z−2y)

For y ∈ ωε there holds |y| � cε2, therefore,∣∣∣∣ (
d
dz

+ a

)
W (z−2y, z)

∣∣∣
z=ε

∣∣∣∣ � cε1−n+3/2(
∣∣∣W0

( y

ε2

) ∣∣∣ +
∣∣∣∇ηW0

( y

ε2

) ∣∣∣)
Integrating over y ∈ ωε yields∥∥∥ (

d
dz

+ a

)
W (z−2y, z)

∣∣∣
z=ε

;L2(ωε)
∥∥∥ � cε1−n+3/2εn−1‖W0;H1(ω)‖

= ε3/2‖W0;H1(ω)‖
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The inequality (4.9) implies

|Iε
W (vε)| � cε1/2ε3/2 = cε2.

Since ũ• ∈ V 1
−1(Ω), we again apply (4.9) to obtain

∣∣∣ ∫
ωε

vε(y, ε)ũε
•(y, ε) dy

∣∣∣ � ‖vε;L2(ωε)‖ ‖ũε
•;L

2(ωε)‖

� cε1/2‖vε;Hε‖ε‖r−1ũε
•;L

2(ωε)‖

� cε2‖r−1ũε
•;V

1
0 (Ωε)‖ � cε2‖ũε

•;V
1
−1(Ω

ε)‖. (4.23)

However, the estimation of the integral with ∂zũ
ε
• is much more involved. Indeed,

a direct application of the weighted trace inequality in lemma 4.1 does not help,
because [24, lemma 3.2] proves that the second derivatives ∇2ũε

• belong to V 0
1 (Ω),

not to V 0
0 (Ω) as in the Kondratiev theory, cf. also remark 2.3. However, the situation

can be improved in the case of the trivial right-hand side f = 0. Indeed, in our case
the function uε

• satisfies the homogeneous problem (1.1)–(1.2) so that the one can
use the procedure in [24, § 2] to construct several higher-order asymptotic terms

W (k)(z−2y, z) = z2k−n+iμ0+3/2W
(k)
0+ (z−2y) + z2k−n−iμ0+3/2W

(k)
0− (z−2y) (4.24)

(notice that W (0) coincides with W ) and to obtain a remainder ũ
ε(k)
• with any

desired power-law decay rate as z → +0. In particular, ∂zũ
ε(1)
• ∈ V 1

−1(Ω). The addi-
tional term W (1) can be processed similarly to the calculation (1.6), while the
integral ∫

ωε

vε(y, ε)∂zũ
ε(1)
• (y, ε)dy

can be estimated in the same way as in (4.23). Summing up, we conclude that the
order of the norm (4.21) with respect to ε is determined by the main correction
term (4.24) at k = 0. Thus, collecting the estimates derived so far and comparing
(4.16) with (4.19) we conclude that

δε
• � cε5(� + ε2λ)−1. (4.25)

Theorem 4.3. Assume a > a†. Let λ ∈ R be fixed, and let the sequence {εk}k∈N

satisfy (4.17). Then, there exist ε• > 0 and c• > 0 such that for εk � ε• the problem
(1.1)–(1.2) with ε = εk has an eigenvalue λεk

m(εk), (1.5), satisfying the estimate

|λεk

m(εk) − λ| � c•εk.
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Proof. According to lemma 4.2 and formula (4.25) we find an eigenvalue kεk

m(εk) of
the operator Kεk , see (4.15) and (4.13), such that

|kεk

m(εk) − kε
•| � cε5(� + ε2λ)−1.

Taking into account (4.14) and (4.20) we can write

|λεk

m(εk) − λ| � cε5
k(� + ε2

kλ)−1(�ε−2
k + λ)(�ε−2

k + λεk

m(εk))

= cε3
k(�ε−2

k + λεk

m(εk)). (4.26)

Fixing a small enough ε• � 1, namely cε3
• � 1/2, we obtain from (4.26) that

λεk

m(εk) � λ + cεk(� + ε2
kλεk

m(εk)) ⇒ λεk

m(εk) � 2λ + � � 2|λ| + �. �

4.4. Threshold case and ‘stable’ eigenvalues

At a = a† the spectral parameter λ ∈ R still gives rise to the exponent Θ(λ) of
the scattering coefficient in (3.5), but now the sequence {εk}k∈N will be defined by

Θ(λ) = T†(ε). (4.27)

The waves (2.10) include the logarithmic factor ln z, and the logarithm only causes
only self-evident technical differences in the calculations and arguments in § 4.3.
Hence, we just reformulate theorem 4.3 as follows.

Theorem 4.4. Assume a = a†. Let λ ∈ R be fixed, and let the sequence {εk}k∈N

satisfy (4.27). Then, there exist ε• > 0 and c• > 0 such that for εk � ε• the problem
(1.1)–(1.2) with ε = εk has an eigenvalue λεk

m†(εk), (1.5), satisfying the estimate

|λεk

m†(εk) − λ| � c•εk(1 + | ln εk|).

If utr ∈ V 1
−1(Ω) is a trapped mode for the problem (1.6) with some λ ∈ R (remark

3.1 and § 3.2), then this point λ is an eigenvalue of every self-adjoint extension Aθ,
θ ∈ [0, 2π), see theorem 2.4. Moreover, since utr ∈ V 1

−β(Ω) for all weight indices
β, repeating the calculations and arguments in the previous section leads to the
following assertion, which includes the threshold case too, because a trapped mode
has the same fast decay properties both in the case a = a† and a > a†.

Theorem 4.5. Assume that λ ∈ R is an embedded eigenvalue of the problem (1.6),
a � a†, related with the trapped mode utr ∈ V 1

−β(Ω). Then, for any N ∈ R+ there
exist εN > 0 and cN > 0 such that, for all ε ∈ (0, εN ), the problem (1.1)–(1.2) has
an eigenvalue λε

m(ε), (1.5), satisfying the estimate

|λε
m(ε) − λ| � cNεN .
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5. Conclusions and possible generalizations

5.1. Asymptotic behaviour of eigenvalues above threshold

According to theorem 4.5, any trapped mode utr ∈ V 1
−1(Ω) of the problem (1.6)

with λ = λtr gives rise to a family {λε
m(ε)}ε∈(0,εN ) of eigenvalues of the problems

(1.1)–(1.2) in Ωε staying in the cNεN -neighbourhood of the point λtr. We call
the eigenvalue λε

m(ε) as a stable one in spite of the fact that the number m(ε) of
these eigenvalues in the sequence (1.5) changes infinitely many times, when ε → +0
(see the explanation in the next paragraph).

We have detected eigenvalues in the spectra of the problems (1.1)–(1.2) having
completely different behaviour as ε → +0. Indeed, let λ ∈ R be fixed. Theorem 4.3
shows that in a neighbourhood of λ periodically, with the period

π−1m0

in the logarithmic scale | ln ε|, there appears an eigenvalue of the problem (1.1)–(1.2)
in the domain Ωε, which grows because the length of the broken piece Πε diminishes.
This eigenvalue crosses a neighbourhood of λ at a high speed O(| ln ε|) (in particular,
λ becomes an eigenvalue of the problem (1.1)–(1.2)); notice that this is the very
reason for the rapid changes of the number m(ε) of the stable eigenvalues mentioned
above. In other words, any point of the real axis above the threshold becomes a
‘blinking eigenvalue’, as ε → +0.

We may change the point of view and watch over eigenvalues the eigenfunctions
of which are of the form (3.5) with the exponent

Θ(λ) = T0(ε) − 2μ0 ln ε = 2μ0| ln ε| + T0(0) + O(ε) (5.1)

of the scattering coefficient. The function (5.1) is monotone growing when | ln ε| →
+∞. Hence, the scattering coefficient eiΘ(λ) moves counter-clockwise, when ε → +0.
By theorem 3.3, such movement of the coefficient corresponds to the monotone
descend of the spectral parameter down along the real axis.

5.2. Other boundary conditions

We have imposed in § 1 the same Robin condition (1.2) both on the blunted
surface of the peak Πd � Πε and on the massive part ∂Ωε � ωε of the boundary.
Replacing (1.2) by

∂uε(x) = auε(x), x ∈ ∂Ωε
� ωε, (5.2)

∂uε(x) = 0, x ∈ ωε (5.3)

does not cause any changes to the calculations and justification. Replacing the
Neumann condition (5.3) by the Dirichlet one,

uε(x) = 0, x ∈ ωε, (5.4)

the properties of the problem (1.1), (5.2), (5.4) still remain very similar, although
our calculation of the extension parameters (4.4) and (4.6) requires a minor
(simplifying) modification.
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5.3. Other shapes

All the results on the problems (1.1), (1.2) and (1.1), (5.2), (5.3) or (5.4) remain
unchanged, if the straight end ωε = {x ∈ Πd : z = ε} of the domain (1.3) is made
into a curved one, i.e.

Ωε = {x = (y, z) : z > ε + ε2H(ε−2y)}

where H is a Lipschitz function in ω.
One may also divide the lateral boundary of Γd of the cusp Πd into two non-empty

and non-intersecting parts Γd
k = {x : z ∈ (0, d), z−2y ∈ γk}, where both sets γk,

k = 1, 2, are open submanifolds of ∂ω and ∂ω = γ1 ∪ γ2. If one keeps the Robin
condition on Γd

1 and imposes the Neumann condition on Γd
2, the above-discovered

properties of the spectrum are still retained by the modified problem. However,
in the case of the Dirichlet condition on Γd

2 the spectrum of the problem on Ωε

is discrete and therefore its eigenvalues are hardly movable. In general, changes of
the boundary conditions outside a neighbourhood of the tip O do not affect the
above-described properties of the spectrum.
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