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SUMMARY
The modules of parallel tool heads with 2R1T degrees of freedom (DOFs), i.e., two rotational DOFs
and one translational DOF, have become so important in the field of machine tools that corresponding
research studies have attracted extensive attention from both academia and industry. A 3-PUU (P
represents a prismatic joint, U represents a universal joint) parallel mechanism with 2R1T DOFs is
proposed in this paper, and a detailed discussion about its architecture, geometrical constraints, and
mobility characteristics is presented. Furthermore, on the basis of its special geometrical constraint,
we derive and explicitly express the parasitic motion of the 3-PUU mechanism. Then, the inverse
kinematics problem, the Jacobian matrix calculation and the forward kinematics problem are also
investigated. Finally, with a simplified dynamics model, the inverse dynamics analysis for the
mechanism is carried out with the Principle of Virtual Work, and corresponding results are compared
with that of the 3-PRS mechanism. The above analyses illustrate that the 3-PUU parallel mechanism
has good dynamics features, which validates the feasibility of applying this mechanism as a tool
head module.

KEYWORDS: Parallel mechanism, 3-PUU, 2R1T DOFs, kinematics analysis, dynamics analysis.

1. Introduction
Owing to its virtues including compact structure, high stiffness to weight ratio and good dynamics
performance, parallel kinematic mechanisms (PKMs) have attracted widespread attention from both
academia and industry. In the past decades, significant improvements have been made to PKMs. On
the one hand, the emergence of academic fruits,1−3 such as novel synthesis and design theories, new
kinematics and dynamics performance indexes for analysis and optimization, high-effective control
strategies etc., has provided solid theoretical support for the development of PKMs. On the other
hand, a number of parallel manipulators have obtained practical applications in industry, presenting
satisfying behavior, e.g., the Sprint Z3 tool head for metal machining,4 the Delta robot for goods
sorting,5 the Stewart mechanism for spacecraft docking,6 etc.

The high degree of stiffness and low inertia characteristics of parallel kinematic mechanism make
it suitable for high-speed machine tools. Most of 6-degrees of freedom (DOFs) pure PKMs employ
the Stewart–Gough architecture. However, 6-DOF parallel mechanisms suffer from shortcomings
such as unsatisfactory workspace, poor orientation capability, and use of spherical joints that are
difficult to manufacture. To overcome these defects, Tsai7 proposed a new class of machines known
as the hybrid kinematic machines (HKMs). HKM denotes a machine that serially connects a serial
kinematic mechanism and a low-mobility PKM, and they collectively realize the required DOFs for
machining. In the last decades, a great number of parallel mechanisms with 2R1T DOFs have been
proposed and some of them were utilized as machine tool heads. The 3-PRS architecture (P represents
an active prismatic joint, R and S represent a revolute joint and a spherical joint, respectively), based
on which the Sprint Z3 tool head4 was developed, is one of the most well-known mechanisms used
in the HKMs field. A great deal of effort has been devoted to this mechanism, such as kinematics
and dynamics analysis,8−10 dimension synthesis and layout optimization,11,12 and the design of its
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variants.13,14 Due to 3-PRS mechanism’s requirements on precise spherical joints, which are difficult
and costly to manufacture, HKMs with 3-PRS mechanisms have not been widely used in developing
countries until now. A3 tool head15 is another famous parallel module designed for HKMs, behind
which is the 3-RPS architecture. Comparison studies about Z3 and A3 have been carried out.16

Besides, both 3-PRS and 3-RPS mechanism have inherent parasitic motions along the x- and y-axes
of the fixed frame, and numerous 2R1T parallel architectures without parasitic motions have also
been proposed.17,18

This paper proposes a novel 3-PUU architecture (U represents a universal joint) with 2R1T DOFs. It
must be noted that there was a type of PKM named 3-PUU,7,19−23 and it has even obtained widespread
application in practice. However, the previous 3-PUU mechanism has three pure translational DOFs
and was utilized as the position mechanism for an HKM. Instead, the 3-PUU mechanism presented
in this paper owns two rotational DOFs and one translational DOF. Just like the 3-PRS mechanism,
it can undertake orientation tasks for an HKM. In contrast to the 3-PRS mechanism, the 3-PUU
mechanism doesn’t require precise spherical joints, and its revolution joints are correspondingly
unrestricted to the cone angle constraints of those spherical joints. Thus, it’s easier and cheaper
to develop a 3-PUU mechanism in practice, and it has the potential of offering better orientation
capability.

Due to its special physical constraints, kinematics and dynamics analyses for the proposed 3-PUU
parallel mechanism are more complicated than the current one. The geometrical constraints of this
mechanism are obtained according to its special mechanism architecture and link structure. Then, the
parasitic motion of the 3-PUU is derived and explicitly expressed by using the substitution method.
Inverse kinematics analysis and forward kinematics analysis are, respectively, carried out with the
vector loop method1,2 and Newton iteration method,1,2 both of which are classical methods of the
field. In addition, the key issue for dynamics analysis is to establish an inverse dynamics model of
the parallel mechanism, which can yield the required actuated force given a desired trajectory of the
moving platform. The literature of dynamics analysis for PKMs reports various methods to formulate
the inverse dynamic equations. These formulations include the Newton–Euler method,24 Lagrange
approach,25 Kane’s equations, 26 and The Principle of Virtual Work.27 The dynamic model of the
3-PUU parallel mechanism in the present work is based on The Principle of Virtual Work, which is an
energy-based formulation with relatively simple and compact symbolic description and can produce
abundant analytical results.

The paper is organized as follows: Section 1 provides the introduction. In Section 2, a detailed
description on 3-PUU architecture and its geometrical constraints is presented. In Section 3, based on
the special geometrical constraints of the mechanism, its parasitic motions are derived and explicitly
expressed; then, we solve the inverse kinematics problem (IKP) and forward kinematics problem
(FKP) according to the parasitic motions results. Section 4 states the dynamics analysis of the
proposed 3-PUU mechanism. Section 5 is the conclusion.

2. Architecture Description and Mobility Analysis

2.1. Architecture description and geometrical constraints
The CAD model of the proposed 3-PUU mechanism is presented in Fig. 1(a), where O − xyz is the
global coordinate frame, A1 − x1y1z1 is the local coordinate frame built on the P joint of limb 1. It
is made up of a moving platform, three ground-fixed vertical columns and three identical limbs. The
whole structure is cyclic symmetric around z-axis. Л1 represents the vertical plane that linkage A1B1

currently belongs to. Figure 1(b) demonstrates the geometry model of limb 1. Each limb connects a
fixed column to the mobile platform by one P joint followed by two U joints. A linear actuator drives
each of the three P joints along EE

′
, and the four revolute axes of the two U joints in limb 1 are DD

′
,

CC
′
, BB

′
and AA

′
. When the linkage rotates about DD

′
with angle θ , the vertical plane Л1 rotates

correspondingly.
The main distinction between the 3-PUU mechanism illustrated in Fig. 1(a) and the 3-PUU

proposed by Tsai7,19,20 lies in their U joints. The U joints depicted in Fig. 1(b) satisfies the following
physical constraints: The first revolute axis DD

′
is parallel to the moving direction of the P joints, i.e.,

EE
′
; the second revolute axis CC

′
is parallel to the third revolute axis BB

′
, and they are perpendicular
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Fig. 1. CAD models of 3-PUU parallel kinematic mechanism. (a) CAD model of the 3-PUU mechanism.
(b) CAD model of limb1.

to the first revolute axis DD
′

and the symmetric axis A1B1 of linkage 1 at the same time; the
fourth revolute axis AA

′
is perpendicular to the third revolute axis BB

′
. Nonetheless, in the limb

of Tsai’s 3-PUU mechanism, its two U joints are totally identical, i.e., its first revolute axis is
parallel to its fourth revolute axis, and its second revolute axis is parallel to its third revolute
axis. Such a minor difference in their U joints arrangement leads to a great gap between their
DOFs’ properties: The former one owns 2R1T DOFs and can be used as an orientation mechanism,
whereas the latter one has three pure translational (3T) DOFs and should be utilized as a position
mechanism.

The kinematic scheme of the proposed 3-PUU mechanism in an arbitrary configuration is depicted
in Fig. 2(a), whose projection on the Oxy plane is shown in Fig. 2(b), and limb 1 and its own
coordinate system A1 − x1y1z1 are shown in Fig. 2(c). For analysis, a moving coordinate frame
M − uvw is attached on the centered point M of the moving platform. In addition, three local
coordinate systems Ai − xiyizi are built and attached on their P joint, and their corresponding
directions are illustrated in Fig. 2(a). R and r are, respectively, the radius of circles with centered
point M and O; L is the length of linkage AiBi, hi denotes the actuated height of three P
joints. The architectural parameters of the 3-PUU parallel manipulator studied in this paper are
set as follows: R = 400 mm, r = 200 mm and L = 550 mm. As Fig. 1(b) demonstrate,
the local frame Ai − xiyizi will rotate around Aizi when three actuated P joints moves, and
the intersection angle between Ai − xiyizi and O − xyz around z-axis is θi , just like Fig. 2(b)
illustrates.

Through observing the geometry structure of the 3-PUU mechanism illustrated in Fig. 1(a)–(c), we
can identify the core geometrical constraints of the 3-PUU mechanism: Due to the inherent constraint
of the second revolute joint CC′, the motion of each limb is limited in its own plane Лi , which is
always vertical to the Oxy plane. Moreover, the plane Лi could rotate around axis DD′, where the first
revolute joint exists. Thus, the motion of the whole mechanism can be projected to the Oxy plane as
Fig. 2(b) depicts, where A

Oxy

i , B
Oxy

i and MOxy (i = 1, 2, 3) denote the projection points of Ai, Bi

and M on the Oxy plane, respectively; lines A
Oxy

i B
Oxy

i (i = 1, 2, 3) represents the projection of
plane Лi . Just like Fig. 1(b) presents, the third revolute joint BB′ brings about the physical constraint
that the fourth revolute axis AA′ always stay in plane Лi . In addition, because AA′ passes through the
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Fig. 2. Schematic representation of the 3-PUU PKM. (a) The 3-PUU PKM (b) Projection of 3-PUU mechanism
on Oxy plane. (c) The sketch of limb1.

centered point of the moving platform M , each plane Лi (i = 1, 2, 3) includes M in it. Hence, as Fig.
2(b) illustrates, in the projection of the 3-PUU mechanism on the Oxy plane, AOxy

i B
Oxy

i (i = 1, 2, 3)
perpetually intersect at MOxy . The above physical constraints are able to be described as follows:

⎧⎪⎨
⎪⎩

A
oxy

1 B
oxy

1 ∩A
oxy

2 B
oxy

2 = Moxy

A
oxy

1 B
oxy

1 ∩A
oxy

3 B
oxy

3 = Moxy

A
oxy

2 B
oxy

2 ∩A
oxy

3 B
oxy

3 = Moxy

, (1)

which is the exclusive constraints the proposed 3-PUU satisfies.

2.2. Mobility analysis
We would like to apply the screw theory28,29 to analyze the DOFs of the 3-PUU mechanism, this
approach yields all mobility information for a PKM, e.g., the number, type and direction of its DOFs.
Since the three limbs are identical, only one of them needs to be analyzed under its local frame.
According to Fig. 2(c), we can obtain the twist screws of all five motion pairs in limb i (i = 1, 2, 3)
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as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

$1 = (0, 0, 0; 0, 0, 1)

$2 = (0, 0, 1; 0, 0, 0)

$3 = (0, 1, 0; 0, 0, 0)

$4 = (0, 1, 0; −L sin αi, 0, L cos αi)

$5 = (1, 0, 0; 0, L sin αi, 0)

. (2)

It’s not difficult to work out the reciprocal screw of the above five screws under local frame
Ai − xiyizi as follows:

$r
limbi−local = (0, 1, 0; − L sin αi, 0, 0) . (3)

Based on transformation approaches proposed in the literature,30 we are able to transform $r
limbi−local

from local coordinate systems to the global coordinate system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

$r
limb1−global = (sin θ1, cos θ1, 0; −h1 cos θ1 − L sin α1 cos θ1, h1 sin θ1 + L sin α1 sin θ1, − 1

2 R cos θ1 −
√

3
2 R sin θ1)

$r
limb2−global = (sin θ2, cos θ2, 0; −h2 cos θ2 − L sin α2 cos θ2, h2 sin θ2 + L sin α2 sin θ2, − 1

2 R cos θ2 +
√

3
2 R sin θ2)

$r
limb3−global = (sin θ3 , cos θ3, 0; −h3 cos θ3 − L sin α3 cos θ3, h3 sin θ3 + L sin α3 sin θ3, R cos θ3)

.

(4)

First of all, let’s consider the simplest situation, i.e., the moving platform is horizontal, where
three actuated heights of P joints satisfy h1 = h2 = h3 = h, three inclined angles of linkages meet
α1 = α2 = α3 = α, and three included angles between Ai − xiyizi (i = 1, 2, 3) and O − xyz around
z-axis are θ1 = π

3 , θ2 = −π
3 , θ3 = π. Substituting hi, αi and θi into Eq. (4), we can get

⎧⎪⎪⎨
⎪⎪⎩

$r
limb1−global =

(√
3

2 , 1
2 , 0; − 1

2 (h + L sin α) ,
√

3
2 (h + L sin α) , −R

)
$r

limb2−global =
(
−

√
3

2 , 1
2 , 0; − 1

2 (h + L sin α) , −
√

3
2 (h + L sin α) , −R

)
$r

limb3−global = (0, −1, 0; h + L sin α, 0, −R)

. (5)

Therefore, the instantaneous motion screws set of the end-effector is equal to

$end−effector = (U3
i=1$r

limbi−global)
r =

⎧⎪⎨
⎪⎩

(0, 0, 0; 0, 0, 1 ) (a)

(1, 0, 0; 0, h + L sin α, 0) (b)

(0, 1, 0; −h − L sin α, 0, 0) (c)

, (6)

wherein (a) denotes a translation DOF along z direction, (b) denotes a revolution DOF around x-axis
with parasitic motion along y direction and (c) denotes a revolution DOF around y-axis with parasitic
motion along x direction.

The mobility analysis of 3-PUU in an arbitrary configuration is also conducted. Since it’s
difficult to analytically express the reciprocal screws of $r

limbi−global, (i = 1, 2, 3) in Eq. (4),

i.e., $ = (U3
i=1$r

limbi−global)
r , a Matlab program for realizing following functions is coded and

implemented:

(i) Transform the issue of solving the reciprocal screws of $r
limbi−global, (i = 1, 2, 3) to the problem

of solving an underdetermined system of equations, and then calculate $ with corresponding
algorithms in the latter field.

(ii) Produce the reduced row echelon form of the determinant of $, and the rank of it is equal to the
DOFs number of this mechanism.

(iii) Judge the DOFs’ type and direction based on the reduced row echelon form in ii.
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Fig. 3. General DOF properties of the 3-PUU mechanisms over its reachable workspace.

Due to the fact that $a = (0, 0, 0; 0, 0, 1) is always reciprocal with $r
limbi−global, (i = 1, 2 , 3)

in Eq. (4), which means an independent translational DOF along z direction, we just need ascertain
the other two DOFs’ properties at an given z displacement. Let the X and Y rotational angles vary
from −π

2 to π
2 , and the input actuated displacement ranges within [−300 mm, 300 mm] . The DOFs

properties of the 3-PUU mechanism over its reachable workspace are illustrated with Fig. 3, where
2R1T denotes a rotational DOF around x-axis, a rotational DOF around y-axis, and a translational
DOF along z direction. Obviously, although the configuration varies, the DOF properties remain
unchanged over the workspace. Hence, from the perspective of mobility, the 3-PUU mechanism
generally meets the requirement of a machine tool head.

3. Kinematics Analysis
Kinematics analysis includes inverse kinematics analysis and forward kinematic analysis. The inverse
position kinematics solves the input actuated variables h = [h1, h2, h3]T from a given output position
and orientation, which is x = [Mz, ψ, θ]T for the ZXY Euler angle convention. In contrast, the forward
position kinematics solves the output position and orientation x of the moving platform with given
actuated input h. Inverse kinematics analysis is the base for all further study of a mechanism.

3.1. Parasitic motion
For those mechanisms with parasitic motions, the key step for their inverse kinematics analysis is to
carry out the expression of its parasitic motion according to the geometrical constraints.

Equation (1) can be expressed as

⎧⎪⎨
⎪⎩

A
oxy

1 B
oxy

1 //B
oxy

1 Moxy

A
oxy

2 B
oxy

2 //B
oxy

2 Moxy

A
oxy

3 B
oxy

3 //B
oxy

3 Moxy

. (7)

Assuming that the x and y coordinates of point X
oxy

i are expressed as X
oxy

i (1) and X
oxy

i (2), Eq.
(7) can be transformed to algebraic form:

⎧⎪⎨
⎪⎩

(
A

oxy

1 (2) − B
oxy

1 (2)
) (

B
oxy

1 (1) − Moxy (1)
) = (

A
oxy

1 (1) − B
oxy

1 (1)
) (

B
oxy

1 (2) − Moxy (2)
)

(
A

oxy

2 (2) − B
oxy

2 (2)
) (

B
oxy

2 (1) − Moxy (1)
) = (

A
oxy

2 (1) − B
oxy

2 (1)
) (

B
oxy

2 (2) − Moxy (2)
)

(
A

oxy

3 (2) − B
oxy

3 (2)
) (

B
oxy

3 (1) − Moxy (1)
) = (

A
oxy

3 (1) − B
oxy

3 (1)
) (

B
oxy

3 (2) − Moxy (2)
) . (8)
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According to Fig. 2(b),

⎧⎪⎨
⎪⎩

Pi (1) = A
oxy

i (1) = R cos
(

2i
3 π

)
Pi (2) = A

oxy

i (2) = R sin
(

2i
3 π

)
Pi (3) = A

oxy

i (3) = 0

, i = 1, 2, 3. (9)

As depicted in Fig. 2(a), the position vector of points Ai and points Bi with respect to frame O

and frame M can be written as AO
i and BM

i , respectively, where a superscript indicates the coordinate
frame with respect to which a vector is defined. For brevity, the superscript will always be omitted
whenever the coordinate frame is the fixed frame, e.g., BO

i = Bi . Thus, there is

Bi = M + RO
M (θ, ψ, φ) · BM

i , i = 1, 2, 3, (10)

where the rotation matrix between the moving frame and the fixed frame

RO
M (θ, ψ, φ) = Ry (θ) Rx (ψ) Rz (φ)

=
⎡
⎣ cθcφ + sψsθsφ −cθsφ + sψsθcφ

cψsφ cψcφ

cψsθ

−sψ

−sθcφ + sψcθsφ sθsφ + sψcθcφ cψcθ

⎤
⎦ ,

(11)

and

⎧⎪⎨
⎪⎩

BM
i (1) = r cos

(
2i
3 π

)
BM

i (2) = r sin
(

2i
3 π

)
BM

i (3) = 0

, i = 1, 2, 3. (12)

For i = 1, substituting Eqs. (11) and (12) into Eq. (10), it yields

{
B

oxy

1 (1) = M (1) + (cθcφ + sψsθsφ) r cos
(

2
3π

) + (−cθsφ + sψsθcφ) r sin
(

2
3π

)
B

oxy

1 (2) = M (2) + (cψsφ) r cos
(

2
3π

) + (cψcφ) r sin
(

2
3π

)
.

(13)

Let

{
M1 = (cθcφ + sψsθsφ) r cos

(
2
3π

) + (−cθsφ + sψsθcφ) r sin
(

2
3π

)
N1 = (cψsφ) r cos

(
2
3π

) + (cψcφ) r sin
(

2
3π

) , (14)

and then substituting Eqs. (14) and (13) into Eq. (8), we get

(
A

oxy

1 (2) − M (2) − N1
)
M1 = (

A
oxy

1 (1) − M (1) − M1
)
N1,

which can be simplified further as

(
A

oxy

1 (2) − M (2)
)
M1 = (

A
oxy

1 (1) − M (1)
)
N1. (15a)

A similar process can also be executed for A
oxy

2 , A
oxy

3 , B
oxy

2 and B
oxy

3 , and yields

(
A

oxy

2 (2) − M (2)
)
M2 = (

A
oxy

2 (1) − M (1)
)
N2, (15b)

(
A

oxy

3 (2) − M (2)
)
M3 = (

A
oxy

3 (1) − M (1)
)
N3, (15c)
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where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M2 = (cθcφ + sψsθsφ) r cos
(

4
3π

) + (−cθsφ + sψsθcφ) r sin
(

4
3π

)
N2 = (cψsφ) r cos

(
4
3π

) + (cψcφ) r sin
(

4
3π

)
M3 = (cθcφ + sψsθsφ) r

N3 = (cψsφ) r

. (16)

Let ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S = cθcφ + sψsθsφ

T = −cθsφ + sψsθcφ

U = cψsφ

V = cψcφ

, (17)

and then Eqs. (14) and (16) can be transformed to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1 = S · r cos
(

2
3π

) + T · r sin
(

2
3π

)
N1 = U · r cos

(
2
3π

) + V · r sin
(

2
3π

)
M2 = S · r cos

(
4
3π

) + T · r sin
(

4
3π

)
N2 = U · r cos

(
4
3π

) + V · r sin
(

4
3π

)
M3 = S · r

N3 = U · r

. (18)

Thus, Eqs. (15a)–(15c) can be rewritten as

(
A

oxy

1 (2) − M (2)
) (

S · r cos
(

2
3π

) + T · r sin
(

2
3π

))
= (

A
oxy

1 (1) − M (1)
) (

U · r cos
(

2
3π

) + V · r sin
(

2
3π

)) (19a)

(
A

oxy

2 (2) − M (2)
) (

S · r cos
(

4
3π

) + T · r sin
(

4
3π

))
= (

A
oxy

2 (1) − M (1)
) (

U · r cos
(

4
3π

) + V · r sin
(

4
3π

)) (19b)

(
A

oxy

3 (2) − M (2)
)
S · r = (

A
oxy

3 (1) − M (1)
)
U · r. (19c)

We take M(1) and M(2) as two unknown variables here, they can be analytically expressed by
considering the formulas (19a) and (19b):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M (1) = (I − H ) · T · sin
(

2
3π

) + (J − K) · S · cos
(

2
3π

)
2r · (U · T − V · S) · cos

(
2
3π

)
sin

(
2
3π

)
M (2) = (H − I ) · V · sin

(
2
3π

) + (K − J ) · U · cos
(

2
3π

)
2r · (V · S − U · T ) · cos

(
2
3π

)
sin

(
2
3π

) , (20)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H = A
oxy

1 (2) M1 + A
oxy

2 (2) M2

I = A
oxy

1 (1) N1 + A
oxy

2 (1) N2

J = A
oxy

1 (2) M1 − A
oxy

2 (2) M2

K = A
oxy

1 (1) N1 − A
oxy

2 (1) N2

. (21)
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Equation (20) is the analytical expression of two translation parasitic motions, which is dependent
on the unknown variable φ . Substituting Eq. (9) into Eq. (19c), we achieve

(0 − M (2)) · S = (R − M (1)) · U. (22)

We further substitute Eq. (20) into Eq. (22), and get

(
(I − H ) · T · sin

(
2
3 π

) + (J − K) · S · cos
(

2
3 π

)) · U + (
(H − I ) · V · sin

(
2
3 π

) + (K − J ) · U · cos
(

2
3 π

)) · S

2r · (U · T − V · S) · cos
(

2
3 π

)
sin

(
2
3 π

) = R · U,

which can also be expressed as

(I − H ) · sin
(

2
3π

) · (T · U − V · S)

2r · (U · T − V · S) · cos
(

2
3π

)
sin

(
2
3π

) = R · U,

which can be further simplified as

I − H

2r · cos
(

2
3π

) = R · U,

that is,

I − H = 2R · r · U · cos

(
2

3
π

)
. (23)

Substituting Eqs. (9), (18) and (21) into Eq. (23), we obtain the following results after finishing:

2R · r ·
(

U · cos2

(
2π

3

)
− T · sin2

(
2π

3

))
= 2R · r · U · cos

(
2

3
π

)
,

which can be simplified as

1

4
U − 3

4
T = −1

2
U,

that is,

U = T . (24)

Considering Eq. (17), (24) can be expressed as

cψsφ = −cθsφ + sψsθcφ, (25)

which combined with s2φ + c2φ = 1 can be used to solve φ :

φ = asin

(
sin ψ sin θ

cos ψ cos θ + 1

)
. (26)

Since parasitic motions M(1) and M(2) in Eq. (20) depend on φ, now they can be calculated
by substituting Eq. (26) into Eq. (20). Up to now, we have completed the explicit expression of all
three parasitic motion parameters (Mx, My, φ) . Given the orientation range ψ, θ ∈ [−π

3 , π
3 ], and

then the parasitic motion of 3-PUU mechanism can be achieved according to Eqs. (20) and (26). The
mapping relationships between Mx, My, φ and ψ, θ are, respectively, presented in Fig. 4 (a)–(c), all
of which are saddle surfaces. Both the maximum and the minimum magnitudes of all three parasitic
motions happen at four end-point (−π

3 , −π
3 ), (−π

3 , π
3 ), (π

3 , −π
3 ) and (π

3 , π
3 ), which represent

four extreme configurations, the mechanism reaches at four different directions. Obviously, the higher
ψ and θ the greater parasitic motion.
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Fig. 4. The relationship between parasitic motions Mx, My, � and ψ, θ . (a) Mx . (b) My . (c) �.

3.2. Inverse kinematics problem
Referring to Fig. 2(a), the position vector pointing from O to Bi can be written in the vector loop
form:

Bi = M + bi = P i + hiez + LLie, i = 1, 2, 3, (27)

where bi = RO
M · BM

i , P i is expressed in Eq. (9), ez = [0 0 1]T , Lie is the unit vector directing along−−→
AiBi , for i = 1, 2, 3.

Equation (27) can be transformed to algebraic form:

|Ai − Bi |= |P i + hiez − Bi | = L, i = 1, 2, 3. (28)

Thus, h = [h1, h2, h3] can be resolved from Eq. (28) as follows:

hi = Bi (3) −
√

L2 − (Pi (1) − Bi (1))2 − (Pi (2) − Bi (2))2, i = 1, 2, 3, (29)

where Pi(j ) and Bi(j ), respectively, denote the j th components of Pi and Bi in Eqs. (9) and (10).
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In addition, according to the geometry relationship illustrated in Fig. 2(b), αi and θi described in
Figs. 1(b) and 2(b) can be expressed as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αi = acos

(√
(Bi (1) − Ai (1))2 + (Bi (2) − Ai (2))2

L

)

θi = atan

(
Bi (2) − Ai (2)

Bi (1) − Ai (1)

) , i = 1, 2, 3. (30)

3.3. Forward kinematics problem
The Jacobian matrix is the key for forward position kinematics analysis, and it represents the
mapping relationship between the output velocity and the input velocity. The three independent output
variables are ẋ = [Ṁz, ψ̇, θ̇]T .

Differentiating both sides of Eq. (27) with respect to time yields

vM + ωM × bi = ḣiez + Lωi × Lie, i = 1, 2, 3, (31)

where vM = [ ṗx ṗy ṗz ]T and ωM = [ψ̇ θ̇ φ̇]T denote the spatial linear velocity and angular velocity
of the moving platform, respectively, ḣi represents the velocity of the ith prismatic joint, and ωi

represents the spatial angular velocity of link AiBi .
To eliminate the passive variable ωi , we dot-multiply both sides of Eq. (31) with Lie, which

produces

Lie · vM + Lie · ωM × bi = ḣi Lie · ez, i = 1, 2, 3. (32)

Based on vector geometry knowledge in mathematics, it’s easy to rewrite Eq. (32) as

Lie · vM + (bi × Lie) · ωM = ḣi Lie · ez, i = 1, 2, 3. (33)

Let Ẋ = [vM ωM ]T and ḣ = [ḣ1, ḣ2, ḣ3]T be the generalized velocities of the moving platform
and the actuated prismatic joints. Then, an equivalent matrix form of Eq. (33) can be obtained as

Jx · Ẋ = Jh · ḣ, (34)

where

Jx =

⎡
⎢⎢⎣

LT
1e (b1 × L1e)T

LT
2e (b2 × L2e)T

LT
3e (b3 × L3e)T

⎤
⎥⎥⎦ , (35)

and

Jh =
⎡
⎣ L1e · ez 0

0 L2e · ez

0

0
0 0 L3e · ez

⎤
⎦ , (36)

when the manipulator is away from singularities, we have

ḣ = Ja · Ẋ, (37)

where Ja = J−1
h · Jx is a 3 × 6 matrix, and Eq. (37) represents the inverse velocity kinematics

solution for 3-PUU PKM.
As we mentioned before, there are only three independent variables in Ẋ , namely, ẋ = [Ṁz, ψ̇, θ̇]T .

And when the manipulator’s configuration is away from singularity, we can transform Ẋ to ẋ, with

https://doi.org/10.1017/S0263574716000692 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574716000692


Kinematics and inverse dynamics analysis 2029

following formula:

Ẋ = J r · ẋ, (38)

where

J r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Mx

∂Mz

∂Mx

∂ψ
∂My

∂Mz

∂My

∂ψ

1 0

∂Mx

∂θ
∂My

∂θ

0
0 1

0 0

∂φ

∂Mz

∂φ

∂ψ

0

1

∂φ

∂θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (39)

relative partial differentials in J r can be deduced from Eqs. (20) and (26).
According to Eqs. (37) and (38), we gain

ḣ = J · ẋ, (40)

wherein J is the 3 × 3 Jacobian matrix reflecting the relationship between input and output velocities
of a 3-PUU PKM, and it can be written as

J = Ja · J r . (41)

Like most of the research in this field, the classical Newton iterative method is adopted here. The
mathematical expression of the PKM system is

f (x) = h (x) − hgiven = 0, (42)

where x = [Mz, ψ, θ]T , h(x) is the input referring to x and hgiven is the required actuated inputs
given in advance.

Let xn = [xn
1 , xn

2 , xn
3 ], and then the Newton iterative process is given as

xk+1 = xk −
[

∂f
(
xk

)
∂x

]−1

f
(
xk

)
. (43)

It is easy to know that ∂f (xk)
∂x = J(xk). Thus, Eq. (43) can be rewritten as

xk+1 = xk − [
J

(
xk

)]−1 [
h

(
xk

) − hgiven
]
. (44)

The iteration can be start with an initial output x0, and end when error = max(|h(x) − hgiven|) ≤ ε,
where ε = 10−3 mm is a specified tolerance.

4. Inverse Dynamics Analysis
Inverse dynamics solve the input actuated forces f = [f1, f2, f3]T from a given motion path of the
moving platform, which can usually be expressed as the function of three output variables and time.
The inverse position, velocity and acceleration kinematics are the bases for inverse dynamics analysis.
Generally, designers of a mechanism hope to reduce its actuated forces as much as possible, which
means that motors with lower performance level are enough.
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4.1. Dynamics parameters
The masses of the moving platform, the slider and the links of the 3-PUU PKM shown in Fig. 1 are
mp = 1.0 kg, ms = 0.2 kg and ml = 0.2 kg, respectively. For simplification,9 the rotational inertias
of three links are neglected. The mass of every link is divided into two portions, and imposed on their
two extremities, i.e., half to the slider and half to the moving platform. Thus, the equivalent mass of
the slider and the moving platform respectively are

m̂s = ms + 0.5ml and m̂p = mp + 0.5ml.

The inertial matrix of the moving platform with respect to the fixed frame can be expressed as

Ip = RO
P I ′

P

(
RO

P

)T
, (45)

where I ′
P represents the inertial matrix of the moving platform under frame M , and can be written as

I ′
P = m̂p

⎡
⎢⎣

r2/4 0

0 r2/4

0

0
0 0 r2/4

⎤
⎥⎦ .

4.2. T-T angle convention
Bonev31 previously investigated the relationship between different kinds of Euler angles and the
Tilt-and-Torsion (T-T) angles in detail. Bonev pointed out that the 3-[PP]S mechanism is a class of
3-DOF spatial parallel mechanism with zero-Torsion, i.e., the orientation of its moving platform can
be described with only two variables, the azimuth angle α and the tilt angle β . Thus, it is usually
more concise and more efficient to utilize the T-T angle, rather than the widely-used Euler angles, to
solve kinematics and dynamics problems of a 3-[PP]S mechanism. Thus, the T-T angle convention is
introduced here. The rotation matrix for the T-T angle convention is given as

T T RO
P (α, β, 0) = Rz (α) Ry (β) Rz (−α) Rz (0)

=
⎡
⎣ c2αcβ + s2α sαcα (cβ − 1)

sαcα (cβ − 1) s2αcβ + c2α

cαsβ

sαsβ

−cαsβ −sαsβ cβ

⎤
⎦ .

(46)

According to Eqs. (11) and (46), T-T angles can be transformed to ZXY Euler angles via the following
formulas:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ = a sin (−sαsβ)

θ = a sin

(
cαsβ

cψ

)

φ = a tan

(
sψsθ

cψ + cθ

) . (47)

Through computation, φ solved from parasitic motion Eq. (26) and φ obtained from transformation
Eq. (47) can be treated as the same one. Thus, we can come to the conclusion that the 3-PUU
mechanism proposed in this paper is also a mechanism with zero-torsion, and it can be analyzed with
the T-T angle.

The geometrical effects of ẋt t = [Ṁz, α̇, β̇]T and ẋ = [Ṁz, ψ̇, θ̇]T on 3-PUU PKM’s configuration
are the same, corresponding mapping formula between them can be expressed as

ẋ = J t · ẋt t , (48)
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where

J t =

⎡
⎢⎢⎢⎢⎢⎣

∂Mz

∂Mz

∂Mz

∂α
∂ψ

∂Mz

∂ψ

∂α

∂Mz

∂β
∂ψ

∂β
∂θ

∂Mz

∂θ

∂α

∂θ

∂β

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

0
∂ψ

∂α

∂ψ

∂β

0
∂θ

∂α

∂θ

∂β

⎤
⎥⎥⎥⎥⎥⎦ , (49)

the partial differentials between ψ, θ and α, β can be obtained from Eq. (47).
In view of Eqs. (40) and (48), we can get

ḣ = J t t · ẋt t , (50)

where J t t = J · J t is the 3 × 3 Jacobian matrix that reflects the relation between input and output
velocities of a 3-PUU PKM, under the T-T angle convention.

4.3. The Principle of Virtual Work
Assume the virtual input displacement vector of three actuators referring to the actuator force vector
f is δh = [δh1, δh2, δh3]T , and the corresponding virtual output displacement vector is δxt t =
[δMz, δα, δβ]T . Then, according to the Principle of Virtual Work, we can obtain the following
equation: (

f T + GT
s − f T

s

)
δh + (

FT
e + GT

p − f T
p

)
δxt t = 0, (51)

where Gs = m̂sg[1 1 1]T denotes the gravity force of the sliders, f s = m̂s[ḧ1 ḧ2 ḧ3]T is the inertial
force of three sliders, FT

e = [Fz Tx Ty]T represents the external forces and torques exerted on the
moving platform, GT

p = [m̂pg 0 0]T is the gravitational force of the moving platform.
In addition, the inertial force vector of the moving platform can be expressed as

f p = Mp ẍt t , (52)

where Mp = [
m̂p 0

0 Îxy

], and Îxy denotes the top-left 2 × 2 sub-matrix of inertial matrix Ip .

Differentiating both sides of Eq. (50) yields

ḧ = J̇ t t · ẋt t + J t t · ẍt t , (53)

which is the corresponding inverse acceleration kinematics solution for the mechanism.
From Eq. (50), it’s easy to obtain

δxt t = J−1
t t · δh. (54)

Substituting Eq. (54) into Eq. (51) produces(
f T + GT

s − f T
s + FT

e · J−1
t t + GT

p · J−1
t t − f T

p · J−1
t t

)
δh = 0. (55)

Therefore,

f T + GT
s − f T

s + FT
e · J−1

t t + GT
p · J−1

t t − f T
p · J−1

t t = 0. (56)

Assume there are no external forces and torques, i.e., FT
e = 0 . By substituting Eq. (52) into Eq.

(56) and taking the transpose of it, we can get

f = −Gs + f s − (
J−1

t t

)T · Gp + (
J−1

t t

)T
Mp Ẍ, (57)

which is the inverse dynamics solution of a 3-PUU mechanism produced by the Principle of Virtual
Work. Notably, the Jacobian matrix utilized here is not limited to J t t and can be J described in Eq.
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Fig. 5. Displacement, velocity, acceleration and actuated force of three actuators for 3-PUU mechanism.

(41). The T-T angle has been selected as it will be more convenient when expressing the helical path
in the next subsection.

4.4. Dynamic simulation
Line path and circle path are the two most typical path types used in robot simulation research. Helical
path combines them together, and it could reflect the dynamical features of a PKM very well. Thus,
the helical path is widely used in dynamics analysis of PKMs.1,2,9 Here, we let the moving platform
track a helical path with the radius rhelical = 20 mm, the pitch hhelical = 10 mm, the angular frequency
η = π

5 rad/s and T = 10 s. The equation of the helical path with respect to the fixed frame is given
as follows: ⎧⎪⎨

⎪⎩
x = rhelical · sin (ηt)

y = rhelical · cos (ηt)

z = z0 + hhelical · t

, (58)

where the starting height z0 = 460 mm.
A helical trajectory is hard to explicitly express with the ZXY Euler angle, whereas it is rather easy

to be fulfilled with the T-T angle. Taking Eqs. (20), (47) and (58) into comprehensive consideration,
we obtain ⎧⎪⎨

⎪⎩
α = − 1

2ηt + π
2

β = cos−1
(
1 − 2rhelical

r

)
Mz = z0 + hhelical · t

, (59)

which is the analytical expression of the helical path under the T-T angle convention.
Based on Eqs. (29), (50), (53), (57) and (59), corresponding displacement, velocity, acceleration

and actuated force of three actuators are calculated and depicted in Fig. 5.
The above helical path described by Eq. (59) is also tracked by a 3-PRS mechanism with the same

architectural size and dynamical parameters, corresponding results are illustrated in Fig. 6. Notably,
because the parasitic motion expression of 3-PRS and 3-PUU are different, the real helical paths
tracked by them actually aren’t the same one. To ensure that the two dynamics analysis results are
more comparable in terms of dynamics features, we consciously hope the helical path tracked by the
two mechanisms can be as close as possible.
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Fig. 6. Displacement, velocity, acceleration and actuated force of three actuators for 3-PRS mechanism.

By comparing Figs. 5 and 6, we can see that in this limiting case, there are only minor differences
between these two mechanisms in terms of actuated displacement and velocity. This is mainly due
to the fact that the ratio between rhelical, hhelical and R are very small, i.e., 1

20 and 1
40 . Plus 3-PRS

and 3-PUU share a similar layout structure, their displacement and velocity are almost identical. But
after differential, obvious distinction starts to appear at the acceleration and actuator force simulation,
where the maximum absolute value of actuator forces of 3-PUU is 13.09 N and that of 3-PRS is
10.04 N .

After acquiring displacement and force information, we can roughly calculate the actuated work
with the numerical integration method:

W =
3∑

i=1

n∑
j=2

(
F

j

i + F
j−1
i

) (
d

j

i − d
j−1
i

)
/2, (60)

where F
j

i denotes the actuated force of the ith limb at the j th integral step, and d
j

i denotes the
actuated displacement of the ith limb at the j th integral step, n represents the whole integral steps
number.

With Eq. (60), we are able to solve the actuated work provided by these two mechanisms while
accomplishing helical path tracking. Interestingly, the two actuated work values are almost the
same: 3-PUU costs 21.559997 J and 3-PRS costs 21.560005 J. The moving platforms of the two
mechanisms own the same dynamical parameters and track the same path, thus the output work of
the two mechanisms are also the same. With the same input work value and output work value, it’s
not hard to see that 3-PUU has the same energy transformation efficiency level as the widely-used
3-PRS mechanism.

In sum, although the maximum actuator force of 3-PUU in the example is about 30% higher
than that of 3-PRS, 3-PUU share the same dynamics features as the 3-PRS in terms of energy
transformation efficiency. Thus, from a dynamics perspective, the 3-PUU mechanism is undoubtedly
suitable to be utilized as a machine tool head.

5. Conclusions
In this paper, we propose a parallel mechanism with 3-PUU structure. A detailed discussion about
its architecture and geometry indicates that when projecting the 3-PUU scheme onto the Oxy plane,
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the projection of three linkages perpetually intersect at the projection of M point. On the basis of
geometrical constraints, the parasitic motion of the moving platform is derived and explicitly expressed
with the ZXY Euler angle convention. Then, the IKP, the Jacobian matrix calculation, and the FKP
are investigated. Finally, with a simplified dynamics model, inverse dynamics analysis is carried
out based on the Principle of Virtual Work, which illustrates that the 3-PUU mechanism has good
dynamics features. In contrast, although the maximum actuator force of 3-PUU is about 30% higher
than that of 3-PRS, 3-PUU share the same dynamics features of 3-PRS from the energy consumption
perspective. These analyses in this paper validate the feasibility of applying this mechanism as a tool
head module.
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