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Abstract

We give a dynamic extension result of the (static) notion of a deviation measure. We
also study distribution-invariant deviation measures and show that the only dynamic
deviation measure which is law invariant and recursive is the variance.
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1. Introduction

The traditional way of thinking about risk, playing a crucial role in most fields involved with
probabilities, is to measure risk as the deviation of the random outcomes from the longtime
average, i.e. to measure risk for instance as the variance or the standard deviation involved.
This is in particular the case for portfolio choice theory, where most of the finance literature
simply describes portfolio selection as the choice between return (mean) and risk (variance).
For stock prices in a continuous-time setting risk is also often identified with volatility, i.e. as
the local standard deviation on an incremental time unit.

However, variance penalizes positive deviations from the mean in the same way as negative
deviations, which in many contexts is not suitable. Furthermore, computing the variance or
the standard deviation is mainly justified by its nice analytical, computational, and statistical
properties, but is an ad hoc procedure and it is not clear whether better methods could be used.
To overcome these shortfalls, Rockafellar et al. (2002) developed a general axiomatic frame-
work for static deviation measures; see also, among many others, Rockafellar et al. (2006).
This work was inspired by the axiomatic construction of coherent and convex risk measures
given in Artzner et al. (1999), (2000), Föllmer and Schied (2002), and Frittelli and Rosazza
Gianin (2002). Coherent or convex risk measures describe the minimal capital reserves a finan-
cial institution should hold in order to be ‘safe’. As Artzner et al. (2000) gave an axiomatic
characterization of capital reserves, these works give an axiomatic framework for deviation
measures.

This theory of generalized deviation measures can be extended to a dynamic setting using
the conditional variance formula (see Pistorius and Stadje (2017)) in the same spirit as convex
risk measures have been extended to a dynamic setting using the tower property. For the latter,
see, for instance, Artzner et al. (2004), Cheridito et al. (2006), Klöppel and Schweizer (2007),
Delbaen et al. (2010), Pelsser and Stadje (2014), and Elliott et al. (2015).

For many risk-measure-like operators an important feature is distribution invariance. This is
a convenient property as it enables the agent to focus only on the end distribution of the payoff,
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which is often known explicitly or can be simulated through Monte Carlo methods. There are
many distribution-invariant static deviation measures, but it is a priori not clear if, apart from
variance, there are other dynamic deviation measures belonging to this class. For distribution-
invariant convex risk measures, Kupper and Schachermayer (2009) showed, building on results
of Gerber (1974), that the so-called entropic risk measures are essentially the only convex risk
measures satisfying the tower property; see also Goovaerts and De Vylder (1979) and Kaluszka
and Krzeszowiec (2013). The entropic risk measure arises as the negative certainty equivalent
of a decision maker with an exponential utility function; see, for instance, Föllmer and Schied
(2002). The contribution of this paper is twofold: first we show how a static deviation measure
can be extended dynamically, and second we study distribution-invariant deviation measures
and show that the only dynamic deviation measure which is law invariant and recursive is
the variance. Interestingly, it is also known in other contexts that there is a close relationship
between the variance and the entropic risk measure (or equivalently the use of an exponential
utility function). For instance, it is well known in the economics literature that the mean-
variance principle can be seen as a second-order Taylor approximation to the entropic risk
measure. Furthermore, both induce preferences which are invariant under shifts of wealth and
lead to the same optimal portfolios under normality assumptions. Moreover, it has been shown,
for instance by Pelsser and Stadje (2014), that in a Brownian filtration applying mean-variance
recursively over an infinitesimal small time interval is equivalent to applying the entropic risk
measure recursively over an infinitesimal small time interval. This paper adds to these results,
showing that the entropic risk measure and the variance are the only distribution-invariant risk
measures which naturally extend to continuous time under dynamic consistency conditions.

The paper is structured as follows. Section 2 introduces the setting and the basic concepts
and definitions. It also shows under which specific conditions a static deviation measure gives
rise to a (consistent) dynamic deviation measure. Section 3 analyzes distribution-invariant
dynamic deviation measures.

2. Setting

Formally, we consider from now on a filtered, completed, right-continuous probability space
(�,F , (Ft)t∈[0,T], P), where T > 0 and F0 is the trivial σ -algebra. Throughout the text, equal-
ities and inequalities between random variables are meant to hold P-almost surely (a.s.); two
random variables are identified if they are equal P-a.s. For t ∈ [0, T], we define L2(Ft) as
the space of Ft-measurable random variables X such that E

[
X2
]
< ∞. L2+(Ft), L∞(Ft), and

L∞+ (Ft) denote the subsets of non-negative, bounded, and non-negative bounded elements in
L2(Ft), respectively.

2.1. (Conditional) deviation measures

Dynamic deviation measures are given in terms of conditional deviation measures, which
are in turn conditional versions of the notion of a (static) deviation measure as in Rockafellar
et al. (2006), which we describe next. Consider the (risky) positions described by elements in
L2(Ft).

Definition 1. For any given t ∈ [0, T], Dt : L2(FT ) → L2+(Ft) is called an Ft-conditional gen-
eralized deviation measure if it is normalized (Dt(0) = 0) and the following properties are
satisfied:

(D1) Translation invariance: Dt(X + m) = Dt(X) for any m ∈ L∞(Ft) and X ∈ L2(FT ).
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(D2) Positivity: Dt(X) ≥ 0 for any X ∈ L2(FT ), and Dt(X) = 0 if and only if X is Ft-
measurable.

(D3′) Subadditivity: Dt(X + Y) ≤ Dt(X) + Dt(Y) for any X, Y ∈ L2(FT ).

(D4′) Positive homogeneity: Dt(λX) = λDt(X) for any X ∈ L2(FT ) and λ ∈ L∞+ (Ft).

D0 is a deviation measure in the sense of Definition 1 in Rockafellar et al. (2006). It is well
known that if (D4′) holds, (D3′) is equivalent to

(D3) Convexity: For any X, Y ∈ L2(FT ) and any λ ∈ L∞(Ft) that satisfies 0 ≤ λ ≤ 1,

Dt(λX + (1 − λ)Y) ≤ λDt(X) + (1 − λ)Dt(Y).

Definition 2. For any given t ∈ [0, T], Dt : L2(FT ) → L2+(Ft) is called an Ft-conditional con-
vex deviation measure if it is normalized (Dt(0) = 0) and satisfies (D1)–(D3) . A deviation
measure D0 : L2(FT ) →R

+
0 is called an unconditional deviation measure if it is normalized

and satisfies (D1)–(D3) for t = 0.

By postulating convexity in the following instead of (D3′) and (D4′) our dynamic theory will
be richer and include more examples. If D0 is an unconditional deviation measure, it is a finite
convex functional and hence satisfies the following continuity condition:

• Continuity: If Xn converges to X in L2(FT ) then D0(X) = limn D0(Xn).

A typical example of a conditional deviation measure satisfying (D1)–(D3) would be to
identify risk with the conditional variance and to define

Dt(X) := Vart(X) =E

[
(X −E [X |Ft])

2 |Ft

]
.

Remark 1. As mentioned in the introduction, the axiomatic development of the theory of devi-
ation measures in Rockafellar et al. (2002), (2006) was inspired by the axiomatic development
of the theory of convex risk measures. Mappings ρt : L2(FT ) → L2(Ft) are a family of dynamic
convex risk measures if the following properties are satisfied:

(R1) Cash risklessness: For all m ∈ L∞(Ft) we have ρt(m) = −m.

(R2) Convexity: For X, Y ∈ L2(FT ), ρt(λX + (1 − λ)Y) ≤ λρt(X) + (1 − λ)ρt(Y) for all λ ∈
L∞(Ft) such that 0 ≤ λ ≤ 1.

(R3) Monotonicity: If X, Y ∈ L2(FT ) and X ≤ Y then ρt(X) ≥ ρt(Y).

(R4) Strong time consistency: If X ∈ L2(FT ) and 0 ≤ s ≤ t ≤ T then ρs(X) = ρs( − ρt(X)).

Monotonicity (R3) is an axiom which does not make sense for deviation measures since, for
instance, Dt(m) = 0 for all constants m. Obviously (R4) implies (R3) if (R1) holds, but for later
discussion it will be useful to list them separately.

Note that (D3) implies that the following two equivalent properties hold for all X ∈ L2(FT )
and A ∈Ft (see Cheridito et al. (2006)):

Dt(IAX1 + IAcX2) = IADt(X1) + IAcDt(X2), (2.1)

Dt(IAX) = IADt(X). (2.2)
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Equation (2.2) is also called the local property. Now, in a theory of risk in a dynamic setting
one needs to specify how the evaluation of risk tomorrow affects the evaluation of risk today.
Intuitively it seems appealing to relate the overall deviation to an expectation of the fluctuations
we expect after tomorrow plus the fluctuations happening until tomorrow. To be precise, we
will postulate the following property:

(D4) Recursive property: For X ∈ L2(FT ), Dt(X) = Dt(E [X |Fs]) +E [Ds(X) |Ft] for all
t, s ∈ [0, T] with t ≤ s.

Obviously, the recursive property corresponds to the conditional variance formula. Axiom
(D4) was used in Pistorius and Stadje (2017).

Definition 3. A family (Dt)t∈[0,T] is called a dynamic deviation measure if Dt, t ∈ [0, T], are
Ft-conditional deviation measures satisfying (D4) .

Remark 2. Given a conditional risk measure ρ, one can define a conditional deviation mea-
sure Dt(X) = Rt(X −E [X |Ft]). Then Dt satisfies (D1)–(D3) . On the other hand, given a
dynamic deviation measure Dt we can define a risk measure ρ̃t by ρ̃t(X) = Dt(X) −E [X |Ft].
Note that ρ̃ satisfies (R1) and (R2) , but it does not necessarily satisfy (R3) (monotonic-
ity). Denote ess inftX := ess sup{Y is Ft-measurable | Y ≤ X}. One can show, as in Theorem
1 in Rockafellar et al. (2002), that if, additionally, the condition Dt(X) ≤E [X |Ft] − ess inftX
holds for any payoff X then ρ̃ satisfies monotonicity. Therefore, there is a one-to-one relation-
ship between conditional deviation measures satisfying the above condition and conditional
convex risk measures. It should be noted that mean-variance does not satisfy the monotonicity
property (R3) . Therefore, in general dynamic deviation measures satisfying (D1)–(D4) do not
satisfy monotonicity as well. In particular, they do not satisfy the inequality above and thus do
not induce convex or coherent risk measures. Finally, we remark that ρ̃ satisfying strong time
consistency (R4) does not correspond to D satisfying (D4) . In fact, these are fundamentally
different recursions which are mutually exclusive, see also Pistorius and Stadje (2017).

In the following we start with an unconditional deviation measure D0 which induces a
dynamic deviation measure (Dt)t∈[0,T]. We make the following two assumptions:

(A1) D0(X) = D0(E [X |Ft]) + D0(X −E [X |Ft]) for all X ∈ L2(FT ) and t ∈ [0, T].

(A2) For any X ∈ L2(FT ) and any t ∈ [0, T] there exists an Ft-measurable, square integrable
random variable, say Dt(X), such that, for all A ∈Ft,

D0(IAX) − D0(IAE [X |Ft]) =E [IADt(X)] . (2.3)

In particular, for any X ∈ L2(FT ),

D0(X) = D0(E [X |Ft]) +E [Dt(X)] . (2.4)

Theorem 1. Dt(X) is unique (up to an a.s. modification) if (A2) holds. Furthermore D0 satisfies
(D1)–(D3) (for t = 0) and (A1) and (A2) if and only if the corresponding family (Dt(X))t∈[0,T]
is a dynamic deviation measure.

Proof. That Dt(X) is uniquely defined is seen as follows. Suppose that besides Dt(X) there
exists another square integrable Ft-measurable random variable D′

t(X) satisfying (A2) for all
A ∈Ft. Fix X and denote the Ft-measurable set A′ by A′ := {D′

t(X) > Dt(X)}. If we assume that
A′ has non-zero measure then, by (A2) ,

E
[
IA′Dt(X)

]= D0(IA′X) − D0(E
[
IA′X |Ft

]
) =E

[
IA′D′

t(X)
]
,
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which is a contradiction to the definition of the set A′. That the set {D′
t(X) < Dt(X)} must have

measure zero as well is seen similarly. That D0 satisfies (D1) –(D3) and (A2) if (Dt(X))t∈[0,T]
is a dynamic deviation measure is straightforward to see. To see that (A1) also holds, assume
first that X ∈ L∞(FT ). Then, by (D4) and (D1) , D0(X −E [X |Ft]) =E [Dt(X −E [X |Ft])] =
E [Dt(X)]. From (D4) we can then conclude that (A1) holds for bounded random variables. For
general X ∈ L2(FT ) we can find bounded Xn converging to X in L2 and obtain

D0(X) = lim
n

D0(Xn)

= lim
n

{D0(E [Xn |Ft]) + D0(Xn −E [Xn |Ft])}
= D0(E [X |Ft]) + D0(X −E [X |Ft]),

where we used the continuity of D0 in the first and last equations. In the second equation we
used that we have already shown that (A1) holds for bounded random variables.

Next, let us show that if D0 satisfies (D1)–(D3) (for t = 0) and (A1) and (A2) , the corre-
sponding family (Dt(X))t∈[0,T] is a dynamic deviation measure. First, we will show the local
property Dt(IBX) = IBDt(X) for all B ∈Ft. To see this, note that, by (2.3), for all A ∈Ft,

D0(IA(IBX)) − D0(IAE [IBX |Ft]) = D0(IA∩BX) − D0(IA∩BE [X |Ft])

=E [IA∩BDt(X)] =E [IAIBDt(X)] .

Hence, by the uniqueness of Dt(IBX) shown before, we must have that Dt(IBX) = IBDt(X).
Let us next show (D1) . Comparing (2.4) to property (A1) (replacing X with IAX) we obtain

that D0(IAX −E [IAX |Ft]) =E [Dt(IAX)]. Consequently, for A ∈Ft,

E [IADt(X −E [X |Ft])] =E [Dt(IAX −E [IAX |Ft])]

= D0(IAX −E [IAX |Ft]) =E [Dt(IAX)] =E [IADt(X)] ,

where the second equation follows by (2.4) applied to IAX. Since the above equation holds for
all A ∈Ft, we must have that Dt(X) = Dt(X −E [X |Ft]) a.s. for X ∈ L2(FT ). This yields, for
arbitrary m ∈ L2(Ft), that

Dt(X + m) = Dt(X + m −E [X + m |Ft]) = Dt(X −E [X |Ft]) = Dt(X), (2.5)

showing in particular that Dt satisfies (D1) .
Next, let us show that Dt satisfies (D2) . For any X ∈ L2(FT ) with E [X |Ft] = 0 and A ∈Ft

we have
0 ≤ D0(IAX) =E [Dt(IAX)] =E [IADt(X)] ,

where we used positivity of D0 in the first inequality and (2.4) in the first equality. From
this inequality it follows that the set A = {Dt(X) < 0} must have measure zero, showing that
Dt(X) ≥ 0 if E [X |Ft] = 0. Now, for general X ∈ L2(FT ) we then have, by (D1) (shown before),
that Dt(X) = Dt(X −E [X |Ft]) ≥ 0, showing the first part of (D2) for Dt. To prove the sec-
ond part of positivity for Dt, note that clearly (2.4) directly implies that E [Dt(X)] = 0 if X is
Ft-measurable. As Dt(X) ≥ 0, this entails that Dt(X) = 0. To see that Dt(X) = 0 implies that X
is Ft-measurable, note that

D0(X −E [X |Ft]) =E [Dt(X −E [X |Ft])] =E [Dt(X)] = 0,
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where we used (2.4) in the first equality, (2.5) in the second equality, and the assumption that
Dt(X) = 0 in the third. Using axiom (D2) for D0 we can infer that X −E [X |Ft] is constant.
But this entails that X =E [X |Ft], and thus that X is Ft-measurable.

Next, let us show that Dt satisfies (D3) . Let X, Y ∈ L2(FT ), and let us first assume that X
and Y both have conditional expectation equal to zero. Then, for any A ∈Ft,

E [IADt(λX + (1 − λ)Y)] =E [Dt(λIAX + (1 − λ)IAY)]

= D0(λIAX + (1 − λ)IAY)

≤ λD0(IAX) + (1 − λ)D0(IAY)

= λE [Dt(IAX)] + (1 − λ)E [Dt(IAY)]

=E [IA(λDt(X) + (1 − λ)Dt(Y))] , (2.6)

where we used the convexity of D0 in the inequality. Set A := {Dt(λX + (1 − λ)Y) > λDt(X) +
(1 − λ)Dt(Y)}, and note that (2.6) implies that A must have measure zero. Hence, Dt is convex
for random variables with conditional expectation zero. To see that Dt is convex for general
X, Y ∈ L2(FT ), note that

Dt(λX + (1 − λ)Y) = Dt(λ(X −E [X |Ft]) + (1 − λ)(Y −E [Y |Ft]))

≤ λDt(X −E [X |Ft]) + (1 − λ)Dt(Y −E [Y |Ft])

= λDt(X) + (1 − λ)Dt(Y),

where the first and the last equations hold by (D1) . This shows that (D3) holds.
Finally, let us show that (Dt(X))t∈[0,T] satisfies (D4) . Specifically, we want to show that

Dt(X) = Dt(E [X |Fs]) +E [Ds(X) |Ft] (2.7)

with s ∈ [t, T]. Equation (2.7) would follow by uniqueness if we could show that the right-hand
side of (2.7) satisfies (2.3) for any A ∈Ft when plugged in for Dt(X). We have

E [IA{Dt(E [X |Fs]) +E [Ds(X) |Ft]}] =E [IADt(E [X |Fs])] +E [IADs(X)]

= D0(IAE [X |Fs]) − D0(IAE [X |Ft])

+ D0(IAX) − D0(IAE [X |Fs])

= D0(IAX) − D0(IAE [X |Ft]),

where the second equation holds by (2.3) applied to the random variable E [X |Fs] at time t
and to the random variable X at time s. Hence, (2.7) holds by the uniqueness of property (A2)
for Ft-measurable random variables, and the proof is complete. �

The theorem above and (2.5) yield the following corollary:

Corollary 1. For any dynamic deviation measure (Dt(X)) we have

Dt(X + m) = Dt(X) for m ∈ L2(Ft) and X ∈ L2(FT ).

The proof of the following proposition is analogous to Proposition 2.7 in Pistorius and
Stadje (2017).
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Proposition 1. Let I := {t0, t1, . . . , tn} ⊂ [0, T] be strictly ordered. D = (Dt)t∈I satisfies (D1)–
(D3) and (D4) if and only if, for some collection D̃ = (D̃t)t∈I of conditional deviation measures,
we have

Dt(X) =E

[ ∑
ti∈I:ti≥t

D̃ti

(
E
[
X |Fti+1

]−E
[
X |Fti

]) ∣∣∣Ft

]
, t ∈ I, X ∈ L2(FT ). (2.8)

In particular, a dynamic deviation measure D satisfies (2.8) with D̃ti = Dti , ti ∈ I.

3. Distribution-invariant deviation measures

The next result investigates the question of what happens if we impose, in addition to axioms
(D1)–(D4) , the property of distribution invariance. A dynamic deviation measure D is distribu-
tion invariant if D0(X1) = D0(X2) whenever X1 and X2 have the same distribution. Distribution
invariance is a property which is often not satisfied in a finance context when it comes to eval-
uation and risk analysis. The reason is that the value of a payoff may not only depend on the
nominal discounted value of the payoff itself but also on the whole state of the economy or the
performance of the entire financial market. For instance, in no-arbitrage pricing scenarios are
additionally weighted with a (risk neutral) density so that the value of a certain payoff in a cer-
tain scenario depends not only on the frequency with which the corresponding scenario occurs
but also on the state of the whole economy. Also, in most asset pricing models in finance, not
only the distribution of an asset matters but also its correlation to the whole market portfolio.
However, for deviation measures, distribution invariance is a convenient property as it enables
the agent to focus only on the end distribution of the payoff (which is often known explicitly or
can be simulated through Monte Carlo methods). There are many distribution-invariant static
deviation measures, but it is a priori not clear if, apart from variance, there are other dynamic
deviation measures belonging to this class. The next theorem shows that this is actually not the
case, and that variance is the only dynamic distribution-invariant deviation measure. This result
can also serve as justification for using variance as a dynamic deviation measure. Namely, a
decision maker who believes for a static deviation measure in axioms (D1)–(D3) , (A1) and
(A2) , and distribution invariance, or for a dynamic deviation measure in axioms (D1)–(D4)
and distribution invariance, necessarily has to use variance as a deviation measure. For these
results we will assume that the probability space is rich enough to support a one-dimensional
Brownian motion.

Theorem 2. A deviation measure D0 satisfying (D1)–(D3) and (A1) and (A2) is distribution
invariant if and only if D0 is a positive multiple of the variance, i.e. there exists an α > 0 such
that

D0(X) = αVar(X) for all X ∈ L2(FT ).

For the proof of Theorem 2 we will need the following lemma:

Lemma 1. Suppose that Dt is a family of dynamic distribution-invariant deviation measures
and that Y is independent of Ft. Then Dt(Y) is constant and

Dt(Y) = D0(Y).

Proof. The case t = 0 is trivial, so let us assume that t > 0. Suppose then that Dt(Y) is not
P-a.s. constant. Choose sets A, A′ ∈Ft with P(A) = P(A′) > 0 such that Dt(Y)(ω) > Dt(Y)(ω′)
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for all ω ∈ A, ω′ ∈ A′. Next, note that, by independence, IAY
D∼ IA′Y . However,

D0(IAY) = D0(E [IAY |Ft]) +E [Dt(IAY)]

= D0(IAE [Y |Ft]) +E [IADt(Y)]

= D0(IAE [Y]) +E [IADt(Y)]

< D0(IAE [Y]) +E
[
IA′Dt(Y)

]
= D0(IA′E [Y]) +E

[
IA′Dt(Y)

]
= D0(E

[
IA′Y |Ft

]
) +E

[
Dt(IA′Y)

]= D0(IA′Y),

which is a contradiction to the distribution invariance of D0. So, Dt(Y) is indeed constant.
Finally, by the first part of the proof,

D0(Y) =E [Dt(Y)] + D0(E [Y |Ft])

=E [Dt(Y)] + D0(E [Y]) =E [Dt(Y)] = Dt(Y).

Proof of Theorem 2. Clearly, variance is distribution invariant. To see the other direction,
assume without loss of generality that T = 1. Let us first show that the theorem holds for
X having a normal distribution. Let Z be a standard normally distributed random variable.
Define f (σ ) = D0(σZ) with σ ∈R. By assumption, there exists an adapted Brownian motion,
say (Bt)0≤t≤1. We thus have, for 0 ≤ t ≤ 1,

f (σ
√

t) = D0(
√

tσZ)

= D0(σBt)

=
n−1∑
i=0

E
[
Dti/n(σ�Bt(i+1)/n)

]= n−1∑
i=0

D0(σ�Bt(i+1)/n)

= nD0

(√
tσZ√

n

)
= nf

(√
tσ√
n

)
,

where we set �Bt(i+1)/n := Bt(i+1)/n − Bti/n and used Proposition 1. It follows that f
(√

tσ√
n

)
=

f (
√

tσ )
n . Arguing as before, we also get, for k ∈N with k

n ≤ 1
t ,

f

(√
k

n
tσ

)
= D0(σBkt/n)

=
k−1∑
i=0

E
[
Dti/n(σ�Bt(i+1)/n)

]

= kD0(σBt/n) = kD0

(
σBt√

n

)
= k

n
D0(σBt) = k

n
f (σ

√
t).

By continuity of D0 we have that f is continuous. Therefore, for all 0 ≤ λ ≤ 1
t , f (λσ

√
t) =

λ2f (σ
√

t) for any σ ∈R. Setting, for arbitrary x ∈R, σ = x/
√

t, we get that f (λx) = λ2f (x) for
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all 0 ≤ λ ≤ 1
t with t ∈ [0, 1]. Choosing t arbitrary small, we may conclude that f (λx) = λ2f (x)

for all λ ∈R+. Hence, if we define α := f (1) > 0 we have that

D0(σZ) = D0(|σ |Z) = f (|σ |) = σ 2α = αVar(Z),

where the first equality follows by the distribution invariance of D0.
Next, let us show that, for simple functions of the form X = ∫ 1

0 hiI(s)(ti,ti+1] dBs with hi =∑m
j=1 cjIAj , cj ∈R

d, and disjoint sets Aj ∈Fti for j = 1, . . . , m, we have

D0(X) = αVar(X).

Now,

D0(X) = D0(hti�Bti+1)

=E

[
m∑

j=1

IAjDti

(
cj�Bti+1

)]= α E

[
m∑

j=1

IAjc
2
j (ti+1 − ti)

]
= αVar(X),

where we used (2.1) in the second equation, and Lemma 1 in the third equation to
argue that Dti (cj�Bti+1 ) = D0(cj�Bti+1 ) = c2

j (ti+1 − ti). For X = ∫ 1
0 hiI(s)(ti,ti+1] dBs with gen-

eral hi ∈ L2
d(Fti, P), choose simple functions hn

i converging to hi in L2 and define Xn =(∫ 1
0 hn

i I(s)(ti,ti+1] dBs
)

ti,ti+1
. Using the L2-continuity of D0, we may conclude that

D0(X) = lim
n

D0(Xn) = lim
n

αVar(Xn) = αVar(X).

Next, note that, for simple functions of the form X =∑l
i=1

∫ 1
0 hiI(s)(ti,ti+1]dBs for l ∈N, hi

being Fti-measurable and square integrable, we have

D0(X) =
l∑

i=1

E

[
Dti

(∫ 1

0
hiI(s)(ti,ti+1] dBs

)]

=
l∑

i=1

D0

(∫ 1

0
hiI(s)(ti,ti+1] dBs

)

=
l∑

i=1

αVar

(∫ 1

0
hiI(s)(ti,ti+1] dBs

)
= αVar(X),

where we used Proposition 1. Therefore, D0(X) = αVar(X) for all simple functions X. Using
the L2-continuity of D0 and αVar(X) as before, we get that equality actually holds for all
X ∈ L2(FB

1 ), with FB
1 being the completion of the σ -algebra generated by (Bt)0≤t≤1. Next,

take a general X ∈ L2(F1). Define the uniform [0, 1] distributed random variable U = FB1 (B1),

where FB1 is the cumulative distribution function (cdf) of B1. Set X′ = qX(U)
D= X, where qX is

the right-continuous inverse of the cdf of X. Then clearly X′ is FB
1 -measurable. Therefore,

D0(X) = D0(X′) = αVar(X′) = αVar(X).

This proves the theorem. �
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Kupper and Schachermayer (2009) showed that a dynamic convex risk measure is law
invariant if and only if there exists γ ∈ [0, ∞] such that

ρt(X) = 1

γ
E
[
exp ( − γ X) |Ft

]
. (3.1)

The limiting cases γ = 0 and γ = ∞ are identified with the conditional expectation and
the essential supremum, respectively. In the workshop “Stochastic Analysis in Finance and
Insurance” (2008) in Oberwolfach, Delbaen presented this result in a continuous time setting
using duality representations from Delbaen et al. (2010). Related results are also known for
insurance premiums: see Gerber (1974), Goovaerts and De Vylder (1979), and Kaluszka and
Krzeszowiec (2013).

By Remark 2, the operators studied in this paper are neither monotone themselves (i.e. they
do not satisfy (R3) ) nor do they give rise to convex risk measures by adding a conditional
expectation. Furthermore, our recursiveness condition (D4) does not also give rise to condi-
tion (R4) . Hence, the proofs by Delbaen or by Kupper and Schachermayer (2009) cannot be
adapted to the results in this paper in a straightforward manner since the underlying properties
of the dynamic risk measures are either different or do not hold at all. For instance, monotonic-
ity is used in the last part of the proof of Theorem 1.10 in Kupper and Schachermayer (2009)
and in the dual representations in Delbaen et al. (2010).
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