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Irregularities in the Distribution of Prime
Numbers in a Beatty Sequence

Janyarak Tongsomporn and Jorn Steuding

Abstract. We prove irregularities in the distribution of prime numbers in any Beatty sequence B («, f8),
where « is a positive real irrational number of finite type.

1 Introduction and Statement of the Main Result

In the 1980s, Helmut Maier [11] proved with his ingenious matrix method the
existence of unexpected irregularities in the distribution of prime numbers. He
showed that for every b > 2, there exist a constant 8, > 0 and arbitrarily large x, x’

such that
a(x+y) —n(x) > (1+ ab)é,
n(x"+y") - n(x") < (1- Sb)lo;x”

where y = y(x) = (logx)?, ¥’ = y(x"), and 7(x) counts the primes up to x. In a later
joint work with Adolf Hildebrand [8], even stronger irregularities were established.
On the contrary, already in the 1940s, Atle Selberg [12] had shown under assumption
of the Riemann hypothesis that

)
logx

m(x+y)—m(x)~ for almost all integers x,
provided that lim,_, é = oo. This result supported the probabilistic model of
Harald Cramér [3] from the 1930s. Ever since Maier’s discovery of these unexpected
exceptions, new applications of the matrix method were found. We refer to Andrew
Granville’s survey [7] and Frank Thorne’s overview [14] for details. In this note we are
concerned with the distribution of primes in a Beatty sequence.

Denote by | x| the largest integer < x. Given positive real numbers «, §, the set

B(a,f) = {|na+p] : neN}

is called the associated Beatty sequence (or Beatty set). If « is rational, then B(«, B) is
a union of arithmetic progressions. If « is irrational and ' is defined by * + % =1,
however, then B(«,0) U B(a’,0) yields a partition of N. This is known as Rayleigh’s
theorem or Beatty’s theorem. There is also a more general version for the case of

inhomogeneous Beatty sequences due to Aviezri Fraenkel [5] and Suton Tadee and
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Vichian Laohakosol [13], respectively. In fact, if additionally g + g—: = 0 mod 1holds
and the intersection of ' Z+ ' := {&’z+ B’ : z € Z} with Z is empty, then B(a, ) U
B(a', B) isadisjoint union of all sufficiently large integers. In view of this result, there
already exist irregularities in at least one of the appearing Beatty sequences B(a, f8)
or B(a', f).

In this context it is natural to ask whether there exist values «, 8 for which the
distribution of primes within B(«, ) is without irregularities? To answer this
question we first notice that there are rational values a for which B(«, ) does not
contain any prime at all; for example,

B(%,l) = {15,30,45} + 3N,.

For irrational a, however, it follows from a classical result of Ivan Vinogradov [15] (in
the context of his research on the Goldbach conjecture) that the number 754 gy (x)
of primes p < x with p € B(a, ) is asymptotically given by

(L1) 3 a8y (X) ~ 4 71(x)
(even with an explicit error term); notice that - is the natural density of B(«, ) in

N. Our main result is the following theorem.

Theorem 1.1  Let a be a positive real irrational number of finite type and let 3 be an
arbitrary real number. Then for every b > 2, there exist a positive constant 8, > 0 and
arbitrarily large x, x" such that

1+68, y

g (ap) (X +¥) = TB(a,p) (x) > @ logx’
1-6, y

ﬂB(a,ﬂ)(x, +y') - ”B(lx,ﬁ)(xl) < a logx”

where y = y(x) = (logx)® and y' = y(x").

Recall that an irrational « is said to be of type 7 if

7 =sup{p € R : liminf n’||na| = 0},

where ||x|| denotes the minimal distance of x to the nearest integer; moreover, « is of
finite type if T < oo. For example, e = exp(1) is of type 7 = 1; on the contrary, Liouville
numbers are not.

Our reasoning follows Maier’s original reasoning closely. The new ingredient is a
prime number theorem for Beatty sequences due to William Banks and Igor
Shparlinski [1] (which improves (1.1) for parameters « of finite type). In the following
section, we collect this and some further useful results; the proof of the theorem is
given in the final section.

2 Preliminaries

Maier [10] introduced the notion of a good modulus as follows. If the Dirichlet
L-functions L(s;x) to all characters y mod g do not vanish for all s = ¢ + it
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satisfying

C
loglq(|t] +1)|’
where C is a positive constant, then g is said to be good. Since this definition depends
on C, it follows for sufficiently small C that either g is good or there is a quadratic
character y such that L(s; ) has a an exceptional real zero. In this latter case, the
exceptional zero and the character are unique as follows from Page’s theorem (see

[4]).

g>1-

Lemma 2.1 ‘Thereis a positive constant C such that there exist arbitrarily large values
of z for which

2.1 P(z)=TIp

p<z

is a good modulus.

This is [10, Lemma 1] and leads to a uniform prime number theorem for all prime
residue classes to a good modulus. Let 7(x;a mod gq) denote the number of primes
p < x satisfying p = a mod 4.

Lemma 2.2 If q is a good modulus, then

(22) n(x+h;amod q) - 7T(X' amod q) =

QD(q) /'x B l:;u 1+O(exp(—cD)+exp(—\/1ogx))),

provided that a mod q is a prime residue class, x > q°, and 1x < h < x, wherelog q >
D > Dq with Dy and c being positive constants and the implied constant in the Big
O-term depends only on the constant C from Lemma 2.1.

This result is essentially due to Gallagher [6] (see also [10,11]).
Next we define the quantities

(23) W(z)::[‘[(l—%), ®(x, y) = §{n < x : ged(m, P(7)) = 1}.

p<z

Moreover, let the so-called Buchstab-function w(u) be defined by w(u) = 0 for
0<u<land

uo(u) =1+ fluilw(v)dv

for u > 1. The following result is due to Buchstab [2].
Lemma 2.3 For ) >1,

2132, 2 W(2)"'d(2, 2) = exp(y)w().

Notice that Mertens’ classical theorem states that

1 (-y)
ne-) -
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with the Euler-Mascheroni constant y := limy_ e (X ,1<n % —logN) =0.577.... We
conclude with another result due to Iwaniec [9] (see also [11]).

Lemma 2.4  ‘The function u — w(u)—exp(—y) changes sign in any interval [a-1, a],
where a > 2 is arbitrary.

Finally, we quote from Banks and Shparlinski [1] the following prime number
theorem for Beatty sequences.

Lemma 2.5 Given real numbers o and 8, where « is a positive irrational of finite
type, there exists a positive constant k such that, for all integers 0 < a < g < M* with

ged(a,q) =1,

1 -k
> Alna+B)== > A(m) + O(M'™™).
n<M o m<|Ma+p)

|na+B]=a mod g m=a mod q

Here, A denotes the von Mangoldt-Lambda function. By partial summation, this
yields for the number 734 g)(x; @ mod g) of primes p < x in the intersection of
B(a,B) and a + qZ := {a + qz : z € 7} the asymptotic formula

xl—K

(2.4) g (a,p)(¥3a mod q) = l7T(x;a mod gq) + O( +x7 logx) .
o

log x

With an explicit «, of course, the error term could be simplified.

3 Proof of the Theorem

We begin by recalling the matrix method. For a sufficiently large integer D, let z >
exp(cD) be a real number such that P := P(z) > 2 is a good modulus in the sense of
Lemma 2.1 and the definition (2.1). We consider a progression of intervals (rP, rP +
U], where R := R(z) and U := U(z) are integers satisfying R < r < 2Rand U < P,
and write its integers in form of a matrix:

RP +1 RP+2 ... RP+U
(R+1)P+1 (R+1)P+2 ... (R+1)P+U
(2R-1)P+1 (2R-1)P+2 ... (2R-1)P+U.

Obviously, the primes are contained in those columns 7P + j with ged(j, P) = 1. Let
R = PP~ 1t then follows from Lemma 2.2 that the number of all primes p = j mod P
in such a column in Majer’s matrix is

(3.1) n(2PP; jmod P) - n(PP;jmod P)
__1 P
¢(P) log(PP)

- % : 105(71;1)) -(1+ O(exp(-cD))),

(1+ O(exp(-cD)))
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where we have used the well-known asymptotics for the logarithmic integral in (2.2)
and
1
p(P)=PII(1-=) =PW  with W:=W(2)
plP p
as defined in (2.3). For the number of primes in the Beatty sequence B(«, f8) in such

a column, however, we get via the prime number theorem of Banks and Shparlinski
in the form (2.4) that

75 (a,p) (2P5 j mod P) = 75,5y (P; j mod P) =
1 1 pb b
- . —.— . (1+0 —cD p —x ’
a W log(PP) ( + O(exp(-cD) + (P7) ))
which is, up to a factor i, the same as in Maier’s case (3.1); the additional term (PP)~*

in the Big O-term results from the error term in (2.4) (under the assumption that
x < 1; otherwise, one would have to replace (PP)™* by (PP)<"7, where ¢ > 0 can
be chosen arbitrarily small). It should be noticed that the application of Lemma 2.5
(resp. (2.4)) relies on the inequality P < (PP)* = PP*, which is obviously fulfilled for
sufficiently large D.

The number of columns P + j with gcd(j, P) = 1is given by ®(U, z), where @ is

given by (2.3). In view of Lemma 2.3, we have
(3.2) (U, z) ~exp(y)w(A) - WU for U=|2"].

Writing ®(U,z) = cUW, the number of all “Beatty primes” in Maier’s matrix thus
equals

Y (7(ap) (2RPs jmod P) = o) (RP; j mod P)) =
1<j<U
ged(j.P)=1

1 PD—l

o log(P?) U-c(U,z) - (1+O(exp(~cD) + P~P¥)).

Next, by Lemma 2.4, we can choose some A* > b such that w(A") > exp(-y), where
b > 2 is arbitrary but fixed. There are PP~! rows in Maier’s matrix. Hence, it follows
from (3.2) that there is at least one row of Maier’s matrix with at least

1

. @ ~exp(y)w(AT) - (1+ O(exp(—cD) + P‘D"))

primes in B(a, §), which is more than the expected number, since exp(y)w(A*) > L
To make this more explicit, let £ = (log(PP))*" and divide this row into k = | U/€]+1
disjoint subintervals of equal length € + (1+ 0(1)). Then at least one of these intervals
(a, b] contains at least

1

- klogU(PD) exp(y)w(A*) - (1+ O(exp(~cD) + P~P%))
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primes in B(a, 8). Setting x = a it follows that (a, b] c (x, x + y(x)] with y = y(x) =
(log x)? and the interval (x, x + y(x)] contains at least

n= oy | (1+ O(exp(-cD) + P~P¥))
a logx

primes in B(«, 8), where exp(y)w(A*) > 1+ J; for some positive constant §;. This
proves the first inequality; the second one follows by the same reasoning with the
choice A’ such that w(1") < exp(-y) according to Lemma 2.4.
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