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The unsteady effects of transitioning surface tension, γ (t), on the dynamics of capillary
imbibition in channels of arbitrary shape are analytically investigated with a focus on
rectangular and circular channels. With proper scaling, two unsteady models for γ (t) are
defined and used to highlight this transient behaviour. The convoluted dynamics at the
flow front are correctly captured in the governing equations, which are rigorously analysed
using unsteady eigenfunction expansion. Then, the final solution and data are obtained by
employing the Runge–Kutta fourth-order scheme elegantly applied simultaneously to two
derived nonlinear ordinary differential equations. Ultimately, the results are more accurate
compared with previous studies. Dynamics and kinematic similarity between rectangular
and circular channels are investigated and discussed and the conditions for equivalence in
both channels are highlighted. Using a small parameter (ε) that stretches the time scale,
we successfully use a robust asymptotic analysis to develop and capture the long-time
dynamics. Ultimately, we recover the Lucas–Washburn regime analysed in Washburn
(Phys. Rev., vol. 17, 1921, pp. 273–283), Lucas (Kolloidn. Z., vol. 23, 1918, pp. 15–22) for
steady surface tension where the variations of depth and rate with time result in h ∼ t1/2

and v ∼ t−1/2. In the end, the three forces, namely the inertia, Fv , the viscous, Fμ, and the
surface tension, Fγ , are briefly analysed and used to highlight three main distinct regimes.
We show that at early times, Fv/Fγ ∼ 1, whereas at a long time, Fμ/Fγ ∼ −1.
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1. Introduction

The effects of unsteady surface tension, γ , due to γ -dependent factors such as surfactant
additives and temperature gradients in capillary imbibition involving channels of arbitrary
but longitudinally uniform cross-sections are carefully examined. Despite advances made
in understanding γ , to date, it remains one of the most intriguing phenomena that are
yet to be fully understood. Yet, it has been widely studied by researchers from different
disciplines within science using different heuristic approaches. The investigation presented
in this article touches on several physical and mathematical aspects considered in previous
studies on γ requesting a comprehensive review of its perplexing implications reported
in papers. Amongst its several implications, popular industrial applications include the
planographic printmaking process (Ichikawa, Hosokawa & Maeda 2004) and fabrication
techniques using micro-extrusion (Mitsoulis & Heng 1987). Furthermore, in natural
science operations the dynamics of γ help us to understand the infiltration of groundwater
(Marmur & Cohen 1997).

Amazingly, its effects have also received considerable interest due to its wide
implications in medicine and human biology (Grotberg 2001). For instance, in medical
biology one of its common applications involves fluid flows in channel-like living
tissues such as the lungs where γ modifiers in the lungs (Goerke 1974) dictate the
physicochemical behaviour of air. These surface tension modifiers are responsible for vital
fluid flow in the lungs. Gaver & Grotberg (1990) modelled the actions of such thin films
lining the interior of lungs and analysed the effects of localized insoluble γ modifiers on
the induced fluid flow. In such living tissues, the presence of γ induces dynamics that
eventually create capillary motion leading to liquid delivery (Halpern, Jensen & Grotberg
1998). Similar research has been studied in medicine as a way to find a cure for acute
lung illnesses, delivering γ modifiers or altering them as reported by Kennedy, Phelps
& Ingenito (1997). Subsequently, it will become apparent that our motivation mostly
originates from such biomedical applications, where variations of γ lining the channel
wall systematically convect liquids within these conduits.

The role of surface tension on fluids within different geometries has been investigated
experimentally, analytically and computationally for different scientific purposes. For
example, using experiments via microfluidics, Calver et al. (2020) investigated the tuning
of flows driven by surface tension in small geometries that connects two liquid drops.
Using matched asymptotic expansion, they successfully validated the dependence relation
of drainage time to channel aspect ratio. Meanwhile, Baek et al. (2021) used high-speed
imaging to capture the evolution of liquid depth and examined the effects of tube radius
on the capillary rise of liquid mixtures. They documented the rising dynamics as being
strongly dependent on the conduit radius.

Theoretically, Shou & Fan (2015) had success studying non-Newtonian power-law fluids
in different configurations of tubing networks and showed that the rising dynamics is
influenced by the viscous and capillary forces while examining the conditions that ensure
the quickest rise. Furthermore, using Stokesian dynamics, Kiradjiev, Breward & Griffiths
(2019) mathematically analysed the viscous spreading of a γ -influenced liquid drop
injected through a substrate and correlated the power-law injection time rate (∼tn) with
the film spreading. They proceeded by considering the initial dimensionless thickness, δ,
as a small parameter and expanded field quantities asymptotically to successfully capture
the system’s short- and long-time dynamics – a technique that inspired a portion of
our paper. Another interesting theoretical study, although with numerical support, was
recently done by Sun (2021) who investigated the capillary flow in cylindrical channels
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Unsteady capillarity in rectangular and cylindrical channel

to explore the rising trend of capillary flux. It follows that researchers have relied on
different microscopic and macroscopic perspectives to analyse it, focusing for the most
part on ‘chemico-mechanical’ contents. Despite this, it is remarkable that several of
these heuristic studies have been corroborated with physical observations – findings that
have broadened comprehension of γ . Unfortunately, in spite of these successes, it is
still puzzling how exactly surface tension manifests itself, leading sometimes to different
results and interpretations. We note, for instance, a recent variance occurring in the study
of droplet breakup by Hauner et al. (2017). Therein, they highlight the argument on the
prefactor that characterizes the dynamic minimum neck diameter as a function of time
deviation from breakup time (to), such that Dmin ∼ (to − t)2/3. Accordingly, they argued
that this discrepancy is due to improper time-scale resolution due to response time.

Nevertheless, as discussed by Daněk (2006), this important property takes effect at the
interphase of fluids and is dictated by the chemical nature of ionic species at the contact
surfaces thus characterized by the Gibbs energy, making it a thermodynamic property. In
liquid interphase dynamics the Gibbs energy at the surface is substantially influenced by
temperature, pressure, surface area and the type and quantity of the constituents in the
surface layer. Hence, a change in the chemical composition creates a chemical imbalance
that skews the equilibrium resulting in a change in surface tension. If the response times of
these changes are relatively small compared with the interphase displacement dynamics,
an interesting unsteady behaviour of surface tension based on a linear correspondence
can be uncovered. In consequence, as molecules try to defend alike neighbours located
on one side of the boundary of the fluid, energy is dispensed at this mutually defensive
bounding interphase, eventually stretching and strengthening the latter. This results in the
liquid surfaces exhibiting unique behaviours, sometimes acting as a trampoline for small
insects and creating mechanical forces that can drive a liquid column owing to the surface
tension effect.

It thus follows that surface tension is a localized quantity, although most studies consider
and implement it as a bulk property averaged over the interphase. It is interesting to note
that popular researchers in this field such as Washburn (1921), Lucas (1918), Fries &
Dreyer (2008), Szekely, Neumann & Chuang (1971), Dreyer, Delagado & Path (1994),
Zhmud, Tiberg & Hallstensson (2000), Ichikawa & Satoda (1993) and Chebbi (2007) have
used this consideration to successfully capture the dynamics and kinematics in capillary
encroachments within confined conduits, and we make a similar consideration.

Our investigation involves the dynamics of capillary intrusion, a domain that mainly
deals with the interplay of four mechanical forces: (1) inertia, Fv; (2) viscous, Fμ; (3)
gravity, Fg (vertical channels) and (4) capillary, Fγ , forces. This kind of research entailing
flows driven by capillary action was pioneered by Lucas (1918) and Washburn (1921) a
century ago, with celebrated results. However, these earlier works by Lucas and Washburn
had two fundamental problems. First, they only considered the capillary, gravity and
viscous forces exchange, thus neglecting the ramifications of inertia which consequently
undermines entry effects. Secondly, it assumed a steady parabolic velocity profile while
adopting the Hagen-Poiseuille steady flow solution. Their heuristic analytical approach
eventually led to a prediction of the encroachment depth versus time of h ∼

√
t and an

encroachment speed v ∼ t−1/2. It can be shown that their results only correctly capture
the long-time dynamics corresponding to when inertia effects have subsided. We refer to
this hereafter as the Washburn capillary flow regime.

At the advent of the papers by Lucas and Washburn, other investigators followed with
similar inexact assumptions (Marmur & Cohen 1997; Hamraoui & Nylander 2002; Fries &
Dreyer 2008). Amazingly, despite the failure of Washburn’s equation to properly capture

949 A6-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

72
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.729


M.N. Azese and others

early time dynamics, it is still popular. Perhaps because leaving out inertia effects avoids a
mathematical hurdle that introduces a singularity at the initial time. Nonetheless, several
studies have attempted to remove this singularity and correct Washburn’s formulation
(Szekely et al. 1971; Sun 2018; Zhong, Sun & Liao 2019), though with shortcomings.
The most popular of them is Levine et al.’s model (Levine et al. 1976, 1980) that is a
strongly nonlinear ordinary differential equation (ODE), although in the next paragraph
we would shy away from Levine et al.-type formulation also.

Furthermore, in capillary flows the output is typically the kinematics that includes the
encroachment depth and corresponding rate over the entire flow period. The balance of the
driving capillary force with one of the remaining three forces bifurcates the flow patterns
into different flow regimes (Lu, Wang & Duan 2013). These regimes were examined by
Das & Mitra (2013). Therein, they determined that only two dimensionless numbers,
which are the Ohnesorge Oh and the Bond Bo numbers, are responsible for differentiating
the gravity-dominated regime (Fg ∼ Fγ ) (Quéré 1997) and the viscous-dominated regime
(Fμ ∼ Fγ ) (Washburn 1921; Das, Waghmare & Mitra 2012) – identical to the Lucas and
Washburn papers. Accordingly, we can also identify the inviscid (or inertial) regime by
balancing the other set of forces (Fv ∼ Fγ ).

We reiterate that capillary studies (Xiao, Yang & Pitchumani 2006; Waghmare & Mitra
2010b) assumed a steady parabolic profile until a decade ago when the predicament
was first highlighted by Bhattacharya & Gurung (2010) and Azese (2011) suggesting
a proper way of capturing the flow-front dynamics. But this inaccuracy made by
using the flawed profile was successfully quantified by Bhattacharya, Azese & Singha
(2017) and Sumanasekara, Azese & Bhattacharya (2017). They also reported that it is
amplified at earlier times and valid only for cases having a relatively smaller inertia
force. This was also discussed by Das et al. (2012) and Das & Mitra (2013) in
their detailed study of the capillary flow regime using dimensional analysis arguments
through dimensionless numbers: Oh and Bo. To address this concern, a more generalized
and robust velocity profile is considered that explores an eigenvalue expansion with
time-dependent amplitude. Such decomposition follows from Sturm–Liouville’s theory
and has been successfully used recently by Azese (2018, 2019) to capture the fine details
of flows in confined spaces.

The purpose of this research is to use robust analytical techniques to examine
capillary encroachment dynamics of a viscous Newtonian liquid in confined conduits
of (a) rectangular and (b) circular cross-sections, driven by unsteady γ (t) forces while
considering inertia effects, properly accounting for the dynamical flow structure at the
flow front, and without assuming a steady parabolic velocity profile. Instead, we use an
Eigen-spectral decomposition of the velocity, considered here as unknown. This involves
a space-dependent and time-dependent part that allows the fluid to temporally respond
transversely as the liquid encroaches. Consequently, it permits the refined dynamics lodged
in the cross-sectional planes to be captured, say if the fluid front wobbles. Thus, this
provides an added impetus to the scope of our investigation.

The rest of this article is structured as follows. In § 2 we analyse and report on the
various formulations that describe surface tension. We do so by highlighting the factors
that cause transient behaviours of surface tension. Therein, an unsteady relation for
the material derivative of γ (t) is suggested and used in hypothesizing two unsteady
γ (t) models. In § 3 the flow system is deciphered where a one-dimensional (1-D) core
region and a three-dimensional (3-D) to 1-D solid translation flow front are brought
to light. The analysis of the 3-D front allowed us to incorporate an additional term in
the momentum conservation formula that differentiates our approach from the previous.
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Then, the governing equations for channels with arbitrary cross-sections are derived using
suitable scales. The derived dimensionless equations are successfully used to understand
unsteady surface tension dynamics in rectangular channels presented in § 4. This is also
repeated for the case of a circular duct in § 5. For the present study, we compare and
contrast the dynamics taking place in both channels and unveil some striking similarities
developed and presented in § 6. Further, a robust asymptotic analysis used in obtaining
long-time dynamics is obtained in § 7. With this perturbation scheme, a new and large
time scale is defined – thus, the long-term solution corroborates well with our unperturbed
solution for a long time. Furthermore, a brief investigation of the forces that interplay
in this capillary imbibition is shown in § 8. Finally, we present our conclusion for this
investigation in § 9.

2. Surface tension transfiguration

Although surface tension is a localized property, its manifestation in a wide range
of analytical treatments that includes capillary-driven applications has typically been
characterized by a pressure jump across fluid interphases (Navascues 1979). Accordingly,
the Young–Laplace equation provides the induced pressure drop between the pressure, P,
inside and outside of a curved interphase,

ΔP = (Pinside − Poutside) = γ∇n · n, (2.1)

where γ represents the bulk surface tension between the two fluids and n is a vector normal
to the fluid interface such that it points away from the fluid. In (2.1) the dot product involves
the gradient operator over the interphase, ∇n, which dictates the strength of the pressure
drop imposed by the average curvity of the interphase. Hence, in capillary-driven flow
(2.1) can take the alternate form

ΔP = γ

R
∼ γ

(
1

R1
+ 1

R2

)
, (2.2)

where R is the mean curvature of the surface and R1 and R2 are the principal surface
curvature radii.

The chemical property of the contact point and the geometry affect the strength of the
pressure gradient. From the Young–Laplace formulation (Park et al. 2013; Liu & Cao
2016), this dynamics is also related to the interphase contact angle θ . The pressure jump
therefore depends on θ -dependent surface tension and a cross-section length scale (lc)
which relies on the curvature radii (Ri) (Merchant & Keller 1992; Snoeijer & Andreotti
2008). Hence, we can write

ΔP = γ (θ)

R(lc)
∼

γ

lc
. (2.3)

Ultimately, if the capillary system experiences changes in its geometry, material
compositions of the conduit material or the fluids in play, the surface tension will respond
by adjusting the pressure drop. This response is triggered by the non-equilibrium of the
chemical imbalance at the interphase measured through its Gibbs energy content. This
response will be considered here as instantaneous, although hysteresis in θ has been
reported (Joanny & de Gennes 1984; Makkonen 2017).

The onset of such non-equilibrium is considered here as mainly initiated by two factors:
(i) temperature gradient (dT/dz) imposed axially along the channel in the z direction, as
described by Chen & Xu (2021); (ii) non-uniform coating of the soluble surfactant gradient
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ℎ(t) θ(z)

v(t)

dT/dz

dγ/dz

z

Figure 1. Representation of axial variation of unsteady surface tension due to spatial longitudinal changes in
temperature and surfactant solution lining on the conduit’s surface, and contact angle. The velocity profile is
depicted distinctively from the interphase.

lining the inner walls of the channel (∂γ /∂z). By surfactants here we mean a substance that
changes the surface tension of liquids (increase/decrease). Our system that accommodates
the aforementioned layouts is depicted in figure 1, showing the interphase portion of a
truncated capillary duct.

Through these developments, we note that theory predicts that if surface tension changes
across a continuous domain, the imbalance will create motion, forcing the surface to move
(see, e.g. Elfring, Leal & Squires 2016; Manikantan & Squires 2020) characterized by
the Marangoni number. Such non-uniformity in surface tension is known to cause bead
coalescence cascades (Ji et al. 2021). The sum of the shear forces created in both liquids
(L1 and L2) must exactly equal the gradient of the surface tension, Δγ = τL1 − τL2 .
According to this, in a viscous fluid the induced velocity u is such that u ∼ Δγ /μ, where
Δγ represents the difference in surface tension and μ is the average dynamic viscosity
of the liquid. The assumption here is that the surface tension is steady and changes are
brought to it due to the convective nature of the flow front as it meets regions having
different temperatures and surfactant concentrations. Thus, the non-uniformity of the
parameter influencing capillarity couples linearly with encroachment speed to modify the
interphase configuration through the Gibbs energy and provide a transfiguration in the
surface tension. Consequently, we hypothesize that

γ̇ ∼ vz

(
∂γ

∂z
+ ∂γ

∂T
dT
dz

)
, (2.4)

where vz is the encroaching rate.
Studies that have utilized changing surface tension are plenty, but a few cases are worth

mentioning. Davis, Liu & Sealy (1974) studied the effect of the surface tension linear
gradient inside a circular tube lined with an insoluble surfactant. Meanwhile, Jensen (1997)
extended Davis et al.’s work using a weakly curved circular tube to induce convective
motion from inner-to-outer walls of the duct. Other key references include the deformation
of a liquid film flowing down an inclined substrate driven by gravity (Kabova, Kuznetsov
& Kabov 2012), a 3-D steady flow of a thin viscous liquid on surfaces having insoluble
surfactant by Adler & Sowerby (1970).

Different profiles for temperature and surfactant can be achieved and implemented.
However, from a semi-empirical approach the dependence of surface tension with
temperature has been modelled as linear for the most part (see, e.g. Navascues 1979; Cassir,
Ringuedé & Lair 2013; He et al. 2016). In the absence of a specific temperature gradient
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and surfactant gradient model represented in figure 1, we recognize the parametric forms

T(z),
∂γ

∂z
(z), vz(t), z(t), (2.5a–d)

and then perform a time integration on (2.4) to obtain a general time-dependent form of
γ (t)

γ (t) = γ0 + γt(t), (2.6)

where the surface tension, γ0, represents a reference γ that can be thought of as the initial
value of the base liquid. The quantity, vz, in (2.4) must capture the instantaneous rate of
encroachments, thus forcing (2.6) to have a complicated implicit dependence on time. We
recognize a common velocity evolution in previous studies, vz ∼ t−1/2 (see, e.g. Lucas
1918; Washburn 1921; Fries & Dreyer 2008), which is oftentimes valid only for certain
conditions (see, e.g. Das et al. 2012; Bhattacharya et al. 2017) and even extends to some
investigations that involve viscoelastic liquids (Sumanasekara et al. 2017). Ultimately,
for this heuristic approach, we avoid lamenting the specific forms in (2.6) and (2.5a–d)
and instead surmised a time-monotonic dependence of γ (t) consequently resulting in the
following two forms:

model 1, γ (t) = γ0(1 + rγ )(1 + mt), (2.7a)

model 2, γ (t) = γ0(1 + rγ eξ t). (2.7b)

Here, γ0 (N m−1), rγ (unitless), m (s−1) and ξ (s−1) are constant parameters that will be
appropriately user-defined to mimic different temporal evolutions. In §§ 4 and 5 transient
models (2.7a) and (2.7b) will be used to examine the role of a transitory γ (t) on capillary
imbibition.

3. Description of the flow system and governing equations

The dynamic of the geometry describing our flow system is shown in figure 2. As the
γ -induced pressure gradient is the only driving force, we consider the system as consisting
of two main continuous regions also distinguished by pressure. As shown, these sections
are connected through the continuity and momentum balance equation (ĈD, D̂F, with ÊC
being the inlet region). This system happens to be similar to that presented in previous
papers by one of the authors (Bhattacharya et al. 2017; Sumanasekara et al. 2017), and as
a result, some details of its descriptions are left out. However, we present a summary in
the subsequent paragraphs.

3.1. Entry region
The flow downstream of the entry region, ÊC, is dependent on the nature of the
surrounding liquid as well as the location and dynamics of the free surface. In applications
where hydrostatic pressure is considerable at the inlet, it is typically a 3-D flow. In this
configuration some authors have defined a control volume and control surface surrounding
the entrance – using these to capture the flow at the conduit inlet (Stange, Dreyer & Rath
2003; Xiao et al. 2006; Waghmare & Mitra 2010a; Azese 2011). In particular, Azese
and Xiao et al. considered a hemispherical control surface to eventually expose the inlet
dynamic and obtain an inlet pressure that is dependent on the encroachment rate and the
liquid acceleration into the channel.
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Drop of fluid B

E

re

C D F z axis

A

Air

Air

P = Po P = Po

P = PoP = Po P = PfP = PD
P = Pi

Region of 1-D flow

h(t)

Front region

hf  << h(t)

Capillary channelθe

Figure 2. Schematic of the unsteady encroachment of a viscous fluid in an arbitrary capillary conduit driven
by the transient surface tension force presented in figure 1. The 1-D flow region is between points C and D,
meanwhile the 3-D flow follows immediately after. The dynamic pressures are also represented where A, B, C
are points having an atmospheric pressure similar to the flow from P0. The pressure gradient driving the
1-D parabolic region, thus responsible for the shape of the parabola, is PD − PC. Point F is in a rigid body
translation having a uniform velocity profile.

However, for our system, we simply appraise the entry region as being close to the
free surface, thus neglecting strong hydrostatic effects. This leads us to consider the
normal flow gradient as non-existent. As a consequence, the inlet flow is uniform and
unidirectional (1-D flow), limited by the surface ABC as shown in figure 2, a consideration
also followed in previous papers (Bhattacharya et al. 2017; Sumanasekara et al. 2017). We
ultimately have

PA ≈ PB ≈ PC ∼ Po = atmospheric pressure. (3.1)

3.2. Core region: unidirectional flow
We describe here the core region of the flow, ĈD, which is the most important domain
hypothesized as a 1-D flow where the detailed flow kinematics and dynamics are
developed. Accordingly, this flow region begins just past downstream of the entry region
(C) and ends at the spectral-parabolic front, D, hence driven by a pressure gradient
(PC − PD). The liquid is assumed to be incompressible; therefore, mass continuity dictates
that the lone velocity component, vz, in the z direction be independent of independent
variable z such that v = vz(r)ez. Accordingly, the Navier–Stokes equation is used to
evaluate momentum conservation in this region,

ρ
∂vz

∂t
= μ∇2

⊥vz − ∂p
∂z

, (3.2)

where p, t, ρ and μ represent pressure, time, fluid density and viscosity, respectively.
Meanwhile, ∇⊥ is the gradient on planes that are perpendicular to the flow direction.

Because of the axial uniformity of the cross-sectional area and mindful that the liquid is
incompressible, a straightforward mass conservation analysis is performed. It reveals that
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at a given intruded depth, h(t), the average of the flow velocity on the cross-sectional area
(A) evaluated at the 1-D flow front is identical to the encroachment rate

dh
dt

= 1
A
∫

vzdA. (3.3)

Moreover, at any instant of time, the pressure gradient is the same everywhere in the 1-D
region so that for the entire region it is related to h(t) as

∂p
∂z

= PD(t) − PC

h(t)
= PΔ(t)

h(t)
, (3.4)

where the pressure change PΔ(t) is the time-dependent gauge pressure driving the 1-D
flow in this front region shown in figure 2, bearing in mind PC ∼ Po.

To render our system dimensionally flexible, we seek relevant dimensions from the
problem and systematically define scales that would be used to make our problem
dimension free. We immediately harvest the system’s inherent length scale provided by
its spanwise dimensions considered earlier as the cross-sectional size, lc. It can be defined
following several combinations of the cross-sectional size discussed in § 6. However, the
surface tension-induced pressure gradient in a circular channel of radius R having assumed
a semi-spherical interphase is ΔP ∼ 2γ /R, where the surface tension prefactor, 2/R,
exactly coincides with the area-to-wetted-perimeter ratio. Motivated by this, we consider
the cross-sectional length scale as

lc = A
P , (3.5)

where P and A are respectively the perimeter and area of the conduit. As a result of (3.5),
the pressure scale is written as

ps = γoP
A . (3.6)

To obtain the other scales, first, we define ts, hs and Us as scales for time, encroachment
depth and velocity, respectively. These together with (3.5) and (3.6) are used in performing
a dimensional analysis on (3.2) and (3.3). However, to ensure that all the forces involved
are important even in the absence of kinematic changes, we set the coefficients of every
force term to unity. The result of these steps is the definition of the remaining three scales.
First the time scale,

ts = ρl2c
μ

, (3.7)

interpreted as the viscous time scale which is the average time for momentum response
transversely across the channel. We note that another time scale can be constructed as
tγ = √

ρl3c/γo, which is important in the dynamics of sedimentation objects and the
oscillation of drops and bubbles (Dreyer 2007). Interestingly, these time scales have been
recovered by previous studies (see, e.g. Stange et al. 2003; Das et al. 2012; Das & Mitra
2013; Lu et al. 2013), where their ratio is used to obtain the dimensionless number,
Ohnesorge number (Oh), a ratio of viscous force to surface tension and inertia forces.
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Next, the encroachment length and velocity scales are also obtained,

hs = lc

√
ργolc
μ2 , Us =

√
γo

ρlc
. (3.8a,b)

To provide a visual perspective of these scales, we evaluate them by using natural
physical values typically used in experiments. For this purpose, let us consider a capillary
investigation involving water in a capillary tube of an average cross-section length of
lc = 0.15 mm, so that

γo = 0.072 N m−1, ρ = 998 kg m−3, μ = 0.001 Pa s. (3.9a–c)

With these constant parameters, we obtain

ts ≈ 20 ms, tγ ≈ 200 μs, hs ≈ 15 mm, Us ≈ 0.7 m s−1, ps ≈ 0.5 kN.

(3.10a–e)

Nevertheless, using scales defined in (3.5) to (3.7) and (3.8a,b), the pressure gradient
defined in (3.2) and (3.4) is rendered dimension free so that (3.2) and (3.3) now take
the non-dimensional forms

∂v̄z

∂ t̄
= ∇̄⊥

2
v̄z − P̄Δ(t)

h̄
,

dh̄
dt̄

=
∫

v̄z
dA
A , (3.11a,b)

where the ‘ ’ signifies dimensionless such that v̄z = vz/Us, t̄ = t/ts, P̄D = PD/ps, h̄ =
h/hs and ∇̄⊥ = l2c∇⊥ are the dimensionless variables. We note that (3.11a,b) govern
capillary flows in conduits of arbitrary but uniform shapes and, thus, will be used in
subsequent sections to examine cases for rectangular § 4 and circular § 5 ducts.

3.3. Front region: 3-D flow, hf << h(t)
Finally, we describe the front region that drives the encroachment which is characterized
by a 3-D flow between points D and F, as shown in figure 2. Foremostly, we surmise that
this region is very thin so that

hf = o(h(t)). (3.12)

Furthermore, we note that the velocity field in the core 1-D region is spectral parabolic
which is the rear end (D) of this front region. Meanwhile, the front end (F) undergoes a
solid body translation and moves like a piston, hence having a uniform profile. To reconcile
these two dynamics, we conceive velocity streamlines as diverging towards the walls,
thereby swirling owing to the mass conservation. Consequently, the flow between D and
F, as seen in figure 2, adopts a convoluted 3-D form. It is worth noting that most scholars
do not account for this parabolic-to-unform transition. Nonetheless, implementing (3.5) to
(3.7) and (3.8a,b) and enforcing (3.12) reveals the physics that dictates the dynamics of
this region. Ultimately, it ensures that the dimensionless Navier–Stokes properly captures
the momentum conservation

δ
∂ v̄

∂ t̄
+ v̄ · ∇̄v̄ = −∇̄p̄ + δ∇̄2v̄, (3.13)

where v̄ and p̄ are respectively the dimensionless velocity and pressure within this
region, and ∇̄ is the gradient vector non-dimensionalised with lc. In previous research
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(Bhattacharya et al. 2017; Sumanasekara et al. 2017), however, we showed that δ is the
effective capillary number defined as

δ =
√

μ2

ργolc
. (3.14)

For instance, using typical parameter values as those suggested in § 3.2, we evaluate δ ∼
0.0096, and even smaller for a broader range of applications. For this reason, δ can be
considered as a small parameter to orchestrate a perturbation analysis on (3.14) where the
pressure and velocity fields are expanded,

v̄ =
∑
i=0

δiv̄(i), p̄ =
∑
i=0

δip(i). (3.15a,b)

So, provided δ << 1, the perturbation analysis should proceed such that (3.15a,b) is
inserted into (3.13) to procure a hierarchy of equations. Accordingly, the leading-order
effect is captured by

v0 · ∇̄v̄0
∼ −∇̄p̄0, (3.16)

which relates to cases with less narrow conduits. Ultimately, the viscous and the unsteady
term disappear, and the flow can safely be treated using steady inviscid relations. In such
a scenario, which is similar to ours, one can use a control volume analysis averaged over
the cross-section. Thus, exploring the Reynolds transport theorem on the steady bounded
domain, D, relates the pressure gradient with the linear momentum fluxes,

ΔP|3D = 1/A
∫
DA

ρv2 dA. (3.17)

The area integral in (3.17) is calculated over the inlet and outlet (D and F) of the domain’s
boundary, DA, of this front region. Before doing so, we recall that the pressure around the
channel inlet (at C) and outside of the flow front is identified as atmospheric pressure (3.1).
Hence, the pressure gradient responsible for the curved profile is gauged as

PD − Po = PΔ(t). (3.18)

Furthermore, the pressure at location F due to surface tension is smaller than Po so that

PF − Po = −Pγ = −γ /lc, (3.19)

leading to

Pγ (t) = γ (t)P
A = psΦ̄(t̄), (3.20)

where Φ̄(t̄) is the dimensionless form of (2.7a) and (2.7b) defined as

Φ̄(t̄) = γ (t̄)
γo

. (3.21)

The pressure difference in the 3-D region is obtained by subtracting (3.19) from (3.18).
Also, in this zone we recall that velocity goes from a parabolic to a uniform profile.
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Following these, we eventually evaluate (3.17) in this region to obtain

P̄Δ(t̄) + P̄γ =
(∫

v̄z
dA
A
)2
∣∣∣∣∣
uniform

−
∫

v̄2
z

dA
A
∣∣∣∣
parabolic

. (3.22)

Ultimately, we obtain the dictating equations of our problem, governing flow in the 1-D
flow region. Thus, by defining dĀ = dA/A, we use (3.20) to (3.22) to rewrite (3.2) into
its final form for any arbitrary channel, i.e.

∂v̄z

∂ t̄
= ∇2

⊥v̄z + Φ̄(t̄) + ∫
v̄2

z dĀ − (
∫

v̄z dĀ)2

h̄
. (3.23)

Equation (3.23) is a first-order initial boundary value problem having a nonlinear source
term, to be solved simultaneously with

dh̄
dt̄

=
∫

∂D
v̄z dĀ, (3.24)

computed at the parabolic front, ∂D. In the coming sections both (3.23) and (3.24) are
effectively used in examining unsteady imbibition in two well-known channels: conduits
having rectangular cross-sectional shapes (§ 4) and those with circular cross-sectional
areas (§ 5).

4. Imbibition in a rectangular channel

In this section we analyse the capillary flow due to transient surface tension inside ducts
with rectangular cross-sections. This kind of geometric design, frequently encountered in
many applications and investigations, presents rich intricacies of its dynamics in laminar
flows hidden in its shape, as discussed by Zhang & Xia (2007). Many encroachment
dynamicists have used rectangular ducts as a platform to further our understanding of
capillary action (e.g. Xiao et al. 2006; Waghmare & Mitra 2010a) with success – despite
inaccurate inherent assumptions or lack of proper physical accountability of the different
regions of flow (§§ 3.1–3.3). The flexibility possessed by the robust expression already
developed earlier in § 3 in describing unsteady imbibition, is used to observe the fine
details exhibited by the rectangular duct.

We begin by considering the channel axis to be at the centre of both boundaries and
in the z direction (figure 2), thus, located at the midway of both walls. Following this, the
cross-section of the rectangular conduits is described by prescribing the width, 2ly, and the
breadth, 2lx. Here and in the following, we use ‘∗’ to differentiate quantities with similar
letters or symbols associated with a rectangular duct from those of cylindrical channels.
As a consequence, (3.5) becomes

l∗c = A∗

P∗ = lxly
lx + ly

. (4.1)

The channel’s aspect ratio, κ , is defined as

κ = lx
ly

(4.2)
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so that lx remains the smallest side, thus ensuring κ ≤ 1. Using (4.2), we
non-dimensionalize the channels half-widths, i.e.

lx = lx
l∗c

= κ + 1, ly = ly
l∗c

= κ + 1
κ

. (4.3a,b)

These results will be crucial in subsequent developments making sure the conduits are
properly coupled to the flow solution.

4.1. Unsteady xy-eigenfunction expansion
We recall that the flow within the core region of the conduit is predominantly
unidirectional. According to this, the dimensionless lone velocity component is defined
by

v̄∗ = v̄∗
z (x̄, ȳ, t̄∗)ez, (4.4)

whose invariance with z is dictated by the continuity equation. Considering the spatial
variations alone, we recognize that the flow governing differential equation (3.23) is
originally a linear type allowing for a spectral expansion of the velocity

v̄∗
z =

∑
i

α∗
i (t∗)u∗

i (x̄, ȳ), (4.5)

where i ∈ N and u∗
i are the double-variable eigenfunction and α∗

i are the corresponding
time-dependent amplitude. Consequently, from Sturm–Liouville’s theory one can
construct an eigenvalue problem based on the spatial-dependent variables,

∇̄∗2
⊥ u∗

i = −β∗2
i u∗

i , (4.6)

where β∗2
i is the eigenvalue of u∗

i whose values would be determined by enforcing the
proper boundary conditions.

Using (4.5) and (4.6), we take the inner products, 〈[(3.23)], u∗
j 〉 and 〈[(3.24)], u∗

j 〉, of
the controlling equations averaged over the cross-sectional area, ∂A. In the process, we
identify and define an important channel geometry-related parameter η∗

i ,

η∗
i =

∫
∂A

u∗
i dA∗

. (4.7)

In addition, we recognize and enforce the orthogonality requirements such that when
normalized we get ∫

∂A
u∗

i u∗
j dA∗ = δij, where δij =

{
0, i /= j,
1, i = j, (4.8)

here δij is the Kronecker delta. The results of these steps lead to the differential equation
governing the unsteady amplitude

dα∗
i

dt̄
= −β2∗

i α∗
i − η∗

i
P̄∗

Δ

h̄∗ . (4.9)

We develop (3.22) to systematically obtain P̄∗
Δ. First, recognizing that the front moves as a

piston kinematically translates into meaning uniform velocity. Therefore, it is easy to show
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that

(∫
∂A

v̄∗
zdA

∗
)2

=
⎡⎣ N∑

j=1

η∗
i α

∗
i (t̄∗)

⎤⎦2

, (4.10)

where N ∈ N denotes the extent of the velocity spectrum and dictates the accuracy of
the summation. Furthermore, at the spectral-parabolic end, Rayleigh’s identity is used to
manoeuvre between integral and summation, leading to

∫
∂A

(v̄∗
z )

2dA∗ =
N∑

j=1

(α∗
i )2(t̄∗). (4.11)

In consequence, we obtain

P̄∗
Δ(t) =

⎡⎣ N∑
j=1

η∗
i α

∗
i (t̄∗)

⎤⎦2

−
N∑

j=1

(α∗
i )2(t̄∗) − Φ̄∗(t̄∗). (4.12)

To this end, the governing equations have now been fully separated into spatial and
time-dependent parts, owing to the spectral decomposition – yielding forms that will be
solved.

4.2. Analytical Fourier solution to rectangular duct
Despite the successful development of the governing equations thus far, their analysis and
solutions require that initial and boundary dynamics be reflected in the equations through
the independent variables. According to this, first, we recognize an encroachment that
begins from the rest, implying that when t̄∗ = 0, v̄∗

z = 0. Moreover, we elect to use the
no-slip boundary condition stipulating that flow velocities are identically zero at the four
walls. Then, using the argument of the arbitrariness of the free independent variable in the
linear homogeneous sums (4.5), we therefore write

t̄ = 0, α∗
i = 0, (4.13a)

x̄ = ±(κ + 1), u∗
i = 0, (4.13b)

ȳ = ±
(

κ + 1
κ

)
, u∗

i = 0. (4.13c)

To this end, we have used one index in denoting α∗
i and u∗

i to indicate the spectrum involved
in (4.5), doing so for the sake of generality. However, a closer look at (4.4) and (4.5) reveals
that two independent variables are involved, thus requiring rather a bispectral summation,
i = n, m. We solve the Helmholtz equation (4.6) by the method of separation of variables
while enforcing the boundary conditions in (4.13b) and (4.13c) to get

u∗
nm = anm cos

(
2n + 1

2
π

x̄

lx

)
cos

(
2m + 1

2
π

ȳ

ly

)
, (4.14)
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where amn are constants to be determined. Using the orthogonality relation in (4.8), we
obtain anm = 2, ∀ n, m ∈ N, and eventually evaluate

β∗
nm = π

2

√√√√√
⎡⎣ (2n + 1)2

l
2
x

+ (2m + 1)2

l
2
y

⎤⎦ = π

2(1 + κ)

√
[κ2(2n + 1)2 + (2m + 1)2].

(4.15)

Furthermore, using (4.14), the shape parameter in (4.7) is computed as

η∗
nm = 8

π2
(−1)n+m

(2n + 1)(2m + 1)
. (4.16)

At this point, what is left is the solution for the unsteady amplitudes governed by

dα∗
nm

dt̄∗
= −(β∗

nm)2α∗
nm + η∗

nm

h̄∗

⎡⎢⎣Φ̄∗(t̄∗) +
N,M∑

p=1,q=1

(α∗
pq)

2(t̄∗) −
⎧⎨⎩

N,M∑
p=1,q=1

η∗
pqα

∗
pq(t̄

∗)

⎫⎬⎭
2
⎤⎥⎦ ,

(4.17)

which is used to evaluate h̄∗ and ˙̄h∗ through

dh̄∗

dt̄∗
=

N,M∑
n=1,m=1

η∗
nmα∗

nm(t̄∗). (4.18)

Accordingly, (4.17) and (4.18) are evaluated next and used in calculating the kinematics in
a rectangular channel to unveil the ins and outs of this transient γ (t) puzzle.

4.3. Results and discussion of capillarity in a rectangular channel

4.3.1. Preliminaries: rectangular data
To appreciate the unsteady effects of surface tension in a confined rectangular conduit, we
perform a numerical evaluation of (4.17) and (4.18). To do so, first, we identify (4.18) as a
first-order initial value (IV) problem – characterized by an ODE – with a source term, fh̄∗ ,
recognized as a convoluted function

fh̄∗ = fh̄∗
(
α∗

nm(t̄∗, h̄∗(t̄∗))
)
, (4.19)

thus having two dependent arguments. Next, we also recognize the ODE in (4.17) as
another first-order, inhomogeneous IV problem with a convoluted nonlinear source term
represented by the function fα∗ such that

fα∗ = fα∗
(
h̄∗(t̄∗), α∗

nm(t̄∗, h̄∗(t̄∗)), (t̄∗)
)
. (4.20)

Hence, an analytical solution does not exist for (4.17). In addition, we also take note of the
obvious singularity for h̄∗ = 0. Fortunately, our system is intended to allow for a non-zero
a priori filled depth. Ultimately, we recommend

at t̄∗ = 0, h̄∗
0 /= 0, h̄∗

0 � J̄ ∗
h , J̄ ∗

h ∼ √
γo/(ρgl∗ch∗

s ), (4.21)

where J̄ ∗
h is the equivalent of Jurin’s height for vertical narrow rectangular conduits

based on the steady surface tension. This is so because we expect the penetrating flow
to have more momentum and, consequently, more penetrated depth due to the absence of
a slowing-down force of gravity and the presence of surface tension accelerants.
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4.3.2. Numerical scheme
Here we describe the numerical algorithm used in completing solutions that describe
unsteady capillary flow in rectangular channels. We note that the algorithm developed
here will also be used to compute data for cylindrical channels in § 5. We begin by
recalling that (4.17) and (4.18) are both IV problems describing the spectral amplitudes and
encroachment depth feeding values to each other at every instance of time – showcasing a
strong dependence between them – with nonlinear source terms. Therefore, because they
are coupled, we use a Runge–Kutta fourth-order scheme simultaneously, which avoids
implementing a numerical integration scheme since h̄∗ depends on the spectrum and
history of α∗

i . Accordingly, the discretized source terms (4.19) and (4.20) feed on both
of their previously calculated values.

A convergence analysis is done to obtain proper iteration time steps (Δt̄∗) and mesh
sizes (Δx̄∗, Δȳ∗). According to our numerical validation tests, we settled on Δt̄∗ = 0.0001
while truncating the spectrum to N = 40 and M = 40 having a maximum numerical local
error of < 0.001 % compared with Δt̄∗ = 0.01, N = 20 and M = 20. Moreover, it ensures
that the relative error due to the spectral convergence is < 0.01 % . It is interesting to note
that the magnitude of these incremental steps excellently resolves all the micro-details of
the flow also informed by the exponential time growths, ξ

∗, and linear-time gradients, m̄∗.
Ultimately, the outputs of these simulations are the time history of encroachment, h̄∗, and
their corresponding encroachment rate ˙̄h∗, thus at every time step t̄∗.

4.3.3. Data and results: rectangular duct
For the present case of a rectangular duct, the simulations are done using the following
two transient models for surface tension:

model 1, Φ̄∗(t̄∗) = (1 + rγ )(1 + m̄∗ t̄∗), (4.22a)

model 2, Φ̄∗(t̄∗) = 1 + rγ exp(ξ
∗
t̄∗). (4.22b)

Here r∗
γ , m̄∗ and ξ

∗ are free parameters, thus user-prescribed. Furthermore, for this
channel, we will evaluate and examine cases for three aspect ratios: square channels κ = 1,
double square κ = 0.5 and slit pore κ ≈ 0.01.

It is worth mentioning that inertia effects are best captured using small values of
prefilled depth. We successfully tested small-scale values using h̄∗

0 ∼ 0.001 and h̄∗
0 ∼ 0.01,

although we elected not to present the data. Nonetheless, a compelling observation was
made. At early times the rate of change of encroachment velocity (dv̄∗/dt̄∗) was relatively
high for minuscule h̄∗

0 – this is also dictated by the last term in (4.9) – it initially blows
up the inertia effects. Consequently, it required correspondingly small time intervals (Δt̄∗)
to highlight the details at early times. So, using (3.9a–c) and (3.10a–e), the equivalent
Jurin’s depth is estimated from (4.21) as J̄ ∗

h ∼ 1.8. However, for both conduits, we chose
to present only cases having pipetted depth ranging from h̄∗

0 = 0.2 to h̄∗
0 = 5, considered

here as a moderate-to-high range, allowing us to also examine the effects of initial over
filled. Worthy of note is that our choices within this range are also motivated by those used
in Bhattacharya et al. (2017) and Sumanasekara et al. (2017). Using typical experimental
values described in § 3.2 this range corresponds to h∗

0 ∼ 3 mm − h∗
0 ∼ 70 mm.

Furthermore, we caution that, except for figures 13 and 14, graphs with expressions
involving penetrated depth f (h̄) and correspondingly those having to do with
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encroachment rates f (v̄) will be plotted side-by-side. Accordingly, for each set of data,
f (h̄) will be plotted on the right axes whereas f (v̄) will be plotted on the left axes.

The data for this conduit are presented in a total of three figures. Accordingly,
cases for γ -model 1 (4.22a) are presented in figure 3, whereas those for γ -model
2 (4.22b) are depicted in figures 4 and 5. More to this, in figures 3 and 5, the
choices of parameters ensure a monotonic and an increasing γ (t). Meanwhile, cases with
rather monotonic-and-decreasing time-dependent surface tensions are plotted in figure 4.
To appreciate the importance of unsteadiness in surface tension, we have included
corresponding plots for steady surface tension represented by the solid black lines.
Nonetheless, the plots shown here are quite distinct from each other corresponding
to different surface tension modes that reflect the trend and monotonicity of the γ

models. It can also be observed that the encroachment depths show a monotonic increase
supported by the fact that the encroachment rates stay positive throughout. Meanwhile,
encroachment rates initially increase rapidly reaching maximum values of v̄∗

max and
then adopting a monotonic decrease. This maximum can be explained by the dynamics
involved in that despite the changing capillary force (F∗

γ ), the viscous resistance term
F∗

μ develops quickly and tones down the growth of the encroachment rate. Additionally,
we should recall that F∗

μ is locally weighted by the inverse of encroachment depth that
dampers the flow. Consequently, when F∗

μ exactly matches F∗
γ , this growth is expected to

stop.
It is interesting to note the rapport of the intricate features depicted by these plots with

previous similar studies for cases of uniform γ (e.g. Lu et al. 2013; Sumanasekara et al.
2017). For example, the rise and fall of the encroachment rates and having trends whose
magnitudes increase with an increasing γ . Not surprising that the comparability is stronger
for cases of moderately transient surface tension and smaller initially filled depth, which
corresponds to the specific graphs in figures 3–5(a,b).

Additionally, long-time trends of h̄∗ and v̄∗ have characteristics of asymptotic behaviour
and § 7 will be dedicated to analytically capturing these exploits. Moreover, the monotonic
decreasing version of γ -model 2 generates cases that saturate at a constant value for
the long-time run also identified for cases of steady γ – this will also be examined
in § 7. Another important observation is that prefilling the conduit with more liquids
(considerable values of h̄∗

0) causes the velocity to grow in a more strictly increasing trend.
This is more prevalent in the faster-growing γ model (figures 3(c,d), 4(c,d) and 5(c,d)).
Perhaps because the strength of the growth rate undermines the decelerating contribution
of the inverse of the encroached depth. Finally, a quick comment on aspect ratio, we also

note that, in general, square channels have a faster growth rate in ˙̄h∗ and, for the cases
where h̄∗

max exist, a correspondingly slower decay rate after it reaches maximum.

5. Imbibition in circular channel

Here we showcase our analysis by considering a confined conduit having a circular
cross-section, taking advantage of the flexibility in the governing equations. Small-scale
cylindrical-shaped conduits are more practical ducts; for instance, naturally occurring
small-flow devices like blood vessels and xylem ducts or applications requiring small
channels like medical needles and syringes. It has been used in the past to study
capillary action also (see, e.g. Davis et al. 1974; Ichikawa & Satoda 1993; Fries &
Dreyer 2008; Baek et al. 2021). However, there are some similarities with its rectangular
counterpart in § 4 that we make several references to. So, to differentiate from the
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Figure 3. Plots for encroachment rate, v̄∗ (left axes and thicker lines), and corresponding depth, h̄∗ (right axes
and corresponding thinner lines), for a channel with a rectangular cross-section given by (4.17) and (4.18) using
the unsteady linear-time γ (t) model in (4.22a). Cases for different prefilled depths are represented where (a,b)
h̄∗

0 = 0.2 and (c,d) h̄∗
0 = 5. The plots also show the kinematics for two different aspect ratios: (a,c) κ = 1 and

(b,d) κ = 0.01. The parameter rγ = 0, 0.2, 0.5 and 0.8 corresponding to different m∗ = 0, 0.01, 0.05 and 0.1.
Stable γ (t) are shown with solid-black lines to contrast the dynamics in the transient case.

previous conduit case, we use ‘†’ to refer to quantities that are strictly tied with a
circular duct.

We recall that the flow inside the channel is predominantly unidirectional, having
axisymmetry, thus, invariant in rotation angle. Hence, leaving the radius as the only spatial
independent coordinate. Thus, in dimensionless form, we can write

v̄† = v̄†
z (r̄, t̄†)ez. (5.1)

Taking ro as the radius of the channel, the cross-sectional length scale in (3.5) becomes

l†c = A†

P† = ro

2
(5.2)

and the pressure scale yields

p†
s = γoP†

A† = 2γo

ro
. (5.3)
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Figure 4. Equivalent to figure 3 for a rectangular conduit using the time-exponential γ (t) model in (4.22b)
with a fixed rγ = 0.5 and ξ̄∗ < 0, (=−0.1, −0.5 and −2).

Using (5.2), the time, axial displacement and velocity scales are restated from (3.7) and
(3.8a,b) and redefined as

t†s = ρ(l†c)
2

μ
= ρr2

o

4μ
, h†

s = l†c

√
ργol†c
μ2 = ro

√
ργoro

8μ2 , U†
s =

√
γo

ρl†c
=
√

2γo

ρro
.

(5.4a–c)

With these new scales, the governing equations become

∂v̄†
z

∂ t̄†
= (∇̄†

⊥)2v̄†
z − P̄†

Δ

h̄†
,

dh̄†

dt̄†
=
∫

∂D
v̄†

z dA†
. (5.5a,b)

Due to the angular invariance of the flow, the area integral over the circular cross-section,
∂D, which is already summed over the angular coordinate, is henceforth reduced to only
a single radial integral such that

dA† = 2r dr/r2
o = r̄ dr̄/2. (5.6)

Similar to the rectangular case, we use the γ models rescaled as

model 1, Φ̄†(t̄†) = (1 + rγ )(1 + m̄† t̄†), (5.7a)

model 2, Φ̄†(t̄†) = 1 + rγ exp(ξ
†
t̄†). (5.7b)
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Figure 5. Same as figure 4 for a rectangular conduit using the time-exponential γ (t) model in (4.22b) with a
fixed rγ = 0.5 and ξ̄∗ > 0, (=0.01, 0.3 and 0.8).

5.1. Unsteady r-polar eigenfunction expansion
A close examination of the governing partial differential equation and ODE, given
by (5.5a,b) reveals that it is also suitable for a Sturm–Liouville-type eigenfunction
expansion, similar to our observations in § 4.1. According to this, if we consider and
redefine the radial dependent eigenfunction as u†

i = Ri(r̄), the scalar component of (5.1)
is expressed in its spectral form as

v̄†
z =

∑
i

α
†
i (t̄†)Ri(r̄), (5.8)

where we remind the reader that r̄ = r/l†c and α
†
i are the unsteady polar amplitudes.

As the first step, we substitute (5.8) into (5.5a,b) and then analyse the inner products,
〈[(5.5a,b)],Rj〉, over the cross-section. We also identify the Helmholtz eigenfunction
equation similar in its compact form as (4.6) given by

∇̄†2
⊥ Ri = −βi

†2
Ri. (5.9)

Along the process, a surface parameter is also recognised and defined as

η
†
i =

∫
∂D

Ri dA†
, (5.10)
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Unsteady capillarity in rectangular and cylindrical channel

where the nature of the equations imposes an orthogonality condition∫
∂D

RiRj dA† = δij. (5.11)

Here also, δij is the Kronecker delta interpreted in the same way as (4.8). The outcome of
these steps leads to a first-order ODE governing the unsteady amplitude

dα
†
i

dt̄†
= −βi

†2
αi − η

†
i

P̄†
Δ

h̄†
. (5.12)

We focus next on developing (3.22) to obtain the driving pressure difference. Again
from Parseval’s theorem, we use (5.8) and (5.10) to analyse the momentum flux at the
spectral-parabolic flow front to systematically show that(∫

∂D
v̄†

z dA†
)2

=
[ N∑

i=1

η
†
i α

†
i (t̄†)

]2

. (5.13)

Meanwhile, at the free surface where the velocity is uniform, we easily show that∫
∂D

v̄†2
z dA† =

N∑
i=1

α
†
i

2
(t̄†). (5.14)

The final expression from the aforementioned steps is therefore

P̄†
Δ =

⎧⎨⎩
[ N∑

i=1

η
†
i α

†
i (t̄†)

]2

−
N∑

i=1

α
†
i

2
(t†) − Φ̄†(t̄†)

⎫⎬⎭ , (5.15)

leading to a final set of governing ODE,

dα
†
i

dt̄†
= −βi

†2
α

†
i − η

†
i

⎧⎪⎨⎪⎩
⎡⎣ N∑

j=1

η
†
j α

†
j (t̄†)

⎤⎦2

−
N∑

j=1

α
†
j

2
(t†) − Φ̄†(t̄†)

⎫⎪⎬⎪⎭ , (5.16a)

dh̄†

dt̄†
=

N∑
i=1

η
†
i α

†
i . (5.16b)

5.2. Analytical Bessels solution for a circular channel
We provide a detailed analysis leading to a solution for the eigenfunctions describing the
velocity profile. First, for solution closure, we define the two boundary conditions

r̄ = 0, Ri = sup(Ri) =⇒ dRi

dr̄
= 0, (5.17a)

r̄ = 2, Ri = 0, no-slip, (5.17b)

where (5.17a) is due to the angular symmetry requiring the maximum flow speed occurring
at the centre. Meanwhile, (5.17b) enforces that the fluid sticks to the stationary wall. Next,
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we expand the Laplacian operator in cylindrical coordinates – minding angular symmetry
while retaining only the radial components. As a result, (5.9) takes the form

r̄2 d2Ri

dr̄2 + r̄
dRi

dr̄
+ r̄2βi

†2
Ri = 0, (5.18)

recognized here as the classical Bessel’s ODE. It is a linear second-order differential
equation suggesting two independent solutions. According to Bessel’s analysis, the general
solution is given by

Ri = c1J0(β
†
i r̄) + c2Y0(β

†
i r̄), (5.19)

where c1 and c2 are constants, whereas J0 and Y0 are zeroth-order Bessel functions of the
first and second kind, respectively. These two functions can be written in terms of power
series, which reveals that Y0(β

†
i r̄) admits a singularity at r̄ = 0. In what follows, we would

make use of two integral identities of Bessel’s functions,∫ 2

0
J0(β

†
i r̄)r̄ dr̄ = 2

J1(2β
†
i )

β
†
i

,

∫ 2

0
J0

2(β
†
i r̄)r̄ dr̄ = 2[J0

2(2β
†
i ) + J2

1(2β
†
i )]. (5.20a,b)

We enforce the boundary conditions in (5.17) while implementing the orthogonality
condition in (5.11) and making use of (5.20a,b). In the end, solutions for the spectral polar
eigenfunctions are secured,

Ri = J0(β
†
i r̄)

J1(2β
†
i )

. (5.21)

Through this development, (5.17b) informs that the eigenvalues of the Helmholtz equation,
β

†
i , be obtained by finding the roots of

J0(2β
†
i ) = 0. (5.22)

Using (5.20a,b), the shape flow factor for this circular conduit defined in (5.10) is also
computed,

η
†
i = 1

β
†
i

. (5.23)

Ultimately, the final version of the ODE dictating the transient amplitude outlined

dα
†
i

dt̄†
= −β

†
i

2
α

†
i − η

†
i

h̄†

⎧⎪⎨⎪⎩
⎡⎣ N∑

j=1

η
†
j α

†
j (t̄†)

⎤⎦2

−
N∑

j=1

α
†
j

2
(t̄†) − Φ̄†(t̄†)

⎫⎪⎬⎪⎭ (5.24)

and

v̄†
z = dh̄†

dt̄†
=

N∑
i=1

η
†
i α

†
i (t̄†) =

N∑
i=1

α
†
i

β
†
i

(5.25)

for i = 1, 2, . . . , N.
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Figure 6. Same as figure 3 for a cylindrical channel generated from (5.24) and (5.25) with an unsteady
linear-time γ (t) model in (5.7a) having rγ and m̄† similar to figure 3.

5.3. Numerical scheme, results and comments: circular channel
The two resulting governing ODEs (5.24) and (5.25) are indeed first order. Besides being a
single-spectral summation, they are identical in form to (4.17) and (4.18) in § 4. Moreover,
we also note the similarities existing in their non-trivial source terms (4.19) and (4.20),
thus warranting an identical computational treatment. As a result, (5.24) and (5.25) are
tackled simultaneously using the same numerical scheme described in § 4.3.2. Thus, we
evaluate them numerically, calculating the relevant kinematics data: h̄† and v̄†.

The ODEs (5.24) and (5.25) are solved using the rescaled unsteady γ models in (5.7).
According to § 4.3.2, a fourth-order Runge–Kutta algorithm is used to simultaneously

solve the two ODEs for different unsteady γ using a different set of parameters (r†
γ , m†

and ξ†) for two values of initially filled depth: h̄†
o = 0.2 and 5.

These data are presented in figure 6 for γ -model 1 and figures 7 and 8 for γ -model 2.
Qualitatively, their kinematics and dynamics resemble those of the rectangular conduit.
This can be seen in the identical calculus features of their respective governing equations,
also discussed in § 4.3.3. For the presented parameters, this quantitative time similarity
is evaluated at �80 % (see § 6). Because of this, we omit the detailed qualitative
interpretation, deferring to that outlined in § 4.3.3 about their rectangular counterparts.
We determine later in § 6 that the similarities in quality and quantity are better when the
rectangular channel has a square (κ = 1) or a square-doubled (κ = 0.5) shape.

6. Contrasting creeping rates for both channels

Thus far, two channels with different cross-sectional shapes have been analysed to uncover
the effects of unsteadiness of transient surface tensions in capillary encroachment. Each
of these configurations is important for different applications. In the previous sections,
particularly § 5.3, some similarities were noted, which motivated a closer look. It is well
established that the size and shape of flow conduits strongly influence the dynamics
involved in narrow channel hydrodynamics (see, e.g. Akbari, Sinton & Bahrami 2011;
Navardi, Bhattacharya & Azese 2016). Many combinations of dimensions that are related
to the cross-sectional shape have been used in constructing relevant transverse length
scales (Bahrami, Michael Yovanovich & Richard Culham 2007; Moharana & Khandekar
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Figure 7. Same as figure 6 for a circular cross-section with an unsteady time-exponential γ (t) model
in (5.7b), having rγ and ξ̄† values similar to those of figure 4.
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Figure 8. Same as figure 7 for a circular cross-section using the unsteady γ (t)-model 2 in (5.7b) with rγ and
ξ̄† values identical to those of figure 5.

2013; Akbari et al. 2011). These include the hydraulic radius and the square root of the
area. However, from the onset, we differed from the aforementioned definitions. We are
reminded of our definition for transverse breath scales lc, as the ratio of area-to-perimeter,
a variant to the other pertinent scales (3.5)–(3.8a,b) and (3.7).

Ultimately, the three forces in action within our system, Fv , Fμ and Fγ , are substantially
affected by these gauges. Interestingly, an important connection can be made between
the dictating scales (3.5)–(3.7) and (3.8a,b). This observation stipulates that if the fluids’
properties (ρ, μ, and γo) are held fixed, then the invariance of lc ensures identical scales
between two conduits of arbitrary shapes. Therefore, for two different channels having
alike length scales, there exist an infinite number of ways of combining the remaining
unconstrained parameters (ρ, μ and γo). This ambiguity therefore needs to be approached
carefully while juxtaposing the two shapes.
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Unsteady capillarity in rectangular and cylindrical channel

Foremostly, if A and P represent the cross-sectional area and perimeter of an arbitrary
conduit then, for two arbitrary shaped channels, we can define

Ar = A †

A ∗ , Pr = P†

P∗ , (6.1a,b)

where the subscript r refers to ratios such that (6.1a,b) respectively define the quotients
between cross-sectional areas and perimeters. A consequence of (6.1a,b) is that if the
channels considered are circular and rectangular conduits, then it also follows that

ro = 2
(

Ar

κπ

)1/2

lx, (6.2a)

ro = 2
(

1 + κ

κπ
Pr

)
lx. (6.2b)

Furthermore, for rectangular and circular conduits, it is fortunate that their perimeters
have straightforward correlations with their respective cross-sectional area, i.e.

P∗/A ∗ = 2/ro, P†/A † = (1 + κ)/lx, (6.3a,b)

which we subsequently explore – sadly this is not the case for all arbitrary shape
channels. Worth restating is that the magnitudes of A and P both play important roles in
characterizing the relevant forces involved in capillary encroachment. Following that, the
perimeter affects the magnitude of the viscous drag force and capillary force, whereas the
area influences the size of the inertia force. Based on the matching parameter of interest,
(6.2a) and (6.2b) can be used to provide the correspondences between channel radius
and conduit cross-sectional lengths. We are keeping aside other geometric and dynamic
intricacies hidden in the shapes that may couple with the flow physics and manifest
during capillary imbibition. So, besides the complexity of comparing the display of the
convoluted dynamics within the channel, matching the respective (i) length scales, l∗c ≡ l†c ;
(ii) cross-sectional area, A ∗ ≡ A † and (iii) P∗ ≡ P†, is near impossible.

However, in this comparative investigation we chose to ensure that the length scales
are similar, consequently fixing corresponding gauges in (3.5)–(3.8a,b) and (3.7). This
will enable us to compare the dynamics and kinematics in both channels by having their
graphs superposed on each other without prefactors. Ideally, from (6.1a,b), we want both
ratios to be unity. However, it is intuitive to examine the similarities existing between a
square channel of half-length lx and a tube such that

ro = lx. (6.4)

This scenario can be achieved first by taking κ = 1, and then by making both ratios
in (6.1a,b) equal but sadly not unity, such that we now have

Ar = Pr = κπ/4. (6.5)

Hence, to enforce (6.4) and compare both channels, we keep in mind the presence of
the mismatch in (6.5), which eventually influences and differentiates their respective
dynamics. Ultimately, the search for a proper match between both channels results in an
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M.N. Azese and others

optimization problem involving the areas, perimeters and length scales. Dividing (6.2a)
and (6.2b) results in a quadratic equation in κ ,

P2
r κ2 + (2P2

r − πAr)κ + P2
r = 0. (6.6)

The discriminant of (6.6) suggests that

Ar ≥ 4/πP2
r , (6.7)

clearly indicating that no aspect ratio will ensure identical areas and perimeters (Pr =
1 and Ar = 1) simultaneously. Therefore, we suggest an optimization scheme to match
channel dynamics by considering

|Ar − 1| = δA, |Pr − 1| = δP, |Ar − Pr| = δAP, |Ar/Pr − 1| = δr, (6.8a–d)

where δA, δP, δAP and δr are small numbers that, in theory, are required to be zero.
Using (6.8a–d) we conceive a naive minimization algorithm and construct a simple
function,

fε = ω1δA + ω2δP + ω3δAP + ω4δr + ΩδAδPδAPδr, (6.9)

with ω1, ω2, ω3, ω4 and Ω being weight functions that are arbitrarily chosen to mimic
optimum priorities between area and perimeter. Through a naive excel algorithm, we
explore κ = 0.1–1 with steps of Δκ = 0.05, and tested different values of Ar = 0.2–0.9,
using ΔAr = 0.1. Using ω1 = ω2 = 1, ω3 = 5, ω4 = Ω = 0, we eventually uncover an
alternative equivalence to (6.4) such that

κ = 0.5, Pr ∼ 0.7, Ar ∼ 0.699, (6.10a–c)

which is revealed by the plots, suggesting that a circular duct will record a better similarity
in their dynamics with a double-square rectangular duct when the latter has an area and
a perimeter of ∼140 %. Nonetheless, to avoid deviating from the focus of this paper, no
further investigation was done on this comparison.

To generate data for comparison, we use two sets of rectangular channel configurations:
(i) the case with κ = 1 for (6.4) and (6.5), and (ii) the case for κ = 0.5 aligned
with (6.10a–c). Using corresponding data for circular channels, the ratio of the kinematics
(v̄†/v̄∗ and h̄†/h̄∗) are also plotted on both axes so that the similarities of these conduits
are inspected. In figure 9 this quotient is presented for γ -model 1 (4.22a), meanwhile, in
figure 10 we represent the case for γ -model 2 (4.22b). These plots represent cases for two
initial filled depths, h̄o = 0.2 and h̄o = 5.0, with moderate values of parameters (rγ , m̄ and
ξ̄ ).

The plots generated from these data reveal fascinating features and show how close the
dynamics in these structurally distinctive channels are. This is provided by the following
interesting observations.

(a) The different γ (t) models yield qualitatively similar plots.
(b) Encroachment depth ratios (h̄†/h̄∗) depict better correspondences (�94 % ⇒

γ -model 1 and �97.5 % ⇒ γ -model 2) than their respective rates (v̄†/v̄∗) showing
�84 % ⇒ γ -model 1 and �95.5 % ⇒ γ -model 2.

(c) Although truncated in the figures, for a given κ value, both h̄†/h̄∗ and ˙̄h†/ ˙̄h∗ appear
to converge to the same value for a long time, in line with observation (e) and
corroborated by (7.26).
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Unsteady capillarity in rectangular and cylindrical channel
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Figure 9. Log graphs of the kinematic ratio of both channels where circular and square rectangular conduits
are considered. The ratio of their depths, h̄†/h̄∗ (right axes having finer lines), and corresponding velocities,
v̄†/v̄∗ (left axes having wider lines). Values of the parameters used are rγ = 0, 0.2, 0.5 and 0.8 and
m̄ = 0, 0.01, 0.05 and 0.1. Data are generated from (4.17), (4.18), (5.24) and (5.25) using γ -model 1 from
(4.22a) and (5.7b). Overall, a good match of ≥84 % is observed. This equivalence is perfect at early times
(∼1) and near perfect at late times (∼0.94).
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Figure 10. Log plots depicting the ratios of the kinematics in circular and double-square rectangular (κ = 0.5)
channels, similar to figure 9, but for γ -model 2 satisfying (4.22b) and (5.7b). Graphs are represented for a fixed
value of rγ = 0.5 and for different values of ξ̄ = 1.0, −0.05 and −0.02. The depth ratio is the right axes with
finer lines, meanwhile, the rate ratio is the left axes having wider lines. For the most part, a good match of
≥95 % is observed, even better for a higher prefilled depth, figure 10(b). This equivalence is perfect at early
times (∼ 1) and near perfect at late times (∼ 0.985).

(d) The match provided by κ = 0.5 appears to be better than that provided by κ = 1.
(e) The values of convergence (∼0.942 for figure 9 and ∼0.986 for figure 10) are

dependent only on the choice of γ model, thus, independent of the parameters
rγ , m̄, ξ̄ and h̄o.

(f) Cases of a higher prefilled depth (h̄o = 5.0) match both channel kinematics better
than scenarios having a smaller initial depth (h̄o = 0.2).

(g) For both κ values and h̄o choices and at any time t̄, the magnitudes of the depths and
rate in both channels are such that h̄∗ � h̄† and v̄∗ � v̄† with ratios ∼1 only at the
initial time.
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The compelling equivalence observed in the asymptotic behaviour is highlighted by the
convergence at long times, outlined in observation (e) and will be examined further in
figure 7.

7. Long-time asymptotic approximations

We now investigate the behaviour of capillary encroachment due to unsteady surface
tension – after a very long time has passed. We do so using asymptotic analysis, a technique
used by many authors to study surface tension (e.g. by Calver et al. 2020) and by others
to capture early time and late-time hydrodynamics phenomena (see, e.g. Hinton & Woods
2018; Kiradjiev et al. 2019). Thus, using the two γ models, we develop the long-time
behaviour for both channels. We note, however, that a similar analysis was developed for a
similar purpose in previous papers by one of the authors in both Bhattacharya et al. (2017)
and Sumanasekara et al. (2017), in their sections (6) and (4.2), respectively.

7.1. Asymptotic expansion
As the first step, we zoom in on the dynamics occurring at a long time by considering a
new time scale ts,∞ enabling a quicker arrival at late times, defined such that

ts,∞ ∼ ts/ε, (7.1)

where ε is a small number such that ε � 1, and we have used ‘∞’ to denote long-time
estimation and subsequently as a reminder that the quantity is valid after a long time has
elapsed. This leads to a new dimensionless time

t̃∞ = ε t̄. (7.2)

The physics that highlights the delayed observations dictates that the

Fγ ∼ Fμ, (7.3)

thereby undermining inertia effects. Hence, with these considerations, the governing
equations (4.17)–(4.18) require that the dependent variables be rescaled according to

h̃∞ = √
εh̄, α̃n,∞ = αn√

ε
. (7.4a,b)

Following these, we use ε, a small parameter, to asymptotically expand the encroachment
depth and unsteady amplitudes, leading to a perturbed series

h̃∞(t̃∞) =
∑
j=0

ε(j)h̃
(j)
∞(t̃∞) = h̃

(0)

∞ (t̃∞) + εh̃
(1)

∞ (t̃∞) + · · · (7.5)

and

α̃n,∞(t̃∞) =
∑
j=0

ε(j)α̃
(j)
n,∞(t̃∞) = α̃(0)

n,∞(t̃∞) + εα̃(1)
n,∞(t̃∞) + · · · . (7.6)

Thus, using the definition of the new dimensionless time (7.2), we rewrite (7.5) and (7.6),

h̄(i)(t̄) = εi−1/2h̃∞(i)(ε t̄), α(i)
n (t̄) = εi+1/2α̃(i)

n,∞(ε t̄). (7.7a,b)
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Unsteady capillarity in rectangular and cylindrical channel

For both channels, putting (7.7a,b) in their respective governing ODEs yield ε-dependent
equations such that, for a rectangular channel,

ε
dα̃

∗(ĵ)
n̂,∞

dt̃∗∞
= −(β∗

n̂ )2α̃
∗(ĵ)
n̂,∞ + η∗

n̂

h̃∗∞

⎧⎪⎨⎪⎩Φ̃∗(t̃∗∞) + ε2
N̂∑

p̂=1

(α̃
∗(ĵ)
p̂,∞)2 − ε2

⎡⎣ N̂∑
p̂=1

η∗
p̂α̃

∗(ĵ)
p̂,∞

⎤⎦2
⎫⎪⎬⎪⎭ ,

(7.8)

where, because of the two cross-sectional coordinates, the representative single indices,
n̂ and p̂, are indeed double, such that n̂ = (n, m) = 1, 2, . . . , N̂(= N, M), same as p̂.
Whereas, for circular conduits, we have

ε
dα̃

†(j)
n,∞

dt̃†∞
= −(β†

n )2α̃
†(j)
n,∞ + η†

n

h̃†∞

⎧⎪⎨⎪⎩Φ̃†(t̃†∞) + ε2
N∑

p=1

(α̃
†(j)
p,∞)2 − ε2

⎡⎣ N∑
p=1

η†
pα̃

†(j)
p,∞

⎤⎦2
⎫⎪⎬⎪⎭
(7.9)

such that n = 1, 2, . . . , N, as well as p. In the meantime, the ODE describing the hierarchy
of the time-dependent encroachment depth is

dh̃
∗(j)
∞

dt̃∗∞
=

N∑
p=1

M∑
q=1

ηp,qα̃
∗(j)
p,q,∞(t̃∗∞),

dh̃
†(j)
∞

dt̃†∞
=

N∑
p=1

ηpα̃
†(j)
p,∞(t̃†∞). (7.10a,b)

Because the development that follows is identical for both channels, we proceed with
generalized forms that address both conduits simultaneously, hence, free of ∗ and †.

We are interested in retrieving the higher-order dynamic behaviour (∼O(ε0)).
Foremostly, we focus on developing the inverse encroached depth term

1

h̃∞
= 1

h̃
(0)

∞

⎧⎨⎩1 − ε
h̃
(1)

∞
h̃
(0)

∞
− ε2

⎡⎣ h̃
(1)

∞
h̃
(0)

∞
+
(

h̃
(2)

∞
h̃
(0)

∞

)2⎤⎦+ O(ε3)

⎫⎬⎭ , (7.11)

to be used alongside the respective transient surface tension models.

7.2. Long-time kinematics; h̄, v̄

First, we consider the case of γ -model 1 defined in (2.7a). Accordingly, when (7.11) is
replaced in the channel’s respective ε-dependent ODEs (7.8) and (7.9), the leading-order
unsteady amplitudes are obtained,

α̃(0)
n,∞ = ηn

(β2
n )h̃(0)

∞
[(1 + rγ )(1 + m̃t̃∞)], (7.12)

where m̃ = m̄/ε, from rescaling time in (2.7a) using (7.1) and (7.2). Then, (7.12) is replaced
in (7.10a,b) to analytically solve the resulting first-order equation in h(0)

∞ . To revert to our
original scales, we retrace our steps using (7.2) and (7.4a,b) aided by (7.7a,b). We note that
such retrogressing also helps when comparing the long-time solution with the previously
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κ Γ ∗ Γ †(κ-independent)

∼0.0 (slitpore) 3.0000 2.0
0.4 2.0460 2.0
0.5 1.9435 2.0
1.0 (square) 1.7784 2.0

Table 1. Aspect ratio, κ , defined in (4.2) and (4.3a,b) for a rectangular channel, with corresponding geometric
parameter, Γ ∗, shown in (7.15), and that defines the normalized pressure gradient required to overcome friction,
yielding steady flow.

obtained regular solutions valid at all times. Consequently, we get

h̄(0)
∞ =

[( N∑
n=0

η2
n

β2
n

)
(1 + rγ )(2t̄ + m̄t̄2) + c

]1/2

, (7.13)

where c is an integration constant deemed to be insignificant at long times and, hence,
can be ignored. Furthermore, this leading-order encroachment depth is expanded and
simplified to

h̄|t̄→∞ ≈
√

m̄(1 + rγ )/Γ · [1/m̄ + t̄], ∀ m̄ /= 0; for ∗, †, (7.14)

where

Γ −1 =
N∑

n=0

η2
n

β2
n
. (7.15)

In (7.13) it is understood that m̄t̄ ∼ O(1), although keeping it allows the expression
to resolve earlier times, as we discuss later in this section. The parameters ηn and βn
are both constructed based on the structure of the conduits. As a result, Γ is also a
geometry-defining parameter. It is fascinating to note that this intriguing quantity was
also derived in Bhattacharya et al. (2017). Accordingly, it can be used to understand the
steady-state effect generated when a uniform flow is subjected to constant dimensionless
pressure, Γ , required to balance the viscous drag so that one can write

∇̄2
⊥v̄z = −Γ. (7.16)

Using (7.15) and (7.16), values for Γ are analytically computed for both channels which
are also validated using our numerical schemes. Following these, and because circular
channels are κ-independent, only a single value is obtained, Γ † ≈ 2, meanwhile, for a
few selected rectangular-shaped conduits, we obtain their corresponding Γ ∗(κ). These are
shown in table 1.

It follows that obtaining long-term velocity from (7.14) is straightforward, resulting in

v̄|t̄→∞ ≈ dh̄(0)

dt̄
=
√

m̄(1 + rγ )

Γ
, ∀ m̄ /= 0; for ∗, †. (7.17)

Unfortunately, (7.14) admits a singularity at m̄ = 0. So, instead, for this singularity point,
we obtain the long-time approximation from (7.13),

h̄|t̄→∞ ≈
√

2(1 + rγ )

Γ
t̄1/2, v̄|t̄→∞ ≈

√
(1 + rγ )

2Γ
t̄−(1/2), for m̄ = 0; ∗, †. (7.18a,b)
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Unsteady capillarity in rectangular and cylindrical channel

Then secondly, we study the delayed time dynamics case using the γ -model 2 defined in
(2.7b). We follow similar steps as in the previous unsteady surface tension model. Using
ˆ to differentiate from the latter, first, we obtain the leading-order term for a long-time
unsteady amplitude,

ˆ̄α(0)
n,∞ = ηn

(βn)2h̃
(0)

∞

(
1 + rγ eξ̃ t̃

)
for ξ̃ ≥ 0; ∗, †, (7.19)

where, here too, we have defined ξ̃ = ξ̄/ε, similarly from rescaling time in (2.7b)
using (7.1) and (7.2). We recognize that exp(−ξ̄ t̄∞) = o(1), yet we keep both terms for
reasons explained at the end of this section (§ 7.2). We are reminded of the importance of
returning to our original scales to compare data with the previously acquired results valid
at all times. From (7.19) the reverted zero-order encroachment depth is eventually derived
using (7.2) and (7.4a,b),

ˆ̄h(0) =
√

2/Γ

[
t̄ + rγ

ξ̄
eξ̄ t̄ + ĉ

]1/2

for ξ̄ ≥ 0; ∗, †. (7.20)

Here also, we understand that rγ eξ̄ t̄/ξ̄ ∼ O(t̄), again to resolve earlier than late times, we
keep the t̄. For the same reasons as the previous model, we discard ĉ and then expand and
simplify (7.20) to ultimately obtain the time tail-end kinematics

ˆ̄h|t̄→∞ ≈
√

2rγ

Γ ξ̄

[
1 + ξ̄

2rγ

t̄ e−ξ̄ t̄
]

exp(ξ̄ t̄/2) for ξ̄ ≥ 0; ∗, †, (7.21a)

ˆ̄v|t̄→∞ ≈
√

ξ̄

2Γ rγ

[
1 + rγ eξ̄ t̄ − ξ̄

2
t̄
]

exp(−ξ̄ t̄/2) for ξ̄ ≥ 0; ∗, †. (7.21b)

We revisit (7.19) to consider cases for ξ̃ < 0 while recognizing that eξ̃ t̃ = O(ε). We follow
the same footsteps as for positive values of ξ̃ and obtain

ˆ̄h|t̄→∞ ≈
√

2
Γ

t̄
1
2

[
1 + O

(
rγ

2ξ̄ t̄
eξ̄ t̄
)]

for ξ̄ < 0; ∗, †, (7.22a)

ˆ̄v|t̄→∞ ≈
√

1
2Γ

t̄−(1/2)

[
1 + rγ eξ̄ t̄ − O

(
rγ

2ξ̄ t̄
eξ̄ t̄
)]

for ξ̄ < 0; ∗, †. (7.22b)

We also regret here that (7.21a) and (7.21b) present a singularity for values of rγ = 0.
However, we obtain separate general solutions that replace (7.21a)–(7.22b) for rγ = 0,

ˆ̄h|t̄→∞ ≈
√

2
Γ

t̄1/2, ˆ̄v|t̄→∞ ≈
√

1
2Γ

t̄−(1/2), for rγ = 0; ∀ξ̄ ; ∗, †. (7.23a,b)

Equation (7.23a,b) is identified as the case for uniform steady surface tension, which is
identical to equations (45) and (46) in Bhattacharya et al. (2017).

A look at the surface tension models (5.7) and (4.22) reveals we can rewrite them as

Φ̄ = � + χ f (t̄), (7.24)

where, for case 1, � = 1 + rγ , χ = m̄(1 + rγ ) and f (t̄) = t̄, and, for case 2,
� = 1, χ = rγ and f (t̄) = eξ̄ t̄. We note that the asymptotic development presented thus
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far has accounted for the stationary term � . This consideration helps in also capturing
the dynamics that occur just earlier than at a long time, thus improving earlier times
estimations. If this post long-time behaviour is to be ignored, f (t̄) = o(�/χ), such that

lim
ε→0
t̄→∞

f (t̄, ε) � �

χ
, (7.25)

then the asymptotic solution presented (7.21a), (7.21b), (7.14) and (7.17) is slightly modified
by a simple adjustment.

7.3. Validation of late-time kinematics
We substantiate the long-term analysis using two checks. Firstly, it should be recalled that
in § 6, we observed what appeared to be long-time convergences shown in figures 9 and
10 and planned to examine this feature. Confirming these convergences will also mean
validating the asymptotic expansion, thus corroborating the long-term approximations.
Before exposing this behaviour, we note a remarkable characteristic that (7.21) and
(7.23a,b) uncover. According to it, regardless of the unsteady γ model used, for a long
time, the ratio obtained by using any one of the kinematic relations for the two channels
(7.14), (7.17), (7.21), (7.18a,b) and (7.23a,b), (i.e. v̄†/v̄∗ and h̄†/h̄∗) yields the same constant
value provided the scales are exactly matched. Then, following this, we write(

v̄†

v̄∗

)
t̄→∞

=
(

h̄†

h̄∗

)
t̄→∞

=
( ˆ̄v†

ˆ̄v∗

)
t̄→∞

=
( ˆ̄h†

ˆ̄h∗

)
t̄→∞

=
√

Γ ∗(κ)

Γ † , (7.26)

where we recall here that Γ is related only to the channel geometry and so are its
combinations. Finally, we use the analytical values of Γ for rectangular channels obtained
in table 1, which also match our computation results, to evaluate (7.26). We will define
capillary convergency as the quantity C such that

C =
√

Γ ∗(κ)

Γ † . (7.27)

It follows from (7.27) that if we use the cases of a square channel and a double-squared
rectangular channel while comparing them with their equivalent circular duct and ensuring
matched-fluid parameters and scales, we get

C |κ=1 =
√

1.77838/2 ∼ 0.943, C |κ=0.5 =
√

1.9435/2 ∼ 0.98577. (7.28a,b)

Interestingly, a close look at the data and the plots presented in figures 9 and 10
clearly corroborate (7.28a,b), where the plots appear to converge at ∼[0.942–0.944] and
∼[0.985–0.987], respectively.

Meanwhile, the second check is graphical. Thus, for any channel, γ model and
corresponding parameters, we plot the ratios of their kinematics with their respective
long-time approximation, given by encroachment depth h̄/h̄∞ and rate v̄/v̄∞. Following
these, in figure 11 we present encroachment ratios for rectangular channels with square
cross-sections, where figure 11(a) is for γ -model 1 and figure 11(b) represents the case
for γ -model 2. Furthermore, the same parameters are used to evaluate the exposition for
a circular duct, whose data are respectively shown in figure 12(a,b). The following can be
observed from these plots.
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Figure 11. Log plots showing ratios of penetration rate and depth with their respective long-time asymptotic
approximations ((7.14), (7.17), (7.18a,b) to (7.21), (7.22) and (7.23a,b)) for a rectangular channel of aspect
ratio κ = 0.2. Both figures are for an initial depth of h̄∗

0 = 0.2 for (a) the γ -model 1 for different pairs of
rγ and m and (b) the γ -model 2 for selected pairs of rγ and ξ̄ . Rate ratios, v̄∗/v̄∗∞, are on the left axes having
wider and point-style lines, meanwhile corresponding ratios of depths, h̄∗/h̄∗∞, are on the right axes having
correspondingly smaller and dash-type lines. Validation of the long-term expansion developed in § 7 is revealed
best by the convergence at ∼1.
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Figure 12. Log plots similar to figure 11 for the case of a cylindrical channel for similar parameters (h̄†
0 =

0.2, m̄†, ξ̄†) as in figure 11. Here also, the long-term asymptotic expansion developed in § 7 is corroborated by
the depicted convergence at ∼1.

(i) Both h̄/h̄∞ and v̄/v̄∞ converge at ∼1.
(ii) The plots diverge as they approach earlier times.

(iii) Steadiness in surface tension favours a better convergence both at a long time and at
the earlier moments.

(iv) The magnitude and direction of monotonic change in γ (t) affect the divergence in
early times.

(v) Despite generally showing a diverging trend at early times (i.e. /=1), the ratio of
the rates diverges less, away from the ideal value of 1, compared with the ratio of
corresponding depths.

One can safely conclude that figures 11 and 12 corroborate the asymptotic developments.
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8. Comments on unsteady evolution of forces

8.1. Preliminaries of force analysis
We examine here the implications of forces that interplay in the system having arbitrarily
shaped conduits. However, in the development that follows, the expressions work for both
rectangular and circular ducts. So, we consider the three dimensionless forces: inertia,
viscous and capillary, defined as

Fv̂ = ∂v̄z

∂ t̄
, Fμ = ∇̄2

⊥v̄z, Fγ = − P̄Δ(t̄)
h̄(t̄)

. (8.1a–c)

From the analysis developed earlier, these forces can be expressed as

Fv̂(t̄) =
N∑

j=1

ηiα̇i(t̄), (8.2)

Fμ(t̄) = −
N∑

i=1

βi
2ηiαi(t̄), (8.3)

and Fγ (t̄) = − P̄Δ(t̄)
h̄(t̄)

= 1
h̄(t̄)

⎧⎨⎩
[ N∑

i=1

ηiαi(t̄)

]2

−
N∑

i=1

αi
2(t̄) − Φ̄(t̄)

⎫⎬⎭ , (8.4)

where α̇i are the source terms of (5.16) and (4.17).
Equations (8.2)–(8.4) can be combined to generate

Fv̂(t̄) = Fμ(t̄) + Fγ (t̄) =⇒ Fv̂

Fγ

(t̄) = Fμ

Fγ

(t̄) + 1; (8.5)

therefore considering that Fμ(t̄) < 0, ∀t̄,

Fv̂

Fγ

(t̄)
∣∣∣∣
slope

= −Fμ

Fγ

(t̄)
∣∣∣∣
slope

. (8.6)

The force analysis developed here also confirms an identity obtained numerically,
given by

N∑
i=1

ηi
2 = 1, (8.7)

which otherwise could be obtained through the analysis of (7.16).
To test our formulation in (8.5) and (8.6), we choose modest values for parameters rγ , m̄

and ξ̄ and then, for the respective channels, we generate data for the ratios Fv̂/Fγ and
Fμ/Fγ . Plotting them versus time and shown in two figures. First, in figure 13 we present
the case for rectangular ducts having an aspect ratio of κ ∼ 0, showcasing two different
initial filled depths, h̄ = 0.2 and 2.0. In the second figure, figure 14, the case for circular
ducts is profiled using similar sets of parameters as in the rectangular channel plots.
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Figure 13. Log plots of the ratio of inertia-to-capillary force (shown on the left axis) and viscous-to-capillary
force for a slit-pore channel (shown on the right axis), κ ∼ 0. We used different prefilled depths such that (a)
h̄∗

0 = 0.2 and (b) h̄∗
0 = 2.0. Interestingly, informed by (8.5), the choices of the axes intervals and placements

made the left-axis plot and the right-axis plot coincide for every case. A selected pair of parameters from both γ

models, (rγ , m̄), (rγ , ξ̄ ) are depicted in both graphs. All the graphs begin from ∼ + 1 (shown in the mini-plot
presented only for the left plot) and terminate at ∼ − 1. Three main regions are distinguished; (I), (II) and (III)
that expose different dynamics of the balancing and interactions of the three forces.
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Figure 14. Log plots same as figure 13 for the case of a cylindrical channel.

8.2. Discussion on force dynamics
The plots in figures 13 and 14 all share two common characteristics. First, at an earlier
time, they all begin asymptotically at Fv̂/Fγ ∼ 1, corresponding to Fμ/Fγ ∼ 0, also
informed by (8.5); and secondly, they decay asymptotically to Fv̂/Fγ ∼ 0, corresponding
to Fμ/Fγ ∼ −1. These are also corroborated by (8.6). The initial time decay from rest is
only depicted in the mini-plot of the left graphs in figures 13 and 14, though qualitatively
the same for the profiles in the right plots. Informed by (8.5) and (8.6), we systematically
offset the y axes in figures 13 and 14, an operation that led to both Fv̂/Fγ and Fμ/Fγ –
coinciding at each time – hence, graphs lay on top of each other.

The intricacies involved in this unsteady capillary encroachment dynamics are hidden
in the interactions of the relevant forces and their respective dynamics and kinematics
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compositions. Through these details, we can distinguish three main dynamical regimes, (I),
(II) and (III). To understand these regions, we must decipher the forces while describing
the implications of what constitutes their packages.

Easy of all, is the inertia force, Fv̂ in (8.2). The encroachment rate is associated with
this inertia force that has a sign used in dictating the monotonical behaviour of velocity so
that it signals zero when velocity is optimized. The unsteady surface tension models used
here are functions that are either monotonically increasing (m̄ > 0, ξ̄ > 0) or stationary
(m̄ = 0, ξ̄ = 0, rγ = 0), or monotonically decreasing to asymptotic positive constant
values (ξ̄ < 0). Furthermore, these models ensure that the values of γ (t̄) remain positive.
Therefore, they guarantee that the velocity never becomes negative. Consequently, the
encroachment depths (h̄) inherit an increasing monotonical behaviour.

Next, the viscous force Fμ contributes to slowing down the encroachment, while
transferring momentum retardation transversely in the channel, and thus, is responsible for
fine-tuning the shape of the unsteady parabolic profile at the 1-D flow front. Features of
the parabola are embedded in β2

i , also considered to influence the viscous forces according
to (8.3) substantially. The contribution of Fμ in decelerating the flow is two fold. First,
its magnitude is greatly affected by the already encroached depth manifesting through
its wetted contact surface with channel walls. Secondly, the encroachment rate directly
correlates with Fμ in such a way that if the velocity becomes zero, the viscous force
responds by ceasing.

Lastly, we examined the capillary force, Fγ , described in (8.4), considered the driver
of the flow. This force is predominantly characterised by the unsteady surface tension
function that determines the driving pressure difference (2.3), the instantaneous total
encroached depth (8.1a–c) and, to a lesser extent, the rate (3.22). The subdominance
contribution of the velocity to this force is seen in the (αi) brought in by the proper
interpretation of the 3-D flow front captured in (4.12) and (5.15). We see from (8.4) traced
back to (3.2) and (3.4) that this force is indeed represented by a pressure gradient. We
conclude here that Fγ is proportional to γ (t̄) and, hence, proportional to P̄Δ as well,
meanwhile it is inversely proportional to h̄(t̄). Consequently, the changing surface tension
inflates Fγ in contrast to the instantaneous imbibed depth that downplays it.

In region (Ia) the liquid accelerates from rest at the expense of capillary force with
initially exorbitant inertia force. This inertia force decays owing to a growing viscous
dissipation due to an increasing encroachment depth until its velocity reaches its maximum
value where the plots first crosses the Fγ = 0 line. This time intercept corresponds to the
Fv̂ = 0 when the viscous force reaches its maximum and balances the capillary force,
marking the end of this region. In this region the capillary force initially decreases slowly,
then suddenly adopts a faster decay.

In zone (Ib) Fγ continues its rapid decay as the encroachment rate proceeds to drop
further. Meanwhile, the decreasing rate of momentum speeds up, causing the now negative
inertia force to grow negatively to near its negative maximum. Also, at this time the
resistant force, Fμ, will have recorded its maximum before rapidly decreasing due to
decreasing velocity. This zone also records a slow decrease in capillary force.

The division marked as (II) sees the final manifestation of subdominant inertia force
that translates into a relatively smaller encroachment rate. Consequently, the magnitude of
the viscous force reduces more rapidly to its near asymptotic value. Similarly, the surface
tension driving forces decrease, though more slowly than in (Ib), to a value closer to its
stationary estimate.

The final domain, (III), is characterized by small-to-zero velocities when the inertia
forces have become insignificantly small to almost zero, hence asymptotic. As the
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encroachment depth reaches its near stationary value, the pressure gradient force and
the viscous forces also saturate asymptotically, doing so in such a way as to yield a
ratio Fμ/Fγ ∼ −1 coinciding with Fv̂/Fγ ∼ 0. We note that region (Ib) through
(III) is identified as the Lucas–Washburn regime where initial and inertial effects are
inconsiderable. It is important to also note that prefilling the channels with more liquids
considerably skews these divisions with the potential to merge some of the zones and erase
demarkations, eventually hiding the fine details of the flow.

9. Discussion and concluding remarks

In this paper we set up a heuristic approach to rigorously investigate the impact of
unsteady surface tension force on capillary action in rectangular and circular channels,
which are common channel configurations that see frequent occurrences in applications.
This investigation uses a more accurate approach, captured in a spectrum that defines
an unsteady eigenfunction expansion. Thus, this approach accounts for the details
of transverse momentum transfer, yielding a more exact transient-parabolic profile.
Furthermore, the approach properly interprets and analyses the discrepancy between the
transition from the parabolic-to-solid-body translation of the flow – thereby exposing
the parabolic-to-uniform nature of the velocity profile – subsequently represented by the
Reynolds momentum transport theorem on a control volume basis.

At the onset of our investigation, we elaborated on the transiency of surface tension
while spotlighting different scenarios of how such unsteadiness can be achieved, presented
in § 2. Therein, we introduced a time rate of change of surface tension (2.4), using it to
hypothesize two time-dependent models for the γ (t), described by (2.7).

In § 3 we presented the system and argued that it is predominantly characterized by a 1-D
flow having a 3-D zone just before the interphase, which accounts for the loss in parabolic
profile seen by an observer. Using suitable scales, the equations governing this transitory
capillary imbibition are derived for channels with an arbitrary but uniform cross-section.
The physics involved in the 3-D flow domain is suitably captured by (3.13), whose analysis
considers a control volume approach to obtain the driving pressure gradient described
by (3.22).

The preliminary analysis developed is first applied to a rectangular channel in § 4.
Wherein the generalized scales are adjusted for this rectangular cross-section conduit so
that the aspect ratio is highlighted as the shape controlling parameter. The two independent
variables associated with the rectangular cross-section are considered in the spectral
Helmholtz equation – which is solved to yield Fourier’s solutions. Unfortunately, because
the time-independent part of the kinematic solution spectrum is a first-order ODE with
a strongly nonlinear source term, the final solution governing this conduit is assisted by
a numerical scheme. On the scheme, the preferred course of action was a fourth-order
Runge–Kutta algorithm, carefully crafted to simultaneously solve (4.17) and (4.18). In the
end, several plots are generated, showing the interesting flow dynamics and the role of
unsteady surface tension in rectangular channel imbibition.

In § 5 we repeat steps that are similar to the case of a rectangular channel. Only this time
around, r-polar coordinates are involved, which are reduced to only a single-dependent
variable due to axisymmetry. The form of the space-dependent ODE is governed by the
Sturm–Liouville theory and required that we sort solutions from Bessel’s functions –
eventually, we used a fourth-order Runge–Kutta algorithm to finalize the results. Similarly,
the output of the solution data is presented in several plots where encroachment rate and
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depth are plotted on the left and right axis, respectively – distinguishing the plots through
the degree of unsteadiness of γ (t).

During our investigation, we researched the similarities, or lack thereof, between both
channels, where we focused more on the square cross-section, presented in § 6. As the
cross-sectional length scale dictates the remaining scales governing the system, for the
sake of matching their respective dynamics, we related both to obtain (6.2). We showed
that a good analogy is obtained for r0 ∼ lx for κ = 1, but developed an expression (6.6)
that can be solved using optimization schemes in search for other interesting equivalence.
We ultimately generated another good fit for the channel’s kinematics similarity through a
naive optimiser scheme, which instead was κ = 0.5.

In § 7 the long-time dynamics for both channels were analysed using a perturbation
method that defines a small parameter, ε, to develop the asymptotic approximation at
late times. We showed that, for the time linearly dependent surface tension models, the
late-time imbibition yields h̄ ∼ t̄ and v̄ ∼ O(t̄) for m̄ ≥ 0. Meanwhile, for the exponential

model, ˆ̄h ∼ (eξ̄ t̄ + t̄) exp(−ξ̄ t̄/2) and ˆ̄v ∼ (eξ̄ t̄ − t̄) exp(−ξ̄ t̄/2) for ξ̄ ≥ 0. Fascinatingly,
we obtain similar long-time behaviour, h̄ ∼ t̄1/2 and v̄ ∼ t̄−1/2, for three distinct
scenarios: rγ = 0, m̄ = 0 and ξ̄ < 0. These late-time asymptotic approximations are also
corroborated by the plots where the ratio of kinematic quantities on their corresponding
long-time estimation properly converges to unity. We uncover a geometry-defining
parameter, Γ , used in supporting the convergence limits of the ratio of encroachment
kinematics in both channels, h̄†/h̄∗ and v̄†/v̄∗. They admit convergences that validate
values in (7.28a,b) with those in figures 9 and 10, as well as the smooth merging occurring
in figures 11 and 12.

Finally, in § 8 we re-examined the imbibition dynamics by analysing the three forces,
Fv̂,Fμ and Fγ , and identified three main regions that characterize the different modes
of forces interplay. Among these regions is the region where Fv̂ ∼ Fγ , occurring at early
time, and the region where Fμ ∼ Fγ , when the liquid has exhausted its inertia. These
dynamics and their trends are represented in several plots for both channels, with trends
that are similar to those presented by Stange et al. (2003).

The findings here will help in shedding more light on capillary encroachments
influenced by the presence of surfactant on channel walls, for instance, in biomedicine.
According to this, it will improve the understanding of flows in the lungs lined with
surface tension modifiers, blood syringes that have been coated with surfactants and
the intravenous introduction of medication by modifying the channels and blood with
surfactants. Knowing an actual surface tension concentration gradient and a temperature
gradient will enhance the usability of the development here. Also, it will be interesting
to understand the effect of surfactant on the liquid already encroached, and not only
modifications at the forefront.

Nevertheless, there are ongoing extensions of this work. In one of them, the fluid is
considered linearly viscoelastic such that the effect of faded memory of a viscoelastic
liquid on the unsteady surface tension encroachment will be explored. On the other, we
are adding gravity force to the channel, which will act as an additional damping force.
Following this, it would be interesting to see how unsteady surface tension influences
hysteresis that has been reported for gravity-influenced capillary encroachment. Moreover,
in the future it would be interesting to examine similar dynamics on conduits that
have non-uniform cross-sections. Examples are diverging, converging, rough-wall or
sinusoidally shaped channels. This will help capture interesting flow features introduced
by the abnormalities of such pipes.

949 A6-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

72
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.729


Unsteady capillarity in rectangular and cylindrical channel

Acknowledgements. We are grateful for the insightful comments of an anonymous reviewer whose
suggestions improved the quality of this paper.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Martin N. Azese https://orcid.org/0000-0001-7225-7217;
Jacques Hona https://orcid.org/0000-0002-6494-4954;
Yves C. Mbono Samba https://orcid.org/0000-0001-5785-2122.

Author contributions. All the authors contributed substantially to this paper: M.N.A. did the conception,
analysis, calculation, Runge Kutta-4 algorithm, plotting and writing; J.J.E. and E.J.Y. verified coding with the
Runge Kutta-2 algorithm; and J.H. and Y.C.M.S. did a general review.

REFERENCES

ADLER, J. & SOWERBY, L. 1970 Shallow three-dimensional flows with variable surface tension. J. Fluid
Mech. 42 (3), 549–559.

AKBARI, M., SINTON, D. & BAHRAMI, M. 2011 Viscous flow in variable cross-section microchannels of
arbitrary shapes. Intl J. Heat Mass Transfer 54 (17), 3970–3978.

AZESE, M.N. 2011 Modified time-dependent penetration length and inlet pressure field in rectangular and
cylindrical channel flows driven by non-mechanical forces. J. Fluids Engng 133 (11), 111205.

AZESE, M.N. 2018 Measurement and characterization of slippage and slip-law using a rigorous analysis in
dynamics of oscillating rheometer: Newtonian fluid. Phys. Fluids 30 (2), 023103.

AZESE, M.N. 2019 On the detection, measurement, and characterization of slip-velocity in Couette-rheology
involving viscoelastic liquids. Phys. Fluids 31 (2), 023101.

BAEK, S., JEONG, S., SEO, J., LEE, S., PARK, S., CHOI, J., JEONG, H. & SUNG, Y. 2021 Effects of tube
radius and surface tension on capillary rise dynamics of water/butanol mixtures. Appl. Sci. 11 (8).

BAHRAMI, M., MICHAEL YOVANOVICH, M. & RICHARD CULHAM, J. 2007 A novel solution for pressure
drop in singly connected microchannels of arbitrary cross-section. Intl J. Heat Mass Transfer 50 (13),
2492–2502.

BHATTACHARYA, S., AZESE, M.N. & SINGHA, S. 2017 Rigorous theory for transient capillary imbibition in
channels of arbitrary cross section. Theor. Comput. Fluid Dyn. 31 (2), 137–157.

BHATTACHARYA, S. & GURUNG, D. 2010 Derivation of governing equation describing time-dependent
penetration length in channel flows driven by non-mechanical forces. Anal. Chim. Acta 666, 51–54.

CALVER, S.N., GAFFNEY, E.A., WALSH, E.J., DURHAM, W.M. & OLIVER, J.M. 2020 On the thin-film
asymptotics of surface tension driven microfluidics. J. Fluid Mech. 901, A6.

CASSIR, M., RINGUEDÉ, A. & LAIR, V. 2013 Molten carbonates from fuel cells to new energy devices. In
Molten Salts Chemistry (ed. F. Lantelme & H. Groult), pp. 355–371. Elsevier.

CHEBBI, R. 2007 Dynamics of liquid penetration into capillary tubes. J. Colloid Interface Sci. 315, 255–260.
CHEN, E. & XU, F. 2021 Transient Marangoni convection induced by an isothermal sidewall of a rectangular

liquid pool. J. Fluid Mech. 928, A6.
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