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Abstract
A k-uniform tight cycle Ck

s is a hypergraph on s> k vertices with a cyclic ordering such that every k
consecutive vertices under this ordering form an edge. The pair (k, s) is admissible if gcd (k, s)= 1 or
k/ gcd (k, s) is even. We prove that if s� 2k2 and H is a k-uniform hypergraph with minimum codegree at
least (1/2+ o(1))|V(H)|, then every vertex is covered by a copy of Ck

s . The bound is asymptotically sharp
if (k, s) is admissible. Our main tool allows us to arbitrarily rearrange the order in which a tight path wraps
around a complete k-partite k-uniform hypergraph, which may be of independent interest.

For hypergraphs F and H, a perfect F-tiling in H is a spanning collection of vertex-disjoint copies
of F. For k� 3, there are currently only a handful of known F-tiling results when F is k-uniform but
not k-partite. If s �≡ 0 mod k, then Ck

s is not k-partite. Here we prove an F-tiling result for a family
of non-k-partite k-uniform hypergraphs F. Namely, for s� 5k2, every k-uniform hypergraph H with
minimum codegree at least (1/2+ 1/(2s)+ o(1))|V(H)| has a perfect Ck

s -tiling. Moreover, the bound is
asymptotically sharp if k is even and (k, s) is admissible.

2020 MSC Codes: Primary: 05C65; Secondary: 05D99, 05C70

1. Introduction
LetH and F be graphs. An F-tiling inH is a set of vertex-disjoint copies of F. An F-tiling is perfect
if it spans the vertex set of H. Note that a perfect F-tiling is also known as an F-factor or a perfect
F-matching. The following question in extremal graph theory has a long and rich story: given F
and n such that |V(F)| divides n, what is the maximum δ such that there exists a graph H on n
vertices with minimum degree at least δ without a perfect F-tiling? We call such δ the tiling degree
threshold for F and denote it by t(n, F).

A first result in the study of tiling thresholds in graphs comes from the celebrated theorem
of Dirac [8] on Hamiltonian cycles, which easily shows that t(n,K2)= n/2− 1. Corrádi and
Hajnal [5] proved that t(n,K3)= 2n/3− 1, and Hajnal and Szemerédi [13] generalized this result
for complete graphs of any size, showing that t(n,Kt)= (1− 1/t)n− 1. For a general graph F,
Kühn and Osthus [22] determined t(n, F) up to an additive constant depending only on F. This
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improved previous results due to Alon and Yuster [3], Komlós, Sárközy and Szemerédi [19] and
Komlós [18].

We study tilings in the setting of k-graphs, i.e. hypergraphs where every edge has exactly k ver-
tices, for some k� 2. We focus on tilings using ‘tight cycles’, which are k-graphs that generalize
the usual notion of cycles in graphs. We also study the related problem of finding F-coverings in a
hypergraph H, i.e. finding copies of F, not necessarily vertex-disjoint, which together cover every
vertex ofH. After choosing a notion of ‘minimum degree’ for k-uniform hypergraphs, both tilings
and coverings give rise to corresponding questions in extremal hypergraph theory, which gener-
alize the ‘tiling thresholds’ in graphs to the setting of hypergraphs. In what follows, we describe
precisely all of the problems under consideration.

1.1 Tiling thresholds
A hypergraph H = (V(H), E(H)) consists of a vertex set V(H) and an edge set E(H), where each
edge e ∈ E(H) is a subset of V(H). We will simply write V and E for V(H) and E(H), respectively,
if it is clear from the context. Given a set V and a positive integer k,

(V
k
)
denotes the set of subsets

of V with size exactly k. We say that H is a k-uniform hypergraph or k-graph, for short, if E⊆ (V
k
)
.

Note that 2-graphs are usually known simply as graphs.
Given a hypergraph H and a set S⊆V , let the neighbourhood NH(S) of S be the set {T ⊆V \

S : T ∪ S ∈ E} and let degH (S)= |NH(S)| denote the number of edges of H containing S. If w ∈V ,
then we also write NH(w) for NH({w}). We will omit the subscript if H is clear from the context.
We let δi(H) denote the minimum i-degree of H, i.e. the minimum of degH (S) over all i-element
sets S ∈ (V

i
)
. Note that δ0(H) is equal to the number of edges ofH. Given a k-graphH, δk−1(H) and

δ1(H) are referred to as theminimum codegree and theminimum vertex degree of H, respectively.
For k-graphs H and F, an F-tiling in H is a set of vertex-disjoint copies of F, and an F-tiling is

perfect if it spans the vertex set of H. For a k-graph F, define the codegree tiling threshold t(n, F)
to be the maximum of δk−1(H) over all k-graphs H on n vertices without a perfect F-tiling. We
will implicitly assume n≡ 0 mod |V(F)| whenever we discuss t(n, F) (as otherwise a k-graph on n
vertices cannot have a perfect F-tiling at all, so this case is not interesting).

We describe known results on tiling thresholds for k-graphs, when k� 3. Let Kk
t denote the

complete k-graph on t vertices. For k� 3, Kühn and Osthus [22] determined t(n,Kk
k ) asymp-

totically; the exact value was determined by Rödl, Ruciński and Szemerédi [25] for sufficiently
large n. Lo and Markström [23] determined t(n,K3

4 ) asymptotically, and independently, Keevash
and Mycroft [17] determined t(n,K3

4 ) exactly for sufficiently large n.
We say that a k-graph H is t-partite (or that H is a (k, t)-graph, for short) if V has a partition

{V1, . . . ,Vt} such that |e∩Vi|� 1 for all edges e ∈ E and all 1� i� t. A (k, t)-graphH is complete
if E consists of all k-sets e such that |e∩Vi|� 1, for all 1� i� t. Recently,Mycroft [24] determined
the asymptotic value of t(n,K) for all complete (k, k)-graphs K. However, much less is known
for non-k-partite k-graphs. For more results on tiling thresholds for k-graphs, see the survey of
Zhao [29].

1.2 Covering thresholds
Given a k-graph F, an F-covering in H is a spanning set of copies of F. Similarly to t(n, F), define
the codegree covering threshold c(n, F) of F to be the maximum of δk−1(H) over all k-graphs H on
n vertices not containing an F-covering.

Trivially, a perfect F-tiling is an F-covering, and an F-covering has a copy of F. Thus

exk−1 (n, F)� c(n, F)� t(n, F),
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where exk−1 (n, F) is codegree Turán threshold, i.e. the maximum of δk−1(H) over all F-free
k-graphsH on n vertices. In this sense, the covering problem is an intermediate problem between
the Turán and the tiling problems.

As for results on covering thresholds, for any non-empty (2-)graph F, we have

c(n, F)=
(

χ(F)− 2
χ(F)− 1

+ o(1)
)
n

(see [14]), where χ(F) is the chromatic number of F. Han, Zang and Zhao [14] studied the vertex-
degree variant of the covering problem, for complete (3, 3)-graphs K. Falgas-Ravry and Zhao [11]
studied c(n, F) when F is K3

4 , K
3
4 with one edge removed, K3

5 with one edge removed and other
3-graphs.

1.3 Cycles in hypergraphs
Given 1� � < k, we say that a k-graph on more than k vertices is an �-cycle if every vertex lies in
some edge and there is a cyclic ordering of the vertices such that under this ordering, every edge
consists of k consecutive vertices and two consecutive edges intersect in exactly � vertices. Note
that an �-cycle on s vertices can exist only if k− � divides s. If � = 1 we call the cycle loose, and if
� = k− 1 we call the cycle tight. We write Ck

s for the k-uniform tight cycle on s vertices.
When k= 2, �-cycles reduce to the usual notion of cycles in graphs. Corrádi and Hajnal [5]

determined t(n, C2
3) and Wang [27, 28] determined t(n, C2

4) and t(n, C2
5). In fact, El-Zahar [9]

gave the following conjecture on cycle tilings.

Conjecture 1.1 (El-Zahar [9]). Let G be a graph on n vertices and let n1, . . . , nr � 3 be inte-
gers such that n1 + · · · + nr = n. If δ(G)�

∑r
i=1	ni/2
, then G contains r vertex-disjoint cycles of

lengths n1, . . . , nr respectively.

The bound on theminimum degree, if true, would be best possible. In particular, the conjecture
would imply that t(n, C2

s )= 	s/2
n/s− 1. The conjecture was verified for r = 2 by El-Zahar, and a
proof (for large n) was announced by Abbasi [1] as well as by Abbasi, Khan, Sárközy and Szemerédi
(see [26]).

Given integers �, k such that 1� �� (k− 1)/2, it is easy to see that a k-uniform �-cycle on s
vertices C satisfies c(n, C)� s− (k− 1)+ 1= s− k+ 2 (by constructing C greedily). If s≡ 0 mod
k, then the tight cycleCk

s is k-partite. For all t� 1, letKk(t) denote the complete (k, k)-graph whose
vertex classes each have size t. Note that Ck

s is a spanning subgraph of Kk(s/k). Erdős [10] proved
the following result, which implies an upper bound on the Turán number of Ck

s .

Theorem 1.2 (Erdős [10]). For all k� 2 and s> 1, there exists n0 = n0(k, s) such that

ex (n,Kk(s))< nk−1/sk−1
for all n� n0.

Our first result is a sublinear upper bound for c(n, Ck
s ) when s≡ 0 mod k.

Proposition 1.1. For all 2� k� s with s≡ 0 mod k, there exist n0(k, s) and c= c(k, s) such that
c(n, Ck

s )� cn1−1/sk−1 for all n� n0.

There are some previously known results for tiling problems regarding �-cycles. Whenever C
is a 3-uniform loose cycle, t(n, C) was determined exactly by Czygrinow [6]. For general loose
cycles C in k-graphs, t(n, C) was determined asymptotically by Mycroft [24] and exactly by Gao,
Han and Zhao [12]. For tight cycles Ck

s with s≡ 0 mod k, Mycroft [24] proved that t(n, Ck
s )=

(1/2+ o(1))n. Note that all mentioned cycle tiling results correspond to cases where the cycles
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are k-partite (since k-uniform loose cycles are k-partite for k� 3). In contrast, we will investigate
the covering and tiling problems for the tight cycle Ck

s in some cases where Ck
s is not necessarily a

(k, k)-graph.
We show that a minimum codegree of (1/2+ o(1))n suffices to find a Ck

s -covering.

Theorem 1.3. Let k, s ∈N with k� 3 and s� 2k2. For all γ > 0, there exists n0 = n0(k, s, γ ) such
that for all n� n0, c(n, Ck

s )� (1/2+ γ )n.

Moreover, this result is asymptotically tight if k and s satisfy the following divisibility condi-
tions. Let 2� k< s and let d = gcd (k, s). We say that the pair (k, s) is admissible if d = 1 or k/d is
even. Note that an admissible pair (k, s) satisfies s �≡ 0 mod k.

Proposition 1.2. Let 3� k< s be such that (k, s) is admissible. Then c(n, Ck
s )� �n/2� − k+ 1.

Moreover, if k is even, then exk−1 (n, Ck
s )� �n/2� − k+ 1.

Note that if (k, s) is admissible, k� 3 is even and s� 2k2, then Theorem 1.3 and Proposition 1.2
imply that exk−1 (n, Ck

s )= (1/2+ o(1))n.
We also study the tiling problem corresponding to Ck

s . We give some lower bounds on t(n, Ck
s ).

Note that the bound is significantly higher if (k, s) is admissible.

Proposition 1.3. Let 2� k< s� n with n divisible by s. Then t(n, Ck
s )� �n/2� − k. Moreover, if

(k, s) is admissible, then

t(n, Ck
s )�

⎧⎪⎪⎨
⎪⎪⎩

⌊(
1
2

+ 1
2s

)
n
⌋

− k if k is even,⌊(
1
2

+ k
4s(k− 1)+ 2k

)
n
⌋

− k if k is odd.

On the other hand, recall that the case s≡ 0 mod k was solved asymptotically by Mycroft [24],
so we study the complementary case. We prove an upper bound on t(n, Ck

s ) which is valid when-
ever s �≡ 0 mod k and s� 5k2. Note that the bound is asymptotically sharp if k is even and (k, s) is
admissible.

Theorem 1.4. Let 3� k< s be such that s� 5k2 and s �≡ 0 mod k. Then, for all γ > 0, there exists
n0 = n0(k, s, γ ) such that for all n� n0 with n≡ 0 mod s,

t(n, Ck
s )�

(
1
2

+ 1
2s

+ γ

)
n.

1.4 Organization of the paper
In Section 2 we set up basic notation and give sketches of the proofs of our main results,
Theorems 1.3 and 1.4.

In Section 3 we give constructions which imply lower bounds for the Turán numbers and
covering and tiling thresholds of tight cycles, thus proving Propositions 1.2 and 1.3.

In the next two sections we study the covering problem. In Section 4 we describe a family of
gadgets which will be useful during the proofs of Proposition 1.1 and Theorem 1.3. Those proofs
are done in Section 5.

Sections 6–9 are dedicated to investigating the tiling problem. Our aim is the proof of
Theorem 1.4, i.e. bounding t(n, Ck

s ) from above. Our proof uses the absorbing method, first intro-
duced in a systematic way by Rödl, Ruciński and Szemerédi [25] to tackle problems of finding
spanning structures in hypergraphs. In Section 6 we review the absorption method for tilings,
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which we use in Section 7 to prove Theorem 1.4 under the assumption that we can find an almost
perfect Ck

s -tiling (Lemma 7.1). We prove Lemma 7.1 in the next two sections: in Section 8 we
review tools of hypergraph regularity and in Section 9 we introduce various auxiliary tilings that
we use to finish the proof.

We conclude with some remarks and open problems in Section 10.

2. Notation and sketches of proofs
For a hypergraph H and S⊆V , we denote H[S] to be the subgraph of H induced on S, i.e.
V(H[S])= S and E(H[S])= {e ∈ E : e⊆ S}. Let H \ S=H[V \ S]. For hypergraphs H and G, let
H −G be the subgraph of H obtained by removing all edges in E(H)∩ E(G).

Given a, b, c reals with c> 0, by a= b± c we mean that b− c� a� b+ c. We write x y
to mean that for all y ∈ (0, 1] there exists an x0 ∈ (0, 1) such that for all x� x0 the subsequent
statement holds. Hierarchies with more constants are defined in a similar way and are to be read
from right to left. We will always assume that the constants in our hierarchies are reals in (0, 1].
Moreover, if 1/x appears in a hierarchy, this implicitly means that x is a natural number.

For all k-graphs H and all x ∈V , define the link (k− 1)-graph H(x) of x in H to be
the (k− 1)-graph with V(H(x))=V \ {x} and E(H(x))=NH(x). Given integers a1, . . . , at � 1,
let Kk(a1, . . . , at) denote the complete (k, t)-graph with vertex partition V1, . . . ,Vt such that
|Vi| = ai for all 1� i� t.

For a family F of k-graphs, an F-tiling is a set of vertex-disjoint copies of (not necessarily
identical) members of F .

For a sequence of distinct vertices v1, . . . , vs in a k-graph H, we say P = v1 · · · vs is a tight
path if all k consecutive vertices form an edge. Note that all tight paths have an associated order-
ing of vertices. Hence v1 · · · vs and vs · · · v1 are assumed to be different tight paths, even if the
corresponding subgraphs they define are the same.

Suppose that P1 = v1 · · · vs and P2 =w1 · · ·ws′ are two vertex-disjoint tight paths in a k-graph
H. If it happens that v1 · · · vsw1 · · ·ws′ is also a tight path in H, then we will denote it by P1P2.
We sometimes refer to P1P2 as the concatenation of P1 and P2. Note that P1P2 has more edges
than P1 ∪ P2. We naturally extend this definition (whenever it makes sense) to the concatenation
of a sequence of paths P1, . . . , Pr , and we denote the resulting path by P1 · · · Pr . For two tight
paths P1 and P2, we say that P2 extends P1 if P2 = P1P′ for some tight path P′ (where we may have
|V(P′)| < k, i.e. P′ contains no edge). Also, we may define a tight cycle C by writing C = v1 · · · vs,
whenever vi · · · vsv1 · · · vi−1 is a tight path for all 1� i� s.

For all k ∈N, let [k]= {1, . . . , k}. Let Sk be the symmetric group of all permutations of the set
[k], with the composition of functions as the group operation. Let id ∈ Sk be the identity function
that fixes all elements in [k]. Given distinct i1, . . . , ir ∈ [k], the cyclic permutation (i1i2 · · · ir) ∈ Sk
is the permutation that maps ij to ij+1 for all 1� j< r and ir to i1, and fixes all the other elements;
we say that such a cyclic permutation has length r. All permutations σ ∈ Sk can be written as a com-
position of cyclic permutations σ1 · · · σt such that these cyclic permutations are disjoint, meaning
that there are no common elements between all pairs of these different cyclic permutations.

LetH be a k-graph, let V1, . . . ,Vk be disjoint vertex sets of V and let σ ∈ Sk. We say that a tight
path P = v1 · · · v� inH has end-type σ with respect to V1, . . . ,Vk if, for all 2� i� k, v�−k+i ∈Vσ (i).
Similarly, we say P has start-type σ with respect to V1, . . . ,Vk if vi ∈Vσ (i) for all 1� i� k− 1. If
H and V1, . . . ,Vk are clear from the context, we simply say that P has end-type σ and start-type σ ,
respectively. Note that one could define start-type and end-type in terms of (k− 1)-tuples in [k]
instead. However, for our purposes, it is more convenient to define start-types and end-types in
terms of permutations of [k].
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2.1 Sketches of proofs of Theorems 1.3 and 1.4
We now sketch the proof of Theorem 1.3. Let H be a k-graph on n vertices with δk−1(H)�
(1/2+ γ )n. Consider any vertex x ∈V(H). We can show that, for some appropriate value of t, x is
contained in some copy K of Kk

k (t) with vertex classes V1, . . . ,Vk. Suppose that s≡ r �≡ 0 mod k
with 1� r < k. Suppose P = v1 · · · vk is a tight path in K such that vi ∈Vi for all 1� i� k and
v1 = x. By wrapping around K, we may find a tight path P2 = v1 · · · v� which extends P1, but if we
only use vertices and edges of K, then we have vj ∈V� where j≡ � mod k, for all j ∈ [�]. To break
this pattern, we will use some gadgets (see Section 4 for a formal definition). Roughly speaking,
a gadget is a k-graph on V(K) and some extra vertices of H. Using these gadgets we can extend
P to a tight path P′ with end-type σ , for an arbitrary σ ∈ Sk (see Lemma 4.2). Having done that
(and choosing σ appropriately), then it is easy to extend P′ into a copy of Ck

s by wrapping around
V1, . . . ,Vk.

The proof of Theorem 1.4 uses the absorbing method, introduced by Rödl, Ruciński and
Szemerédi [25]. We first find a small vertex set U ⊆V(H) such that H[U ∪W] has a perfect
Ck
s -tiling for all small sets W with |U| + |W| ≡ 0 mod s. Thus the problem of finding a perfect

Ck
s -tiling is reduced to finding a Ck

s -tiling in H \U covering almost all of the remaining vertices.
However, we do not find such Ck

s -tiling directly. First we show that there exists a k-graph Fs on
s vertices containing a Ck

s which has a particularly useful structure: Fs is obtained from a com-
plete (k, k)-graph by adding a few extra vertices. So finding an almost perfect Fs-tiling suffices.
Instead, we show that there exists an {Fs, Es}-tiling T for some suitable k-graph Es, subject to
the minimization of some objective function φ(T ). We do so by considering its fractional relax-
ation, which we call a weighted fractional {F∗

s ,K∗
s }-tiling (see Section 9.1). Further, we use the

hypergraph regularity lemma in the form of ‘regular slice lemma’ of Allen, Böttcher, Cooley and
Mycroft [2].

3. Lower bounds
In this section we construct k-graphs which give lower bounds for the codegree Turán numbers
and covering and tiling thresholds for tight cycles. These constructions will imply Propositions 1.2
and 1.3. We remark that the bounds obtained here can be improved by an additive constant via
careful calculations and case distinctions, which we omit for the sake of giving a clear presentation.

Let A and B be disjoint vertex sets. Define Hk
0 =Hk

0(A, B) to be the k-graph on A∪ B such
that the edges of Hk

0 are exactly the k-sets e of vertices that satisfy |e∩ B| ≡ 1 mod 2. Note that
δk−1(Hk

0)�min{|A|, |B|} − k+ 1.

Proposition 3.1. Let 3� k� s and d = gcd (k, s). Let A and B be disjoint vertex sets. Suppose
that Hk

0(A, B) contains a tight cycle Ck
s on s vertices with V(Ck

s )∩A �= ∅. Then |V(Ck
s )∩A| ≡ 0

mod s/d and (k, s) is not an admissible pair.

Proof. Let Ck
s = v1 · · · vs. For all 1� i� s, let φi ∈ {A, B} be such that vi ∈ φi and let φs+i = φi.

If two edges e and e′ in E(Hk
0(A, B)) satisfy |e∩ e′| = k− 1, then |e∩A| = |e′ ∩A| by construc-

tion. Thus φi+k = φi for all 1� i� s. Therefore φi+d = φi for all 1� i� s. Hence |V(Ck
s )∩A| ≡ 0

mod s/d.
Let

r = |{v1, . . . , vk} ∩A| = |{i : 1� i� k, φi =A}|.
Note that r > 0 and r ∈ {k/d, 2k/d, . . . , k}. Since {v1, . . . , vk} is an edge in Hk

0(A, B), it follows
that k− r ≡ 1 mod 2 and so r �≡ k mod 2. This implies d� 2 and k/d is odd, i.e. (k, s) is not an
admissible pair.
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Now we use Proposition 3.1 to prove Propositions 1.2 and 1.3.

Proof of Proposition 1.2. LetA and B be disjoint vertex sets of sizes |A| = �n/2� and |B| = 	n/2
.
Consider the k-graphH0 =Hk

0(A, B). By Proposition 3.1, no vertex ofA can be covered with a copy
of Ck

s . Then c(n, Ck
s )� δk−1(H0)� �n/2� − k+ 1.

Moreover, if k is even, then Hk
0(A, B)=Hk

0(B,A). So no vertex of B can be covered by a copy
of Ck

s . Hence H0 is Ck
s -free. Therefore exk−1 (n, Ck

s )� δk−1(H0)� �n/2� − k+ 1.

Proof of Proposition 1.3. To see the first part of the statement, let d := gcd (k, s) and s′ := s/d.
Note that d� k< s, thus s′ > 1. Let A and B be disjoint vertex sets chosen such that |A| + |B| = n,∣∣|A| − |B|∣∣� 2 and |A| �≡ 0 mod s′. Consider the k-graphH0 =Hk

0(A, B) and note that δk−1(H0)�
min{|A|, |B|} − k+ 1� �n/2� − k. Proposition 3.1 implies that all copies C of Ck

s in H0 satisfy
|V(C)∩A| ≡ 0 mod s′. Since |A| �≡ 0 mod s′, it is impossible to cover all vertices in A with vertex-
disjoint copies of Ck

s . This proves that t(n, Ck
s )� δk−1(H0)� �n/2� − k as desired.

Now suppose that (k, s) is an admissible pair. Let H be the k-graph on n vertices with a vertex
partition {A, B, T} with |A| = 	(n− |T|)/2
 and |B| = �(n− |T|)/2�, where |T| will be specified
later. The edge set of H consists of all k-sets e such that |e∩ B| ≡ 1 mod 2 or e∩ T �= ∅. Note that

δk−1(H)�min{|A|, |B|} + |T| − (k− 1)� �(n+ |T|)/2� − k+ 1.

We separate the analysis into two cases depending on the parity of k.

Case 1: k even. Since H[A∪ B]=Hk
0(A, B)=Hk

0(B,A), by Proposition 3.1, H[A∪ B] is Ck
s -free.

Thus all copies of Ck
s inH must intersect T in at least one vertex. Hence all Ck

s -tilings have at most
|T| vertex-disjoint copies of Ck

s . Taking |T| = n/s− 1 ensures that H does not contain a perfect
Ck
s -tiling. This implies that t(n, Ck

s )� �(1/2+ 1/(2s))n� − k.

Case 2: k odd. Since H[A∪ B]=Hk
0(A, B), by Proposition 3.1 no vertex in A can be covered by a

copy of Ck
s . Hence all copies of Ck

s in H with non-empty intersection with Amust also have non-
empty intersection with T. Moreover, all edges in H intersect A in at most k− 1 vertices, so all
copies of Ck

s inH intersect A in at most s(k− 1)/k vertices. Thus a perfect Ck
s -tiling would contain

at most |T| and at least k|A|/(s(k− 1)) cycles intersecting A. Let |T| = 	nk/(2s(k− 1)+ k)
 − 1.
Since |T| < nk/(2s(k− 1)+ k) and |A|� (n− |T|)/2,

k|A|
s(k− 1)

� k(n− |T|)
2s(k− 1)

>
nk

2s(k− 1)

(
1− k

2s(k− 1)+ k

)
> |T|,

and thus a perfect Ck
s -tiling in H cannot exist. This implies

t(n, Ck
s )� δk−1(H)�

⌊
n+ |T|

2

⌋
− k+ 1�

⌊(
1
2

+ k
4s(k− 1)+ 2k

)
n
⌋

− k,

as desired.

4. G-gadgets
Throughout this section, let τ = (123 · · · k) ∈ Sk. LetH be a k-graph, and letK be a complete (k, k)-
graph in H with its natural vertex partition {V1, . . . ,Vk}. Knowing the end-types and start-types
of paths with respect to V1, . . . ,Vk will help us to concatenate them and form longer paths which
contain them both. For instance, if P1 and P2 are vertex-disjoint tight paths, P1 has end-type π

and P2 has start-type π , then we can concatenate the paths and obtain P1P2.
Let P be a tight path inH with end-type π ∈ Sk. For x ∈Vπ(1) \V(P), Px is a tight path ofH with

end-type πτ . We call such an extension a simple extension of P. By repeatedly applying r simple
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Figure 1. An example of a G-gadget in a 3-graph H.
Let G be the graph on [3] consisting of the edges
12 and 23. K is the complete (3, 3)-graph with
vertex partition V1, V2, V3 (edges not shown) and
WG consists of the union of W12 = {a, b, c, d, e}
and W23 = {f , g, h, i, j}, including the edges
{abc, bcd, cde, ace, fgh, ghi, hij, fhj}. The coloured
edges are in H \ K. We show an example of (W3).
Let σ = id, and note that σ (1)= 1. In H[W12] we
find the tight path abcde on 5= 2k− 1 vertices,
whose start-type is σ (123)= (123) and end-type is
(12)σ = (12). This means the first two vertices of
abcde are in clusters V2, V3, and its last two vertices
are in clusters V1, V3, respectively.

extensions (which is possible as long as there are available vertices), we may obtain an extension
Px1 · · · xr of P with end-type πτ r , using r extra vertices and edges in K.

In the same spirit, observe that if P1 has end-type π and P2 has start-type πτ , then the sequence
of ordered clusters corresponding to the last k− 1 vertices of P1 coincides with the corresponding
sequence of the first k− 1 vertices of P2. Thus, by using one extra vertex x ∈Vπ(1) \ (V(P1)∪
V(P2)) we can join these paths by considering the P1xP2.

If P is a path with end-type π , we would like to find a path P′ that extends P such that |V(P′)| ≡
|V(P)| mod k and P′ has end-type σ , for arbitrary σ ∈ Sk. The goal of this section is to define and
study ‘G-gadgets’, a tool which will allow us to do precisely that.

Let G be a 2-graph on [k] and S⊆V(H). We say WG ⊆V(H) is a G-gadget for K avoiding S
if there exists a family of pairwise-disjoint sets {Wij : ij ∈ E(G)} such thatWG = ⋃

ij∈E(G) Wij and,
for all ij ∈ E(G),

(W1) |Wij| = 2k− 1,
(W2) |Wij \V(K)| = 1,Wij ∩ S= ∅ and, for all 1� i′ � k,

|Wij ∩Vi′ | =
{
1 if i′ ∈ {i, j},
2 otherwise,

(W3) for all σ ∈ Sk with σ (1) ∈ {i, j}, H[Wij] contains a spanning tight path with start-type στ

and end-type (ij)σ .

If K is clear from the context, we will just say a ‘G-gadget avoiding S’. For all edges ij ∈ E(G), we
write wij for the unique vertex inWij \V(K).

We emphasize that (W3) is the key property that allows us to obtain an extension of a path
at the same time we perform a change in the end-type. In words, (W3) says that given any k− 1
ordered clusters that miss Vi, there exists a tight path with vertex set Wij, which starts with the
same ordered k− 1 clusters and ends with the same ordered k− 1 clusters but with Vj replaced
by Vi. In other words,Wij allows us to ‘switch’ the type of a path by replacing i with j. See Figure 1
for an example.

Suppose P is a tight path with end-type π and σ is a cyclic permutation. In the next lemma we
show how to extend P into a tight path with end-type σπ using a G-gadget, where G is a path.

Lemma 4.1. Let k� 3 and r� 2. Let σ = (i1i2 · · · ir) ∈ Sk be a cyclic permutation. Let G be a
2-graph on [k] containing the path Q= i1i2 · · · ir. Let H be a k-graph containing a complete (k, k)-
graph K with vertex partition V1, . . . ,Vk. Suppose P is a tight path in H with end-type π ∈ Sk such
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that π(1)= ir. SupposeWG is a G-gadget avoiding V(P) and |Vij \V(P)|� 2|E(G)| for all 1� j� r.
Then there exists an extension P′ of P with end-type σπ such that

(i) |V(P′)| = |V(P)| + 2k(r − 1),
(ii) for all 1� i� k,

|Vi ∩ (V(P′) \V(P))| =
{
2(r − 1)− 1 if i ∈ {i1, i2, . . . , ir−1},
2(r − 1) otherwise,

(iii) there exists a (G−Q)-gadget WG−Q for K avoiding V(P′) and
(iv) V(P′) \V(P ∪K)= {wijij+1 : 1� j< r}.

Proof. We proceed by induction on r. First suppose that r = 2 and so σ = (i1i2). Consider a
G-gadget WG avoiding V(P). Since i1i2 ∈ E(G), there exists a set Wi1i2 ⊆WG disjoint from V(P)
such that |Wi1i2 | = 2k− 1 and H[Wi1i2 ] contains a spanning tight path P′′ with start-type πτ

and end-type (i1i2)π = σπ . Note that |Vi2 ∩WG|� 2|E(G)| − 1, as |Vi2 ∩Wi1i2 | = 1. Hence Vi2 \
(V(P)∪WG) �= ∅. Take an arbitrary vertex xi2 ∈Vi2 \ (V(P)∪WG) and set P′ = Pxi2P′′. Since
π(1)= i2, it follows that P′ is a tight path with end-type σπ , and P′ satisfies properties (i), (ii)
and (iv). Set WG−i1i2 =WG \Wi1i2 . Then WG−i1i2 is a (G− i1i2)-gadget for K avoiding V(P′), so
P′ satisfies property (iii), as desired.

Next, suppose r > 2. Define σ ′ = (i2i3 · · · ir) and note that σ = (i1i2)σ ′. Then σ ′ is a cyclic
permutation of length r − 1, with π(1)= ir and the path Q′ = i2 · · · ir−1ir is a subgraph of G. By
the induction hypothesis, there exists an extension P′′ of P with end-type σ ′π such that |V(P′′)| =
|V(P)| + 2k(r − 2) and, for all 1� i� k,

|Vi ∩ (V(P′′) \V(P))| =
{
2(r − 2)− 1 if i ∈ {i2, i3, . . . , ir−1},
2(r − 2) otherwise.

Moreover, there exists a (G−Q′)-gadgetWG−Q′ avoiding

V(P′′) and V(P′′) \V(P ∪K)= {wijij+1 : 2� j< r}.
Note that σ ′π(1)= σ ′(ir)= i2 and i1i2 ∈ E(G−Q′). For all 1� i� r,

|Vi \V(P′)|� 2|E(G−Q′)|.
Again by the induction hypothesis, there exists an extension P′ of P′′ with end-type (i1i2)σ ′π =
σπ such that

|V(P′)| = |V(P′′)| + 2k= |V(P)| + 2k(r − 1)

and, for all 1� i� k,

|Vi ∩ (V(P′) \V(P′′))| =
{
1 if i= i1,
2 otherwise,

and V(P′) \ (V(P′′ ∪K))= {wi1i2}, so P′ satisfies properties (i), (ii) and (iv). Furthermore, set

WG−Q =WG −
r−1⋃
j=1

Wijij+1 .

ThenWG−Q is a (G−Q)-gadget for K avoiding V(P′), so P′ satisfies property (iii) as well.

In the next lemma, we show how to extend a path with end-type id to one with an arbitrary
end-type. We will need the following definitions. Consider an arbitrary σ ∈ Sk \ {id}. Write σ in
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its cyclic decomposition

σ = (i1,1i1,2 · · · i1,r1 )(i2,1i2,2 · · · i2,r2 ) · · · (it,1it,2 · · · it,rt ),
where σ is a product of t = t(σ ) disjoint cyclic permutations of respective lengths r1, . . . , rt so that
rj � 2 and ij,rj =min{ij,r′ : 1� r′ � rj} for all 1� j� t, and i1,r1 < i2,r2 < · · · < it,rt . Define m(σ )=
it,rt . On the other hand, if σ = id, then define t(σ )= 0 andm(σ )= 1. Define Gσ to be the 2-graph
on [k] consisting precisely of the (vertex-disjoint) paths Qj = ij,1ij,2 · · · ij,rj for all 1� j� t(σ ). So
Gid is an empty 2-graph. Note that for all σ ,

2|E(Gσ )| + t(σ )= 2
t(σ )∑
j=1

rj − t(σ )� 2k− 1. (4.1)

For 1� i� k and σ ∈ Sk \ {id}, set Xi,σ = 1 if i ∈ {it′,1, . . . , it′,rt′−1} for some 1� t′ � t, and
Xi,σ = 0 otherwise. Also, for 1� i� k, set Yi,σ = 1 if i ∈ {σ ( j) : 1� j<m(σ )} and Yi,σ = 0
otherwise. If σ = id, then define Xi,σ = Yi,σ = 0 for all 1� i� k.

Lemma 4.2. Let k� 3. Let H be a k-graph containing a complete (k, k)-graph K with vertex par-
tition V1, . . . ,Vk and a tight path P with end-type id. Let σ ∈ Sk and let G be a 2-graph on [k]
containing Gσ . Suppose that K has a G-gadget WG avoiding V(P), and |Vi \V(P)|� 2|E(G)| + 2.
Then there exists an extension P′ of P with end-type στm(σ )−1 such that

(i) |V(P′)| = |V(P)| + 2k|E(Gσ )| +m(σ )− 1,
(ii) for all 1� i� k, |Vi ∩ (V(P′) \V(P))| = 2|E(Gσ )| − Xi,σ + Yi,σ ,
(iii) K has a (G−Gσ )-gadget avoiding V(P′) and
(iv) V(P′) \V(P ∪K)= {wij : ij ∈ E(Gσ )}.

Proof. Let

σ = (i1,1i1,2 · · · i1,r1 )(i2,1i2,2 · · · i2,r2 ) · · · (it,1it,2 · · · it,rt )
as defined above. We proceed by induction on t = t(σ ). If t = 0, then σ = id andm(σ )= 1, so the
lemma holds by setting P′ = P. Now suppose that t� 1 and the lemma is true for all σ ′ ∈ Sk with
t(σ ′)< t. Let

σ1 = (i1,1i1,2 · · · i1,r1 )(i2,1i2,2 · · · i2,r2 ) · · · (it−1,1it−1,2 · · · it−1,rt−1 )

and σ2 = (it,1it,2 · · · it,rt ), so σ1σ2 = σ2σ1 = σ . For 1� i� 2, let Gi =Gσi and mi =m(σi). Note
that Gσ =G1 ∪G2. Let G′ =G−G1. Since t(σ1)= t − 1, by the induction hypothesis, there exists
a path P1 that extends P with end-type σ1τ

m1−1 such that

(i′) |V(P1)| = |V(P)| + 2k|E(G1)| +m1 − 1,
(ii′) for all 1� i� k, |Vi ∩ (V(P1) \V(P))| = 2|E(G1)| − Xi,σ1 + Yi,σ1 ,
(iii′) K has a G′-gadgetWG′ avoiding V(P1) and
(iv′) V(P1) \V(P ∪K)= {wij : ij ∈ E(G1)}.

Note that for all 1� i� k,

|Vi \ (V(P1)∪WG′)|� 2|E(G)| + 2− (2|E(G1)| + 1)− 2|E(G′)| = 1.

We extend P1 usingm2 −m1 > 0 simple extensions, avoiding the set V(P1)∪WG′ in each step, to
obtain an extension P2 of P1 with end-type σ1τm1−1τm2−m1 = σ1τm2−1 such that

|V(P2)| = |V(P1)| +m2 −m1 = |V(P)| + 2k|E(G1)| +m2 − 1
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and WG′ is a G′-gadget for K that avoids V(P2). As P1 has end-type σ1τ
m1−1, V(P2) \V(P1)

contains precisely one vertex in Vi for all

i ∈ {σ1τm1−1( j) : 1� j�m2 −m1} = {σ1(m1), . . . , σ1(m2 − 1)}.
Since σ1(i)= σ (i) for allm1 � i<m2 andm2 = it,rt , together with (ii′) we deduce that

|Vi ∩ (V(P2) \V(P))| = 2|E(G1)| − Xi,σ1 + Yi,σ . (4.2)

Note that σ1τ
m2−1(1)= σ1(m2)= σ1(it,rt )= it,rt . Since G′ contains G2, by Lemma 4.1 there

exists an extension P′ of P2 with |V(P′)| = |V(P2)| + 2k|E(G2)| and P′ has end-type σ2σ1τ
m2−1 =

στm(σ )−1, as m2 =m(σ ). Moreover, as G′ −G2 =G−Gσ , K has a (G−Gσ )-gadget avoiding
V(P′), implying (iii). Similarly, (iv) holds. Note that

|V(P′)| = |V(P2)| + 2k|E(G2)| = |V(P)| + 2k|E(Gσ )| +m(σ )− 1

implying (i). Finally, for all 1� i� k, we have

|Vi ∩ (V(P′) \V(P2))| =
{
2|E(G2)| − 1 if i ∈ {it,1, . . . , it,rt−1},
2|E(G2)| otherwise.

So

|Vi ∩ (V(P′) \V(P2))| = 2|E(G2)| − Xi,σ2 .

Note that Xi,σ = Xi,σ1 + Xi,σ2 because σ1 and σ2 are disjoint. Thus, together with (4.2), (ii) holds.

Now we want to use the above lemmas to find tight cycles of a given length. Let P be a tight
path with start-type σ and end-type π . If π = σ , then there exists a tight cycle C containing P with
V(C)=V(P). Similarly, if π = στ−r , then (by using r simple extensions) there exists a tight cycle
C on |V(P)| + r vertices containing P. In general, in order to extend P into a tight cycle we use
Lemma 4.2 to first extend P to a path P′ with end-type στ−r for some suitable r, using the edges
of K and a suitable G-gadget. The next lemma formalizes the aforementioned construction of the
tight cycle C containing P and gives us precise bounds on the sizes of Vi ∩ (V(C) \V(P)) in the
case where σ = π , which will be useful during Section 9.

Lemma 4.3. Let k� 3. Let σ , π ∈ Sk and 0� r < k. Then there exists a 2-graph G :=G(σ , π , r) on
[k] consisting of a vertex-disjoint union of paths such that the following holds for all s� k(2k− 1)
with s≡ r mod k. Let H be a k-graph containing a complete (k, k)-graph K with vertex partition
V1, . . . ,Vk, and let P be a tight path with start-type σ and end-type π . Suppose WG is a G-gadget
for K avoiding V(P) and |Vi \V(P)|� �s/k� + 1. Then there exists a tight cycle C on |V(P)| + s
vertices containing P, such that

V(C) \ (V(P ∪K))= {wij : ij ∈ E(G)}.
Moreover, if σ = π , then for all 1� i, j� k,∣∣|Vi ∩ (V(C) \V(P))| − |Vj ∩ (V(C) \V(P))|∣∣� 1.

Proof. Without loss of generality, we may assume that π = id. Define σ ′ = στ−r ∈ Sk. Let
G=Gσ ′ . Note that |E(G)|� k− 1, t(σ ′)� k/2 and 2|E(G)| + t(σ ′)� 2k− 1 by (4.1). Let H,K, P
be as defined in the lemma. By Lemma 4.2, there exists an extension P′ of P with end-type
σ ′τm(σ ′)−1 such that |V(P′)| = |V(P)| + 2k|E(G)| +m(σ ′)− 1 for all 1� i� k,

|Vi ∩ (V(P′) \V(P))| = 2|E(G)| − Xi,σ ′ + Yi,σ ′
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and

V(P′) \ (V(P ∪K))= {wij : ij ∈ E(G)}.
We use k−m(σ ′)+ 1 simple extensions to get an extension P′′ of P′ of order

|V(P′′)| = |V(P′)| + (k−m(σ ′)+ 1)= |V(P)| + 2k|E(G)| + k.
Note that V(P′′) \V(P′) uses precisely one vertex in each of the clusters Vi for all

i ∈ {σ ′τm(σ ′)−1( j) : 1� j� k−m(σ ′)+ 1} = {σ ′( j) : m(σ ′)� j� k} = { j : Yj,σ ′ = 0}.
It follows that for all 1� i� k,

|Vi ∩ (V(P′′) \V(P))| = 2|E(G)| + 1− Xi,σ ′ .

Note that P′′ has end-type σ ′τm(σ ′)−1τ k−m(σ ′)+1 = σ ′ = στ−r . For all 1� i� k and 0� r < k,
set Zi,σ ,r = 1 if i ∈ {σ ( j) : k− r + 1� j� k} and set Zi,σ ,r = 0 otherwise. We use r more simple
extensions to get an extension P′′′ of P with end-type στ−rτ r = σ of order

|V(P′′′)| = |V(P′′)| + r = |V(P)| + 2k|E(G)| + k+ r

such that, for all 1� i� k,
|Vi ∩ (V(P′′′) \V(P))| = 2|E(G)| + 1+ Zi,σ ,r − Xi,σ ′ .

Since |E(G)|� k− 1 and s≡ r mod k, it follows that |V(P′′′)|� |V(P)| + s. Also, |V(P′′′) \
V(P)| ≡ s mod k. For all 1� i� k,

|Vi \V(P′′′)|� |Vi \V(P)| − 2|E(G)| − 1+ Xi,σ ′ − Zi,σ ,r
� �s/k� − 2|E(G)| − 1

= 1
k
(k�s/k� − 2k|E(G)| − k)

= 1
k
(s− r − 2k|E(G)| − k)

= 1
k
(s− (|V(P′′′)| − |V(P)|)).

Since P′′′ has start-type σ and end-type σ , we can easily extend P′′′ (using simple extensions) to a
tight cycle C on |V(P)| + s vertices. Note that

V(C) \ (V(P ∪K))= {wij : ij ∈ E(G)},
as desired.

Moreover, for all 1� i, j� k,∣∣|Vi ∩ (V(C) \V(P))| − |Vj ∩ (V(C) \V(P))|∣∣
= ∣∣|Vi ∩ (V(P′′′) \V(P))| − |Vj ∩ (V(P′′′) \V(P))|∣∣
= |(Zi,σ ,r − Xi,σ ′)− (Zj,σ ,r − Xj,σ ′)|.

Suppose now that σ = π = id. We will show that−1� Zi,σ ,r − Xi,σ ′ � 0 for all 1� i� k, implying
that for all 1� i, j� k, ∣∣|Vi ∩ (V(C) \V(P))| − |Vj ∩ (V(C) \V(P))|∣∣� 1.

It suffices to show that if Zi,σ ,r = 1, then Xi,σ ′ = 1. If r = 0, then Zi,σ ,0 = 0 for all 1� i� k, thus
we may suppose from now on that 1� r < k. Let 1� i� k such that Zi,σ ,r = 1. Since σ = π = id,
then σ ′ = τ−r . So if Zi,σ ,r = 1, then k− r + 1� i� k. To show that Xi,τ−r = 1, we need to show
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that i is not the minimal element in the cycle that it belongs to in the cyclic decomposition of
τ−r , that is, there existsm< i such that i is in the orbit ofm under τ−r . Let d = gcd (r, k). Choose
1�m� d such that m≡ i mod d. The order of τ−r is exactly k/d and the orbit of m has exactly
k/d elements. There are exactly k/d elements i′ satisfying 1� i′ � k and i′ ≡m mod d, and all
elements i′ in the orbit of m also satisfy i′ ≡m mod d, so it follows that i is in the orbit of m
under τ−r . Finally,m� d� k− r < i. This proves that Xi,τ−r = 1, as desired.

4.1 Finding G-gadgets in k-graphs with large codegree
We now turn our attention to the existence of G-gadgets. We prove that all large complete (k, k)-
graphs contained in a k-graph H with δk−1(H) large have a G-gadget, for an arbitrary 2-graph G
on [k].

Lemma 4.4. Let 0< 1/n, 1/t0  γ , 1/k. Let H be a k-graph on n vertices with δk−1(H)�
(1/2+ γ )n containing a complete (k, k)-graph K with vertex partition V1, . . . ,Vk. Let S⊆V(H) be
a set of vertices such that |V(K)∪ S|� γ n/2 and |Vi \ S|� t0 for all 1� i� k. Let G be a 2-graph
on [k]. Then there exists a G-gadget for K avoiding S.

Proof. Choose 0< 1/t  γ , 1/k and let t0 = t + k2. Suppose that ij ∈ E(G) and |V� \ S|�
t + 2|E(G)| for all 1� �� k. Let U� ⊆V� \ S with |U�| = t for all 1� �� k and let R= [k] \ {i, j}.
Let U = ⋃

1���k U� and

T =
{
A ∈

(
U

k− 1

)
: |A∩Ur| = 1 for all r ∈ R and |A∩ (Ui ∪Uj)| = 1

}
.

Then T has size 2tk−1. By the codegree condition, all members of T have (1/2+ γ )n− |V(K)∪
S|� (1/2+ γ /2)n neighbours outside of V(K)∪ S and by an averaging argument, there exists
a vertex w /∈V(K)∪ S such that H(w) satisfies |H(w)∩ T|� (1+ γ )tk−1. For all u ∈Ui ∪Uj,
NH(w)∩T(u) is a family of (k− 2)-sets of

⋃
r∈R Ur . We have that∑

(ui,uj)∈Ui×Uj

|NH(w)∩T(ui)∩NH(w)∩T(uj)|�
∑

(ui,uj)∈Ui×Uj

(dH(w)∩T(ui)+ dH(w)∩T(uj)− tk−2)

= t|H(w)∩ T| − tk

� tk(1+ γ )− tk

= γ tk,

and by an averaging argument, there exists a pair (x∗
i , x∗

j ) ∈Ui ×Uj such that

|NH(w)∩T(x∗
i )∩NH(w)∩T(x∗

j )|� γ tk−2.

By the choice of t and by Theorem 1.2, we have that NH(w)∩T(x∗
i )∩NH(w)∩T(x∗

j ) contains a
copy K ′ of Kk−2

k−2 (2). DefineWij =V(K ′)∪ {w, x∗
i , x∗

j } and note that |Wij| = 2(k− 2)+ 3= 2k− 1.
We now check that (W3) holds for Wij. Recall that, informally, this means that given any

k− 1 ordered clusters that miss Vi, there exists a tight path with vertex set Wij, which starts
with the same ordered k− 1 clusters and ends with the same ordered k− 1 clusters but with Vj
replaced by Vi. For all r ∈ R, let Ur ∩V(K ′)= {xr, x′

r}. Consider an arbitrary σ ∈ Sk with σ (1)= i
and σ ( j′)= j. By construction, we have that

xσ (2)xσ (3) · · ·xσ ( j′−1)x∗
j xσ ( j′+1)xσ ( j′+2) · · ·xσ (k)wx′

σ (2)x
′
σ (3) · · ·x′

σ ( j′−1)x
∗
i x

′
σ ( j′+1)x

′
σ ( j′+2) · · ·x′

σ (k)
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is a spanning tight path in H[Wij], of start-type στ and end-type (ij)σ . ClearlyWij is an ij-gadget
avoiding S.

Set S′ = S∪Wij andG′ =G− ij. Repeating this construction for all edges in E(G− ij) and using
that t0 = t + k2, it is possible to conclude that K has a G-gadget avoiding S.

4.2 Auxiliary k-graphs Fs
Given a tight cycle Ck

s , we would like to find a k-graph Fs such that Ck
s ⊆ Fs and Fs is obtained from

a complete (k, k)-graph by adding ‘few’ extra vertices. This will be useful in Section 9.
Let K be a (k, k)-graph with vertex partition V1, . . . ,Vk. Let G be an arbitrary 2-graph on [k]

which has exactly � edges. Consider an arbitrary enumeration of the edges of E(G), and for each
1� i� �, let ji, j′i ∈V(G) be such that jij′i is the ith edge of G. Let y1, . . . , y� be a set of � vertices
disjoint from V(K). LetWG := {y1, . . . , y�}. We define the G-augmentation of K to be the k-graph
F = F(K,G) such that

V(F)=V(K)∪WG and

E(F)= E(K)∪
⋃

1�i��

(E(H(yi, ji))∪ E(H(yi, j′i))),

where H(v, j) is a complete (k, k)-graph with partition V1,V2, . . . ,Vj−1, {v},Vj+1, . . . ,Vk.
The easy (but crucial) observation is that if |Vi|� 2� for all 1� i� k, then the G-augmentation

of K contains a G-gadget for K avoiding ∅. Using that, we can prove the following.

Proposition 4.5. Let k� 3, s� 2k2 and s �≡ 0 mod k. Then there exists a 2-graph Gs on [k]
that is a disjoint union of paths, and as,1, . . . , as,k, � ∈N such that |as,i − as,j|� 1 for all i, j ∈ [k],
� = |E(Gs)|� k− 1, and if K =Kk(as,1, . . . , as,k), then Fs, the Gs-augmentation of K, contains a
spanning Ck

s and |V(Fs) \V(K)| = �.

Proof. Let r ∈ {1, . . . , k− 1} be such that s≡ r mod k. Let Gs be the 2-graph obtained from
Lemma 4.3 (with parameters σ = π = id and r). Note that Gs is a disjoint union of paths and
thus � = E(Gs)� k− 1.

Suppose that V1, . . . ,Vk are disjoint sets of size �s/k� + 1 and let K′ be the complete (k, k)-
graph with partition {V1, . . . ,Vk}. For all i ∈ [k] let vi ∈Vi and consider the tight path P =
v1 · · · vk. Note that P has both start-type and end-type id. Let F′ be the Gs-augmentation of K ′.
It is easily checked that |Vi \V(P)|� 2(k− 1)� 2� and therefore there is a Gs-gadget for K ′ in F′
avoiding V(P). By the choice of Gs, F′ contains a tight cycle C on s vertices containing P such that
V(C) \V(K)=V(F′) \V(K ′)=WGs and, over the range i ∈ [k], the values |V(C)∩Vi| differ at
most by 1. It is easily checked that letting as,i := |V(C)∩Vi|we obtain the desired properties.

5. Covering thresholds for tight cycles
In this section we prove the upper bounds for the covering codegree threshold for tight cycles,
proving Proposition 1.1 and Theorem 1.3. We first prove Proposition 5.1, which immediately
implies Proposition 1.1 since Kk(s) contains a Ck

s′-covering for all s′ ≡ 0 mod k with s′ � sk. We
will use the following classic result of Kővári, Sós and Turán [20].

Theorem5.1 (Kővári, Sós andTurán [20]). Let z(m, n; s, t) denote themaximumpossible number
of edges in a bipartite 2-graph G with parts U and V for which |U| =m and |V| = n, which does not
contain a Ks,t subgraph with s vertices in U and t vertices in V. Then

z(m, n; s, t)< (s− 1)1/t(n− t + 1)m1−1/t + (t − 1)m.
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Proposition 5.1. For all k� 3 and s� 1, let n, c� 2 be such that 1/n, 1/c 1/k, 1/s. Then
c(n,Kk(s))� cn1−1/sk−1 .

Proof. Let H be a k-graph on n vertices with δk−1(H)� cn1−1/sk−1 . For brevity, define m :=
nk−1−1/sk−1 . Fix a vertex x ∈V(H) and consider the link (k− 1)-graph H(x) of x. Let U1 :=
E(H(x)). Note that

|U1|�
(n−1
k−2

)
δk−1(H)

k− 1
� c1/2m. (5.1)

Let U2 :=V(H) \ {x}. Consider the bipartite 2-graph B with parts U1 and U2, where e ∈U1
is joined to u ∈U2 if and only if e∪ {u} ∈ E(H). By the codegree condition of H, all (k− 1)-sets
e ∈U1 have degree at least δk−1(H)− 1 in B. Hence

|E(B)|� |U1|(δk−1(H)− 1)� |U1|(cn1−1/sk−1 − 1). (5.2)
We claim that there is a Km,s−1 as a subgraph in B, with m vertices in U1 and s− 1 vertices in

U2. Suppose not. Then, by Theorem 5.1,
|E(B)|� z(|U1|, n− 1;m, s− 1)

<m1/(s−1)n|U1|1−1/(s−1) + (s− 1)|U1|

= |U1|
(
n
(

m
|U1|

)1/(s−1)
+ s− 1

)
(5.1)
� |U1|(c−1/(2(s−1))n1−1/(sk−1) + s− 1)

< |U1|n1−1/(sk−1).
This contradicts (5.2).

Let K be a copy of Km,s−1 in B. Let
W :=V(K)∩U1 and X := {x1, . . . , xs−1} =V(K)∩U2.

Since |W| =m= nk−1−1/sk−2 and 1/n 1/k, 1/s, by Theorem 1.2, W contains a copy K′
of Kk−1(s). By construction, for all y ∈ {x} ∪ X and all e ∈ E(K′), {y} ∪ e ∈ E(H). Hence H[{x} ∪
X ∪V(K ′)] contains a Kk(s) covering x, as desired.

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let t ∈N be such that 1/n0  1/t  γ , 1/s. LetH be a k-graph on n� n0
vertices with δk−1(H)� (1/2+ γ )n. Fix a vertex x and a copy K of Kk

k (t) containing x, which
exists by Proposition 5.1. Let V1, . . . ,Vk be the vertex partition of K with x ∈V1. By the choice of
t, |Vi|�max{2k2 + 2, �s/k� + 2} for all 1� i� k.

Let x1 = x and select arbitrarily vertices xi ∈Vi for 2� i� k. Now P = x1 · · · xk is a tight path
on k vertices with both start-type and end-type id. Let G be a complete 2-graph on [k]. By
Lemma 4.4, there exists a G-gadget for K avoiding V(P). Thus, by Lemma 4.3, there exists a tight
cycle in V(H) on s vertices containing P, and in turn, x.

6. Absorption
We need the following ‘absorbing lemma’, which is a special case of a lemma of Lo andMarkström
[23, Lemma 1.1].

https://doi.org/10.1017/S0963548320000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000449


Combinatorics, Probability and Computing 303

Lemma 6.1 ([23, Lemma 1.1]). Let s� k� 3 and 0< 1/n η, 1/s and 0< α  μ  η, 1/s.
Suppose that H is a k-graph on n vertices and for all distinct vertices x, y ∈V(H) there exist
ηns−1 sets S of size s− 1 such that H[S∪ {x}] and H[S∪ {y}] contain a spanning Ck

s . Then there
exists U ⊆V(H) of size |U|�μn with |U| ≡ 0 mod s such that there exists a perfect Ck

s -tiling in
H[U ∪W] for all W ⊆V(H) \U of size |W|� αn with |W| ≡ 0 mod s.

Thus, to find an absorbing set U, it is enough to find many (s− 1)-sets S as above for each pair
x, y ∈V(H). First we show that we can find one such S.

Lemma 6.2. Let s� 5k2 with s �≡ 0 mod k. Let 1/n γ , 1/s. Let H be a k-graph on n vertices with
δk−1(H)� (1/2+ γ )n. Then, for all pair of distinct vertices x, y ∈V(H), there exists S⊆V(H) \
{x, y} such that |S| = s− 1 and both H[S∪ {x}] and H[S∪ {y}] contain a spanning Ck

s .

Proof. Let 1/n 1/t  γ , 1/s. Consider the k-graph Hxy with vertex set V(Hxy)= (V(H) \
{x, y})∪ {z} (for some z /∈V(H)) and edge set

E(Hxy)= E(H \ {x, y})∪ {{z} ∪ S : S ∈NH(x)∩NH(y)}.
Note that |V(Hxy)| = n− 1 and δk−1(Hxy)� γ |V(Hxy)|. By Proposition 5.1, Hxy contains a copy
K of Kk

k (t) containing z. Let V1, . . . ,Vk be the vertex partition of K with z ∈V1.
Arbitrarily select vertices vi ∈Vi for 2� i� k. Let H′ =Hxy \ {z, v2, . . . , vk} and K ′ =K \

{z, v2, . . . , vk}. Note that δk−1(H′)� (1/2+ γ /2)|V(H′)| and K ′ ⊆H′. By Lemma 4.4 withH′ and
K ′ playing the roles of H and K respectively, there exists a Kk-gadget for K ′ in H′. Hence there
exists a Kk-gadget for K in Hxy avoiding {z, v2, . . . , vk}.

Now we construct a copy of Ck
s in Hxy containing z. Note that P = zv2 · · · vk is a tight path on

k vertices with start-type and end-type id. Since there exists a Kk-gadget for K avoiding V(P), by
Lemma 4.3 Hxy contains a copy C of Ck

s containing z.
Finally, let S=V(C) \ {z} ⊆V(H). By construction, |S| = s− 1 and bothH[S∪ {x}] andH[S∪

{y}] contain a spanning Ck
s in H, as desired.

We now apply the standard supersaturation trick to find many sets S.

Lemma 6.3. Let k� 3 and 0< 1/m γ , 1/k. Let H be a k-graph on n�mvertices with δk−1(H)�
(1/2+ γ )n. Let x, y ∈V(H) be distinct. Then the number of m-sets R⊆V(H) \ {x, y} such that
δk−1(H[R∪ {x, y}])� (1/2+ γ /2)(m+ 2) is at least

(n−2
m

)
/2.

To prove Lemma 6.3, first we recall the following fact about concentration for hypergeometric
random variables around their mean (see e.g. [16, p. 29]).

Lemma 6.4. Let a, γ > 0 with a+ γ < 1. Suppose that S⊆ [n] and |S|� (a+ γ )n. Then∣∣∣∣
{
M ∈

(
[n]
m

)
: |M ∩ S|� am

}∣∣∣∣�
(
n
m

)
e−γ 2m/(3(a+γ )) �

(
n
m

)
e−γ 2m/3.

Proof of Lemma 6.3. Let T be a (k− 1)-set in V(H). Note that, since 1/n� 1/m γ ,

|NH(T) \ {x, y}|�
(
1
2

+ γ

)
n− 2�

(
1
2

+ 2
3
γ

)
(n− 2).

We call an m-set R⊆V(H) \ {x, y} bad for T if |NH(T)∩ R|� (1/2+ 3γ /5)m. An application
of Lemma 6.4 (with 1/2+ 3γ /5, γ /15, n− 2, NH(T) \ {x, y} playing the roles of a, γ , n and S,
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respectively) implies that the number ofm-sets which are bad for T is at most∣∣∣∣
{
R ∈

(
V(H) \ {x, y}

m

)
: |NH(T)∩ R|� (1/2+ 3γ /5)m

}∣∣∣∣�
(
n− 2
m

)
e−γ 2m/675.

Say an m-set R⊆V(H) \ {x, y} is good if δk−1(R∪ {x, y})> (1/2+ 3γ /5)m (and bad otherwise).
Note that for any goodm-set R,

δk−1(H[R∪ {x, y}])> (1/2+ 3γ /5)m� (1/2+ γ /2)(m+ 2),

so it is enough to prove that there are at most
(n−2

m
)
/2 badm-sets. Note that R is bad if and only if

there exists a (k− 1)-set T ⊆ R∪ {x, y} such that R is bad for T. Therefore the number of bad sets
is at most (

m+ 2
k− 1

)(
n− 2
m

)
e−γ 2m/675 � 1

2

(
n− 2
m

)
,

where the inequality follows from the choice ofm.

Lemma 6.5. Let k� 3 and s� 5k2. Let 1/n α  μ  γ , 1/s. Let H be a k-graph on n ver-
tices with δk−1(H)� (1/2+ γ )n. Then there exists U ⊆V(H) of size |U|�μn with |U| ≡ 0 mod s
such that there exists a perfect Ck

s -tiling in H[U ∪W] for all W ⊆V(H) \U of size |W|� αn with
|W| ≡ 0 mod s.

Proof. Let μ  η  1/m γ , 1/s. Let x, y be distinct vertices in V(H). By Lemma 6.3, at least(n−2
m

)
/2 of them-sets R⊆V(H) \ {x, y} are such that

δk−1(H[R∪ {x, y}])� (1/2+ γ /2)(m+ 2).

By Lemma 6.2, each one of these subgraphs contains a set S⊆ R of size s− 1 such that H[S∪ {x}]
and H[S∪ {y}] have spanning copies of Ck

s . Then the number of these sets S in H is at least
1
2
(n−2

m
)

(n−2−(s−1)
m−(s−1)

) =
(n−2
s−1

)
2
( m
s−1

) � ηns−1.

Then the result follows from Lemma 6.1.

7. Tiling thresholds for tight cycles
Now we prove Theorem 1.4 under the assumption that the following ‘almost perfect Ck

s -tiling
lemma’ holds.

Lemma 7.1. Let 1/n α, γ , 1/s, k� 3 and s� 5k2 such that s �≡ 0 mod k. Let H be a k-graph on
n vertices with δk−1(H)� (1/2+ 1/(2s)+ γ )n. Then H has a Ck

s -tiling covering at least (1− α)n
vertices.

Assuming Lemma 7.1 is true, we use it to prove Theorem 1.4.

Proof of Theorem 1.4. Choose 1/n α  μ  γ , 1/k, 1/s. By Lemma 6.5, there exists U ⊆
V(H) of size |U|�μn with |U| ≡ 0 mod s such that there exists a perfect Ck

s -tiling in H[U ∪W]
for allW ⊆V(H) \U of size |W|� αn with |W| ≡ 0 mod s.

Define H′ =H \U. Then

δk−1(H′)� δk−1(H)− |U|� (1/2+ 1/(2s)+ γ /2)|V(H′)|.
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An application of Lemma 7.1 (with γ /2, |V(H′)| playing the roles of γ , n, respectively, and noting
that the hierarchies of constants in both lemmas are consistent) implies that there exists a Ck

s -
tiling T ′ in H′ covering at least (1− α)|V(H′)| vertices. Let W be the set of uncovered vertices
by T ′ in H′. Then |W|� αn and |W| ≡ 0 mod s. By the absorbing property of U, there exists a
perfect Ck

s -tiling T ′′ in H[U ∪W]. Then T ′ ∪ T ′′ is a perfect Ck
s -tiling in H.

The rest of the paper will be devoted to the proof of Lemma 7.1.

8. Hypergraph regularity and regular slice lemma
To prove Lemma 7.1 we will use the hypergraph regularity lemma, which requires the following
definitions.

8.1 Regular complexes
Let P be a partition of V into vertex classes V1, . . . ,Vs. A subset S⊆V is P-partite if |S∩Vi|� 1
for all 1� i� s. A hypergraph is P-partite if all of its edges are P-partite, and it is s-partite if it is
P-partite for some partition P with |P| = s.

A hypergraph H is a complex if, whenever e ∈ E(H) and e′ is a non-empty subset of e, we have
that e′ ∈ E(H). All the complexes considered in this paper have the property that all vertices are
contained in an edge. For a positive integer k, a complex H is a k-complex if all the edges of H
consist of at most k vertices. The edges of size i are called i-edges of H. Given a k-complex H, for
all 1� i� k we letHi denote the underlying i-graph ofH: the vertices ofHi are those ofH and the
edges of Hi are the i-edges of H. Given s� k, a (k, s)-complex H is an s-partite k-complex.

Let H be a P-partite k-complex. For i� k and X ∈ (P
i
)
, we write HX for the subgraph of Hi

induced by
⋃

X. Note that HX is an (i, i)-graph. In a similar manner we write HX< for the hyper-
graph on the vertex set

⋃
X, whose edge set is

⋃
X′�X HX′ . Note that if H is a k-complex and X is

a k-set, then HX< is a (k− 1, k)-complex.
Given i� 2, consider an (i, i)-graph Hi and an (i− 1, i)-graph Hi−1 on the same vertex set,

which are i-partite with respect to the same partition P . We write Ki(Hi−1) for the family of all
P-partite i-sets that form a copy of the complete (i− 1)-graphKi−1

i inHi−1. We define the density
of Hi with respect to Hi−1 to be

d(Hi|Hi−1)= |Ki(Hi−1)∩ E(Hi)|
|Ki(Hi−1)| if |Ki(Hi−1)| > 0,

and d(Hi|Hi−1)= 0 otherwise. More generally, if Q= (Q1, . . . ,Qr) is a collection of r subhyper-
graphs of Hi−1, we define Ki(Q) := ⋃r

j=1 Ki(Qj) and

d(Hi|Q)= |Ki(Q)∩ E(Hi)|
|Ki(Q)| if |Ki(Q)| > 0,

and d(Hi|Q)= 0 otherwise.
We say that Hi is (di, ε, r)-regular with respect to Hi−1 if, for all r-tuples Q with |Ki(Q)| >

ε|Ki(Hi−1)|, we have d(Hi|Q)= di ± ε. Instead of (di, ε, 1)-regularity we simply refer to (di, ε)-
regularity; we also say simply thatHi is (ε, r)-regular with respect toHi−1 to mean that there exists
some di for whichHi is (di, ε, r)-regular with respect toHi−1. Given an i-graph G whose vertex set
contains that ofHi−1, we say thatG is (di, ε, r)-regular with respect to Hi−1 if the i-partite subgraph
of G induced by the vertex classes of Hi−1 is (di, ε, r)-regular with respect to Hi−1.

Given 3� k� s and a (k, s)-complex H with vertex partition P , we say that H is
(dk, dk−1, . . . , d2, εk, ε, r)-regular if the following conditions hold.
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(i) For all 2� i� k− 1 and A ∈ (P
i
)
, HA is (di, ε)-regular with respect to (HA<)i−1.

(ii) For all A ∈ (P
k
)
, the induced subgraph HA is (dk, εk, r)-regular with respect to (HA<)i−1.

Sometimes we denote (dk, . . . , d2) by d and write (d, εk, ε, r)-regular for (dk, . . . , d2, εk, ε, r)-
regular.

We will need the following ‘regular restriction lemma’, which states that the restriction of regu-
lar complexes to a sufficiently large set of vertices in each vertex class is still regular, with somewhat
degraded regularity properties.

Lemma 8.1. (regular restriction lemma [2, Lemma 24]). Let k,m ∈N and β , ε, εk, d2, . . . , dk be
such that

1
m

 ε  εk, d2, . . . , dk−1 and εk  β ,
1
k
.

Let r, s ∈N and dk > 0. Set d= (dk, . . . , d2). Let G be a (d, εk, ε, r)-regular (k, s)-complex with ver-
tex classes V1, . . . ,Vs each of size m. Let V ′

i ⊆Vi with |V ′
i |� βm for all 1� i� s. Then the induced

subcomplex G[V ′
1 ∪ · · · ∪V ′

s] is (d,
√

εk,
√

ε, r)-regular.

8.2 Statement of the regular slice lemma
In this section we state the version of the regularity lemma (Theorem 8.1) due to Allen, Böttcher,
Cooley and Mycroft [2], which they call the regular slice lemma. A similar lemma was previously
applied by Haxell, Łuczak, Peng, Rödl, Ruciński and Skokan in the case of 3-graphs [15]. This
lemma says that all k-graphs G admit a regular slice J , which is a regular multipartite (k− 1)-
complex whose vertex classes have equal size such that G is regular with respect to J .

Let t0, t1 ∈N and ε > 0. We say that a (k− 1)-complex J is (t0, t1, ε)-equitable if it has the
following two properties.

(i) There exists a partition P of V(J ) into t parts of equal size, for some t0 � t� t1, such that
J is P-partite. We refer to P as the ground partition of J , and to the parts of P as the
clusters of J .

(ii) There exists a density vector d= (dk−1, . . . , d2) such that, for all 2� i� k− 1, we have
di � 1/t1 and 1/di ∈N, and the (k− 1)-complex J is (d, ε, ε, 1)-regular.

LetX ∈ (P
k
)
.Wewrite ĴX for the (k− 1, k)-graph (JX<)k−1. A k-graphG onV(J ) is (εk, r)-regular

with respect to ĴX if there exists some d such thatG is (d, εk, r)-regular with respect to ĴX . We also
write d∗

J ,G(X) for the density of G with respect to ĴX , or simply d∗(X) if J and G are clear from
the context.

Definition 8.1. (regular slice). Given ε, εk > 0, r, t0, t1 ∈N, a k-graph G and a (k− 1)-complex
J onV(G), we call J a (t0, t1, ε, εk, r)-regular slice for G if J is (t0, t1, ε)-equitable andG is (εk, r)-
regular with respect to all but at most εk

(t
k
)
of the k-sets of clusters of J , where t is the number of

clusters of J .

Given a regular slice J for a k-graph G, we keep track of the relative densities d∗(X) for k-sets
X of clusters of J , which is done via a weighted k-graph.

Definition 8.2. Given a k-graph G and a (t0, t1, ε)-equitable (k− 1)-complex J on V(G), we let
RJ (G) be the complete weighted k-graph whose vertices are the clusters of J , and where each
edge X is given weight d∗(X). When J is clear from the context, we write R(G) instead of RJ (G).
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The regular slice lemma (Theorem 8.1) guarantees the existence of a regular sliceJ with respect
to which R(G) resembles G in various senses. In particular, R(G) inherits the codegree condition
of G in the following sense.

Let G be a k-graph on n vertices. Given a set S ∈ (V(G)
k−1

)
, recall that degG (S) is the number of

edges of G which contain S. The relative degree deg(S;G) of S with respect to G is defined to be

deg(S;G)= degG (S)
n− k+ 1

.

Thus deg(S;G) is the proportion of k-sets of vertices in G extending S which are in fact edges of G.
To extend this definition to weighted k-graphs G with weight function d∗, we define

deg(S;G)=
∑

e∈E(G) : S⊆e d∗(e)
n− k+ 1

.

Finally, for a collection S of (k− 1)-sets in V(G), the mean relative degree deg(S ;G) of S in G is
defined to be the mean of deg(S;G) over all sets S ∈ S .

We will need an additional property of regular slices. Suppose G is a k-graph, S is a (k− 1)-
graph on the same vertex set, and J is a regular slice for G on t clusters. We say J is (η, S)-
avoiding if, for all but at most η

( t
k−1

)
of the (k− 1)-sets Y of clusters of J , it holds that |JY ∩ S|�

η|JY |.
We can now state the version of the regular slice lemma that we will use.

Theorem 8.1 (regular slice lemma [2, Lemma 6]). Let k ∈N with k� 3. For all t0 ∈N, εk > 0
and all functions r : N→N and ε : N→ (0, 1], there exist t1, n1 ∈N such that the following holds
for all n� n1 which are divisible by t1!. Let G be a k-graph on n vertices, and let S be a (k− 1)-graph
on the same vertex set with |E(S)|� θ

( n
k−1

)
. Then there exists a (t0, t1, ε(t1), εk, r(t1))-regular slice

J for G such that, for all (k− 1)-sets Y of clusters of J , we have deg(Y ; R(G))= deg(JY ;G)± εk,
and furthermore J is (3

√
θ , S)-avoiding.

We remark that the original statement of [2, Lemma 6] did not include the ‘avoiding’ property
with respect to a fixed (k− 1)-graph S . This, however, can be obtained easily from their proof. We
sketch this in Appendix A.1.

8.3 The d-reduced k-graph and strong density
Once we have a regular slice J for a k-graph G, we would like to work within k-tuples of clusters
with respect to which G is both regular and dense. To keep track of those tuples, we introduce the
following definition.

Definition 8.3 (d-reduced k-graph). Let G be a k-graph and let J be a (t0, t1, ε, εk, r)-regular
slice for G. Then for d > 0 we define the d-reduced k-graph Rd(G) of G to be the k-graph whose
vertices are the clusters of J and whose edges are all k-sets of clusters X of J such thatG is (εk, r)-
regular with respect to X and d∗(X)� d. Note that Rd(G) depends on the choice of J but this will
always be clear from the context.

The next lemma states that for regular slices J as in Theorem 8.1, the codegree conditions are
also preserved by Rd(G).
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Lemma 8.2 ([2, Lemma 8]). Let k, r, t0, t ∈N and ε, εk > 0. Let G be a k-graph and let J be a
(t0, t1, ε, εk, r)-regular slice for G. Then, for all (k− 1)-sets Y of clusters of J , we have

deg(Y ; Rd(G))� deg(Y ; R(G))− d − ζ (Y),

where ζ (Y) is defined to be the proportion of k-sets Z of clusters with Y ⊆ Z that are not (εk, r)-
regular with respect to G.

For 0�μ, θ � 1, we say that a k-graphH on n vertices is (μ, θ)-dense if there exists S ⊆ (V(H)
k−1

)
of size at most θ

( n
k−1

)
such that, for all S ∈ (V(H)

k−1
) \ S , we have degH (S)�μ(n− k+ 1). In

particular, if H has δk−1(H)�μn, then it is (μ, 0)-dense.
By using Lemma 8.2, we show that Rd(G) ‘inherits’ the property of being (μ, θ)-dense.

Lemma 8.3. Let 1/n 1/t1 � 1/t0  1/k and μ, θ , d, ε, εk > 0. Suppose that G is a k-graph on n
vertices, that G is (μ, θ)-dense, and let S be the (k− 1)-graph on V(G) whose edges are precisely{

S ∈
(
V(G)
k− 1

)
: degG (S)< μ(n− k+ 1)

}
.

Let J be a (t0, t1, ε, εk, r)-regular slice for G such that for all (k− 1)-sets Y of clusters of J , we
have deg(Y ; R(G))= deg(JY ;G)± εk, and furthermore J is (3

√
θ , S)-avoiding. Then Rd(G) is

((1− 3
√

θ)μ − d − εk − √
εk, 3

√
θ + 3√εk)-dense.

Proof. LetP be the ground partition ofJ and t = |P|. Letm= n/t. Clearly |V| =m for allV ∈P .
Let Y1 be the set of all Y ∈ ( P

k−1
)
such that |JY ∩ S|� 3

√
θ |JY |. Since J is (3

√
θ , S)-avoiding,

|Y1|� 3
√

θ
( t
k−1

)
.

For all Y ∈ ( P
k−1

)
, let ζ (Y) be defined as in Lemma 8.2. Let Y2 be the set of all Y ∈ ( P

k−1
)
with

ζ (Y)> √
εk. Since G is (εk, r)-regular with respect to all but at most εk

(t
k
)
of the k-sets of clusters

of P , it follows that |Y2|√εk(t − k+ 1)/k� εk
(t
k
)
, namely |Y2|�√

εk
( t
k−1

)
.

Then it follows that |Y1 ∪Y2|� 3(
√

θ + √
εk)

( t
k−1

)
.Wewill show that allY ∈ ( P

k−1
) \ (Y1 ∪Y2)

will have large codegree in Rd(G), thus proving the lemma.
Consider any Y ∈ ( P

k−1
) \ (Y1 ∪Y2). Since Y /∈Y2, ζ (Y)�

√
εk. By Lemma 8.2, we have

deg(Y ; Rd(G))� deg(Y ; R(G))− d − ζ (Y)

� deg(Y ; R(G))− d − √
εk

� deg(JY ;G)− εk − d − √
εk.

So it suffices to show that deg(JY ;G)� (1− 3
√

θ)μ. Recall that deg(JY ;G) is the mean of
deg(S;G) over all S ∈JY . Since Y /∈Y1, |JY ∩ S|� 3

√
θ |JY |. By definition, for all S ∈JY \ S ,

degG (S)�μ(n− k+ 1). Thus deg(JY ;G)� (1− 3
√

θ)μ, as required.

For 0�μ, θ � 1, a k-graph H on n vertices is strongly (μ, θ)-dense if it is (μ, θ)-dense and, for
all edges e ∈ E(H) and all (k− 1)-sets X ⊆ e, degH (X)�μ(n− k+ 1). We prove that all (μ, θ)-
dense k-graphs contain a strongly (μ′, θ ′)-dense subgraph, for some degraded constants μ′, θ ′.

Lemma 8.4. Let n� 2k and 0< μ, θ < 1. Suppose that H is a k-graph on n vertices that is (μ, θ)-
dense. Then there exists a sub-k-graph H′ on V(H) that is strongly (μ − 2kθ1/(2k−2), θ + θ1/(2k−2))-
dense.
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Proof. Let S1 be the set of all S ∈ (V(H)
k−1

)
such that degH (S)< μ(n− k+ 1). Thus |S1|� θ

( n
k−1

)
.

Let β = θ1/(k−1). Now, for all j ∈ {k− 1, k− 2, . . . , 1} in turn we construct Aj ⊆
(V(H)

j
)
in the fol-

lowing way. Initially, let Ak−1 = S1. Given j> 1 and Aj, we define Aj−1 ⊆ (V(H)
j−1

)
to be the set of

all X ∈ (V(H)
j−1

)
such that there exist at least β(n− j+ 1) vertices w ∈V(H) with X ∪ {w} ∈Aj.

Claim 1. For all 1� j� k− 1, |Aj|� β j(n
j
)
.

Proof of the claim. Weprove the claim by induction on k− j.When j= k− 1, the result is imme-
diate. Now suppose 2� j� k− 1 and that |Aj|� β j(n

j
)
. By double-counting the number of tuples

(X,w) where X is a ( j− 1)-set in Aj−1 and X ∪ {w} ∈Aj, we have |Aj−1|β(n− j+ 1)� j|Aj|. By
the induction hypothesis it follows that

|Aj−1|� j
β(n− j+ 1)

|Aj|� β j−1
(

n
j− 1

)
.

For all 1� j� k− 1, let Fj be the set of edges e ∈ E(H) such that there exists S ∈Aj with S⊆ e,
and let F = ⋃k−1

j=1 Fj. Define H′ =H − F. We will show that H′ satisfies the desired properties.
For each j-set, there are at most

(n−j
k−j

)
k-edges containing it. Thus, for all 1� j� k− 1, the claim

above implies that

|Fj|� |Aj|
(
n− j
k− j

)
� β j

(
n
j

)(
n− j
k− j

)
= β j

(
k
j

)(
n
k

)
.

Therefore

|F|�
k−1∑
j=1

|Fj|�
(
n
k

) k−1∑
j=1

(
k
j

)
β j � 2kβ

(
n
k

)
.

Let S2 be the set of all S ∈ (V(H)
k−1

)
contained in more than 2k

√
β(n− k+ 1) edges of F. It follows

that |S2|�√
β
( n
k−1

)
. This implies that

|S1 ∪ S2|� (θ + √
β)

(
n

k− 1

)
= (θ + θ1/(2k−2))

(
n

k− 1

)
.

Now consider an arbitrary

S ∈
(
V(H)
k− 1

)
\ (S1 ∪ S2).

As S /∈ S1, it follows that degH (S)�μ(n− k+ 1). As S /∈ S2, it follows that

degH′ (S)� degH (S)− 2k
√

β(n− k+ 1)� (μ − 2kθ1/(2k−2))(n− k+ 1).

Therefore H′ is (μ − 2kθ1/(2k−2), θ + θ1/(2k−2))-dense.
Let e ∈ E(H′) and X ∈ ( e

k−1
)
. It is enough to prove that X /∈ S1 ∪ S2. As e /∈ Fk−1, it follows that

X /∈Ak−1 = S1. So it is enough to prove that X /∈ S2. Suppose the contrary, that X ∈ S2. Then X
is contained in more than 2k

√
β(n− k+ 1) edges e′ ∈ E(F). Let W =NF(X). For all w ∈W, fix a

set Aw ∈ ⋃k−1
j=1 Aj such that Aw ⊆ X ∪ {w} and let Tw = X ∩Aw. If Aw ⊆ X then Aw ⊆ e ∈ E(H′),

a contradiction. Hence w ∈Aw for all w ∈W, and therefore |Tw| = |Aw| − 1� k− 2< |X| for all
w ∈W. We deduce Tw �= X for all w ∈W. By the pigeonhole principle, there exists T � X and
WT ⊆W such that for all w ∈WT ,

Tw = T and |WT |� |W|/(2k−1)� 2
√

β(n− k+ 1)>
√

βn.
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Suppose |T| = t� 1. Then, for all w ∈WT , T ∪ {w} =Aw ∈At+1, so there are at least
√

βn�
β(n− t) vertices w ∈V(H) such that T ∪ {w} ∈At+1. Therefore T ∈At and T ⊆ X ⊆ e, which is a
contradiction because e /∈ Ft . Hence we may assume that T = ∅. Then, for all w ∈WT , {w} ∈A1.
Therefore |A1|� |WT | > √

βn, contradicting the claim.

8.4 The embedding lemma
We will need a version of the ‘embedding lemma’ which gives sufficient conditions to find a copy
of a (k, s)-graph H in a regular (k, s)-complex G.

Suppose that G is a (k, s)-graph with vertex classes V1, . . . ,Vs, which all have size m. Suppose
also that H is a (k, s)-graph with vertex classes X1, . . . , Xs of size at most m. We say that a copy
of H in G is partition-respecting if, for all 1� i� s, the vertices corresponding to those in Xi lie
within Vi.

Given a k-graph G and a (k− 1)-graph J on the same vertex set, we say that G is supported on J
if, for all e ∈ E(G) and all f ∈ ( e

k−1
)
, f ∈ E(J).

We state the following lemma, which can be easily deduced from a lemma stated by Cooley,
Fountoulakis, Kühn and Osthus [4].

Lemma 8.5 (embedding lemma [4, Theorem 2]). Let k, s, r, t,m0 ∈N and let d2, . . . , dk−1, d, ε,
εk > 0 be such that 1/di ∈N for all 2� i� k− 1, and

1
m0

 1
r
, ε  εk, d2, . . . , dk−1 and εk  d,

1
t
,
1
s
.

Then the following holds for all m�m0. Let H be a (k, s)-graph on t vertices with vertex
classes X1, . . . , Xs. Let J be a (dk−1, . . . , d2, ε, ε, 1)-regular (k− 1, s)-complex with vertex classes
V1, . . . ,Vs all of size m. Let G be a k-graph on

⋃
1�i�s Vi which is supported on Jk−1 such that, for

all e ∈ E(H) intersecting the vertex classes {Xij : 1� j� k}, the k-graph G is (de, εk, r)-regular with
respect to the k-set of clusters {Vij : 1� j� k}, for some de � d depending on e. Then there exists a
partition-respecting copy of H in G.

The differences between Lemma 8.5 and [4, Theorem 2] are discussed in Appendix A.2.

9. Almost perfect Cks -tilings
The aim of this section is to prove Lemma 7.1, i.e. finding an almost perfect Ck

s -tiling. Throughout
this section we fix k� 3 and s� 5k2 with s �≡ 0 mod k. Let Gs,WGs , as,1, . . . , as,k, �, Fs be given
by Proposition 4.5. Recall that Fs contains a spanning Ck

s . Therefore an Fs-tiling in H implies the
existence of a Ck

s -tiling in H of the same size.
Here we summarize some useful inequalities that will be used throughout the section. LetMs =

maxi as,i andms =mini as,i. We have

� +
k∑

i=1
as,i = s, Ms �ms + 1 and 1� �� k− 1. (9.1)

From this, we can easily deduce

ms + 1�Ms �
s− �

k
� s− k+ 1

k
. (9.2)
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Define Es =Kk(Ms), the complete (k, k)-graph with each part of sizeMs. Given an {Fs, Es}-tiling
T in H, let FT and ET be the set of copies of Fs and Es in T , respectively. Define

φ(T )= 1
n

(
n− s

(
|FT | + 3

5
|ET |

))
.

Note that if ET = ∅, then T is an Fs-tiling covering all but φ(T )n vertices. Let φ(H) be the min-
imum of φ(T ) over all {Fs, Es}-tilings T in H. Given n� k and 0�μ, θ < 1, let �(n,μ, θ) be the
maximum of φ(H) over all (μ, θ)-dense k-graphs H on n vertices. Note that φ(H) and �(n,μ, θ)
depend on k and s but they will be clear from the context.

Lemma 9.1. Let k� 3 and s� 5k2 with s �≡ 0 mod k. Let 1/n, θ  α, γ , 1/k, 1/s. Then
�(n, 1/2+ 1/(2s)+ γ , θ)� α.

We now show that Lemma 9.1 implies Lemma 7.1.

Proof of Lemma 7.1. Fix α, γ > 0. Note that |V(Fs)| = s and |V(Es)| = kMs. Let δ = 7/10. Using
s� 5k2, (9.2) and k� 3, we deduce kMs/s� 1− (k− 1)/(5k2)� 43/45. Hence

3s/5� 43sδ/45� δkMs. (9.3)

Define α1 = α(1− δ) and choose some θ  α, γ , 1/k, 1/s. Since 1/n α, γ , 1/k, 1/s as well,
Lemma 9.1 (with α1 in place of α) implies that �(n, 1/2+ 1/(2s)+ γ , θ)� α1.

Let H be a k-graph on n vertices with δk−1(H)� (1/2+ 1/(2s)+ γ )n. Then
φ(H)��(n, 1/2+ 1/(2s)+ γ , 0)��(n, 1/2+ 1/(2s)+ γ , θ)� α1.

Let T be an {Fs, Es}-tiling in H with φ(T )� α1. Hence

1− α1 � 1− φ(T )� s
n

(
|FT | + 3

5
|ET |

)
(9.3)
� 1

n
(s|FT | + δkMs|ET |).

As T is a tiling, we have that s|FT | + kMs|ET |� n. Hence 1− α1 � (1− δ)s|FT |/n+ δ and so

s|FT |�
(
1− α1

1− δ

)
n= (1− α)n.

Therefore H contains an Fs-tiling FT covering all but at most αn vertices, implying the existence
of a Ck

s -tiling of the same size.

9.1 Weighted fractional tilings
Our strategy for proving Lemma 9.1 is to apply the regular slice lemma (Theorem 8.1). In the
reduced k-graph, we find a fractional {F∗

s , E∗
s }-tiling for some simpler k-graphs F∗

s and E∗
s . By

using the regularity methods, this fractional tiling can then be lifted to an actual tiling with copies
of Fs, Es in the original k-graph, which covers a similar proportion of vertices.

To define the k-graphs F∗
s and E∗

s , we use the notion of G-augmentation introduced in
Section 4.2. Let K be a k-edge with vertices {x1, . . . , xk}. Let Gs be the 2-graph on [k] given
by Corollary 4.5. Let F∗

s be the Gs-augmentation of K (with respect to the vertex partition
Vi := {xi} for all i ∈ [k]). Let V(F∗

s )= {x1, . . . , xk} ∪ {y1, . . . , y�}, where � = |E(Gs)|. We refer to
c(F∗

s )= {x1, . . . , xk} as the set of core vertices of F∗
s and p(F∗

s )= {y1, . . . , y�} as the set of pendant
vertices of F∗

s . Define the function α : V(F∗
s )→N to be such that for u ∈V(F∗

s ),

α(u)=
{
as,i if u= xi,
1 if u ∈ p(F∗

s ).
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Note that there is a natural k-graph homomorphism θ from Fs to F∗
s such that for all u ∈V(F∗

s ),|θ−1(u)| = α(u). Observe that (9.2), s� 5k2 and k� 3 imply that α(u)= 1 if and only if u is a
pendant vertex.

Let F∗
s (H) be the set of copies of F∗

s in H. Given v ∈V(H) and F∗
s ∈F∗

s (H), define

αF∗
s (v)=

{
α(u) if v corresponds to vertex u ∈V(F∗

s ),
0 otherwise.

Given v ∈V(H) and e ∈ E(H), define

αe(v)=
{
Ms if v ∈ e,
0 otherwise.

We now define a weighted fractional {F∗
s , E∗

s }-tiling of H to be a function ω∗ : F∗
s (H)∪ E(H)→

[0, 1] such that, for all vertices v ∈V(H),

ω∗(v)=
∑

F∗
s ∈F∗

s (H)
ω∗(F∗

s )αF∗
s (v)+

∑
e∈E(H)

ω∗(e)αe(v)� 1.

Note that if (contrary to our assumptions) as,1 = · · · = as,k = 1, then we have αF∗
s (v)= 1{v ∈

V(F∗
s )} and αe(v)= 1{v ∈ e} implying that ω∗ is the standard fractional {Fs, Es}-tiling. Note that

the definition depends on k and the functions αF∗
s and αe, but those will always be clear from the

context.
Define theminimum weight of ω∗ to be

ω∗
min = min

J∈F∗
s (H)∪E(H)
v∈V(H)

ω∗(J)αJ (v)�=0

ω∗(J)αJ(v).

Analogously to φ(T ), define

φ(ω∗)= 1
n

⎛
⎝n− s

⎛
⎝ ∑

F∗
s ∈F∗

s (H)
ω∗(F∗

s )+
3
5

∑
e∈E(H)

ω∗(e)

⎞
⎠

⎞
⎠.

Given c> 0 and a k-graph H, let φ∗(H, c) be the minimum of φ(ω∗) over all weighted fractional
{F∗

s , E∗
s }-tilings ω∗ of H with ω∗

min � c. Note that φ∗(H, c) also depends on k, s, αF∗
s and αe, which

will always be clear from the context.
Let T be an {Fs, Es}-tiling. We say that a vertex v is saturated under T if it is covered by a copy

of Fs and v corresponds to a vertex inWGs under that copy. Let S(T ) denote the set of all saturated
vertices under T . Define U(T ) as the set of all uncovered vertices under T .

Analogously, given a weighted fractional {F∗
s , E∗

s }-tiling ω∗, we say that a vertex v is saturated
under ω∗ if ∑

F∗
s ∈F∗

s (H)
αF∗s (v)=1

ω∗(F∗
s )αF∗

s (v)= 1,

that is, ω∗(v)= 1 and all its weight comes from copies of F∗
s such that v corresponds to a pendant

vertex. Let S(ω∗) be the set of all saturated vertices under ω∗. Also, define U(ω∗) as the set of all
vertices v ∈V(H) such that ω∗(v)= 0.

Proposition 9.2. Let k� 3 and s� 5k2 with s �≡ 0 mod k. Let H be a k-graph on n vertices. Let ω∗
be a weighted fractional {F∗

s , E∗
s }-tiling in H. Then the following holds.
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(i) We have

s
∑

F∗∈F∗
s

ω∗(F∗)+ kMs
∑

e∈E(H)
ω∗(e)� n.

In particular, ∑
F∗∈F∗

s

ω∗(F∗)� n/s and
∑

e∈E(H)
ω∗(e)� n/(kMs).

(ii) |S(ω∗)|� �n/s.
(iii) If S′ ⊆ S(ω∗)with |S′| > n/s, then there exists F∗ ∈F∗

s (H)withω∗(F∗)> 0 such that |p(F∗)∩
S′|� 2.

Proof. For (i), note that

n�
∑

v∈V(H)

∑
F∗∈F∗

s (H)
ω∗(F∗)αF∗(v)+

∑
v∈V(H)

∑
e∈E(H)

ω∗(e)αe(v)

=
∑

F∗∈F∗
s (H)

ω∗(F∗)
∑

v∈V(H)
αF∗(v)+

∑
e∈E(H)

ω∗(e)
∑

v∈V(H)
αe(v)

= s
∑

F∗∈F∗
s (H)

ω∗(F∗)+ kMs
∑

e∈E(H)
ω∗(e).

To prove (ii), recall that all of the vertices v ∈ S(ω∗) only receive weight from pendant vertices,
and all copies of F ∈F∗

s (H) have precisely � pendant vertices, and therefore

|S(ω∗)| =
∑

v∈S(ω∗)

∑
F∗∈F∗

s (H)
ω∗(F∗)αF∗(v)� �

∑
F∗∈F∗

s (H)
ω∗(F∗)

(i)
� �n/s.

Finally, for (iii), suppose the contrary, that for all F∗ ∈F∗
s (H) with ω∗(F∗)> 0 we have∑

v∈S′ αF∗(v)= |p(F∗)∩ S′|� 1. Then

|S′| =
∑
v∈S′

∑
F∗∈F∗

s (H)
ω∗(F∗)αF∗(v)

=
∑

F∗∈F∗
s (H)

ω∗(F∗)
∑
v∈S′

αF∗(v)

�
∑

F∗∈F∗
s (H)

ω∗(F∗)

� n/s,

a contradiction.

Note that Fs admits a natural perfect weighted fractional F∗
s -tiling, defined as follows. Let a=∏

1�i�k as,i. Let F be a copy of Fs and suppose that V(F)=V1 ∪ · · · ∪Vk ∪W, where V1, . . . ,Vk
forms a complete (k, k)-graph with |Vi| = as,i for all 1� i� k and |W| = �. Note that a�Mk

s .
For all (v1, . . . , vk) ∈V1 × · · · ×Vk, the vertices {v1, . . . , vk} ∪W span a copy of F∗

s , where we
identify {v1, . . . , vk} with the core vertices of F∗

s andW with the pendant vertices of F∗
s . Define ω∗

by assigning to all such copies the weight 1/a. A similar method shows that Es admits a perfect
weighted fractional E∗

s -tiling, by setting ω∗(e)=M−k
s for all e ∈ Es.
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We can naturally extend these constructions to find a weighted fractional {F∗
s , E∗

s }-tiling given
an {Fs, Es}-tiling, by repeating the above procedure over all copies of Fs and Es. The following
proposition (whose proof we omit) collects useful properties of the obtained fractional tiling, for
future reference. All of the stated properties are straightforward to check by using the construction
outlined above.

Proposition 9.3. Let k� 3 and s� 5k2 with s �≡ 0 mod k. Let H be a k-graph and let T be an
{Fs, Es}-tiling in H. Then there exists a weighted fractional {F∗

s , E∗
s }-tiling ω∗ such that

(i) φ(T )= φ(ω∗),
(ii) |FT | = ∑

F∗∈F∗
s (H) ω

∗(F∗),
(iii) |ET | = ∑

e∈E(H) ω
∗(e),

(iv) S(ω∗)= S(T ) and U(ω∗)=U(T ),
(v) for all F∗ ∈F∗

s (H), ω∗(F∗) ∈ {0, a−1}, where a= ∏
1�i�k as,i,

(vi) for all e ∈ E(H), ω∗(e) ∈ {0,M−k
s }, moreover if e ∈ E(Es) for some Es ∈ ET , then

ω∗(e)=M−k
s ,

(vii) ω∗
min �M−k

s , and
(viii) ω∗(v) ∈ {0, 1} for all v ∈V(H).

The next lemma ensures that if R is a reduced k-graph of H, then φ(H) is roughly bounded
above by φ∗(R, c).

Lemma 9.4. Let k� 3 and s� 5k2 with s �≡ 0 mod k. Let c� β > 0 and

1/n ε, 1/r  εk  1/t1 � 1/t0  β , c, 1/s, 1/k

and

εk  d, 1/k, 1/s.

Let H be a k-graph on n vertices, let J be a (t0, t1, ε, εk, r)-regular slice for H and let R= Rd(H) be
its d-reduced k-graph obtained from J . Then φ(H)� φ∗(R, c)+ sβ/c.

Proof. Let ω∗ be a weighted fractional {F∗
s , E∗

s }-tiling on R such that φ(ω∗)= φ∗(R, c) and
ω∗
min � c. Let t = |V(R)| and letm= n/t, so that each cluster inJ has sizem. Let n∗

F be the number
of F∗

s ∈F∗
s (R) with ω∗(F∗

s )> 0 and let n∗
E be the number of E ∈ E(R) with ω∗(E)> 0. Note that

n∗
F + n∗

E � t/c.

For all clusters U ∈V(R), we subdivide U into disjoint sets {UJ}J∈F∗
s (R)∪E(R) of size |UJ | =

�ω∗(J)αJ(U)m�.
In the next claim, we show that if ω∗(J)> 0 for some J ∈F∗

s (R)∪ E(R), then we can find a large
Fs-tiling or a large Es-tiling on

⋃
U∈V(J) UJ .

Claim 2. For all J ∈F∗
s (R)∪ E(R) with ω∗(J)> 0, H[

⋃
U∈V(J) UJ] contains

(i) an Fs-tiling FJ with |FJ |�m(ω∗(J)− β) if J ∈F∗
s (R), or

(ii) an Es-tiling EJ with |EJ |�m(ω∗(J)− β) if J ∈ E(R).

Proof of the claim. We will only consider the case when J ∈F∗
s (R), as the case J ∈ E(R) is proved

similarly.
Suppose c(J)= {X1, . . . , Xk} and p(J)= {Y1, . . . , Y�}, so V(J)= c(J)∪ p(J). We will first show

that if X′
i ⊆ Xi for all 1� i� k and Y ′

j ⊆ Yj for all 1� j� � are such that |X′
i| = |Y ′

j |� βm, then
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H[
⋃

1�i�k X′
i ∪

⋃
1�j�� Y ′

j ] contains a copy F of Fs such that |V(F)∩ X′
i| = as,i for all 1� i� k

and |V(F)∩ Y ′
j | = 1 for all 1� j� �.

Indeed, take X′
i , Y ′

j as above and construct the subcomplex H′ obtained by restricting H along
with J to the subsets X′

i , Y ′
j and then deleting the edges inH not supported in k-tuples of clusters

corresponding to edges in E(J). Then H′ is a (k, k+ �)-complex. Since J is (t0, t1, ε)-equitable,
there exists a density vector d= (dk−1, . . . , d2) such that, for all 2� i� k− 1, we have di � 1/t1,
1/di ∈N and J is (dk−1, . . . , d2, ε, ε, 1)-regular. As J ⊆ R, all edges e in E(J)∩ E(R) induce k-
tuples Xe of clusters in H with d∗(Xe)= de � d and H is (de, εk, r)-regular with respect to Xe. By
Lemma 8.1, the restriction ofXe to the subsets {X′

1, . . . , X
′
k, Y

′
1, . . . , Y

′
�} is (de,

√
εk,

√
ε, r)-regular.

Hence, by Lemma 8.5, there exists a partition-respecting copy F of Fs in H′, that is, F satisfies
|V(F)∩ X′

i| = as,i for all 1� i� s and |V(F)∩ Y ′
j | = 1 for all 1� j� �, as desired.

Now consider the largest Fs-tiling FJ in H[
⋃

U∈V(J) UJ] such that all F ∈FJ satisfy |V(F)∩
Xi| = as,i for all 1� i� k and |V(F)∩ Yj| = 1 for all 1� j� �. Let V(FJ)= ⋃

F∈FJ V(F). By the
discussion above, we may assume that |UJ \V(FJ)| < βm for some U ∈V(J). A simple calcula-
tion shows that |(Yj)J \V(FJ)| < βm for all 1� j� � and |(Xi)J \V(FJ)| < as,iβm for all 1� i� k.
Therefore FJ covers at least sm(ω∗(J)− β) vertices and it follows that |FJ |�m(ω∗(J)− β).

Now consider the {Fs, Es}-tiling T =FT ∪ ET in H, where

FT =
⋃

J∈F∗
s (R)

FJ and ET =
⋃

E∈E(R)
EJ

as given by the claim (and we take FJ = EJ = ∅ whenever ω∗(J)= 0). Therefore

|FT | + 3
5
|ET |�

∑
F∗
s ∈F∗

s (R)
ω∗(F∗

s )>0

m(ω∗(F∗
s )− β)+ 3

5
∑

E∈E(R)
ω∗(E)>0

m(ω∗(E)− β)

�m
( ∑
F∗
s ∈F∗

s (R)
ω∗(F∗

s )+
3
5

∑
E∈E(R)

ω∗(E)− β(n∗
F + n∗

E)
)

�m
( ∑
F∗
s ∈F∗

s (R)
ω∗(F∗

s )+
3
5

∑
E∈E(R)

ω∗(E)− βt
c

)

=mt
(
1− φ(ω∗)

s
− β

c

)

= n
s

(
1− φ(ω∗)− βs

c

)
.

Thus we have

φ(H)� φ(T )� φ(ω∗)+ sβ/c= φ∗(R, c)+ sβ/c.

9.2 Proof of Lemma 9.1
We begin with some lemmas before formally proving Lemma 9.1.

Lemma 9.5. Let k� 3 and s� 5k2 with s �≡ 0 mod k. Let μ + γ /3� 2/3. Then

�(n,μ, θ)��((1+ γ )n,μ + γ /3, θ)+ sγ .
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Proof. Let H be a k-graph on n vertices that is (μ, θ)-dense. Consider the k-graph H′ on the
vertices V(H)∪A obtained from H by adding a set of |A| = γ n vertices and adding all of the
k-edges that have non-empty intersection with A. Since

μ + γ

1+ γ
�μ + γ /3

as μ + γ /3� 2/3, H′ is (μ + γ /3, θ)-dense.
Let T ′ be an {Fs, Es}-tiling on H′ satisfying φ(T ′)= φ(H′). Consider the {Fs, Es}-tiling T in H

obtained from T ′ by removing all copies of Fs or Es intersecting with A. It follows that

1− φ(T )= s
n

(
|FT | + 3

5
|ET |

)

� s
n

(
|FT ′ | + 3

5
|ET ′ |

)
− sγ

� s
(1+ γ )n

(
|FT ′ | + 3

5
|ET ′ |

)
− sγ

= 1− φ(T ′)− sγ .
Hence

φ(H)� φ(T )� φ(T ′)+ sγ ��((1+ γ )n,μ + γ /3, θ)+ sγ .
The next lemma shows that given an {Fs, Es}-tiling T of a strongly (μ, θ)-dense k-graphH with

φ(T) ‘large’, we can always find a better weighted fractional {F∗
s , E∗

s }-tiling in terms of φ∗.

Lemma 9.6. Let k� 3, s� 5k2 with s �≡ 0 mod k, and c= s−2k. For all γ > 0 and 0� α � 1 there
exists n0 = n0(k, s, γ , α) ∈N and ν = ν(k, s, γ )> 0 and θ = θ(α, k) such that the following holds
for all n� n0. Let H be a k-graph on n vertices that is strongly (1/2+ 1/(2s)+ γ , θ)-dense and
φ(H)� α. Then φ∗(H, c)� (1− ν)φ(H).

We defer the proof of Lemma 9.6 to the next subsection and now we use it to prove Lemma 9.1.

Proof of Lemma 9.1. Consider a fixed γ > 0. Suppose the result is false, that is, there exists α > 0
such that, for all n ∈N and θ∗ > 0, there exists n′ > n satisfying �(n′, 1/2+ 1/(2s)+ γ , θ∗)> α.
Let α0 be the supremum of all such α. Apply Lemma 9.6 (with parameters γ /2, α0/2 playing the
roles of γ , α) to obtain n0 = n0(k, s, γ /2, α0/2), ν = ν(k, s, γ /2) and θ = θ(α0/2, k). Let

0< η  ν, γ , α0, 1/s.
By the definition of α0, there exists θ1 > 0 and n1 ∈N such that for all n� n1,

�(n, 1/2+ 1/(2s)+ γ , θ1)� α0 + η/2. (9.4)
Now we prepare the set-up to use the regular slice lemma (Theorem 8.1). Let β , εk, ε, d, θ∗, θ ′ > 0
and t0, t1, r, n2 ∈N be such that

1/n2  ε, 1/r  εk, 1/t1  1/t0  β  γ ′  η, c= s−k, 1/s, 1/k, 1/n0, 1/n1,

εk  d  γ ′,

εk  θ ′  θ∗  γ ′, θ , θ1
and n2 ≡ 0 mod t1!.

Let H be a (1/2+ 1/(2s)+ γ , θ ′)-dense k-graph on n� n2 vertices with
φ(H)> α0 − η; (9.5)
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such anH exists by the definition of α0. By removing atmost t1! − 1 vertices we get a k-graphH′ on
at least n2 vertices such that |V(H′)| is divisible by t1! andH′ is (1/2+ 1/(2s)+ γ − γ ′, 2θ ′)-dense.

Let S be the set of (k− 1)-tuples T of vertices of V(H′) such that

degH′ (T)< (1/2+ 1/(2s)+ γ − γ ′)(|V(H′)| − k+ 1).

Thus |S|� 2θ ′(|V(H′)|
k−1

)
. By Theorem 8.1, there exists a (t0, t1, ε, εk, r)-regular slice J for H′

such that, for all (k− 1)-sets Y of clusters of J , we have deg(Y ; R(H′))= deg(JY ;H′)± εk, and
furthermore, J is (3

√
2θ ′, S)-avoiding.

Let R= Rd(H′) be the d-reduced k-graph obtained from H′ and J . Using θ ′, d, εk  γ ′
together with εk  θ ′ and that J is (3

√
2θ ′, S)-avoiding, we can invoke Lemma 8.3 to get that

R is (1/2+ 1/(2s)+ γ − 2γ ′, 5
√

θ ′)-dense. By Lemma 8.4, there exists a subgraph R′ ⊆ R on the
same vertex set that is strongly (1/2+ 1/(2s)+ γ − 3γ ′, θ∗)-dense as θ ′  γ ′, 1/k, θ∗. Since the
vertices of R′ are the clusters of J , we have |V(R′)|� t0 � n1. By the fact that θ∗ � θ1, Lemma 9.5
(with 9γ ′ playing the role of γ ) and (9.4), we deduce that

φ(R′)��(|V(R′)|, 1/2+ 1/(2s)+ γ − 3γ ′, θ∗)

��((1+ 9γ ′)|V(R′)|, 1/2+ 1/(2s)+ γ , θ∗)+ 9γ ′s

� α0 + η/2+ 9γ ′s
� α0 + η.

We further claim that φ∗(R′, c)� α0 − 2η. Note that c= s−k and α0 � 4η. Therefore, if
φ(R′)< α0/2, then the claim holds by Proposition 9.3. Thus we may assume that φ(R′)� α0/2.
Note that |V(R′)|� t0 � n0, γ − 3γ ′ � γ /2 and θ∗ � θ . By the choice of n0, ν and θ (given by
Lemma 9.6), we have

φ∗(R′, c)� (1− ν)φ(R′)� (1− ν)(α0 + η)� α0 − 2η,

where the last inequality holds since η  ν, α0. Finally, recall that β  η, c, so an application of
Lemma 9.4 implies that

φ(H)� φ∗(R, c)+ sβ/c� φ∗(R′, c)+ sβ/c� α0 − η,

contradicting (9.5).

9.3 Proof of Lemma 9.6
Before proceeding with the full details of the proof of Lemma 9.6, we first give a rough outline of
the proof. Let T be an {Fs, Es}-tiling of H satisfying φ(T )= φ(H). By Proposition 9.3, we obtain
a weighted fractional {F∗

s , E∗
s }-tiling ω∗

0 with φ(ω∗
0)= φ(T ), U(ω∗

0)=U(T ) and (ω∗
0)min �M−k

s .
Our aim is to sequentially define weighted fractional {F∗

s , E∗
s }-tilings ω∗

1 ,ω
∗
2 , . . . ,ω

∗
t such that

φ(ω∗
j−1)− φ(ω∗

j )� ν1/n for all j ∈ [t], where ν1 is a fixed positive constant. We will follow this
procedure for t = �(n) steps, and we will show that ω∗

t satisfies the required properties.
Moreover, we will construct ω∗

j+1 based on ω∗
j by changing the weights of Fs(H) and E(H) on

a small number of vertices, such that no vertex has its weight changed more than once during
the whole procedure. Recall that U(T ) is the set of uncovered vertices. If |U(T )| is large then we
construct ω∗

j+1 from ω∗
j via assigning weights to edges that contain at least k− 1 vertices in U(T ).

Suppose that |U(T )| is small. Since φ(T )� α, not all of the weight of ω∗
0 can be contributed by

copies of F∗
s . Thus there must exist edges e ∈ E(H) with positive weight under ω∗

0 . We use this
to find e ∈ E(H) with ω∗

j (e)> 0. The crucial property is that a copy of F∗
s can be obtained from

an edge by adding a few extra vertices to it. We use this to obtain ω∗
j+1 from ω∗

j by reducing the
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weight on e before assigning weight to some copy of F∗
s which originates from e. More care is

needed to ensure that ω∗
j+1 is indeed a weighted fractional {F∗

s , E∗
s }-tiling. Ideally we would like

the extra vertices added to e to form a copy of F∗
s not to be saturated, if possible.

We summarize and recall the relevant properties of F∗
s , which was originally as defined at the

beginning of Section 9.1. There exists a 2-graph Gs on [k] with �� k− 1 edges which consists of a
disjoint union of paths. Suppose e1, . . . , e� is an enumeration of the edges of Gs and ei = jij′i for all
1� i� s. IfX = {x1, . . . , xk}, then wemay describe F∗

s as having verticesV(F∗
s )= X ∪ {y1, . . . , y�},

and the edges of F∗
s are X together with (X \ {xji})∪ {yi} and (X \ {xj′i})∪ {yi} for all 1� i� �. We

call c(F∗
s )= X and p(F∗

s )= {y1, . . . , y�} the core and pendant vertices of F∗
s , respectively.

The following two lemmas are needed for the case when U(T ) is small. The idea is as follows.
Suppose H is a k-graph on n vertices with δk−1(H)� (1/2+ 1/(2s)+ γ )n. If X is a k-edge in H,
we would like to extend it to a copy F of F∗

s such that c(F)= X. Lemma 9.8 will indicate where we
should look for the vertices of p(F).

Lemma 9.7. Let k� 3, s� 2k2 and �� k− 1. Suppose that Ni ⊆ [n] are such that |Ni|� (1/2+
1/(2s)+ γ )n for all 1� i� k. Let G be a 2-graph on {N1, . . . ,Nk} such that NiNj ∈ E(G) if and only
if |Ni ∩Nj|� (�/s+ γ )n. Then G is bipartite.

Proof. We will show that G does not have any cycle of odd length. It suffices to show that
Ni1Ni2j+1 /∈ E(G) for all paths Ni1 · · ·Ni2j+1 in G on an odd number of vertices.

For any S⊆ [n], write S := [n] \ S. First, note that if Ni is adjacent to Nj in G, then

|Ni \Nj| = |Ni ∩Nj|� (�/s+ γ )n and |Nj \Ni|� (n− |Nj|)− (|Ni| − |Ni ∩Nj|)� (�/s− γ )n.

Hence, if NiNjNk is a path on three vertices in G, then

|Ni \Nk|� |Ni \Nj| + |Nj \Nk|� 2�n/s.

Now consider a path in G on an odd number of vertices. Without loss of generality (after a
suitable relabelling), we assume the path is given by N1N2 · · ·N2j+1 for some j which necessarily
satisfies 2j+ 1� k. By using the previous bounds repeatedly, we obtain

|N1 \N2j+1|� |N1 \N3| + |N3 \N5| + · · · + |N2j−1 \N2j+1|� 2�jn
s

� �(k− 1)n
s

.

Since �� k− 1 and s> 2k2, we obtain

|N1 ∩N2j+1|� |N1| − �(k− 1)n
s

�
(
1
2

+ 1
2s

+ γ

)
n− (k− 1)2n

s
>

(
�

s
+ γ

)
n.

Hence N1N2j+1 /∈ E(G) as desired.

Lemma 9.8. Let k� 3 and s� 5k2 with s �≡ 0 mod k. Let 1/n γ , 1/k and θ > 0. Let H be a
strongly (1/2+ 1/(2s)+ γ , θ)-dense k-graph on n vertices. Let X = {x1, . . . , xk} be an edge of H
and let Ni =NH(X \ {xi}) for all 1� i� k. Let S⊆V(H)with |S|� (�/s+ γ /3)n and y0 ∈N1 ∩N2.
Suppose either |N1 ∩N2| < (�/s+ 2γ /3)n or |Ni ∩Nj|� (�/s+ 2γ /3)n for all 1� i, j� k. Then
there exists a copy F∗ of F∗

s such that c(F∗)= X and p(F∗)∩ (S \ {y0})= ∅.

Proof. Note that

|Ni|� (1/2+ 1/(2s)+ γ )(n− k+ 1)� (1/2+ 1/(2s)+ 2γ /3)n for all 1� i� k.

Let G be the 2-graph on [k] such that ij ∈ E(G) if and only if |Ni ∩Nj| < (�/s+ 2γ /3)n. Note that
if ij /∈ E(G), then |Ni ∩Nj|� (�/s+ 2γ /3)n� |S| + �.
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Recall that Gs, the 2-graph which defines F∗
s , is a disjoint union of paths. By our assumption,

either 12 ∈ E(G) or G is empty. By Lemma 9.7, G is bipartite. Thus, in either case, there exists a
bijection φ : V(Gs)→ [k] such that {φ( ji)φ( j′i) : jij′i ∈ E(Gs)} ∩ E(G)⊆ {12}.

Let e1, . . . , e� be an enumeration of the edges of E(Gs). Consider ei = jij′i ∈ E(Gs). If
{φ( ji), φ( j′i)} = {1, 2}, then let yi = y0. Otherwise, φ( ji)φ( j′i) /∈ E(G) and therefore |Nφ( ji) ∩
Nφ( j′i)|� |S| + �. Thus we can greedily pick yi ∈ (Nφ( ji) ∩Nφ( j′i)) \ S such that y1, . . . , y� are pair-
wise distinct. Then there exists a copy F∗ of F∗

s with c(F∗)= X and p(F∗)= {y1, . . . , y�}, which
satisfies the required properties.

Now we are ready to prove Lemma 9.6.

Proof of Lemma 9.6. We may assume that γ  α, 1/k, 1/s. Recall that our aim is to define a
sequence of fractional {F∗

s , E∗
s }-tilings ω∗

0 , . . . ,ω
∗
t for some t� 0. Let

ν1 = s
25kMk

s
, ν2 = γ

40k3sk
and ν = ν1ν2

2
.

Choose θ  α, 1/k and 1/n0  α, γ , 1/k, 1/s. Let H be a strongly (1/2+ 1/(2s)+ γ , θ)-dense
k-graph on n� n0 vertices with φ(H)� α. Choose t = �ν2φ(H)n�.

Recall thatGs, �, Fs,ms,Ms are given by Proposition 4.5 and they satisfy (9.1) and (9.2). Let T be
an {Fs, Es}-tiling onH with φ(T )= φ(H). Apply Proposition 9.3 and obtain a weighted fractional
{F∗

s , E∗
s }-tiling w∗

0 satisfying all the properties of the proposition.
Given that ω∗

j has been defined for some 0� j� t, define

Aj = {v ∈V(H) : ∀J ∈F∗
s (H)∪ E(H), ω∗

j (J)αJ(v)= ω∗
0(J)αJ(v)}.

So Aj is the set of vertices such that ω∗
j is ‘identical to w∗

0’. Note that by Proposition 9.3(viii), for
all v ∈Aj,

ω∗
j (v)= ω∗

0(v) ∈ {0, 1}. (9.6)

Clearly we have A0 =V(H). Let

T +
0 = {J ∈F∗

s (H)∪ E(H) : ω∗
0(J)> 0}.

The set Aj will indicate where we should look for graphs J ∈ T +
0 whose weight on ω∗

j is known (by
knowing the weight on J ∈ ω∗

0), and we will modify those to define the subsequent weighting ω∗
j+1.

By Proposition 9.3 and (9.1), we have that for all J ∈ T +
0 , if V(J)∩Aj �= ∅, then ω∗

j (J)= ω∗
0(J)

and therefore

ω∗
j (J)−

1
M−k

s

{
= 0 if J ∈ E(H) orms =Ms,
� c otherwise.

(9.7)

Now we turn to the task of making the construction of ω∗
1 , . . . ,ω

∗
t explicit.

Claim 3. There is a sequence of weighted fractional {F∗
s , E∗

s }-tilings ω∗
1 , . . . ,ω

∗
t such that for all

1� j� t,

(i) Aj ⊆Aj−1 and |Aj|� |Aj−1| − 5k2,
(ii) (ω∗

j )min � c, and
(iii) φ(ω∗

j )� φ(ω∗
j−1)− ν1/n.

Note that Lemma 9.6 follows immediately from Claim 3 as

φ(ω∗
t )� φ(H)− ν1t/n� (1− ν)φ(H).
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Proof of Claim 3. Suppose that for some 0� j< t we have already defined ω∗
0 ,ω

∗
1 , . . . ,ω

∗
j satis-

fying (i)–(iii). We write Ui =U(ω∗
i ), for each 0� i� j. Observe that U0 =U(T ) by the choice of

ω∗
0 and Proposition 9.3(iv). Note that (i) implies that

|Aj|� |A0| − 5k2j� n− 5k2ν2φ(H)n� (1− αγ/40)n,

and therefore

|V \Aj| = n− |Aj|� αγ

40
n. (9.8)

Now our task is to construct ω∗
j+1. We will use the following shorthand notation. For all J ∈

F∗
s (H)∪ E(H), if we have already specified the values of ω∗

j+1, then let

∂(J)= ω∗
j+1(J)− ω∗

j (J).

The proof splits into two cases depending on the size of U0.

Case 1: |U0| � 3αn/4. Note that (U0 \Uj)∩Aj = ∅, which implies that Aj ∩U0 ⊆Aj ∩Uj. By
(9.8),

|Aj ∩Uj|� |Aj ∩U0|� |U0| − αγ n/40� 3αn/4− αγ n/40� αn/2.

Together with 1/n α, we get(|Uj ∩Aj|
k− 1

)
�

(
αn/2
k− 1

)
� αk−1

2k

(
n

k− 1

)
� θ

(
n

k− 1

)
+ k2

(
n

k− 2

)

as θ , 1/n α, 1/k. Since H is strongly (1/2+ 1/(2s)+ γ , θ)-dense, we can (greedily) find k
disjoint (k− 1)-setsW1, . . . ,Wk of Uj ∩Aj such that

deg (Wi)� (1/2+ 1/(2s)+ γ )(n− k+ 1) for all 1� i� k.

Define Ni =N(Wi)∩Aj. Then

|Ni|�
(
1
2

+ 1
2s

+ γ

)
(n− k+ 1)− (n− |Aj|)

(9.8)
�

(
1
2

+ 1
2s

+ γ

2

)
n. (9.9)

Suppose that for some 1� i� k, there exists x ∈Ni ∩Uj. Then e= {x} ∪Wi ∈ E(H), so we can
define ω∗

j+1(e)= 1 and ω∗
j+1(J)= ω∗

j (J) for all J ∈ (F∗
s (H)∪ E(H)) \ {e}. In this case

|Aj+1| = |Aj| − k� |Aj| − 5k2,

(ω∗
j+1)min = (ω∗

j )min � c

and φ(ω∗
j+1)= φ(ω∗

j )− 3s/(5n)� φ(ω∗
j )− ν1/n,

so we are done. Thus we may assume that⋃
1�i�k

Ni ⊆Aj \Uj. (9.10)

For all F∗ ∈F∗
s (H) and e ∈ E(H), define

dF∗ =
k∑

i=1
|Ni ∩ c(F∗)| and de =

k∑
i=1

|Ni ∩ e|.

Case 1.1: there exists F∗ ∈F∗
s (H) with ω∗

j (F
∗)> 0 and dF∗ � k+ 1. There exist distinct i, i′ ∈

{1, . . . , k} and distinct x ∈Ni ∩ c(F∗), x′ ∈Ni′ ∩ c(F∗) such that both e1 =Wi ∪ {x} and e2 =Wi′ ∪
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{x′} are edges in H. Note that since x ∈Aj, by (9.7) we have ω∗
j (F∗)= ω∗

0(F∗)�M−k
s . Also, since

x, x′ ∈ c(F∗), αF∗(x), αF∗(x′)�ms. Define ω∗
j+1 to be such that

∂(J)=

⎧⎪⎪⎨
⎪⎪⎩
msM−(k+1)

s if J ∈ {e1, e2},
−M−k

s if J = F∗,
0 otherwise.

Then ω∗
j+1 is a weighted fractional {F∗

s , E∗
s }-tiling. First, note that

|Aj+1| = |Aj| − (3k+ � − 2)� |Aj| − 5k2.
Secondly, using (9.7) we have that ω∗

j (F∗) is either 0 or at least c. Thus we obtain

(ω∗
j+1)min �min{(ω∗

j )min,Msω
∗
j+1(e1), c}�min{c,msM−k

s , c}� c.

Finally,

φ(ω∗
j )− φ(ω∗

j+1)=
s
n

(
∂(F∗)+ 3

5
(∂(e1)+ ∂(e2))

)
= s

nMk
s

(
6ms
5Ms

− 1
)
.

Using (9.2), s� 5k2, �� k− 1 and k� 3, we can lower-boundms/Ms by
ms
Ms

� Ms − 1
Ms

� s− � − k
s− �

= 1− k
s− �

� 1− k
5k2 − k+ 1

� 40
43

.

We deduce φ(ω∗
j )− φ(ω∗

j+1)� 5s/(43Mk
s n)� ν1/n, so we are done in this subcase.

Case 1.2: there exists e ∈ E(H) with ω∗
j (e)> 0 and de � k+ 1.We prove this case using an argu-

ment similar to that used in Case 1.1. There exist distinct i, i′ ∈ {1, . . . , k} and distinct x, x′ ∈ e
such that both e1 =Wi ∪ {x} and e2 =Wi′ ∪ {x′} are edges in H. Since x ∈Aj, Proposition 9.3(vi)
and (9.7) implies that ω∗

j (e)=M−k
s . Define ω∗

j+1 to be such that

∂(J)=

⎧⎪⎪⎨
⎪⎪⎩

−M−k
s if J = e,

M−k
s if J ∈ {e1, e2},

0 otherwise.

Then ω∗
j+1 is a weighted fractional {F∗

s , E∗
s }-tiling with |Aj+1| = |Aj| − (3k− 2)� |Aj| − 5k2. Note

that ω∗
j+1(e)= 0 and ω∗

j+1(ei)> ω∗
j (ei) for i ∈ [2], so we have (ω∗

j+1)min � (ω∗
j )min � c. Note that

φ
(
ω∗
j

)
− φ

(
ω∗
j+1

)
= 3s

5n
(∂(e1)+ ∂(e2)+ ∂(e))= 3s

5Mk
s n

� ν1
n
,

so this finishes the proof of this subcase.

Case 1.3: both Case 1.1 and Case 1.2 do not hold. Thus dJ � k for all J ∈F∗
s (H)∪ E(H) with

ω∗
j (J)> 0. Recall that αF∗(v)�Ms if v ∈ c(F∗) and αF∗(v)= 1 if v ∈ p(F∗). Thus, for all F∗ ∈F∗

s (H)
with ω∗

j (F∗)> 0, we have

k∑
i=1

∑
x∈Ni

αF∗(x)�
k∑

i=1
(Ms|Ni ∩ c(F∗)| + |Ni ∩ p(F∗)|)

=MsdF∗ +
k∑

i=1
|Ni ∩ p(F∗)|

https://doi.org/10.1017/S0963548320000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000449


322 J. Han, A. Lo and N. Sanhueza-Matamala

� k(Ms + �)
� s+ k2.

Therefore

∑
F∗∈F∗

s

k∑
i=1

∑
x∈Ni

ω∗
0(F

∗)αF∗(x)� (s+ k2)
∑

F∗∈F∗
s (H)

w∗
0(F

∗). (9.11)

Similarly, for e ∈ E(H) with ω∗
j (e)> 0, we obtain

k∑
i=1

∑
x∈Ni

αe(x)=
k∑

i=1
Ms|e∩Ni| =Msde � kMs.

Hence

∑
e∈E(H)

k∑
i=1

∑
x∈Ni

ω∗
0(e)αe(x)� kMs

∑
e∈E(H)

w∗
0(e). (9.12)

Combining everything, we deduce

k∑
i=1

|Ni| =
k∑

i=1

∑
x∈Ni

1

(9.10),(9.6)=
k∑

i=1

∑
x∈Ni

ω∗
0(x)

=
k∑

i=1

∑
x∈Ni

∑
J∈F∗

s (H)∪E(H)
ω∗
0(J)αJ(x)

=
∑

J∈F∗
s (H)∪E(H)

k∑
i=1

∑
x∈Ni

ω∗
0(J)αJ(x)

(9.11),(9.12)
� (s+ k2)

∑
F∗∈F∗

s (H)
w∗
0(F

∗)+ kMs
∑

e∈E(H)
w∗
0(e)

Prop. 9.2(i)
� n+ k2

∑
F∗∈F∗

s (H)
w∗
0(F

∗)

� n+ k2

s
n

� 6n
5
,

where the last inequality uses s� 5k2. This contradicts (9.9) and finishes the proof of Case 1.

Case 2: |U0| < 3αn/4. Write F , E for FT , ET , respectively. Note that n= s|F | + kMs|E | + |U0|.
Hence

α � φ(T )� 1− s
n
|F |� 1

n
(kMs|E | + |U0|)� kMs|E |

n
+ 3α

4
.
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Using that s� 5k2, that k� 3, that 1/n α, γ � 1 and (9.8), we have

|E |� αn
4kMs

� αγ n
40

+ 1� n− |Aj| + 1.

Hence there exists Es ∈ E with V(Es)⊆Aj. By Proposition 9.3(vi), there exists an edge X =
{x1, . . . , xk} ∈ E(H) such that X ⊆Aj and

w∗
j (X)=w∗

0(X)=M−k
s .

We would like to use Lemma 9.8 to find copies F of F∗
s with c(F)= X, and decrease the weight

of X to be able to increase the weight of an appropriate copy of F∗
s . Recall that S(ω∗

j ) is the
set of saturated vertices with respect to ω∗

j . We write Sj = S(ω∗
j ) and let S′ = Sj ∪ (V(H) \Aj).

Proposition 9.2(ii) and (9.8) together imply that |S′|� (�/s+ γ /40)n.
For all 1� i� k, letNi =NH(X \ {xi}). We may assume (by relabelling) that either |N1 ∩N2| <

(�/s+ 2γ /3)n or |Ni ∩Nj|� (�/s+ 2γ /3)n for all 1� i, j� k.
Case 2.1: (N1 ∩N2) \ S′ �= ∅. In this case, select y ∈ (N1 ∩N2) \ S′ and apply Lemma 9.8 with S′, y
playing the roles of S, y0. We obtain a copy F1 of F∗

s such that c(F1)= X and p(F1)∩ S′ = ∅. Then
p(F1)⊆Aj \ Sj. Let P0 = p(F1) \Uj. For p ∈ p(F1)∩Uj, by (9.6), ω∗

j (p)= 0. For every p ∈ P0, by
the definitions of Aj and Uj, there exists Jp ∈ T +

0 such that p ∈V(Jp), and since p /∈ Sj we can also
choose Jp such that αJp(p)�ms. (The Jp might coincide for different p ∈ P0.) Define ω∗

j+1 to be
such that

∂(J)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
M−k

s if J = F1,
−M−k

s if J = X,
−M−k

s /ms if J = Jp for some p ∈ P0,
0 otherwise.

Then ω∗
j+1 is a weighted fractional {F∗

s , E∗
s }-tiling. First, note that

|Aj+1|� |Aj| − (|V(F1)| +
∑
p∈P0

|V(Jp)|)� |Aj| − (2k+ 2k2)� |Aj| − 5k2.

Second, (9.7) implies that ω∗
j+1(X)= 0 and ω∗

j+1(F1)� c, and moreover, for all p ∈ P0,

ω∗
j+1(Jp)�M−k

s (1− 1/ms)�M−k−1
s � c.

Thus (ω∗
j+1)min � c. Finally, since |P0|� |p(F1)| = �, we have

φ(ω∗
j )− φ(ω∗

j+1)�
s
n

(
∂(F1)+ 3

5
∂(X)+

∑
p∈P0

∂(Jp)
)

� s
nMk

s

(
2
5

− |P0|
ms

)

� s
nMk

s

(
2
5

− �

ms

)
.

By (9.2), �� k− 1 and s� 5k2, we get
�

ms
� k− 1

Ms − 1
� k

Ms
� k2

s− �
� k2

5k2 − k+ 1
� 1

4
,

where the last inequality holds for every k� 3. Thus

φ
(
ω∗
j

)
− φ

(
ω∗
j+1

)
� 3s/(20nMk

s )� ν1/n

and we are done.
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Case 2.2: N1 ∩N2 ⊆ S′. Since H is strongly (1/2+ 1/(2s)+ γ , θ)-dense and 1/n γ , 1/k, we
deduce |N1 ∩N2|� (1/s+ γ )n. Using N1 ∩N2 ⊆ S′ and (9.8), we have

|N1 ∩N2 ∩ Sj ∩Aj|� (1/s+ γ /2)n.

By Proposition 9.2(iii), there exists F2 ∈F∗
s (H)∩ T +

0 and |p(F2)∩N1 ∩N2 ∩ Sj ∩Aj|� 2. Let
y′
1, y

′′
1 be two distinct vertices in p(F2)∩N1 ∩N2 ∩ Sj ∩Aj. We claim that

there exists F′
2 ∈F∗

s (H) such that p(F′
2) \ p(F2)⊆Aj \ (Sj ∪ X),

their core vertices satisfy c(F′
2)= c(F2), and {y′

1, y
′′
1} \ p(F′

2) �= ∅. (9.13)

To see where we are heading, if we have found such F′
2, then our aim will be to define ω∗

j+1 by
decreasing the weight of F2 and X, which will then allow us to increase the weight of F′

2 and a copy
F′
1 of F∗

s such that c(F′
1)= X and {y′

1, y
′′
1} ∩ p(F′

1) �= ∅.
Let us check that (9.13) holds. Let Z = c(F2)= {z1, . . . , zk} and for every 1� i� k let

Zi =NH(Z \ {zi}). Since y′
1 ∈ p(F2), without loss of generality (by relabelling) we may assume

that y′
1 ∈ Z1 ∩ Z2. Suppose first that (Z1 ∩ Z2) \ (S′ ∪ X ∪V(F2)) is non-empty. Select any y′′′

1 ∈
(Z1 ∩ Z2) \ (S′ ∪ X ∪V(F2)). Thus there exists F′

2 ∈F∗
s (H) such that

c(F′
2)= Z,

p(F′
2)= (p(F2) \ {y′

1})∪ {y′′′
1 },

p(F′
2) \ p(F2)= {y′′′

1 } ⊆Aj \ (Sj ∪ X)

and y′
1 ∈ {y′

1, y
′′
1} \ p(F′

2),

as desired. Hence we may assume Z1 ∩ Z2 ⊆ S′ ∪ X ∪V(F2). This implies that

|Z1 ∩ Z2|� |S′ ∪ X ∪V(F2)|� (�/s+ γ /40)n+ |X| + |V(F2)| < (�/s+ 2γ /3)n.

Apply Lemma 9.8 (with Z, Zi, S′ ∪ X ∪V(F2), y′
1 playing the roles of X, Ni, S and y0, respectively)

to obtain F′
2 ∈F∗

s such that c(F′
2)= Z and p(F′

2)∩ (S′ ∪ X ∪V(F2) \ {y′
1})= ∅. It is easily checked

that F′
2 satisfies (9.13).

Now take such an F′
2 and assume (after relabelling, if necessary) that y′

1 /∈ p(F′
2). Apply

Lemma 9.8 (with X,Ni, S′ ∪V(F′
2), y

′
1 playing the roles of X, Ni, S and y0, respectively) to obtain

F′
1 such that c(F′

1)= X and p(F′
1)∩ (S′ \ {y′

1})= ∅.
Let

P′ = (p(F′
1) \ {y′

1})∪ (p(F′
2) \ p(F2))

and observe that P′ ⊆Aj \ Sj. Let P′
0 = P′ \Uj. Arguing as in the previous case, we see that for

every p ∈ P′ ∩Uj, ω∗
j (p)= 0, and for every p ∈ P′

0 there exists Jp ∈ T +
0 such that p ∈V(Jp) and

αJp(p)�ms.
Let ω∗

j+1 be such that

∂(J)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M−k
s if J = F′

1,

M−(k+1)
s ms if J = F′

2,
−M−k

s if J ∈ {X, F2},
−M−k

s /ms if J = Jp for some p ∈ P′
0,

0 otherwise.

Since p(F′
1)∪ p(F′

2)⊆ P′ ∪ p(F2), the decrease of weight in F2 and the Jp implies that the vertices
in p(F′

1)∪ p(F′
2) get weight at most 1 under ω∗

j+1. Using this, it is not difficult to check that ω
∗
j+1 is

indeed a weighted fractional {F∗
s , E∗

s }-tiling.
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Note that
Aj \Aj+1 ⊆V(F′

1)∪V(F2)∪V(F′
2)∪

⋃
p∈P′

0

V(Jp) and |P′
0|� |p(F′

1)| + |p(F′
2)| = 2�.

Using that �� k− 1, we deduce

|Aj+1|� |Aj| − 3(k+ �)− |P′
0|(k+ �)� |Aj| − (3+ 2�)(k+ �)� |Aj| − 5k2.

Similarly to the previous case, we deduce from (9.7) that (ω∗
j+1)min � c.

Using that |P′
0|� 2�, we deduce

φ(ω∗
j )− φ(ω∗

j+1)�
s
n

(
∂(F′

1)+ ∂(F′
2)+ ∂(F2)+ 3

5
∂(X)+

∑
p∈P′

0

∂(Jp)
)

= s
nMk

s

(
1+ ms

Ms
− 1− 3

5
− |P′

0|
ms

)

� s
nMk

s

(
ms
Ms

− 3
5

− 2�
ms

)
.

From (9.2), s� 5k2 and �� k− 1, we deduce
ms
Ms

− 3
5

− 2�
ms

� 2
5

− 1
Ms

− 2�
ms

� 2
5

− 1+ 2�
ms

� 2
5

− k(1+ 2�)
s− � − k

� 2
5

− 2k2 − k
5k2 − 2k+ 1

= k+ 2
25k2 − 10k+ 5

� k+ 2
25k2

� 1
25k

.

Thus we get

φ(ω∗
j )− φ(ω∗

j+1)� s/(25Mk
s kn)� ν1/n,

and we are done. This finishes the proof of Case 2.2 and of Claim 3.

This concludes the proof of Lemma 9.6.

10. Remarks and further directions
The following family of examples gives lower bounds for the Turán problems of tight cycles on
a number of vertices not divisible by k (and hence for the tiling and covering problem as well).
We acknowledge and thank a referee for suggesting this construction. We are not aware of its
appearance in the literature before, although it bears some resemblance to examples considered
by Mycroft to give lower bounds for tiling problems [24, Section 2].
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Construction 10.1. Let k� 2 and r > 1 be a divisor of k. For n> 0, we define the k-graph Hk
n,r

as follows. Given a vertex set V of size n, partition it into r disjoint vertex sets V1, . . . ,Vp of sizes
as equal as possible. Assume that every x ∈Vi is labelled with i, for all 1� i� r. Let Hk

n,r be the k-
graph onV where the edges are the k-sets such that the sum of the labels of its vertices is congruent
to 1 modulo r.

Using this construction, we deduce the following lower bounds for exk−1 (n, Ck
s ) when s is not

divisible by k (and therefore also for c(n, Ck
s )).

Proposition 10.1. Let s> k� 2with s not divisible by k. Let r be a divisor of k which does not divide
s. Then exk−1 (n, Ck

s )� �n/r� − k+ 2. In particular, exk−1 (n, Ck
s )� �n/k� − k+ 2.

Proof. Given k, r, n, let H =Hk
n,r be the k-graph given by Construction 10.1. Since the sets Vi are

chosen to have size as equal as possible, we deduce that |Vi|� �n/r� holds for all 1� i� r. It is
easy to check that no edge of H is entirely contained in any set Vi, and that for every (k− 1)-set S
in V , N(S)=Vj \ S for some j. Thus δk−1(H)� �n/r� − k+ 2.

We show that H is Ck
s -free. Let C be a tight cycle on t vertices in H. It is enough to show that

r divides t (since r does not divide s, it will follow that t �= s). Recall from Construction 10.1 that
every x ∈Vi is labelled with i. We double-count the sum T of the labels of vertices, over all the
edges of C. On one hand, T ≡ 0 mod k since each vertex appears in exactly k edges of C and is
thus counted k times. Since r divides k, T ≡ 0 mod r. On the other hand, the sum of the labels of a
single edge is congruent to 1 modulo r and there are t of them, thus T ≡ t mod r. This implies that
r divides t.

Now we discuss covering thresholds. Let s> k� 3. Theorem 1.3 and Proposition 1.2 imply
that c(n, Ck

s )= (1/2+ o(1))n for all admissible pairs (k, s) with s� 2k2. A natural open question is
to determine c(n, Ck

s ) for the non-admissible pairs (k, s). The smallest case not covered by our
constructions is when (k, s)= (6, 8), and Proposition 10.1 implies that c(n, C6

8)� ex5 (n, C6
8)��n/3� − 4.

Question 10.2. Is the lower bound for c(n, Ck
s ) given by Proposition 10.1 asymptotically tight, for

non-admissible pairs (k, s)? In particular, is c(n, C6
8)= (1/3+ o(1))n?

Now we consider the Turán thresholds. Theorem 1.3 and Proposition 1.2 also show that
exk−1 (n, Ck

s )= (1/2+ o(1))n for k even, s� 2k2 and (k, s) is an admissible pair. We would like
to know the asymptotic value of exk−1 (n, Ck

s ) in the cases not covered by our constructions.
Proposition 10.1 implies that exk−1 (n, Ck

s )� �n/k� − k+ 2 for s not divisible by k; but on the
other hand, if s≡ 0 mod k then exk−1 (n, Ck

s )= o(n), which follows easily from Theorem 1.2.
The simplest open case is when k= 3 and s is not divisible by 3. Note that C3

4 =K3
4 , and the

lower bound ex2 (n, C3
4)� (1/2+ o(1))n holds in this case [7]. We conjecture that in the case

k= 3, for s> 4 and not divisible by three, the lower bound given by Proposition 10.1 describes the
correct asymptotic behaviour of exk−1 (n, Ck

s ).

Conjecture 10.3. ex2 (n, C3
s )= (1/3+ o(1))n for every s> 4 with s �≡ 0 mod 3.

Finally, we discuss tiling thresholds. Let (k, s) be an admissible pair such that s� 5k2. If k is
even, then Theorem 1.4 and Proposition 1.3 imply that t(n, Ck

s )= (1/2+ 1/(2s)+ o(1))n. We
conjecture that for k odd, the bound given by Proposition 1.3 is asymptotically tight.

Conjecture 10.4. Let (k, s) be an admissible pair such that k� 3 is odd and s� 5k2. Then t(n, Ck
s )=

(1/2+ k/(4s(k− 1)+ 2k)+ o(1))n.
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Note that, for k odd, the conjectured extremal example given by Proposition 1.3 is an example
of the so-called space barrier construction. However, it is different from the common construction
which is obtained by attaching a new vertex set W to an F-free k-graph and adding all possible
edges incident withW. On the other hand, for k even, it is indeed the common construction of a
space barrier.

It would also be interesting to find bounds on the Turán, covering and tiling thresholds that
hold whenever k< s� 5k2. The known thresholds for these kind of k-graphs do not necessarily
follow the pattern of the bounds we have found for longer cycles. For example, note that Ck

k+1 is a
complete k-graph on k+ 1 vertices, which suggests that for lower values of s the problem behaves
in a different way. Concretely, when (k, s)= (3, 4), it is known that t(n, C3

4)= (3/4+ o(1))n
[17, 23].

Question 10.5. Given k� 3, what is the minimum s such that t(n, Ck
s )� (1/2+ 1/(2s)+ o(1))n

holds?

Acknowledgements
We thank Richard Mycroft and Guillem Perarnau for their valuable comments and insightful
discussions. We also thank an anonymous referee for their comments and suggestions that sim-
plified some parts and vastly improved the presentation of the paper. In particular, we are grateful
for their suggestions of a simpler proof of Lemma 9.7 and Construction 10.1.

References
[1] Abbasi, S. (1998) The solution of the El-Zahar problem. PhD thesis, Rutgers University.
[2] Allen, P., Böttcher, J., Cooley, O. andMycroft, R. (2017) Tight cycles and regular slices in dense hypergraphs. J. Combin.

Theory Ser. A 149 30–100.
[3] Alon, N. and Yuster, R. (1996) H-factors in dense graphs. J. Combin. Theory Ser. B 66 269–282.
[4] Cooley, O., Fountoulakis, N., Kühn, D. and Osthus, D. (2009) Embeddings and Ramsey numbers of sparse k-uniform

hypergraphs. Combinatorica 29 263–297.
[5] Corrádi, K. and Hajnal, A. (1963) On the maximal number of independent circuits in a graph. Acta Math. Hungar. 14

423–439.
[6] Czygrinow, A. (2016) Tight co-degree condition for packing of loose cycles in 3-graphs. J. Graph Theory 83 317–333.
[7] Czygrinow, A. and Nagle, B. (2001) A note on codegree problems for hypergraphs. Bull. Inst. Combin. Appl. 32 63–69.
[8] Dirac, G. A. (1952) Some theorems on abstract graphs. Proc. London Math. Soc. 3 69–81.
[9] El-Zahar, M. H. (1984) On circuits in graphs. Discrete Math. 50 227–230.
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Appendix A. Hypergraph regularity
In Section 8 we stated modified versions of some regularity statements which follow from easy mod-
ifications of the original statements or proofs. In this appendix we sketch how to guarantee that these
properties hold.

A.1 Avoiding fixed (k− 1)-graphs
Our version of the regular slice lemma (Theorem 8.1) includes an additional property (that of
‘avoiding’ a fixed (k− 1)-graph S on the same vertex set as G) which is not present in the original
statement [2, Lemma 10]. We claim that extra property follows already from their proof by doing
one simple extra step.

Their proof of the regular slice lemma can be summarized as follows (we refer the reader to [2] for
the precise definitions). First they obtain an ‘equitable family of partitions’ P∗ from (a strengthened
version of) the hypergraph regularity lemma. This can be used to find suitable complexes in the
following way: first, for each pair of clusters ofP∗, select a 2-cell uniformly at random; then, for each
triple of clusters of P∗, select a 3-cell uniformly at random which is supported on the corresponding
previously selected 2-cells; and so on, until we select (k− 1)-cells. This will always output a (t0, t1, ε)-
equitable (k− 1)-complex J , and the task is to check that, with positive probability, J is actually a
(t0, t1, ε, εk, r)-regular slice satisfying the ‘desired properties’ with respect to the reduced k-graph.

Having selected J at random as before, the most technical part of the proof is to show that the
‘desired properties’ of the reduced k-graph (labelled (a), (b) and (c) in [2, Lemma 10]) hold with
probability tending to 1 whenever n goes to infinity. Thankfully that part of the proof does not
require any modification for our purposes. Moreover, the selected J will be a (t0, t1, ε, εk, r)-regular
slice with probability at least 1/2. This is shown by upper-bounding the expected number of k-sets
of clusters of J for which G is not (εk, r)-regular, and an application of Markov’s inequality (see [2,
pp. 65–66]). It is a natural adaptation of this method that will show that J is also (3θ 1/2, S)-avoiding
with probability at least 2/3.

Let S be a (k− 1)-graph on V(G) of size at most θ
( n
k−1

)
. We only need to consider the edges of S

which are P-partite. Every P-partite edge of S is supported in exactly one (k− 1)-cell of the family
of partitions P∗, which by [2, Claim 32] is present in J with probability

p=
k−1∏
i=2

d(
k−1
j )

i .

Thus the expected size of |E(S)∩ E(Jk−1)| is at most |E(S)|p� θp
( n
k−1

)
. By Markov’s inequality, with

probability at least 2/3 we have

|E(H)∩ E(Jk−1)|� 3θp
(

n
k− 1

)
.

https://doi.org/10.1017/S0963548320000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000449


Combinatorics, Probability and Computing 329

By the above discussion, with positive probability J satisfies all of the properties of [2, Lemma 10]
and also that

|E(S)∩ E(Jk−1)|� 3θp
(

n
k− 1

)
.

Thus wemay assumeJ satisfies all of the previous properties simultaneously, and it is only necessary
to check that J is (3θ 1/2, S)-avoiding.

Let t be the number of clusters of P and m the size of a cluster in P . For each (k− 1)-set of
clusters Y , JY has (1± εk/10)pmk−1 edges (see [2, Fact 7]). We say a (k− 1)-set of clusters Y is bad
if |JY ∩ E(S)| > √

6θ |JY | and let Y be the set of bad (k− 1)-sets. Then

3θp
(

n
k− 1

)
�

∑
Y

|JY ∩ E(S)|� |Y|√6θ(1− εk/10)pmk−1,

which implies |Y|� 3θ 1/2
( t
k−1

)
. It follows that J is (3θ 1/2, S)-avoiding, as desired.

A.2 Embedding lemma
Note that [4, Theorem 2] is stronger than Lemma 8.5 in the sense that it allows embeddings of
k-graphs with bounded maximum degree whose number of vertices is linear in m, but we do not
require that property here.

The main technical difference between Lemma 8.5 and Theorem 2 in [4] is that their lemma
asks for the stronger condition that for all e ∈ E(H) intersecting the vertex classes {Xij : 1� j� k},
the k-graph G should be (d, εk, r)-regular with respect to the k-set of clusters {Vij : 1� j� k}, such
that the value d does not depend on e, and 1/d ∈N, whereas we allow G to be (de, εk, r)-regular
for some de � d depending on e and not necessarily satisfying 1/de ∈N. By the discussion after
Lemma 4.6 in [21], we can reduce to that case by working with a sub-k-complex of J ∪G which is
(d, dk−1, dk−2, . . . , d2, εk, ε, r)-regular, whose existence is guaranteed by an application of the ‘slicing
lemma’ [4, Lemma 8].
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