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Abstract: Malaria afflicts mankind since thousands of years and still imposes
serious health impediments and considerable mortality on the affected popula-
tions. Empirical investigations of the role of malaria for economic development
at the country level deliver mixed findings, however. We study the role of long-
term malaria exposure on development today using disaggregate within-country
variation for the whole of Africa with 1×1 degree cells as units of observation.
Local development is measured by light density at night. Based on insights from
epidemiology, which documents that genetic and acquired immunities reduce
Malaria risk for adults in holoendemic areas, the effect is hypothesized to be non-
linear, with a peak for intermediate rather than high exposure to the pathogen.
The empirical findings support this hypothesis. The results also suggest the ex-
istence of a significant moderating effect of genetic immunities measured by the
prevalence of the sickle cell trait in the population.

Keywords: Long-term exposure to malaria, acquired immunities, genetic immunities,
night lights per capita, disaggregated data Africa
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1. INTRODUCTION

Malaria has affected Africans since at least 10,000 years. Historically, a major
human killer, the disease still lead to 200 million clinical cases worldwide in
2013, causing up to 800,000 malaria-related deaths. 90% of these have been
estimated to occur South of the Sahara in Africa.1 Malaria infections not only
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cause mortality but also morbidity, accounting for 10% of hospital admissions in
sub-saharan Africa, and involve sizable economic losses.2 Surveys from several
African countries record illness as the main risk perceived by individuals (followed
by shortages of food).3

Despite this, available empirical estimates of the effect of malaria for eco-
nomic development are mixed and the role of the exposure to the pathogen for
development is intensely debated. The earlier findings of a sizable negative effect
of exposure to malaria on income per capita across countries, see, e.g., Gallup
et al. (1999), Gallup and Sachs (2001), and Sachs (2003), have been qualified and
questioned subsequently, see Weil (2010, 2011, 2016 and 2017). Recently, the
focus has shifted to the analysis of disaggregate data, which provide substantial
advantages with respect to identification. The results of the long-term effect of ex-
posure to malaria on pre-colonial African development at the sub-national (ethnic
group) level by Depetris-Chauvin and Weil (2016) reveal, however, no sizable and
significant effect.

This paper contributes an exploration of the role of long-term exposure to
malaria for economic development today using disaggregate, grid-cell, data for
sub-saharan Africa. In general, higher mortality can be a burden for economic
development both directly, e.g., through lower labor productivity, and indirectly,
by reducing the incentives for long-term investments (most notably education and
savings) or by reducing the opportunity costs to predation and civil violence.4

Mortality also affects population growth and, therefore, population density in the
long run. The predicted overall effect on income per capita, or equivalently on
disaggregate proxies like night lights per capita, is therefore generally ambiguous,
see Acemoglu and Johnson (2007), Ashraf, Lester and Weil (2008), and Cervellati
and Sunde (2011).

This paper adds new empirical evidence on the effect of malaria using a novel
identification strategy that is based on epidemiological features of malaria. The
first issue in isolating the role of malaria for economic development is identifying
the direction of causality. Malaria incidence primarily depends on exogenous
geo-climatological conditions. However, it is also affected by economic activity,
urbanization, population dynamics, and health coverage, as well as by treatment
opportunities of infections, among others. Problems of omitted variables and
reverse causality have been argued to be particularly serious for an analysis at the
level of countries. The use of disaggregate, cell level, data provides substantial
advantages in this dimension by exploiting within-country variation. As proxy for
local development, we use the natural logarithm of night lights per capita, fol-
lowing a recent literature discussed in Section 2. The results document a negative
correlation between malaria, measured by a newly released disaggregate data set on
clinical incidence of Plasmodium falciparum malaria, and night lights per capita.
In order to explore the causal effect, we further run intention-to-treat regressions
using the strength and stability of malaria transmission in a location using the index
by Kiszewski et al. (2004). This index provides estimates of “predicted” rather than
“actual” malaria exposure using information on locally prevalent malaria vectors
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and bio-climatological conditions, which are less prone to reverse causality than
incidence data.5 The results are robust to extensive controls and corroborated when
using alternative measures of long-term exposure to malaria including endemicity
in the African population in 1900.

The second issue, which is very relevant but has been largely overlooked in the
empirical literature, is about the empirical specification. The effect of malaria on
economic development has been typically explored postulating a linear empirical
relationship. The specific features of malaria epidemiology suggest, however, that
the effect should be expected to be nonlinear. Malaria is the prototypical Mendelian
disease. In fact, it is the strongest known selective pressure of the human genome,
see Kwiatkowski (2005). In the affected populations, long-term exposure to the
pathogen induced the abnormal diffusion of several types of genetic immunities
(mostly, but not only, in terms of blood disorders). Furthermore, in highly
endemic areas individuals who survive, potentially repeated, malaria infections
at young ages develop acquired immunities, which make them less susceptible to
the pathogen as adults, even to the point of almost eliminating the likelihood of
developing severe malaria symptoms and making the disease asymptomatic, see
Langhorne et al. (2008). As a result, child mortality tends to increase monotoni-
cally with the exposure to the pathogen, whereas the latent malaria risk for adults
is actually higher in areas where malaria transmission stability is comparatively
low (less frequent and unstable over time). This feature implies that the effect of
malaria on economic activity (which is presumably mostly related to health and
mortality of adults rather than children) should be expected to be nonlinear (and
possibly even non-monotonic). Consistent with these arguments, we find that the
effect of Malaria is mostly detrimental for areas with a high latent malaria risk for
adults that are characterized by low to intermediate levels of long-term exposure
to the pathogen. A first exploration of the channel behind the results suggests the
important role of genetic immunities (in terms of the spread of the sickle cell trait
in the population) as a significant moderating factor in high malaria risk areas.

The paper is organized as follows. Section 2 provides a short discussion of
the malaria epidemiology background, presents the data, and introduces the em-
pirical strategy. Section 3 presents the results. Section 4 offers some concluding
considerations.

2. BACKGROUND, DATA, AND ESTIMATION APPROACH

This section briefly presents some relevant information concerning the specificities
of malaria epidemiology, discusses the data used in the empirical analysis of
Section 3, and describes the empirical strategy.

2.1. Background: Malaria Epidemiology

Malaria is a vector-transmitted infectious disease caused by the plasmodium par-
asite. Infections cause severe fevers and frequently lead to death, in particular
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at child age. Most deaths worldwide are caused by Plasmodium falciparum and
occur in sub-saharan Africa. The plasmodium parasite cannot be transmitted di-
rectly from human to human, transmission occurs exclusively through female
anopheles mosquitos, which require blood meals from vertebrates for reproduc-
tion. Hence, malaria transmission is closely related to the existence of suitable
geographic and climatological conditions favorable for the vector and the repro-
duction of the parasite. Existing evidence suggests that upon recovery, infected
individuals develop resistance or even protective immunity against the disease,
in particular immunity against a lethal infection [Langhorne et. al. (2008)]. The
acquisition of immunity appears to be closely related to the frequent exposure
to the pathogen. As a result, protective immunities are most prevalent in highly
endemic areas characterized by high and stable exposure to infection [Stanisic
et al. (2015)]. Besides developing acquired immunity, in these areas, evolu-
tionary pressure also led to a greater prevalence of genetic immunities, such
as the prevalence of the so-called sickle cell trait, an abnormal allele of the
hemoglobin beta gene (HbS) that implies greater survival chances compared to
individuals with normal hemoglobin alleles in the context of Plasmodium falci-
parum infections [Ferreira et al. (2011)]. As consequence of selective pressure,
the prevalence of sickle cell trait is closely related to the exposure to malaria
infections.

2.2. Data

We use cells of 1×1 degrees as units of observation. In the following, we provide
a short description of the main variables of interest and data sources. A more
detailed description of the coding of each of the variables and the corresponding
data sources is reported in Tables A1 and A2.

Night Light Intensity per Capita. Building on the seminal contribution of Hen-
derson, Storeygard, and Weil (2012), satellite image data on light density at night
have recently been used as a proxy for income production at disaggregate level
[see, e.g., Chen and Nordhaus (2011), Pinkovskiy (2013), Michalopoulos and
Papaioannou (2013a and 2013b), and Pinkovskiy and Sala-i-Martin (2016), for
recent applications]. We follow, in particular, Alesina, Michalopoulos and Pa-
paioannou (2016) and proxy economic development at the disaggregate level
building a measure of log ‘light density at night per capita” given by Ln(Night
Lights/Population), ‘log night lights per capita”, henceforth.6 Night light inten-
sity per capita is computed by averaging luminosity observations across pix-
els that fall within each one degree cell and then dividing by population in
that cell. Figure 1 depicts the spatial distribution of night lights and population
density.7

Exposure to Malaria. Data of projected clinical cases of Plasmodium falci-
parum malaria are from Bhatt et al. (2015) (data are available only for a subset
of cells). Since this measure is problematic for reasons discussed below, we use
the malaria strength and stability index, henceforth labeled ‘malaria ecology”,
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Legend

Night Lights

17,61 - 30,01

9,84 - 17,60

6,57 - 9,83

4,70 - 6,56

3,79 - 4,69

3,24 - 3,78

2,83 - 3,23

2,49 - 2,82

2,19 - 2,48

2,00 - 2,18

(a) Night Lights Density

Legend

Population Density

0,0099 - 0,2289

0,2290 - 0,6441

0,6442 - 1,5942

1,5943 - 3,1365

3,1366 - 5,8583

5,8584 - 9,4778

9,4779 - 14,6394

14,6395 - 27,1897

27,1898 - 57,3981

57,3982 - 2190,5505

(b) Population Density

FIGURE 1. (Colour online) (a) Depicts the spatial distribution of Light Density at Night while (b) depicts the distribution of population density.
Both figures plot the data over grid cells of 1×1 degrees in Africa. See Table A1 for data description and sources.

https://doi.org/10.1017/dem
.2016.27 Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/dem.2016.27


134 MATTEO CERVELLATI, ELENA ESPOSITO AND UWE SUNDE

TABLE 1. Descriptive statistics

Obs. Mean Std. dev. Min. Max

Light density at night per capita 2,556 − 1.070 1.332 −5.707 1.593
Clinical incidence of malaria

(projected)
1,991 0.303 2.487 0 108.3

Malaria ecology index 2,556 8.310 9.470 0 36.4
Malaria endemicity in 1900 2,447 2.476 1.791 0 5
High malaria risk adults 2,556 0.374 0.484 0 1
Genetic immunities (sickle cell

trait)
2,556 0.0437 0.036 0 0.167

Note: The description, coding, and data sources used to construct each variable are described in details in Table A1.

constructed by Kiszewski et al. (2004) as baseline measure of malaria expo-
sure. The index is a measure of predicted exposure to the pathogen that is
built using information on the geo-climatic conditions and the biological char-
acteristics of the dominant mosquito vectors in each location.8 To explore the
robustness of the findings and the persistence of the effect, we use data on
historical malaria endemicity in 1900 constructed by Lysenko and Semashko
(1968) and digitalized by Hay et al. (2004). Finally, we use information on
the spatial distribution of genetic immunities in terms of the prevalence of the
sickle cell trait in the population using data from Piel et al. (2013). Figure 2
depicts the spatial distribution of predicted malaria exposure and of the sickle cell
trait.

Table 1 presents the descriptive statistics for the main variables of interest.
Covariates. The empirical specification conditions on a large set of cell-specific

covariates that could confound the effect of predicted malaria exposure on eco-
nomic development including proxies for climate (average precipitation and tem-
peratures), geography (mean elevation and average terrain ruggedness), natural
resources (land suitability for agriculture, the presence of diamond mines, and
the presence of petrol fields), ethnic inequality as well as a full set of cell area,
location, and distance controls. The description of the different variables and their
data sources is described in details in Table A2.

2.3. Estimation Approach

The empirical specification uses cells of 1×1 degrees for the whole continent of
Africa as units of observation. The estimation framework exploits within-country
variation in the exposure to the malaria pathogen and economic development
by including country fixed effects. This allows controlling for country-specific
factors, such as institutions, ethnic composition, as well as historical factors.
In addition, the estimation is based on different specifications that subsequently
include various sets of control variables to rule out confounding effects.9
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Legend

Malaria Ecology

0,00 - 1,41

1,42 - 4,08

4,09 - 6,60

6,61 - 9,28

9,29 - 12,47

12,48 - 15,83

15,84 - 19,03

19,04 - 22,73

22,74 - 27,88

27,89 - 36,42

(a) Malaria Stability Index

Legend

Sickle Cell

0,000 - 0,012

0,013 - 0,027

0,028 - 0,040

0,041 - 0,055

0,056 - 0,073

0,074 - 0,094

0,095 - 0,115

0,116 - 0,167

(b) Sickle Cell Traits

FIGURE 2. (Colour online) 2(a) reports the spatial distribution of the malaria stability index [from Kiszewski et al. (2004)] over grid cells of 1×1
degrees in Africa. (b) reports the respective spatial distribution of the average sickle cell trait in the population. See Table A1 for data description
and sources.
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3. RESULTS

This section starts by presenting the baseline correlation and the results of
intention-to-treat regressions. The analysis then explores the existence of nonlin-
ear effects of long-term exposure to malaria and the role of interactions between
exposure to the pathogen and genetic immunities.

3.1. Linear Specification

Table 2 presents the baseline results that exploits variation across cells within a
country. Panel A shows the correlation between (projected) clinical incidence of
Plasmodium falciparum malaria [from Bhatt et al. (2015)] and log night lights
per capita. Column (1) presents results for the unconditional specification with-
out additional controls. This specification is extended subsequently by including
controls for climate, geography, and cell area in Column (2), and additionally for
location-distances and natural resources in Column (3). Column (4) further adds
controls for ethnic diversity with the caveat that, following Cervellati, Chiovelli
and Esposito (2016), the number of ethnic groups in a cell is potentially endoge-
nous to the long term exposure to malaria through evolutionary dynamics. The
findings throughout all specifications reveal a negative linear relationship between
projected incidence of Plasmodium falciparum malaria and log night light per
capita. These correlations should be taken as purely suggestive, however. The
reason is that the projection of malaria incidence is based on survey information
about clinical Plasmodium falciparum cases that is then extrapolated across time
and space. The survey information is likely to be subject to substantial reporting
error and might be affected by the occurrence of civil conflict. Moreover, given
the spatially and temporally scattered survey data of clinical cases, the extensive
use of spatial and temporal interpolation is required to obtain data at the cell-
year level (and even using projections only allows for a partial coverage of all
the cells in Africa). In order to obtain the best possible predicted measure of
malaria incidence based on limited survey information, the projections make use
of a large set of geo-climatological and socio-demographic variables (including
population density) that are likely to be directly related to night lights per capita.
As a consequence, back-projected data on malaria incidence are not suited for the
purpose of establishing a causal link between malaria prevalence and development,
and the interpretation of these results is therefore potentially problematic.

In order to come up with a more plausible estimate of the causal effect of
malaria risk on development, Panel B of Table 2 uses the malaria ecology index
from Kiszewski et al. (2004), which provides an indirect measure of malaria
incidence based on information about prevalent vectors and bio-climatological
characteristics, rather than using projections based on actual clinical incidence
from survey data. The use of this measure, which is effectively based on geo-
climatological information only, also allows conducting the analysis for the full
sample of cells. Moreover, the use of a measure of malaria risk based on exogenous
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TABLE 2. Linear specification

Log light density at night per capita – cell level

Panel A: Clinical incidence malaria falciparum

Dependent variable (1) (2) (3) (4)

Clinical incidence of malaria − 0.025∗∗∗ − 0.022∗∗∗ − 0.015∗∗∗ − 0.015∗∗∗

(projected) (0.008) (0.006) (0.005) (0.005)

Observations 1,991 1,991 1,991 1,991
R-squared 0.467 0.572 0.690 0.697

Panel B: Malaria ecology (intention to treat)

(1) (2) (3) (4)

Malaria ecology − 0.039∗∗∗ − 0.045∗∗∗ − 0.027∗∗ − 0.024∗∗

(0.014) (0.008) (0.010) (0.011)

Observations 2,556 2,556 2,556 2,556
R-squared 0.485 0.607 0.697 0.700

Controls (both panels):

Climate No Yes Yes Yes
Geography No Yes Yes Yes
Cell area No Yes Yes Yes
Location-distances No No Yes Yes
Natural resources No No Yes Yes
Ethnic diversity No No No Yes
Country FE Yes Yes Yes Yes

Note: The unit of observation is a 1 × 1 degree cell. The dependent variable is the intensity of log night lights
per capita. See text for details. Panel A: “Clinical incidence of malaria (projected)” is a projection of clinical
incidence of Plasmodium falciparum malaria (per 1,000) obtained by interpolating across space and over time
available malaria prevalence data retrieved from surveys using a large number of dynamic environmental and socio-
demographic covariates to avoid missing observations. Data are from Bhatt et al. (2015). Panel B: Malaria ecology
is the index of malaria transmission strength and stability by Kiszewski et al. (2004). The “Climate” controls
include average precipitation and average temperature. The “Geography” include, mean elevation, average terrain
ruggedness. The ‘cell area” controls for the total cell area and the total area of the cell occupied by water. The
‘location and distances” controls include absolute latitude, the natural logarithm of the distance to the country
capital, to the coast, to the country border, to the closest river and to Addis Ababa. The “natural resources” controls
include the average land suitability for agriculture, the presence of diamond mines and the presence of petrol fields.
The “ethnic-diversity” controls for the number of ethnic groups in the cell (GREG Database). See Table A1 for
description of each variable and the sources, and Table 1 for descriptives. OLS estimates. Robust standard errors
in parentheses. ∗∗∗, ∗∗, ∗ indicate significance at 1-, 5-, and 10-% level, respectively.

factors, rather than on projections of the actual malaria incidence, of reverse causal-
ity and allows for improvements regarding problems of measurement error, which
is a very serious issue for measures of disease incidence in sub-saharan Africa.
The results confirm the patterns of Panel A.10 In particular, the estimates display
systematically and significantly negative effect of malaria prevalence on develop-
ment in terms of log night lights per capita. Incidentally, the effect associated with
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the coefficient estimates in Panel B is larger in magnitude than in Panel A, which
might point to issues of attenuation bias or potential endogeneity in Panel A.11

3.2. Non-Linear Specifications

In view of the malaria epidemiology literature, the long-term exposure to malaria
should be expected to influence development, measured by ln night light per capita,
in a nonlinear way. As discussed in Section 1, the reason is that malaria exposure
affects differentially economic activity and population density. Specifically, one
would expect malaria to be more detrimental for income per capita for intermediate
exposure to the pathogen, which implies a population that is highly susceptible to
malaria infections, which are only occurring rather infrequently.

As a first exploration of this issue, Table 3 goes beyond the linear specification
and presents results obtained with a nonlinear (quadratic) specification. Panel
A replicates the analysis with a specification that includes malaria ecology as
linear and squared term. Consistent with the hypothesis, the findings reject the
null hypothesis of a linear relationship and document the existence of a U-shape
relationship between malaria exposure and log night lights per capita. In fact,
the effect of malaria appears to be most detrimental for cells with intermediate
strength and stability of malaria transmission (i.e., an index of around 18 to 20
on a scale from 0 to 36).12 As robustness, and to explore the persistence of the
effect, Panel B replicates the analysis using information on Malaria Endemicity in
1900.13 The findings confirm the nonlinear, U-shaped pattern of malaria exposure
on economic development in terms of light intensity.14

3.3. High Malaria Risk for Adults and Interactions with Genetic
Immunities

We end the analysis by exploring the robustness of the findings as well as the
potential role of immunities in moderating the detrimental effects of malaria.
As a first step, which also reflects the previous findings of a nonlinear effect
of malaria exposure on development, we construct a binary measure of malaria
risk. This measure takes value one for low and intermediate levels of the malaria
ecology index, consistent with infrequent exposure to malaria infections and thus
a relatively high susceptibility of the population, as compared to cells with high
malaria transmission stability and correspondingly frequent infections that are
likely to lead to acquired immunity of large parts of the population. Hence, the
measure effectively picks up an intermediate range of the malaria ecology index in
a binary way, since a value of 1 corresponds to greater effective malaria exposure
as consequence of the lack of acquired immunity.

As a first step, we estimate the effect of this binary risk measure on economic
performance in terms of log night lights per capita. This effectively provides
an additional robustness check of the nonlinear effect of malaria exposure by
comparing high risk cells to low risk cells. The results reported in Table 4 Panel A
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TABLE 3. Non-linear effects

Log light density at night per capita – cell level

Panel A: Malaria ecology

Dependent variable (1) (2) (3) (4)

Malaria ecology − 0.034 − 0.088∗∗∗ − 0.077∗∗∗ − 0.071∗∗∗

(0.046) (0.024) (0.022) (0.023)
Malaria ecology squared − 0.000 0.002∗ 0.002∗∗ 0.002∗∗

(0.001) (0.001) (0.001) (0.001)

Observations 2,556 2,556 2,556 2,556
R-squared 0.485 0.610 0.701 0.704

Panel B: Malaria endemicity circa 1900

(1) (2) (3) (4)

Malaria endemicity 1900 − 0.767∗∗∗ − 0.730∗∗∗ − 0.455∗∗∗ − 0.437∗∗∗

(0.135) (0.110) (0.083) (0.084)
Malaria endemicity 1900

Squared
0.086∗∗ 0.087∗∗∗ 0.048∗∗ 0.047∗∗

(0.034) (0.029) (0.020) (0.019)
Observations 2,447 2,447 2,447 2,447
R-squared 0.568 0.649 0.720 0.722

Controls (both panels)

Climate No Yes Yes Yes
Geography No Yes Yes Yes
Cell area No Yes Yes Yes
Location-distances No No Yes Yes
Natural resources No No Yes Yes
Ethnic diversity No No No Yes

Country FE Yes Yes Yes Yes

Note: The unit of observation is a 1 × 1 degree cell. The dependent variable is the intensity of log night
lights per capita. See text for details. Panel A: “Malaria ecology” is the index of malaria strength and stability
by Kiszewski et al. (2004). Panel B: “Malaria endemicity in 1900” is the index of average historical malaria
endemicity by Lysenko and Semashko (1968) and digitalized by Hay et al. (2004). See the text and the caption
of Table 2 for description of the variables included in each category of controls and Table A1 for a description
of each variable and their sources, and Table 1 for descriptives. OLS estimates. Robust standard errors in
parentheses. ∗∗∗, ∗∗, ∗ indicate significance at 1-, 5-, and 10-% level, respectively.

document a significantly negative effect of high malaria risk and thereby confirm
the earlier findings of a nonlinear effect of malaria exposure on development. In
particular, the effect of malaria appears to be particularly negative in cells that
face a higher latent malaria risk for adults in view of the low levels of immunities
in the population as indicated by the epidemiological literature.

As a second step, we extend this analysis by explicitly accounting for the
prevalence of genetic immunity in terms of the sickle cell trait in the population,
which provides affected individuals with some immunity to malaria parasitization
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TABLE 4. High malaria risk for adults and genetic immunities (sickle cells)

Log light density at night per capita – cell level

Panel A: High malaria risk (HMR) areas

Dependent variable (1) (2) (3) (4)

High malaria risk adults − 0.847∗∗∗ − 0.684∗∗∗ − 0.475∗∗∗ − 0.474∗∗∗

(0.295) (0.182) (0.149) (0.150)

Observations 2,556 2,556 2,556 2,556
R-squared 0.492 0.603 0.700 0.705

Panel B: HMR and genetic immunities

(1) (2) (3) (4)

High malaria risk adults − 0.872∗∗∗ − 0.688∗∗∗ − 0.477∗∗∗ − 0.478∗∗∗

(0.299) (0.184) (0.149) (0.151)
Genetic immunities − 8.246∗∗ − 2.718 − 0.830 − 1.879

(3.502) (2.533) (2.459) (2.445)
Observations 2,556 2,556 2,556 2,556
R-squared 0.504 0.604 0.700 0.706

Panel C: Interactions with genetic immunities

(1) (2) (3) (4)

High malaria risk adults − 1.401∗∗∗ − 1.016∗∗∗ − 0.679∗∗∗ − 0.673∗∗∗

(0.391) (0.229) (0.183) (0.186)
Genetic immunities − 14.352∗∗∗ − 7.099∗∗ − 3.662 − 4.595

(3.979) (3.236) (3.255) (3.234)
High malaria risk ×

genetic immunities
11.274∗∗∗ 7.109∗∗∗ 4.330∗ 4.175∗

(3.637) (2.512) (2.317) (2.290)
Observations 2,556 2,556 2,556 2,556
R-squared 0.519 0.610 0.702 0.708

Controls (all panels)

Climate No Yes Yes Yes
Geography No Yes Yes Yes
Cell area No Yes Yes Yes
Location-distances No No Yes Yes
Natural resources No No Yes Yes
Ethnic diversity No No No Yes

Country FE Yes Yes Yes Yes

Note: The unit of observation is a 1 × 1 degree cell. The dependent variable is the intensity of log night lights
per capita. See text for details. “High malaria risk” is a binary indicator for low to intermediate malaria exposure
taking value 1 for cells with an average malaria transmission stability index [from Kiszewski et al. (2004)]
larger than 0 and lower than 15. Genetic Immunities is the index of Sickle Cell Trait Prevalence (in percentage
over the population) by Piel et. al. (2013). See the text and the caption of Table 2 for description of the variables
included in each category of controls and Table A1 for a description of each variable and their sources, and
Table 1 for descriptives. OLS estimates. Robust standard errors in parentheses. ∗∗∗, ∗∗, ∗ indicate significance
at 1-, 5-, and 10-% level, respectively.
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of red blood cells. The prevalence of genetic immunities in the population is
informative both on the extent of past malaria exposure and on the existence
of genetic immunities to malaria today. Moreover, to the extent that sickle cell
prevalence picks up genetic factors, the high malaria risk variable is more likely to
reflect (the lack of) acquired immunity. Table 4 Panel B presents the results from
this extended empirical specification that explicitly accounts for high malaria risk
and the prevalence of the sickle cell trait in the population. The results suggest that
both effective malaria risk (reflected in the lack of acquired immunities) and the
long-term exposure in the past (reflected by the prevalence of genetic immunities)
have a negative effect on development in terms of log night lights per capita.

As a last step, we explore the interaction of these two dimensions, extending
the contrast between low and high risk areas by the presence of different levels
of genetic immunities in terms of sickle cell prevalence.15 The results in Panel C
of Table 4 document the existence of an attenuating effect of the prevalence of
genetic immunity in terms of the sickle cell trait, even within high malaria risk
areas (as reflected in the positive coefficient for the interaction term). The effect
of a high latent malaria risk (i.e., the lack of acquired immunity in the presence
of a risk of infection) today is reduced by the existence of genetic immunities in
the population, which moderates (but not fully eliminates) the negative effect of
malaria risk on economic development. However, the total effect remains negative.

3.4. Magnitude of the Effects

The interpretation of the magnitude of the economic effect of long-term exposure
to malaria requires evaluating the nonlinear effect on light density and providing
a quantitative mapping between night light intensity and income.

Taking at face value the coefficient estimated in the linear regression of malaria
ecology on night lights per capita in Panel B of Table 2, a unit increase in the
malaria ecology index by 1 is associated with a reduction in per capita luminosity
between 2.4 and 4.5% . The results in Table 3 show that the relationship between
malaria and night lights is nonlinear and U-shaped; with a minimum for index
values of around 18 to 20. This minimum represents the malaria ecology index for
which light density is lowest, i.e., for which the effect is most detrimental. Since
the effect varies with the malaria ecology index, a quantitative assessment appears
more straightforward in the context of the nonlinear estimates obtained with a
binary measure of high malaria risk as in Panel A of Table 3. Everything else
equal, a high risk to malaria exposure reduces light density by 0.475 log points in
the most extensive specifications.

A small but rapidly growing literature addresses the question about the link
between measures of night light intensity and economic activity. This literature
provides different parametric estimates of the elasticity of several measures of
economic activities with respect to several measures of night light intensity. By
exploiting within-country variability over time, Henderson, Storeygard and Weil
(2012) provide estimates of elasticities of approximately 0.3 for growth rates and
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long differences.16 The correct mapping from night lights to GDP is far from
trivial, however. Furthermore, the interpretation of our findings in terms of GDP
per capita is subject to some specific caveats. First, no estimate of the elasticity
between light and income within countries is available specifically for Africa.
Following on the insights by Bickenbach et al. (2016), the elasticity for Africa
might differ from the world average elasticity. Using within country variation
across regions with data from Brazil, India, the United States, and Western Europe,
they obtain significantly different estimates across regions with a lower bound in
the range of 0.10.17 Second, in light of the nature of the analysis, linking data
of long-term malaria exposure to long-term development, we look at levels of
night light density (across regions and within countries) and not growth rates as
in the majority of these studies.18 Finally, we look at night light per capita (rather
than per area) since, as discussed above, the effect of malaria exposure in the
long run should be expected to matter for both economic activity and population
density.

Some of the available elasticity estimates in the literature discussed above
are derived from empirical specifications that are conceptually equivalent to our
estimates in levels with country fixed effects. In particular, Henderson et al. (2011)
estimate regressions in long differences that link changes in night light per area
to changes in GDP. Keeping in mind the previously discussed caveats regarding
comparability, heterogeneity, and stability of the elasticity, and under the assump-
tion that population levels are sufficiently stable over the observation period, these
estimates can be used to get a sense of the bounds of the magnitude of the effect of
malaria on income. Considering an elasticity between the two (lower and upper)
bounds of 0.10 and 0.30 [as estimated by Bickenbach et al. (2016) and Henderson
et al. (2011), respectively] would imply an effect of the exposure to a high latent
malaria risk on GDP per capita within countries in Africa in the range of −5
to −15%.19

4. CONCLUDING REMARKS

This paper has explored the role of long-term exposure to malaria for African
development today using grid cell level data for the whole continent. The results
document the existence of a U-shaped effect of long-term exposure to malaria
and disaggregate data of economic development measured by log night lights
density per capita. The documented empirical patterns are robust to a set of
unreported checks.20 The documented patterns are consistent with evidence in
malaria epidemiology on the emergence of genetic and acquired immunities that
make the latent malaria risk for adults highest for intermediate levels of exposure
to the pathogen. The results also suggest a relevant moderating role of genetic
immunities. The analysis does not allow to unfold the mechanisms behind the
documented regularity, however. Investigations of the channels appear a fruitful
direction for future research.
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APPENDIX

TABLE A1. Data sources and description of main variables of interest

Variable description and data sources

Dependent variable: log night lights per capita. Log of (average) night density at night
divided by (average) population in the cell respectively given by

Light Density at Night. Average night light intensity in the cell. Source: constructed with
data from NOOA National Geophysical Data Centre for the year 1995.

Population. Average population in the cell in year 1995. Source: constructed as the mean
population across 2.5 arc-minutes grid. Data from the Center for International Earth
Science Information Network – CIESIN – Columbia University, United Nations Food
and Agriculture Programme – FAO, and Centro Internacional de Agricultura Tropical –
CIAT. 2005. Gridded Population of the World, Version 4 (GPWv3): Population Count
Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).
http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-count.

Measures of Malaria Exposure and Genetic Immunities:

Clinical Incidence of Malaria (Projected). Modeled clinical incidence of Plasmodium
falciparum malaria (2000–2015), detrended for country-specific nonlinear time trends.
Measured as number of cases per 1,000 people per year. Source: Bhatt et al. (2015),
retrieved from http://www.map.ox.ac.uk/.

Malaria ecology. Index measuring the force and stability of malaria transmission based
on biological characteristics of diverse vector mosquitoes and their interaction with
climate. Data source: Kiszewski et al. (2004).

High Malaria Risk Dummy. Based on the malaria ecology index, we constructed a
dummy variable – Malaria Intermediate – which takes value one in cells with low to
intermediate force and stability of transmission. This variables takes value 0 in cells
where malaria cannot be transmitted, either because Anopheles vectors are not present
or because climatic conditions for transmission are absent, and in cells with very high
malaria ecology (larger than 15). Data source: Kiszewski et al. (2004).

Malaria Endemicity in 1900. Average Historical Malaria Endemicity in the 1×1 degree
grid cell. Source: average Historical Malaria Endemicity is constructed as the 1×1
degree cell average of the malaria endemicity level, devised by Lysenko and Semashko
(1968) and digitalized by Hay et al. (2004), computed using ArcGIS with data in EASE
GLOBAL GRID projection.

Sickle Cell Trait Prevalence Percentage. Average predicted frequency of sickle
haemoglobin alleles in the general population in the cell. Source: Piel et al. (2013).
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TABLE A2. Data sources and description of covariates

Variable description and data sources

Average Temperature. Average annual cell temperature (baseline period 1961–1990).
Source: FAO/IIASA, 2011–2012. Global Agro-ecological Zones (GAEZ v3.0). FAO
Rome, Italy, and IIASA, Laxenburg, Austria.

Average Precipitation. Average cell monthly precipitation mm/month (baseline period
1961–1990). Source: CRU CL 2.0 data from New et al. (2002).

Mean Elevation. Average cell elevation. Source: National Oceanic and Atmospheric
Administration (NOAA) and U.S. National Geophysical Data Center, TerrainBase,
release 1.0 (CD-ROM), Boulder, Colorado.

Ruggedness. Average 1×1 degree cell ruggedness (Terrain Ruggedness Index, 100 m).
Source: mean ruggedness is constructed as the 1x1 degree cell average of elevation
across grids, computed using ArcGIS with data in EASE GLOBAL GRID projection,
with data from Terrain Ruggedness Index originally devised by Riley, DeGloria and
Elliot (1999), obtained through http://diegopuga.org.

Cell Area. Natural logarithm of the cell area.

Total Water Area. Total area occupied by water in the cell (seas, oceans, lakes, and rivers).
Source: constructed with Digital Chart of the World inwater shapefile and the Digital
Chart of the World oceans and sea shapefile.

Absolute Latitude. Absolute latitudinal distance of the centroid of the cell.

Ln Distance Coast. Natural logarithm of the average cell distance to closest coast.
Source: constructed with coastline shapefile from Global Self-consistent Hierarchical
High-resolution Geography Version 4.2.2 January 1, 2013.

Ln Distance Capital. Natural logarithm of the average cell distance to the country capital.
Source: constructed with the World Capital shapefile.

Ln Distance Border. Natural logarithm of the cell distance to closest border. Source:
constructed with coastline shapefile from Global Self-consistent Hierarchical
High-resolution Geography Version 4.2.2 January 1, 2013.

Ln Distance River. Natural logarithm of the average cell distance to the closest river.
Source: constructed using Major Rivers World Selected (p3w) shapefile (from
www.naturalearth.com).

Ln Distance Adis Ababa. Natural logarithm of the geodesic distance to Adis Ababa.

Land Suitability. Average land suitability in the cell. Source: Ramankutty et al. (2002).

Diamond Mines. Indicator variable taking value 1 if at least one petrol field is located in
the cell, 0 otherwise. Source: Gilmore et al. (2005)

Petrol Fields. Indicator variable taking value 1 if at least a diamond mine is located in the
cell, 0 otherwise. Source: Lujala et al. (2007).

Number of Ethnic Groups, GREG. Number of languages in the 1x1 degree cell. Source:
constructed with a (ArcGIS) spatial join between a 1×1 degree grid and the GREG
shapefile from the digitized version of the Soviet Atlas Narodov Mira [available from
Weidmann, Rod and Cederman (2010)]. We exclude all intersections that measures less
than 10 squared km and all cells with an area smaller than 1,000 squared km.
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NOTES

1 Malaria has been estimated to have killed half of the humans that ever lived, see Whitfield
(2002). See also http://www.who.int/mediacentre/factsheets/fs094/en and http://www.cdc.gov/malaria/
about/facts.

2 Malaria has been estimated to absorb about a quarter of household revenues only for treatments.
See, for instance, http://malaria.jhsph.edu/about-malaria/. A single bout of malaria has been estimated
to induce an income damage to a sum equivalent to 10–20 working days. See, e.g., Onwujekwe et al.
(2000), Deressa et al. (2007), Sicuri et al. (2013), and http://malaria.jhsph.edu/about-malaria/.

3 Malaria is the most reported illness. See the Parima-Study, Doss et al. (2008), and McPeak et al.
(2012).

4 The role of mortality and pathogen exposure for education is intensely debated, see Cervellati
and Sunde (2013). Cervellati, Sunde and Valmori (2016) document that a harsher disease environment
across countries increases the likelihood of civil wars, while Cervellati, Esposito, Sunde and Valmori
(2016) exploit cell level panel data for sub-saharan Africa and document that temporarily higher
malaria risk leads to spikes in civil violence.

5 The malaria epidemiological background and the estimation strategy is described in further detail
in Section 2.

6 African countries are still mostly pre-transitional in terms of the demographic transition, see e.g.,
Cervellati and Sunde (2015). Differently from developed countries where Malthusian mechanisms
ceased to be at work, changes in development in Africa can still lead to changes in both economic
activity and population density with ambiguous effects on income per capita. See, in particular,
Cervellati and Sunde (2011) for a detailed analysis of the role of exposure to pathogens and mortality
in countries before and after the demographic transition.

7 The unconditional correlation between log night lights and log population density is around 0.5.
8 When constructing this index, Kiszewski et al. (2004) associated to each region a dominant vector

of Anopheles mosquitos (for countries with different dominant vectors, mosquitoes were associated
to sub-regions), and used this information together with the respective biting rates of humans of the
prevalent vectors and the specific bio-climatological conditions in each location. In our sample, the
malaria ecology Index ranges from 0 (absence of a sustainable environment for malaria transmission)
to about 36 (high potential for malaria transmission).

9 This empirical strategy is similar to the one implemented by Alsan (2015) to isolate the effect of
exposure to Trypanosomiasis on African pre-colonial development.

10 The unconditional correlation between the projected incidence of malaria and the malaria
ecology index is 0.63. The results for the intention-to-treat regressions are also very similar when
restricting attention to the subset of cells for which data on estimated incidence are available.

11 Note that projected clinical incidence and malaria ecology are not standardized variables, which
prevents a direct comparison of the coefficient estimates. Using the estimates, the effect of an increase
of one standard deviation in malaria exposure measured by the malaria ecology index is about six
times higher than an increase of one standard deviation in the projected malaria incidence. Apart from
attenuation bias due to measurement error, this might be due to endogeneity, for instance, in light of a
plausible positive correlation between development and health or health facilities, which is at the same
time negatively related to projected clinical incidence.

12 This result is consistent with the malaria epidemiology literature and with the findings by
Cervellati, Esposito, Sunde and Valmori (2016) on the effect of increases in malaria risk for civil
violence. These results can also help rationalizing the evidence by Henderson et al. (2011) of a
heterogenous effect of light on income for regions with different malaria prevalence. In fact, they find
the highest effect for the intermediate quartile (with malaria prevalence between 9.27 and 18.61).

13 The corresponding unconditional correlation between the malaria ecology index and estimates
of malaria endemicity in 1900 is 0.69.

14 The minimum is at an endemicity index of around or slightly above 4.
15 A similar analysis with a less straightforward interpretation could be conducted with the non-

linear specifications. We view the present analysis with a binary indicator of malaria risk as more
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useful and transparent since there is no reason to believe that the interaction effect is necessarily
linear.

16 Henderson et al. (2012) use data for 170 countries over the period 1992/93 and 2005/06 on a
global scale (and not only for Africa). Estimates reported by Chen and Nordhaus (2011) are somewhat
larger in magnitude, in the order of 0.8, but apply a slightly different methodology to account for
differences in data quality.

17 The cross validation exercise by Michalopoulos and Papaioannou (2013b) for Africa suggests
a correlation between measures of night light luminosity and wealth (from survey data) in the order
of 0.7. To our knowledge, no specific estimates are available for the relationship between night light
luminosity and economic activity within countries for Africa, however.

18 Some recent works dispute the use of data on night light luminosity as measures of income per
capita growth and suggest a more robust relationships for the respective levels, see e.g., Addison and
Stewart (2015).

19 This magnitude refers to the point estimate of −0.475 as in Columns (3) and (4) of Panel A of
Table 3.

20 In particular, they are not driven by outliers in terms of extreme values of population density.
The findings are qualitatively and quantitatively very similar when excluding cells with particularly
low population density (like arid or desert areas) or very highly populated areas (like highly urbanized
clusters) or both.
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regional GDP. Review of World Economics 152(2), 425–447.

Cervellati, Matteo, Giorgio Chiovelli and Elena Esposito (2016) Bite and Divide: Ancestral Exposure
to Malaria and the Emergence and Persistence of Ethnic Diversity. Mimeo, University of Bologna.

Cervellati, Matteo, Elena Esposito, Uwe Sunde and Simona Valmori (2016) Malaria Risk and Civil
Violence. CEPR discussion paper 11496.

Cervellati, Matteo and Uwe Sunde (2011) Life expectancy and economic growth: The role of the
demographic transition. Journal of Economic Growth 16, 99–133.

Cervellati, Matteo and Uwe Sunde (2013) Life expectancy, schooling and lifetime labor supply: Theory
and evidence revisited. Econometrica 81(5), 2055–2086.

Cervellati, Matteo and Uwe Sunde (2015) The economic and demographic transition, mortality and
comparative development. American Economic Journal: Macroeconomics 7(3), 189–225.

Cervellati, Matteo, Uwe Sunde and Simona Valmori (2016) Pathogens, weather shocks and civil
conflicts. Economic Journal (forthcoming).

https://doi.org/10.1017/dem.2016.27 Published online by Cambridge University Press

https://doi.org/10.1017/dem.2016.27


LONG-TERM EXPOSURE TO MALARIA AND DEVELOPMENT 147

Chen, X. and W. D. Nordhaus (2011) Using luminosity data as a proxy for economic statistics.
Proceedings of the National Academy of Sciences 108(21), 8589–8594.

Depetris-Chauvin, Emilio and David N. Weil (2016) Malaria and early African development: Evidence
from the sickle Cell trait. Economic Journal (forthcoming).

Deressa, Wakgari, Damen Hailemariam and Ahmed Ali (2007) Economic costs of epidemic malaria
to households in rural Ethiopia. Tropical Medicine and International Health 12(10), 1148–1156.

Doss, Cheryl, John McPeak and Christopher B. Barrett (2008) Interpersonal, intertemporal and spatial
variation in risk perceptions: Evidence from East Africa. World Development 36(8), 1453–1468.

Ferreira, Ana, Ivo Marguti, Ingo Bechmann, Viktoria Jeney, Angelo Chora, Nuno R. Palha, Sofia Re-
belo, Annie Henri, Yves Beuzard, and Miguel P. Soares (2011) Sickle hemoglobin confers tolerance
to Plasmodium infection. Cell 145(3), 398–409.

Gallup, John Luke and Jeffrey D. Sachs (2001) The economic burden of malaria. American Journal of
Tropical Medicine and Hygiene 64(1), 85–96.

Gallup, John Luke, Jeffrey D. Sachs and Andrew D. Mellinger (1999) Geography and economic de-
velopment. International Regional Science Review 22(2), 179–232.

Gilmore, Elisabeth, Nils P. Gleditsch, Pivi Lujala, and Jan Ketil Rod (2005) Conflict diamonds: A new
dataset. Conflict Management and Peace Science 22(3), 257–292.

Hay, Simon I, Carlos A. Guerra, Abdisalan M. Noor, Andy J. Tatem, and Robert W. Snow (2004) The
global distribution and population at risk of malaria: Past, present and future. Lancet Infectious
Diseases 4(6), 327–336.

Henderson, J. Vernon, Adam Storeygard and David N. Weil (2012) Measuring economic growth from
outer space. American Economic Review 102(2), 994–1028.

Kiszewski, Anthony, Andrew Mellinger, Andrew Spielman, Pia Malaney, Sonia Ehrlich Sachs, and
Jeffrey Sachs (2004) A global index representing the stability of malaria transmission. American
Journal of Tropical Medicine and Hygiene 70(5), 486–498.

Kwiatkowski, Dominic P. (2005) How malaria has affected the human genome and what human
genetics can teach us about malaria. The American Journal of Human Genetics 77(2), 171–192.

Langhorne, Jean, Francis M. Ndungu, Annie-Marit Sponaas, and Kevin Marsh (2008) Immunity to
malaria: More questions than answers. Nature Immunology 9(7), 725–732.

Lujala, Pivi, Jan Ketil Rod and Nadia Thieme (2007) Fighting over oil: Introducing a new dataset.
Conflict Management and Peace Science 24(3), 239–256.

Lysenko, Alexei and Nikholai I. Semashko (1968) Geography of malaria. A medico-geographic profile
of an ancient disease. Itogi Nauki: Medicinskaja Geografija, 25–146.

McPeak, John, Peter D. Little and Cheryl Doss (2012) Risk and Social Change in an African Rural
Economy: Lifelihood in Pastoralist Communities. London and New York: Routledge Press.

Michalopoulos, Stelios and Elias Papaioannou (2013a) National institutions and subnational develop-
ment in Africa. Quarterly Journal of Economics 129(1), 151–213.

Michalopoulos, Stelios and Elias Papaioannou (2013b) Pre-colonial ethnic institutions and contempo-
rary African development. Econometrica 81(1), 113–152.

New, Mark, David Lister, Mike Hulme, and Ian Makin (2002) A high-resolution data set of surface
climate over global land areas. Climate Research 21(1), 1–25.

Onwujekwe, Obinna, Reginald Chima and Paul Okonkwo (2000) Economic burden of malaria illness
on households versus that of all other illness episodes: A study in five malaria holo-endemic Nigerian
communities. Health Policy 54, 143–159.

Piel, Frederic, Anand P. Patil, Rosalind E. Howes, Oscar A. Nyangiri, Peter W. Gething,
Mewhayu Dewi, William H. Temperley, Temperley N. Williams, David J. Weatherall, and
Simon I. Hay (2013) Global epidemiology of sickle haemoglobin in newborns: A contemporary
geostatistical model-based map. The Lancet 381, 142–151.

Pinkovskiy, Maxim (2013) Economic Discontinuities at Borders: Evidence from Satellite Data on
Lights at Night. Mimeo, MIT.

Pinkovskiy, Maxim and Xavier Sala-i Martin (2016) Lights, camera, income! Illuminating the national
accounts household surveys debate. Quarterly Journal of Economics 131(2), 579–631.

https://doi.org/10.1017/dem.2016.27 Published online by Cambridge University Press

https://doi.org/10.1017/dem.2016.27


148 MATTEO CERVELLATI, ELENA ESPOSITO AND UWE SUNDE

Ramankutty, Navin, Jonathan A. Foley, John Norman, and Kevin McSweeney (2002) The global
distribution of cultivable lands: Current patterns and sensitivity to possible climate change. Global
Ecology and Biogeography 11(5), 377–392.

Riley, Shawn J., Stephen D. DeGloria and Robert Elliot (1999) A terrain ruggedness index that quan-
tifies topographic heterogeneity. Intermountain Journal of Sciences 5(1–4), 23–27.

Sachs, Jeffrey D. (2003) Institutions Don’t Rule: Direct Effects of Geography on Per Capita Income.
NBER working paper 9490.

Sicuri, Elisa, Ana Vieta, Leandro Lindner, Dagna Constenla, and Christophe Sauboin (2013) The
economic costs of malaria in children in three sub-Saharan countries: Ghana, Tanzania and Kenya.
Malaria Journal 12(307), 1–14.

Stanisic, Danielle, F. Fowkes, M. Koinari, S. Javati, E. Lin, B. Kiniboro, J. Richards, L. Robinson,
L. Schofield, J. Kazura, K. C. L., Z. P., F. I., P. Siba, I. Mueller, and J. Beeson (2015) Acquisition of
antibodies against Plasmodium falciparum merozoites and malaria immunity in young children and
the influence of age, force of infection and magnitude of response. Infection and Immunity 83(2),
646–660.

Weidmann, Nils B., Jan Ketil Rd and Lars-Erik Cederman (2010) Representing ethnic groups in space:
A new dataset. Journal of Peace Research 4(47), 491–499.

Weil, David (2010) Endemic diseases and African economic growth: Challenges and policy responses.
Journal of African Economies 19(3), 81–109.

Weil, David (2011) Malaria and Early Economic Development in Africa. Mimeo, Brown University.
Weil, David (2016) The Impact of Malaria on African Development over the Longue Duree. In Africa’s

Development in Historical Perspective. Cambridge: Cambridge University Press (forthcoming).
Weil, David (2017) Gyrations in African mortality and their effect on economic growth. Journal of

Demographic Economics 83(1), 103–110.
Whitfield, J. (2002) Portrait of a serial killer. Nature.

https://doi.org/10.1017/dem.2016.27 Published online by Cambridge University Press

https://doi.org/10.1017/dem.2016.27

	1. INTRODUCTION
	2. BACKGROUND, DATA, AND ESTIMATION APPROACH
	2.1. Background: Malaria Epidemiology
	2.2. Data
	2.3. Estimation Approach

	3. RESULTS
	3.1. Linear Specification
	3.2. Non-Linear Specifications
	3.3. High Malaria Risk for Adults and Interactions with Genetic Immunities
	3.4. Magnitude of the Effects

	4. CONCLUDING REMARKS
	APPENDIX
	NOTES
	References

