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We investigate the trajectories of rigid fibres as they are transported in a pressure-
driven flow, at low Reynolds number, in shallow Hele-Shaw cells. The transverse
confinement and the resulting viscous friction on these elongated objects, as well
as the lateral confinement (i.e. the presence of lateral walls), lead to complex fibre
trajectories that we characterize with a combination of microfluidic experiments and
simulations using modified Brinkman equations. We show that the transported fibre
behaves as an oscillator for which we obtain and analyse a complete state diagram.
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1. Introduction
The motion of elongated particles (fibres) in viscous flows has been extensively

studied, with examples ranging from the propulsion of microorganisms (Lauga &
Powers 2009) to the clogging of arteries or stents with biofilm streamers (Drescher
et al. 2013), the transport of fibres in fracture slits (D’Angelo et al. 2009), the
coupling of deformation and transport in flows (Lindner & Shelley 2015; Quennouz
et al. 2015) and the flow of dilute fibre suspensions in the paper-making industry
(Stockie & Green 1998).

A prototypal situation is the sedimentation of a fibre in a Stokes flow. The fibre
does not simply translate in the direction of gravity, but instead drifts at an angle
depending on its orientation due to its drag anisotropy (Cox 1970). Another classical
configuration, extensively studied since the pioneering work of Jeffery (1922), is the
rotation of a fibre in a two-dimensional shear flow; the fibre has been shown to follow
specific orbits, known as Jeffery orbits. Another situation, of particular interest for
applications in microfluidics or porous media, is the motion of a fibre transported
in a pressure-driven flow. When the flow is unbounded, i.e. the fibre dimensions are

† Email address for correspondence: camille.duprat@ladhyx.polytechnique.fr

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-3029-1457
http://orcid.org/0000-0002-3438-4925
mailto:camille.duprat@ladhyx.polytechnique.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2017.662&domain=pdf
https://doi.org/10.1017/jfm.2017.662


Fibres in confined channels 445

(a) (b)

FIGURE 1. (a) Rotations of a fibre sedimenting near a wall, reprinted with permission
from Russel et al. (1977). (b) Experimental chronophotographs of a fibre flowing in a
microchannel exhibiting glancing and reversing motions near a wall.

small compared to the pore/channel size, the particle is simply advected at the speed
of the imposed flow. In shallow Hele-Shaw cells or narrow pores, where the height
of the fibre is comparable to the transverse channel height (so that the fibre nearly
blocks the channel), the confinement causes viscous friction between the fibre and the
surrounding walls. This friction reduces the velocity of the fibre, that is thus slower
than the surrounding fluid, with a velocity that depends on its orientation: the fibre
moves faster when oriented perpendicular to the flow direction than when parallel to
the flow. This causes the fibre to drift when not aligned with the flow, with a drift
direction opposite to that in sedimenting flows, where the particles move faster than
the surrounding fluid (Berthet, Fermigier & Lindner 2013). Similar observations were
also made with other elongated objects, such as pairs of droplets (Shen et al. 2014)
or rigid dumbbell particles (Uspal, Burak Eral & Doyle 2013).

When transported in the flow, an object may also interact with lateral bounding
walls (in opposition to the transverse confining walls). When sedimenting next to a
wall, a fibre rotates away from the wall, in either a glancing or reversing motion
depending on its initial inclination (de Mestre & Russel 1975; Russel et al. 1977)
as shown in figure 1(a). The analysis of these motions has been recently extended
to the general case of oblate or prolate spheroids (Mitchell & Spagnolie 2015). In
shear flows, a ‘pole-vaulting’ motion can be observed near the wall (Stover & Cohen
1990; Moses, Advani & Reinhardt 2001). In confined pressure-driven flows, elongated
particles also rotate near walls, as was observed for fibres, dumbbell particles and pairs
of droplets (Berthet 2012; Uspal et al. 2013; Shen et al. 2014). As a consequence,
an elongated object transported in a narrow channel oscillates between the channel
walls. In particular, in our experiments we observe that the fibres drift and oscillate
between opposite walls with motions resembling the glancing and reversing motions
observed in sedimentation, as shown in figure 1(b). However, a detailed inspection of
these figures indicates noticeable differences; while in sedimentation, the angle of the
fibre and the angle of its trajectory, though not equal, share the same sign, we observe
in contrast that, in pressure-driven transport, the trajectory angle has an opposite sign
with respect to the fibre orientation angle.
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(a) (b) (c)

FIGURE 2. (a) Sketch of a fibre in a microchannel, (b) top view and (c) cross-sectional
view.

In this paper, we systematically investigate the transport of elongated fibres in a
narrow channel, and study the effect of confinement on the fibre motion using a
combination of experiments and simulations. Fibre trajectories are investigated in
microfluidic experiments where fibres are fabricated in situ within microchannels
with a photolithography process to ensure good control over the channel and particle
properties. From a theoretical point of view, the two-dimensional (2-D) Stokes
equations fail to describe the dynamics in this situation of strongly confined fibres.
While the trajectory of a particle could be reproduced with 3-D simulations, difficulties
can arise due to the high mesh resolution needed to compute the velocity in the thin
gap between the fibre and the channel walls. We thus propose a model combining the
2-D Brinkman equations with a gap-flow model to take advantage of the robustness
and numerical efficiency of a two-dimensional approach while modelling the three
dimensional effects in order to explore the role played by the key physical ingredients
of the problem. Finally, we generate a complete state diagram of the fibre trajectories.

We report several types of trajectories, especially glancing and reversing oscillations
as presented in figure 1. In addition to these motions, we report new types of
trajectories in the vicinity of the walls. In § 2.1, we present our experimental
set-up; our theoretical formulation and numerical method are presented in § 2.2.
The validation of our model is given in § 3. In § 4, we describe our results, i.e. the
different trajectories observed experimentally and numerically. Finally, our results are
discussed in § 5.

2. Problem formulation and methods
We study the transport of a fibre in a microchannel, as depicted in figure 2, in

the low Reynolds number limit. The channels are rectangular channels of height H
and width L such that H/L� 1. We consider a fibre of length ` and width h with a
square cross-section, such that the aspect ratio `/h is large. The fibre is transported
by an externally imposed flow with mean flow velocity 〈u〉. The fibre is moving, at a
speed ûp, in a direction given by the angle α. Its orientation is given by the angle θ(t)
and its trajectory by the position of its centre of mass (xp(t), yp(t)). The trajectories
depend only on two geometrical parameters, the transversal confinement β = h/H and
the lateral confinement ξ = `/L. The gap size bH is defined as the distance between
the fibre and the top or bottom wall, i.e. 2b = 1 − β. β = 1 (b = 0) corresponds to
a particle filling the entire channel height and β ' 0 (b = 1/2) to an infinitely thin
object. Note that for ξ � 1 the effects of the lateral walls can be neglected at the
centre of the channel.

2.1. Experimental set-up
The microchannels are polydimethylsiloxane (PDMS) channels formed using moulds
fabricated with a micro-milling machine (Minitech Machinery), with an accuracy
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FIGURE 3. (a) Experimental set-up. (b) Photography of a typical polymeric fibre using
phase contrast microscopy (scale bar 200 µm).

in channel height of ±0.5 µm. The channels are bonded to a cover slide spin
coated with a thin layer of PDMS in order to ensure identical boundary conditions
on the four walls. We fabricate fibres of controlled geometry using the stop-flow
microscope-based projection photolithography process developed by Dendukuri et al.
(2007) (figure 3a) and developed further by Berthet, du Roure & Lindner (2016). The
channel is filled with a solution of oligomer and photo-initiator, and exposed to a
pulse of UV light through a lithography mask placed in the field-stop position of the
microscope. We use the method described in Duprat et al. (2015) to obtain rigid (i.e.
high modulus) particles, with a solution of polyethylene glycol diacrylate (PEGDA,
Aldrich) of average molecular weight 575 and 10 % photo-initiator (Darocur 1173
(2-Hydroxy-2-Methylpropriophenone, Sigma)), exposed to UV light for over 500 ms
with a Zeiss Axio Observer equipped with a UV light source (Lamp HBO 130W).
We thus obtain a polymer fibre whose shape (length ` and width h) is determined by
the shape of the mask (figure 3b) within our optical accuracy ±2 µm. We control the
height of the fibre by taking advantage of the permeability of PDMS to oxygen that
inhibits the polymerization, leaving a non-polymerized lubricating layer of constant
thickness along the walls of the channel (Dendukuri et al. 2008). The height h, and
the confinement β are thus both determined by the height H of the channel since
the inhibition layer is of constant height H − h = 13 ± 1 µm in our set-up (Berthet
et al. 2013; Wexler et al. 2013; Duprat et al. 2015). The fibre is thus fabricated at
the centre of the channel, i.e. the top and bottom lubricating layers have the same
thickness. We estimate the error in β to 0.05, which corresponds to a variation of the
channel and/or fibre height of ' 3 µm. We adjust the shapes of the masks in order
to ensure a square cross-section and an aspect ratio `/h= 8 or 10. The confinement
ξ is controlled by adjusting the width of the channel L. In all cases, we are in a
Hele-Shaw configuration such that H� L. We vary the confinement by varying the
channel height; all the other dimensions are changed accordingly to keep all aspect
ratios constant. The resulting geometries are given in table 1.

A precision pump (Nemesys, Cetoni) is used to drive the liquid in the channel.
The fibre is fabricated at zero flow rate with a controlled initial position (xi, yi) and
orientation θi. When the flow is turned on, we monitor the trajectory (xp(t), yp(t)) and
the angle θp(t). Distances are made dimensionless (dimensionless variables are denoted
by a tilde) using L/2, such that −1 6 ỹp 6 1.
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H(±0.5) (µm) L(±2) (µm) h(±2) (µm) `(±2) (µm) β(±0.05) ξ

38.5 1356 26 211 0.68 0.16
51.0 1866 39 323 0.76 0.17
51.0 2350 39 350 0.76 0.14
60 460 47 470 0.78 1.02
60 460 47 376 0.78 0.82
60 600 47 376 0.78 0.63
60 420 47 380 0.78 0.9
61.5 2330 50 405 0.81 0.17
68.5 2894 56 454 0.82 0.16
70 700 57 456 0.81 0.65
86.5 3873 77 616 0.89 0.16

TABLE 1. Geometries of the channels/fibres used in the experiments.

2.2. Theoretical formulation and simulations
As in any fluid–solid interaction problem, the motion of the solid particle is bilaterally
coupled to the flow velocity field, through the continuity of velocity and stresses at
the fluid–solid interface. While the trajectory of a particle can be reproduced with
3-D simulations of the Stokes equations, the mesh resolution requirements associated
with the thin gap between the fibre and the channel walls can become prohibitive,
in particular when β approaches 1. Alternatively, asymptotic approaches can be
attempted (see Halpern & Secomb (1991) for disk shape particles) but they need to
take into account two small parameters H/L� 1 and b� 1. We thus propose a model
combining the 2-D Brinkman equations to a gap-flow model. The Brinkman equations,
although not derived asymptotically from first principles, were shown, in the context
of flows in thin channels around pancake-shaped droplets (Boos & Thess 1997; Bush
1997), to correctly capture the forces applied on the interface of the drop, providing a
significant improvement with respect to the Darcy equations often used in Hele-Shaw
cells (Gallaire et al. 2014). The gap-flow model discussed in § 2.2.4 combines a
Couette and a Poiseuille flow and is reminiscent of the one used recently by Berthet
et al. (2013). In order to model the fibre trajectory, we first determine the resistance
of a composite control volume that contains the fluid and the particle in the projected
area of the particle. This modified resistance is then injected into the simulation of
the liquid domain to compute the forces and the average displacement. Our approach
requires b� 1 in order to neglect the pressure-driven leakage flow compared to the
mean flow in the microchannel. While this model cannot be rigorously derived from
first principles, it will be shown a posteriori to be quantitatively valid in a rather
large parameter range. In the following, we first focus on the description of the fluid
motion and stresses, then of the solid motion, before coupling them together.

2.2.1. Depth-averaged flow equations
We use the depth-averaged 2-D Brinkman equations to model the carrier flow in

the fluid domain Ωf =Ω −Ωp, where Ωp is the particle’s in-plane cross-section. This
model assumes a parabolic velocity profile across the channel height,

û(x, y, z)= u(x, y)
6z(z−H)

H2
, (2.1)
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where u(x, y) is the depth-averaged in-plane velocity field. The 2-D Brinkman
equations are obtained by depth averaging the 3-D Stokes equations, assuming
the aforementioned parabolic velocity profile (2.1) across the height (so that the
transverse z-velocity component is assumed negligible). This operation results in one
term representing the viscous dissipation due to the Hele-Shaw confinement, as in
Darcy’s Law, and another in-plane viscous term similar to the one found in the
2-D Stokes equation (Boos & Thess 1997; Bush 1997; Gallaire et al. 2014):

µ

(
∇

2u−
12
H2

u
)
−∇p= 0, ∇ · u= 0, (2.2a,b)

where µ denotes the viscosity of the fluid.
Using a boundary integral approach, this equation can be reformulated as integral

relations between the stresses and the velocities on the channel and particle boundaries
(ωc ∪ωp) of the fluid domain Ωf , valid for any point x0 on these boundaries:∮

ωp

(Tjn · u− σn ·Gj) ds+
∮
ωc

(Tjn · u− σn ·Gj) ds=
ej

2
· u(x0), (2.3)

where j indicates the location xj, yj of the Dirac delta of the Green’s functions and Tj,
Gj are Brinkman’s Green’s functions for stress and velocity (Nagel & Gallaire 2015).
We prescribe a known velocity field at the channel inlet, a parallel flow with constant
normal stress at the outlet and enforce a no-slip condition on the channel walls. We
therefore prescribe a known velocity/stress boundary value on the channel boundary
ωc.

2.2.2. Rigid body motion of the particle and definition of a ‘composite particle’
There are two important difficulties that arise when solving for the motion of rigid

objects within the proposed depth-averaged approach: (i) the modelling and evaluation
of the friction arising from the liquid films squeezed between the particle and the
top and bottom walls of the channel (they are prevalent in the system and therefore
cannot be neglected) and (ii) connection of the particle velocity and stresses to those
of the depth-averaged flow. Consistent with our depth-averaged approach, we propose
to apply a force and torque balance on a composite control volume, i.e. a slice which
includes the rigid particle and the fluid in the thin films. This slice ranges from [0,H]
with the intervals [0, bH] and [(1 − b)H, H] occupied by the liquid phase and the
interval [bH, (1− b)H] occupied by the rigid particle. With this model we implicitly
assume that the particle finds its equilibrium position in the centre of the channel so
that the centre plane of the Hele-Shaw cell z = H/2 is also a symmetry plane of
the particle. This assumption follows from neglecting gravity effects (small Galilei
number) and supposing that the particle will maintain least dissipation by staying
centred.

The 2-D representation of the shape of the composite particle is given by its surface
Ωp of area Ap with boundary ωp. The depth-averaged velocity of any point (x, y)∈Ωp
is denoted up and is representative of both the particle and the liquid layers enclosed
between the particle and the walls. As a rigid body in planar motion our composite
particle has three degrees of freedom: the velocities Up, Vp in x and y direction and
the angular velocity around its centre θ̇p. Writing the velocity field in the frame of its
barycentre yields

up(x, y)=
(

1 0 −y
0 1 x

)Up
Vp

θ̇p

 . (2.4)
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It is important to recall that up(x, y) is not the velocity of a material point of the
particle (x, y, z) (for z ∈ [bH, (1 − b)H]), but rather the depth-averaged velocity of
the vertical slice containing (x, y), i.e. the depth-averaged velocity of a slice of the
composite particle. Similarly, Up and Vp are the rigid body velocities of the composite
particle, not of the particle itself, as later detailed in § 2.2.5. Applying the kinematic
boundary conditions at the composite particle/fluid boundary forbids any leakage flow
in the thin gaps when the particle is at rest. This strong hypothesis is reasonable in
the thin gap regime (b� 1), since the hydraulic resistance trough the thin gaps is
O(b−2) larger than that around the particle.

2.2.3. Stress on the composite particle
The depth-averaged stress density per unit length f that the fluid exerts on the

composite particle lateral walls ωp results from viscous and pressure stresses. We write
f = σn, with the stress tensor σ =−pI+ 2µD, where D is the symmetric part of the
depth-averaged rate-of-strain tensor, and n the normal on the rectangle ωp. The total
depth-averaged force and momentum acting on the composite particle are obtained by
integrating along the rectangle perimeter ωp, parametrized by its local abscissa s

F‖ =H
∮
ωp

σn ds=H
∮
ωp

(
fx
fy

)
ds, (2.5)

M‖ =H
∮
ωp

σn× x ds=H
∮
ωp

−fxy+ fyx ds. (2.6)

These force and momentum components are only a part of the total force as they
only incorporate the depth-averaged force on the composite particle side faces. The
total force balance requires to also include the force and momentum exerted by the
channel walls touching the top and bottom composite particle faces.

When deriving the depth-averaged fluid (2.2) away from the particle, we assumed a
parabolic velocity profile in the z direction. Similarly, we now use an ansatz velocity
profile q(z) for the flow in the gap between the wall and the object. We leave q(z)
unspecified at this stage, and only require that its mean value over the channel height
equals 1, defining the full 3-D velocity ûp(x, y, z) = up(x, y)q(z). We further denote
the gradient of q(z) at the bottom wall as q′ = dq(0)/dz. The forces exerted by the
top and bottom walls onto the composite particle are thus

F⊥,x = 2µ
∫
Ωp

∂ û
∂z

∣∣∣∣
z=0

dA= 2µ
∫
Ωp

(Up − yθ̇p)q′ dA= 2µUpq′Ap, (2.7)

F⊥,y = 2µ
∫
Ωp

∂v̂

∂z

∣∣∣∣
z=0

dA= 2µ
∫
Ωp

(Vp + xθ̇p)q′ dA= 2µVpq′Ap, (2.8)

where for symmetry reasons the total force is twice the force exerted on the bottom
wall. Note that these expressions depend only on the depth-averaged velocities Up
and Vp of the composite particle, the gradient q′ and the area that faces the top or
bottom wall Ap. Because the particle rotates around its centre, the domain integrals
that depend on θ̇ are in effect equal to zero.

Similarly, we derive the torque

M⊥ = 2µ
∫
Ωp

∂(v̂x− ûy)
∂z

∣∣∣∣
z=0

dA= 2µθ̇pq′
∫
Ωp

(x2
+ y2) dA= 2µθ̇pq′Tp, (2.9)
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where Tp is a second-order moment Tp=
∫
Ωp
(x2
+ y2) dA, which can also be obtained

by integration on the domain boundary Tp =
∮
ωp
(xy2nx + x2yny) ds.

In the vanishing Reynolds number limit that we consider here, the composite
particle has to be force free and torque free F⊥=F‖ and M⊥=M‖. These conditions
translate in a set of 3 equations (2.7)–(2.9) for the unknowns Up, Vp, θ̇p, f |ωp .

The averaged velocities on the particle interface which are completed by (2.3) are
the ones introduced in (2.4). Finally, the profile q(z) will be determined in the next
paragraph.

2.2.4. Gap-flow model
We need to determine the velocity profile q(z) in order to close the system: its value

will determine the shear at the wall q′ and also the ratio between the velocity of the
composite particle Up and the particle velocity Ûp. This derivation will be made using
an ansatz for q(z).

First, as it is the simplest non-trivial profile, we assume that q(z) is a linear velocity
profile that ensures the compatibility condition (1/H)

∫ H
0 ql(z) dz= 1, given by

qlinear(z)=
4H

H2 − h2
(z1[0,bH] + (H − z)1[(1−b)H,H])+

2H
H + h

1]bH,(1−b)H[, (2.10)

where 1 is the indicator function, a function that takes the value 1 when z is
within the limits [a, b] and 0 elsewhere. This profile imposes a Couette flow in
the liquid films and rigid motion in the particle. This linear velocity profile in the
gap is reasonable for high confinement values (β ∼ 1). In particular, one retrieves
q(H/2) = 1 as expected for β = 1 and b = 0 (an object that fills the entire channel
height). However, this ansatz yields an underestimation of the dissipation in the limit
of small values of β. Indeed, one expects q(H/2) = 3/2 for β = 0 and b = 1/2, an
infinitely thin object, while the broken-line profile (2.10) gives q(H/2)= 2.

As an improvement to our model we add a Poiseuille profile to our ansatz, in
the spirit of the gap model of Berthet et al. (2013). This parabolic profile is first of
undetermined amplitude, then truncated at distance bH from the top or bottom wall
and finally rescaled in order to ensure that the average of q(z) over the channel height
is 1, such that

q(z)=C
[(

1−
z
H

) z
H
(1[0,bH] + 1[(1−b)H,H])+ (1− b)b1[bH,(1−b)H]

]
, (2.11)

where the constant C that ensures (1/H)
∫ H

0 ql(z) dz= 1 is given by

C=
1

b− 2b2 + 4/3b3
=

6
1− β3

. (2.12)

The velocity gradient at the wall is then given by

q′ =
6

H(1− β3)
, (2.13)

which should be plugged into (2.7)–(2.9) to close for the gap-flow model. Figure 4
shows the obtained velocity profiles for different confinements. The profiles exhibit
a smooth transition from a trapezoidal profile for the strongly confined particle to
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FIGURE 4. (Colour online) Model velocity profiles in the shallow direction in the presence
of a rigid object. The flat region is where the object is located and hence the velocity is
constant. Profiles are shown for β = 0.98, 0.8, 0.6, 0.4, 0.2 and 0. For β = 0 the object is
infinitely flat and the velocity profile becomes a parabola. The velocity gradient for β = 0
is illustrated by a tangent – – – line.

a parabola for the unconfined particle. For increasing confinements β the ratio of
particle to mean velocity q(H/2) decreases, while the velocity gradient at the wall
increases.

In summary, the velocity field in the entire domain takes the following form

û(x, y, z) = u(x, y)
6

H2
z(z−H)1[0,H]×Ωf + up(x, y)

3
2

1− β2

1− β3
1[bH,(1−b)H]×Ωp

+up(x, y)
6

1− β3

(
1−

z
H

) z
H
(1[0,bH]×Ωp + 1[(1−b)H,H]×Ωp). (2.14)

2.2.5. Rigid particle velocity

We now need to derive the velocity Ûp and the rotation velocity ˆ̇θp of the rigid
particle from the velocity Up and rotation rate θ̇p of the composite particle. The
particle velocities are deduced from the ratio of the velocity of the points (x, y)∈Ωp
in the particle ûp(x, y, z∈ [bH, (1− b)H]) to the depth-averaged velocity up(x, y), that
is derived from the mean velocity and the confinement β using (2.12) such that

ûp(x, y)= up(x, y)
3
2

1+ β
1+ β + β2

. (2.15)

The rigid body velocities and rotation of the particle are deduced from the averaged
velocity of the composite particle according to

(Ûp, V̂p,
ˆ̇θp)=

3
2

1+ β
1+ β + β2

(Up, Vp, θ̇p). (2.16)
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Since the particle moves at a different velocity than the average flow velocity, we
use these velocities, designated by a hat, to deduce the particle motion and update its
location.

2.2.6. Numerical simulations
For the numerical resolution of the differential equation, we propose the boundary

element method (BEM) as this technique is well suited to problems with evolving
interfaces. The BEM makes use of the Green functions of the Brinkman equation and
has proven successful to simulate droplets in shallow microchannels (Nagel & Gallaire
2015).

The equations of the problem are non-dimensionalized with the inflow velocity u∞,
the characteristic length of the channel L/2 and viscosity µ, such that (2.2) reads

(∇2ũ− k2ũ)−∇p̃= 0, ∇ · ũ= 0, (2.17a,b)

where k=
√

12/h̃. Non-dimensional variables are denoted by a tilde. For instance, the
velocity is non-dimensionalized by ũ= u/u∞ and the channel height by h̃= 2H/L=
2`/L ·H/` · h/`= 2h/` · ξ/β.

The computational domain extends from x̃=−5 to 5 with 1500 elements per side
wall and from ỹ=−1 to 1 with 200 elements per inflow or outflow. The fibre itself is
discretized with 800 elements. Its position yp and orientation θp evolve over time. Its
displacement in the x-direction is recorded but artificially cancelled out numerically
owing to the invariance of the problem with respect to x. This is advantageous
numerically and in particular allows the fibre to remain centred in the computational
domain. The non-dimensional time step is varied from 0.001 for fibres that approach
the wall very closely to 0.05 for fibres that are at one fibre diameter away from
the wall and more. Depending on the situation, a one-step Euler explicit scheme or
a two-step scheme, Heun’s rule, are used. We observe that for Euler’s scheme the
amplitudes in yp and θp show a slight increase over time, whereas Heun’s rule rather
shows a slight decrease.

Note that in the following we work exclusively with non-dimensional variables and
omit the tilde.

3. Validation of the model
3.1. Fibre velocity

In order to validate our model, we focus on the advection of a fibre oriented parallel
(θ =0◦) and perpendicular (θ =90◦) to the flow direction, in an infinitely wide channel
and in the presence of lateral walls.

In an infinitely wide channel, the fibre does not change orientation and simply
translates with a velocity that depends on the confinement β, as was obtained
experimentally and numerically (3-D Stokes simulations) by Berthet et al. (2013)
(figure 5). When the confinement is large, i.e. β > 0.6, fibres perpendicular to the
flow are transported at a velocity higher than those transported parallel to the flow.
This transport anisotropy varies with the confinement β and is an essential ingredient
for the fibre dynamics described in the following. Our model is in good agreement
with the experimental results as well as the 3-D Stokes simulations from Berthet
et al. (2013), thereby validating the assumptions made when deriving the model.

In order to validate our model in the presence of lateral walls, which may affect the
fibre streamwise velocity as well as induce a rotation (as presented in figure 1), we
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Perpendicular
Parallel

Perpendicular
Parallel

FIGURE 5. (Colour online) Fibre velocities for varying confinement β in an infinitely large
channel, computed with the Brinkman equation in two dimensions (yellow symbols) and
compared to 3-D Stokes simulations and experiments (Berthet et al. 2013). The fibre is
either parallel or perpendicular to the flow.

compare our results to full 3-D finite element method (FEM) calculations. The FEM
calculations are described in appendix A. We compute the advection velocity Ûp, as

well as the rotation rate ˆ̇θp as a function of the position yp. The results are shown in
figure 6. The lateral confinement is fixed to ξ = 1/2 and two transversal confinements
β = 0.6 and 0.8 are shown.

The streamwise velocities obtained with the 3-D simulation of the Stokes equation
and with the Brinkman model are in excellent agreement (figure 6a); the agreement
between both calculations is within a few per cent, even near the wall. The rate
of rotation also shows a good agreement even though the relative errors are more
pronounced (figure 6b).

3.2. Validity of the model
As explained in §§ 2.2.1 and 2.2.4, the proposed depth-averaged model contains
two main ingredients, a Brinkman approximation for the suspending fluid and a
gap-flow model for the flow in the thin gaps. Both are matched through a composite
control volume description of the particle, on which the balance of forces is applied.
Comparisons with prohibitive memory, time and energy-consuming 3-D calculations
show its quantitative prediction capacity, even when the condition b� 1 is violated.

One of the main interests of the Brinkman approximation is indeed that it correctly
captures the dominant forces, when pushed out of its domain of validity, i.e. on the
particle boundary. Thanks to the relative balance of the Laplacian term with respect
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FIGURE 6. (Colour online) Comparison between streamwise fibre velocity and rotation
rate in a channel with lateral walls calculated with the depth-averaged model (plain
line) and a full 3-D calculation (symbols). The aspect ratio ξ = 1/2 for all four cases,
A indicates fibres perpendicular and @ parallel to the flow. Blue filled symbols stand
for β = 0.6 and red filled symbols for β = 0.8. The inset shows the convergence for a
perpendicular fibre with ξ = 0.5, β = 0.8 and yp = 0.45.

to the Darcy term proportional to k2, the Brinkman equations emulate the boundary
layer near the particle boundary, with correct physical scalings. While in the bulk,
the Laplacian term is negligible with respect to the Darcy contribution, it becomes
significant in the vicinity of boundaries. Thereby, it accounts for tangential stresses,
which, in turn, enable the computation of the fibre velocity. In stark contrast, a Darcy-
like model would fail. Even in the simplest case scenario, when the fibre is aligned
parallel to the flow direction, a Darcy-like approach would be inaccurate. Such an
approach would only account for the pressure acting on the tip regions of the fibre
and therefore underestimate the fibre velocity.

The thin-gap model which is used in our gap-flow model and therefore for the
composite particle combines a Couette flow and a Poiseuille contribution which is
designed to ensure continuity with the large gap limit β = 0.

For dynamical simulations of a moving fibre in a channel, the proposed depth-
averaged method uses relatively few unknowns located at the boundaries, which makes
it significantly faster than a 3-D Stokes simulation. This feature is of paramount
importance as we aim to explore a large parameter space to develop a physical
description of the system.

4. Results
4.1. Fibre drift

We first consider fibres transported in wide channels (with lateral confinement ξ =
O(10−1)) far from the walls. For θp= 0◦ or 90◦, the fibre moves along the x axis only.
For other angles, the fibre is advected downstream, but also has a vertical motion;
the fibre drifts towards the walls of the channel (figure 7a). The orientation angle θp
cannot be locked in experiments, and the fibre is subjected to small perturbations; we
thus focus on trajectories where the orientation angle θp, and thus the drift angle α,
remain constant for a significant travelled distance.

The evolution of the drift angle with the fibre orientation θp and the confinement β
is given in figure 7(b). We note that as the confinement increases, the drift angle α
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FIGURE 7. (a) Chronophotography of a fibre drifting. (b) Drift angle as a function of the
fibre orientation for β= 0.75± 0.05 (light grey circles), β= 0.8± 0.05 (dark grey squares)
and β = 0.86 ± 0.05 (black diamonds). The solid curves are given by (4.3) with B(β =
0.7) = 1.17, B(β = 0.78) = 1.3, B(β = 0.85) = 1.54 and B(β = 0.89) = 1.8 given by our
Brinkman model where B= u⊥/u‖. The shaded regions thus correspond to 0.7<β < 0.78
(light grey), 0.78<β < 0.85 (medium grey) and 0.85<β < 0.89 (dark grey).

increases for a given orientation θp. We find that the orientation at which the drift is
maximum θmax varies with the confinement but remains close to 45◦.

The drift finds its source in that a fibre is transported faster with its axis
perpendicular to the flow than with its axis aligned with the flow. As shown in
figure 5, we find that the ratio B(β) = u⊥/u‖ > 1. To evaluate the drift angle we
recast the components of the fibre velocity in the laboratory referential, along ex and
ey,

upx = u‖ cos2 θ + u⊥ sin2 θ (4.1)
upy = (u‖ − u⊥) sin θ cos θ, (4.2)

and find the drift angle

tan α =
upy

upx
=
(1− B) cos θ sin θ
cos2 θ + B sin2 θ

. (4.3)

The evolution of θmax is governed by the equation:

θmax =±2 arctan[(1+ 2B− 2(B(1+ B))1/2)1/2]. (4.4)

We compute the value of B using our 2-D Brinkman model (figure 5) and find that our
theoretical predictions for α are in fair agreement with experimental values (figure 7).
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For low transversal confinement (β 6 0.6), parallel and perpendicular velocities are
close, i.e. B ' 1 (figure 5), so that the magnitude of the drift angle remains small.
The drift angle then strongly increases with increasing confinement. Therefore, a small
variation in β (i.e. of the order of our accuracy of 0.05) leads to high variations of
α, as indicated by the shaded regions in figure 7, which explains the scatter in the
experimental data. Changing the confinement allows us to tune the drag anisotropy,
and thus the magnitude of the drift.

4.2. Effect of the bounding walls
The presence of lateral walls modifies the flow field, and thus affects the fibre
trajectory, inducing in particular a rotation of the particle. We first focus on the
trajectories near the centre of the channels, then describe the behaviour of the fibres
when placed in the vicinity of the walls.

4.2.1. Oscillations around θp = 0◦

We place the fibre at the centre of the channel. When its initial orientation deviates
from θi = 0◦, we find that the fibre exhibits oscillations that we report in figure 1(b),
figure 9 and sketch in figure 8(a); we call these oscillations glancing. As the flow
transports the fibre, the fibre drifts towards one of the side walls and rotates until
parallel to the wall. Then, the angle of the fibre increases again and the fibre starts
drifting away from the wall. The fibre thus oscillates between the two walls. These
oscillations observed in experiments are recovered with our numerical model. The
corresponding data, obtained experimentally and numerically, are given in figure 8.

We first note that the fibre keeps a nearly constant axial velocity, uf , as it oscillates
from one wall to the other (see the evolution of xp(t) in figure 8b, f ). This behaviour
is recovered numerically. However, a detailed inspection of the data reveals that the
velocity deviates around its average value (inset in figure 8f ). Indeed, the fibre slightly
accelerates and decelerates as it travels across the channel width. This small variation
is within our experimental accuracy and can only be captured numerically. From the
evolution of yp(t) (figure 8c,g), we observe that the fibre travels vertically with a drift
velocity, ẏp, which too remains nearly constant throughout the channel width.

The trajectory can be described through the evolution of the fibre angle θ

(figure 8d,h). The fibre rotates when leaving/approaching a wall. We thus observe
that, as the fibre travels from the bottom wall (y = −1) to the top wall (y = +1),
the angle first decreases then increases with θp < 0◦. Symmetrically, the angle first
increases then decreases with θp > 0◦ when travelling from top to bottom wall. We
can also note that the fibre rotates with a nearly constant velocity θ̇p with an inflection
point around θp = 0◦ close to the walls. The oscillations in the orientation θp and
the position y are shifted by half a phase, which is reminiscent of a mechanical
pendulum for which momentum and restoring force are also out of phase.

Finally, we represent the path followed by the fibre with the orbit yp(θ) (figure 8e,i).
We note that the fibre follows a closed orbit centred on (0, 0) and bounded by
[−yw, yw] and [−θd, θd], where we define yw as the position (dimensionless) at which
the fibre is parallel to the wall, i.e. the minimum distance of approach of the wall is
|1− yw|, and θd as the maximal angle assumed by the fibre.

As the initial fibre angle increases, the amplitude of these oscillations increases, i.e.
the fibre glances closer to the wall (figure 9). The corresponding orbits are presented
in figure 10(a). For large angles, the orbit is oval, i.e. there is a region where the
angle is constant (the fibre drifts without rotating near the centre of the channel). For
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FIGURE 8. (a) Sketch of the oscillation mode. (b–i) Trajectory of a fibre advected
by a mean flow for β = 0.81, ξ = 0.81 and θi = 22◦ obtained experimentally (b–e)
and numerically ( f –i). (b) Axial position xp(t). ( f ) Deviation around the mean position
xp − 〈xp〉 (position xp(t) given in inset). (c,g) Streamwise position yp(t), (d,h) orientation
θp(t) and (e,i) orbit yp(θ). All lengths are made dimensionless using L/2, and time is
normalized with the fibre velocity and channel length, i.e. L/uf . Experimental trajectories
correspond to the experiments shown in figure 9(d).

(a)

(b)

(c)

(d)

FIGURE 9. Experimental chronophotographs of fibre oscillations (β = 0.81, ξ = 0.81) for
increasing initial angles: (a) θi = 1.2◦, (b) θi = 9◦, (c) θi = 17◦ and (d) θi = 22◦.

smaller angles θd, i.e. small amplitude oscillations, the orbit is almost circular, i.e. the
angle is nearly never constant. To each orientation θd corresponds a distance yw (and
vice versa). We plot the maximal angle θd as the a function of the minimal distance
to the wall |1− yw| in figure 10(b) from experiments and numerical simulations. The
numerical prediction agrees well with the experiments. We observe that the fibre
remains in the centre of the channel (yw ∼ 0) for angles |θp| . 2◦, then the distance
rapidly increases to reach yw∼ 0.8 for |θp| ' 20◦. We note that in this glancing regime
the fibre does not touch the wall, i.e. there is always a finite distance between the
fibre and the wall as highlighted by the shaded area in figure 10(b). The minimal
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FIGURE 10. (Colour online) (a) Orbits corresponding to the chronophotographs presented
in figure 9. (b) Maximum angle θd as a function of the distance to the wall 1− yw for β=
0.81, ξ = 0.81. Angle as the fibre leaves the wall (open red circles), as it approaches the
wall (open black circles). The full black circles correspond to the average values. Curves
obtained numerically for ξ = 0.8 and β = 0.7 (dashed), β = 0.8 (full) and β = 0.9 (dash
dotted line). Inset: evolution of the minimal wall–fibre distance for θi= 20◦ as a function
of the confinement β for ξ = 0.8 and `/h= 8.

wall–fibre distance is reached for θi ' 20◦ for these conditions. We leverage on our
numerical simulations to investigate the effect of the confinement β. The simulated
trajectories indicate that the minimal wall–fibre distance decreases with increasing
confinement (see inset in figure 10b). The amplitude of the oscillations thus increases
with increasing confinements.

The trajectories presented in figures 9 and 10(a) are not stable, i.e. the fibre leaves
the wall with an angle slightly different than the initial approaching angle. This effect
will be discussed further in § 5.

4.2.2. Oscillations around θp = 90◦

When the initial angle is close to 90◦, the fibre exhibits qualitatively different
oscillations as shown in figure 1(b) and sketched in figure 11(a). We call this second
oscillation regime reversing. The corresponding data are shown in figure 11(b–e).
Again, our numerical model recovers this oscillation regime. Similarly to the previous
case, the fibre follows a closed orbit, this time centred around θp = 90◦. At the wall,
the fibre is perpendicular to the flow direction, θp = 90◦. As the fibre travels from
bottom to top wall, the angle first increases then decreases, contrary to what was
found for glancing. Symmetrically, the angle first decreases then increases when
travelling from top to bottom wall. This regime exists for a limited parameter range,
and is in general difficult to observe. In this configuration, the fibre tips are close
to the walls and the trajectory is sensitive to perturbations. On the experimental data
presented in figure 11, we note a top/bottom asymmetry of the orbit due to small
defects on the bottom channel wall, leading to a reduced distance yw.

4.2.3. Trajectories near the walls
As seen previously, there is a layer near the wall which is not accessible through

glancing (shaded area in figure 10b). If the fibres are not initially placed at the centre
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FIGURE 11. (a) Sketch of the oscillation mode. (b–i) Trajectory of a fibre advected
by a mean flow for β = 0.78, ξ = 0.63 and θi = 82◦ obtained experimentally (b–e)
and numerically ( f –i). (b, f ) Axial position xp(t), (c,g) streamwise position yp(t), (d,h)
orientation θ(t) and (e,i) orbit yp(θ). All lengths are made dimensionless using L/2, and
time is normalized with the fibre velocity and channel length, i.e. L/uf . The experimental
trajectory corresponds to the experiments shown in figure 1.

of the channel but in this layer, that is in the vicinity of the wall, we can access
different types of trajectories. To investigate the occurrence of these trajectories we
position the fibre horizontally (θi = 0◦) close to the wall yi ' yw and observe the
resulting trajectories as a function of the distance 1− yi (figure 12).

For yi 6 yw, the fibre rotates and drifts away at a constant angle as described
in the previous sections. As we decrease the distance to the wall 1 − yi, another
situation occurs, as presented in (figure 12a). The fibre remains near one wall,
does not oscillate between the walls, but rotates around its tip in a pole-vaulting
motion (Stover & Cohen 1990). In that case, the orbit is open (figure 12c). We note
that only a small difference in distance to the wall leads to the transition between
pole-vaulting and glancing motions (figure 12e). In fact, for large angles where
fibre oscillation amplitudes are large, the fibre may alternate between those two
types of motion as it moves downstream. Another situation occurs for even smaller
fibre–wall distances 1 − yi. The fibre remains in a layer near the wall, exhibiting
small amplitude oscillations that we call wiggling (figure 12b). The angle remains
close to 0◦ (figure 12d). The orbit is confined in a small parameter range (figure 12e).
Our numerical simulations recover these two trajectories, as shown in figure 12.
Numerically, we investigate the occurrence of these trajectories in a similar fashion
as in the experiments: we place the fibre, either horizontally or vertically, at different
distances from the wall and record its rotation rate θ̇p (figure 6b). For a fibre placed
horizontally (i.e. parallel to the flow), we observe that the rotation rate becomes
slightly positive very near the wall (yp 6 0.9), which indicates the transition to
wiggling. Similarly, for a fibre placed vertically (i.e. perpendicular to the flow), the
rotation rate becomes negative when approaching the wall, indicating a transition to
pole vaulting.
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FIGURE 12. (Colour online) Chronophotographs of a fibre flowing near the wall for β =
0.81, ξ = 0.81, exhibiting (a) pole vaulting and (b) wiggling, obtained both experimentally
(top) and numerically (bottom). (c) Orbit for pole vaulting for β = 0.78, ξ = 0.93. (d)
Orbit for wiggling for β = 0.75, ξ = 0.17. (e) Trajectories near the walls for β = 0.86,
ξ = 0.16. Numerical simulations with the same parameters are shown in solid lines. For
(e) the numerical pole-vaulting and glancing trajectories become so close that they are
indistinguishable near the wall.

4.3. State diagram
We build a state diagram in the parameter space (θp, yp) to identify the various
trajectories and isolate the regions in the parameter space where the different types
of dynamics occur. We first present the diagram corresponding to a regime of high
confinement, both transverse and lateral (β = 0.8 and ξ = 0.8) (figure 13). We report
a remarkable agreement between experiments and simulations, showing that our
2-D scheme captures the physics of this 3-D problem. In addition, the numerical
simulations give access to all possible trajectories to obtain a complete diagram.
The experimental glancing orbit shows a spiralling behaviour that is absent in the
simulation, and that will be discussed further in § 5.

We can observe the pole-vaulting orbits, centred on θp = 90◦, and the glancing
orbits, i.e. oscillations around the fixed point at θp = 0◦. For these values of β and
ξ , reversing oscillations are never observed, neither experimentally nor numerically.

The obtained state diagram is reminiscent of that of an undamped perfect pendulum
(Strogatz 1994). It is characteristic of an Hamiltonian system, with time-reversal
symmetry. In the present case, this property does not result from the absence of
dissipation in the system, but from the symmetries of the fibre and the reciprocal
properties of the Stokes equations. The orbits can be categorized exactly like for
a pendulum. The pole-vaulting orbits are free (unbounded) trajectories, while the
glancing orbits are bound states and both are separated by a separatrix. The state
diagram is organized around two centres, the stable θp= 0◦, yp= 0 horizontal position
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FIGURE 13. Experimental (β ' 0.8, ξ ' 0.8, black dots) and numerical state diagram
(β = 0.8, ξ = 0.8, grey lines). Experimental results retrace the numerical orbits for
glancing (around ±30◦) in light grey and pole vaulting in dark grey. The region in white
corresponds to impossible configurations, i.e. the fibre tip touches the wall.

and the structurally unstable hyperbolic centre corresponding to the vertically aligned
fibre θp = 90◦, yp = 0.

While, as stated earlier, reversing orbits could not been observed for the parameters
of figure 13, they can be obtained for lower values of the lateral confinement ξ . For
β = 0.8, reversing is only obtained for ξ 6 0.6 as observed in the experiments
(figure 11). This regime is further explored numerically and a complete state
diagram for this value is presented in figure 14. In addition to glancing, pole
vaulting and wiggling, reversing can be observed in the vicinity of θp = 90◦. This
diagram is also characteristic of Hamiltonian dynamics, but it is more complex
than that of a simple pendulum. It has stable centres at θp = 0◦, 180◦, yp = 0,
θp=±90◦, yp= 0 and θp= 0◦, 180◦, yp≈±0.92 as well as unstable hyperbolic centres
at θp =±90◦, yp ≈±0.32 and θp = 0◦, 180◦, yp ≈±0.9. These fix points structure the
phase space which has dynamics with three types of bound states, glancing, reversing
and wiggling orbits and separatrices that connect the hyperbolic points.

From a theoretical point of view, the motion of a fibre is completely described by
the coordinates yp and θp for a given configuration in a rectangular channel. Therefore,
in theory, the trajectories in the state diagram are, apart from singular points, free
of intersections and consequently closed loops. However, in both experimental and
numerical diagrams, the orbits are close to each other, especially near the walls (along
the pole-vaulting separatrix) and at the glancing–reversing limit. As a result, the fibre
easily jumps from one orbit to another, as we will discuss in the next paragraph.

5. Discussion
5.1. Glancing

We first investigate the glancing trajectories. The trajectory of a fibre is a combination
of drift, due to drag anisotropy, and rotation due to the presence of the lateral walls.
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Fix points
Pole vaulting

Wiggling

Reversing
Glancing

Fibers illustrating
wall contact for
two orientations

Excluded region
due to fiber-wall contact
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90 180–90–180 0

FIGURE 14. (Colour online) Numerical state diagram for β = 0.8, ξ = 0.6. displaying
all four orbit types: glancing, reversing, pole vaulting and wiggling together with their
associated fix points. Separatrices exist in between the coloured regions, where the
numerical scheme was unable to resolve trajectories the colour is left grey. The region
in white corresponds to impossible configurations, i.e. the fibre tip touches the wall.

We can compute numerically both the vertical drift velocity ẏp, and the rotation
velocity θ̇p. We compare the evolution of these velocities as the fibre oscillates
between the walls for two different initial angles (figure 15). As the fibre travels
from the bottom wall to the centre of the channel, the drift velocity increases (with
ẏp > 0) while the fibre rotates away for a horizontal orientation (θ̇p < 0◦). Near the
centre of the channel, the rotation velocity θ̇p= 0◦ and the curve present an inflection
point; the orientation of the fibre is thus constant, which leads to a constant drift
velocity as seen in figure 15(a). As the fibre travels away from the centre and
approaches the wall, the drift velocity rapidly decreases to reach zero when the fibre
is horizontal, and the rotation velocity increases as the fibre reorients (θ̇p > 0◦). The
top to bottom trajectory is symmetrical (with ẏp < 0).

We note that the drift velocity strongly depends on the fibre angle (ẏp(θ = 20◦)'
2ẏp(θ = 10◦)). Indeed, the drift velocity, given in (4.2), is proportional to cos θ sin θ .
The drift velocity thus increases almost linearly with the orientation angle up to θ =
45◦. On the contrary, the rotation velocity is nearly independent of the fibre angle.

These results qualitatively explain the observations made on the fibre trajectories.
The fibre drifts and rotates simultaneously. Since the rotation velocity is nearly
constant, the maximum displacement |yp| of the motion depends on the drift velocity:
the faster the drift velocity, the further the fibre can travel in the channel. Indeed,
as we increase the initial angle, the rotation velocity is unaffected while the drift
velocity strongly increases, leading to larger amplitude oscillations (i.e. the fibre
travels a longer distance before it is rotated, hence glances closer to the wall). On the
contrary, small angles lead to slow drift velocities and to small amplitude oscillations,
so that a fibre whose orientation is close to zero remains in the centre of the channel.
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FIGURE 15. Evolution of the drift velocity vp = dyp/dt (a) and the rotation velocity θ̇ =
dθ/dt (b) as a function of the fibre position yp as the fibre oscillates between the walls.
Computed for β = 0.8 and ξ = 0.8 and for two initial angles θi = 10◦ (dashed line, grey)
and θi = 20◦ (full line, black).

Furthermore, as we increase the confinement, we can tune the difference between
u‖ and u⊥, and thus increase the drift velocity (ẏp ∝ (u‖ − u⊥)) and the oscillation
amplitude, as observed experimentally and numerically.

5.2. Transition between glancing and reversing
During an oscillation in the reversing regime, the evolution of the drift velocity
is analogous to glancing. Similarly, the drift velocity decreases when approaching
θp = 90◦ so that the amplitude of the oscillations decreases as the fibre angle gets
closer to θp = 90◦ (as can be seen from the state diagram figure 14). However, the
sign of the rotation speed is inverted (i.e. the angle decreases as the fibre leaves the
wall and increases as the fibre approaches a wall, in an opposite fashion compared to
the glancing regime). The transition between glancing and reversing can be obtained
by looking at the sign of the rotation speed. We obtain the critical angle θ ? for
which the transition occurs for different confinements. For ξ ∼ 0.8, the value of
θ ? remains close to 90◦, and slightly decreases for increasing confinement β. This
explains why reversing is difficult to observe at high lateral confinement, where
the region of reversing in the parameter space is narrow around 90◦. The reversing
region expands when decreasing ξ . Experimentally, we indeed observe systematically
reversing in the wide channels (ξ = O(10−2)). However, in such wide channels it is
not possible to follow an entire oscillation as the fibre travels through a long distance
between the walls. We thus limit ourselves to the trajectories near one wall (figure 16).
Numerically, we observe that the reversing region expands when decreasing ξ , i.e. θ ?
decreases to approach zero. While in highly confined channels (ξ ∼ 1), reversing is
confined in a narrow region around 90◦, for low confinement this region can reach
larger regions (as observed in figures 14 and 16). We also note that the limit orbit
between reversing and glancing is peculiar (see the line separating the yellow and
blue regions in figure 14); indeed, the angle first increases then decreases as the
fibre approaches the wall. This can also be observed experimentally (figure 16). The
corresponding orbits are given for ξ = 0.14 and initial angles around 25◦, at the
limit of glancing, reversing and pole vaulting. We note the reversing (dark grey) and
pole-vaulting (light grey) trajectories. For the glancing trajectory (black), the fibre
drifts near the centre of the channel, its angle increases as in the reversing trajectory,
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90 180–90–180 0
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(b)

FIGURE 16. Trajectory obtained experimentally for β = 0.76, ξ = 0.14. (a) Orbits. (b)
Chronophotography of the limit trajectory between glancing, reversing and pole vaulting.
The channel being wide, we only display a region near the bottom wall, i.e. −0.5> yp >
−1.

however the angle then decreases to reach zero in a glancing motion. Similarly, upon
leaving the wall, the angle first increases then decreases.

5.3. Transition between wiggling, pole vaulting and glancing
While the flow within the rectangular channel is a plug flow throughout most of the
width of the channel, there is a small layer near the walls, of size ∼H, where there is
shear due to the no-slip condition at the wall. For the data presented in figure 10(b),
the boundary layer thickness corresponds to |1 − yw| ' 0.1, i.e. during glancing the
fibre always remains outside the boundary layer. When placed within the boundary
layer, the fibre exhibits different trajectories, i.e. either a pole-vaulting or a wiggling
motion.

We can discriminate between the different trajectories using the boundary layer
thickness. We rescale the data corresponding to the different trajectories near the
walls (figure 12e) with the boundary layer thickness H, as shown in figure 17. We
indeed observe that wiggling exists for y< H, pole vaulting for y∼ H and glancing
for y > H. As the fibre is entirely within the boundary layer (y < H), it oscillates
without leaving the wall in a wiggling motion. If the fibre tip is within the boundary
layer y ∼ H, the fibre may be rotated around its tip, thus exhibiting a pole-vaulting
motion. For larger distances, the fibre is not affected by the shear and simply rotates
away from the wall in a glancing motion.

5.4. Transition between reversing and pole vaulting
In a sufficiently wide channel, i.e. with ξ lower than 0.8 in the case β = 0.8 and
`/h = 8, a fibre can show reversing or pole vaulting when oriented perpendicular
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FIGURE 17. Trajectories near the wall (same data as figure 12e) rescaled with channel
height H. The inset is a zoom of the data around y/H = 1.
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FIGURE 18. (Colour online) Three-dimensional simulation of a moving fibre with β= 0.8
in a wide channel ξ = 0.5. Shown are the data from the centre plane in z. Streamlines are
drawn with respect to the fibres mean velocity for (a) reversing fibre and (b) pole-vaulting
fibre.

to the flow. For the description of reversing the presence of a potential Hele-Shaw
flow (corresponding to a plug flow) is sufficient. A reversing motion has been indeed
justified by image potentials (Uspal et al. 2013; Shen et al. 2014). As the fibre enters
the shear boundary layer near the lateral walls, potential flow is no longer valid and
one observes a competition between a tip acceleration due to the leaking flow and
tip deceleration due to wall friction. In figure 18(a) one sees a fibre performing a
reversing motion, where the liquid flows through the gap between fibre tip and lateral
wall. A negative vorticity is observed at the fibre tip. In comparison, if the fibre is
too close to the wall no fluid leakage is observed between the fibre tip and the wall.
A positive vorticity close to the fibre tip leads to a pole-vaulting motion (figure 18b).

5.5. Perturbations and damped oscillations
The system is sensitive to perturbations. Any perturbation leads to a small change in
orientation, thus a change in trajectory. In particular, we often observe in experiments
that the fibre leaves the wall with an angle slightly smaller than the initial approaching

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

66
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.662


Fibres in confined channels 467

–1

0

1

0 5 10 15 20 25 30 35 40 45

0

30

–30

 0
 –0.2
 –0.4

0.2
 0.4
0.6

 0.8
1.0

 –0.6
 –0.8
 –1.0

3010 200–10–20–30

(a) (b)

FIGURE 19. Damped oscillations obtained experimentally for β=0.8, ξ =0.8. (a) Position
y and angle θ as a function of time. (b) Spiralling orbit.

angle. The amplitude of oscillations may thus decrease as the fibre moves along the
channel. This effect may be important, leading to damped oscillations as presented
in figure 19. The amplitude of the oscillations decreases and the fibre moves towards
the centre of the channel, until reaching the equilibrium position, i.e. the fix point
(θp = 0◦, yp = 0), staying parallel to the flow in the centre of the channel yp = 0.
Uspal et al. (2013) showed that a fore–aft asymmetry also leads to the reorientation
of the particle towards θp = 0◦. The analogy with the pendulum’s trajectories evoked
earlier (§ 4.3) can be pushed further. The addition of a slight imperfection, here taking
the form of a small experimental spatial asymmetry or an experimental or numerical
time-symmetry breaking, acts in a similar way as the addition of a small damping
in the pendulum (Strogatz 1994). While the stable orbits disappear, the previously
neutrally stable centres become focal points attracting the dynamics through spiralling
trajectories. This behaviour results from the structural instability of the hyperbolic fix
points.

6. Conclusion

We have investigated experimentally and numerically the motion of rigid fibres
confined in a Hele-Shaw cell and transported by a pressure-driven flow. Due to the
transverse and lateral confinements, complex fibre oscillations between the channel
walls are observed in experiments, as well as pole vaulting and ‘wiggling’ when the
fibre is placed near the walls. We have shown that the trajectories can be controlled
by adjusting the geometry of the fibre and the channel. We have in particular shown
the effect of the transverse confinement (height of the channel), which controls the
magnitude of the drag anisotropy, thus the drift angles and as a consequence the
amplitude of the oscillations.

We have developed a model using the 2-D Brinkman equations that correctly
describes the dynamics. By numerically solving the model equations, we can
quantitatively reproduce and predict the experimental trajectories, as well as
qualitatively explain the different motions and transitions. Due to the ideal setting of
a numerical simulation with perfectly smooth walls and rigid fibres, clear distinctions
can be made between stable and unstable flow configurations in the absence of
fabrication defaults.
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The glancing and reversing motion of the fibre are controlled by the pressure field
that develops around the fibre. As a consequence, these can be, at least qualitatively
(Uspal et al. 2013), described by the Darcy equation. Pole-vaulting and wiggling
motions are driven by shear flow close to the walls and can therefore not be described
by the Darcy equation since there is no in-plane shear contribution, requiring therefore
a more elaborate approach. Interestingly, a qualitative analysis of sedimenting flows
can rely solely on the Darcy equation since the pole-vaulting motion can be thought
of as being part of the reversing motion and the wiggling motion being part of the
glancing motion. Only in pressure-driven flows, when the drift direction is about
perpendicular to the fibre orientation, pole vaulting and wiggling exist as singular
limits in a boundary layer close to the walls.

From looking at the state diagram (figure 14) one sees that the fibre trajectories
come very close in certain regions, which gives rise to random changes in orbits due
to small perturbations, which we observed experimentally as well as numerically. The
limited numerical predictability thus reflects a physically unpredictable state.

An asymmetrically designed particle has been observed to create a driving force
that keeps the perturbed particle in a well-defined orbit (Uspal et al. 2013), where
regions of close contact of orbits from different oscillatory regimes are avoided.
Within the framework of our numerical method it is possible to address the behaviour
of tailored asymmetric particles, as well as multiple particle interactions. In addition,
we correctly account for the effect of the confinement, which can be used to tune
the strength of the drag anisotropy, thus the trajectories of the particles. We believe
that this extension will be useful for the investigation of design principles for the
transport of rigid objects in microfluidic devices.

Our efforts in developing and implementing the routines presented in this work are
made available for the community. We share the source codes and documentation
of the simulation tool (ulambator.sourceforge.net) and provide online tutorials and
examples (lfmi.epfl.ch/ulambator).
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Appendix. Three-dimensional Stokes solution with the finite element method
The FEM simulation of the 3-D Stokes equation is done with FreeFEM++ (Hecht

2012), where the mesh is generated in a layered structure. Owing to the symmetry
in the z-direction only half of the domain is solved. Due to the sparse matrices, the
force free condition on the fibre cannot be imposed directly. Instead, four independent
problems are solved in series, with four different boundary conditions: outer flow, fibre
moving at Up= 1, fibre moving at Vp= 1 and fibre rotating at θ̇p= 1. The torque and
the x- and y- forces on the fibre are saved, and the fibre displacement is obtained from
a force balance once the four calculations are completed. We use Pb

1/P1 elements, well
suited for geometries with sharp edges, where the additional degree of freedom for the
velocity description (the so-called bubble) avoids spurious pressure modes. The mesh
size is approximately 1.3 million nodes, which results in approximately 5 millions
unknowns. The convergence is given for one example in the inset in figure 6.
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