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Simultaneous beam steering of multiple
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A novel, photonics-based scheme for the independent and simultaneous beam steering of multiple radio frequency signals at a
wideband phased-array antenna is presented. As a proof of concept, a wavelength-selective switch (WSS) is employed both as
a wavelength router to feed multiple antenna elements and as a tunable phase shifter to independently control the phase of
each signal at any antenna element. In the experiment, two signals at 12.5 and 37.5 GHz are simultaneously fed to the four
output ports of the WSS with independent and tunable phase shifts, emulating the independent steering of two signals in a
four-element phased-array antenna. The results confirm the precision and flexibility of the proposed scheme, which can be
realized both with bulk components or resorting to photonic integrated circuits, especially for wide-band applications. The
architecture for a possible integrated implementation of the proposed solution is presented, employing a structure based
on micro-ring resonator. Starting from these results, the feasibility of an integrated version of the presented architecture is
also considered. The proposed photonic integrated circuit realizing the beam-forming network might be based on tunable
true-time delay, as well as on phase shift through micro-ring resonators, and could be conveniently implemented with
CMOS-compatible silicon technology.
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I . I N T R O D U C T I O N

Beamforming is becoming a crucial issue for a number of
radio frequency (RF) applications, ranging from wireless
access networks to radars. In particular, antennas with non-
mechanical beam-steering capabilities are required, in order
to finely control their pointing directions without physically
moving the antenna. Phased-arrayed antennas (PAAs) are
composed by several discrete elements and allow us to
obtain the desired beam-forming functionality, by controlling
the phase of the RF signal at each antenna element. Active
PAAs are attracting a growing interest thanks to their flexibil-
ity, since they are composed by a large number of active trans-
mit/receive modules (TRMs), which can locally modify the
phase of the transmitted signals. However, in this kind of
PAAs, the cost of the large number of TRMs, the system com-
plexity, and the remotization of the antenna still represent
non-negligible issues.

PAA problems can be addressed by resorting to photonics,
instead of focusing on traditional electronic solutions. Indeed,
photonics techniques allow us to effectively control the phase
of RF signals independently from their frequency, by means of
phase shifters (PSs) [1] or true-time delay (TTD) [2, 3]. At the
same time, photonics guarantees low weight and dimensions,
immunity to electromagnetic interference (EMI), and a rela-
tive low cost thanks to its high scalability. Moreover, the
inherent broad bandwidth of photonic devices can help in
realizing more flexible and frequency-agile systems. Schemes
based on high-performance PSs have been demonstrated,
but the achieved beam-scanning angle was limited [1]. On
the other hand, TTD-based architectures can be implemented
either exploiting chromatic dispersion [2], or realizing a
network for adaptively switching the signals on paths with dif-
ferent delays [3]. The photonic implementations of the TTD
approach have demonstrated to be easier than the electronic
ones, but they may require very long spools of optical fiber
unless an integrated system is employed. A more flexible
implementation employing a programmable bandwidth-
variable wavelength-selective switch (BV-WSS) [4] has been
presented in [5], working on a single wide-bandwidth RF
signal.

Recently, we have proposed a scheme for a beam-forming
network (BFN) [6], based on a BV-WSS for the simultaneous
and independent beam steering of multiple RF signals. The
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software-programmable WSS have been exploited as a wave-
length router to feed multiple antenna elements, and as a
tunable PS to independently control the phase of each signal
at any antenna element. Moreover, we experimentally
validated the scheme by resorting to bulk components.
Independent steering of multiple beams has been proposed
in [3] and [7], based on chromatic dispersion in optical
fibers, and tunable notch filters and couplers, respectively;
these approaches, however, are bulky and suffer from a rela-
tively complex design. In this paper, we provide a brief
summary of the experimental results of our previous work
[6]; additionally, we suggest two possible integrated imple-
mentations based either on PS or on TTD, depending on
the bandwidth of the considered signals.

I I . C O N C E P T

Figure 1 reports the general scheme of the architecture pro-
posed in [6]. M independent RF signals RF1. . .RFM, with
central frequencies f RF1,. . ., f RFM, are up-converted to the
optical domain by modulating N-independent lasers at wave-
length l1,. . ., lN in an electro-optical intensity modulator
(IM). After the IM, the optical signal is equally split to K ×
N-outputs BV-WSSs. The employed BV-WSSs are optical
devices based on Liquid Crystal on Silicon (LCoS) technology
[4], and are capable of routing the signals to one or more
among the N ports, controlling the amplitude and phase of
the optical signal at each port, with a pixel resolution of
1 GHz (assumed that the employed optical carriers are in
the optical C-band, i.e. about 1.5 mm).

The bulk BFN introduced in [6] is an all-optical signal pro-
cessing architecture for transmitting M independent signals,
composed by K, BV-WSS-based sub-blocks. Processing
signals in the all-optical domain allows finely controlling
their phase (or, alternatively, their propagation delay).
Eventually, a set of K × N photodiodes (PDs) convert the
replicas of each optical sideband (SB) in an RF signal, whose
carrier frequency is given by the frequency distance between
the kth optical carrier and the SB central frequency. Every
PD corresponds to one TRM driving a PAA element and,
being the optical phase shifts translated into equivalent RF
phase shifts, the overall obtained radiation pattern is com-
posed by several, independently steered lobes.

The core of the presented scheme is the BV-WSS, which
enables an arbitrary, reconfigurable phase shift on independ-
ent multiple RF carrier signals. The phase shifting accuracy
strictly depends on the performance of this device. In a
BV-WSS, the input light is spatially dispersed by a diffraction
grating on an LCoS pixel grid that processes the incoming
optical signal and reflects it back to the grating, where the pro-
cessed light is focused to the selected output port [4]. Each
pixel acts on a portion of the spectrum, whose span depends
on the pixel dimension. It processes both amplitude and
phase of the signal, since it is possible to finely tune the
liquid crystals transparency and refractive index via an
applied software-controlled electric field.

A critical issue to be addressed any time optical/electrical
conversions are considered is the power efficiency. In particu-
lar, losses are important in the down-conversion stage, since
for signal up-conversion, an electric driver at the RF
input of the electro-optical modulator should ensure the
desired modulation depth, provided the modulator response

is linear over the input signal dynamic range. The down-
conversion process, on the other hand, suffers from the
limited responsivity of the PD and from its saturation
power, which limits the maximum input optical power and,
in turn, the overall conversion efficiency. As usually done in
microwave photonics application, a proper management of
the amplification stages in the optical [8] as well as in the
electrical section may help to get around the problem.
Furthermore, a typically suggested approach for improving
the optical signal-to-noise ratio, and ultimately increase the
power efficiency of the link, is to employ optical
single-side-band (SSB) modulation. Furthermore, the RF
signals are employed to modulate several continuous wave
(CW) lasers, each one with its own power. Hence, by exploit-
ing a multi-carrier approach higher conversion efficiency for
the RF signals can be obtained at the expenses of larger
number of employed optical CW sources.

The proposed architecture finds its natural application in
any field, where a steerable antenna beam is required,
ranging from radar to mobile communications. Moreover,
this system is suitable for antennas remoting, since the
BV-WSSs’ output is in the form of an optical signal that can
propagate for kilometers over an optical fiber with extremely
low losses, negligible distortions, and total immunity to EMI.

I I I . E X P E R I M E N T A L A C T I V I T Y :
S E T U P A N D R E S U L T S

From an experimental point of view, in [6] we have demon-
strated the validity of the proposed architecture by the per-
formance analysis of one sub-block of the overall network.
More details of the experimental activity for the validation
of the BFN sketched in Fig. 1 can be found in [6]. Here, we
report a summary of the obtained results, which can be
helpful to introduce the following sections of this paper,
with considerations around an integrated implementation of
the presented scheme.

In Fig. 2, we report the power spectral density (PSD) of the
employed optical signals together with the programmed amp-
litude and phase response of the BV-WSS. Following a typical
radio-over-fiber approach, four CW lasers with 11 dBm
output power and 200 GHz spacing are modulated by two
RF tones at f RF1 ¼ 12.5 GHz and f RF2 ¼ 37.5 GHz (black
solid line in Fig. 2), where the four optical carriers with
double-sideband modulations at f RF1 and f RF2 are clearly
visible. Inside the BV-WSS, the incoming wavelengths
are separated and spatially deflected through a diffraction
grating; thereafter, the light impinges on a two-dimensional
matrix of liquid crystal pixels, which can independently influ-
ence amplitude and phase of the impinging light, and route
each pixel output to any of the output ports. The pixels
matrix response can be controlled via software, imposing a
phase and amplitude mask to each output port. This way, a
fine-grained filter is obtained, which can shape optical
signals all over the whole C-band (1530–1565 nm). The
results obtained with the unmodulated sinusoidal RF carriers
are expected to apply also for signals with bandwidth of few
MHz, as those employed in remote-sensing applications,
where a constant phase shift can be applied over the signal
bandwidth without incurring in squinting phenomenon [9].

As depicted in Fig. 2, the phase of every carrier is not modi-
fied (i.e., optical phase set at 08). On the other hand, each
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upper sideband (USB) undergoes a different phase shift with
respect to the related carrier. The phase of the SBs correspond-
ing to RF1 ranges from 2908 at Port1, to 1808 at Port4
increasing by 908-wide steps. Likewise, the phase of the SBs
related to RF2 decreases by 908 steps from 1808 at Port1 to
2908 at Port4. Eventually, a 40 GHz-bandwidth PD is used
for down-converting the optical signals into the RF domain,
thus obtaining four outputs apt to feed four elements of a
PAA.

The independent tunable steering of multiple signals has
been evaluated by measuring the relative phase shift
between the BV-WSS output ports. In the case f RF ¼

12.5 GHz, a phase shift Dw ¼+908 corresponds to a delay
Dt ¼+20 ps. In the case f RF ¼ 37.5 GHz, Dw ¼+908 cor-
responds to Dt ¼+6.67 ps. The time delays can be precisely
measured by comparing the time markers on the sampling
oscilloscope (an Agilent 86100C) [6], or by comparing the
oscilloscope traces reported in Fig. 3 The correct behavior of
the proposed scheme is demonstrated by the delay imposed
between the signals at 12.5 GHz (Fig. 3(a)), and 37.5 GHz
(Fig. 3(b)). The measured time shifts exhibited by the
signals (rightward for 12.5 GHz, leftward for 37.5 GHz) are
�20 ps for the 12.5 GHz SBs (with an error of �4%) and
�6.7 ps for the 37.5 GHz SBs (with an error of �0.45%).

I V . I N T E G R A T I O N O F T H E
P R O P O S E D A R C H I T E C T U R E

The presented scheme has been realized resorting to bulk
devices, typically employed for communication purposes, in
order to demonstrate its working principle. The pixels
response of the WSS employed in the reported experimental
activity is 10 GHz-wide and it turns to be relatively large, actu-
ally representing a limitation for the performance of this LCoS
technology-based architecture.

The phase transition fronts of the exploited BV-WSS are
reported in Fig. 4. A 40 GHz signal has been employed to
modulate an optical carrier. A step-like phase transition
with variable Dw has been imposed between the carrier and
its 40 GHz USB. By tuning the carrier wavelength with
0.01 nm steps (1.25 GHz), the USB has been swept across the
phase transition, measuring the actual phase shift of the photo-
detected signal on an oscilloscope, from 08 to the set value of
Dw. The imposed phase steps are actually implemented as
ramps. In the case Dw ¼ 908 (gray curve in Fig. 4, the transition
bandwidth is about 8.2 GHz. If Dw ¼ 1808 (black curve), the
phase transition is steeper, and it spans over about 3.8 GHz.
Finally, in the case Dw ¼ 2708 (light-gray curve), a bandwidth
around 6.3 GHz has been measured. If the considered RF signal

Fig. 1. General scheme for phase-controlled beam steering.

Fig. 2. Optical spectra of the 0.16 nm-spaced input optical carriers modulated at 12.5 and 37.5 GHz (black solid curves), the response of the WSS ports in
amplitude (gray dotted lines – refer to the vertical axis on the left) as measured with a wideband, flat noise source. The imposed phase mask is traced by the
dash-dotted line (refers to the vertical axis on the right).
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has a large bandwidth, it might suffer from a non-uniform
phase shift over its spectral components, thus leading to the
undesired effect of beam squint. This phenomenon is not an
issue if considering applications involving signals with relatively
narrow bandwidths, such as radar and remote sensing. In any
case, the proposed architecture needs to be further optimized
by adopting ad-hoc designed devices.

Recently, a small-size and high-resolution BV-WSS has
been demonstrated, with 0.8 GHz-bandwidth pixels and
0.2 GHz pixel-to-pixel spacing [10]. Such a device can thus
be considered for the improvement of the performance of
the proposed architecture, though it represents a miniaturized
but not integrated system. In order to obtain an extremely
compact scheme, and endow it with complete mechanical
robustness, the development of a cost-effective and small-
sized BFN based on the proposed architecture inevitably
implies optical integration.

The proposed BFN is divided in sub-blocks. In its bulk-
components version [6], the phase stability is an issue
between the signals summing up from different sub-blocks,
since within the same BV-WSS the optical waves propagate
together, undergoing the same phase changes. Indeed, no
unwanted phase mismatch has been detected and no stability
issue arose in the experiment. As regards the amplitude
stability issue, a proper equalization is possible thanks to
the BV-WSS itself, allowing us to independently control the
attenuation at each output port. On the other hand, the
inter-sub-blocks phase stability problem is not completely
solved by resorting to integrated photonic circuits, since it is
not possible to control the circuits dimension with any
desired accuracy; however, a feedback-based system can be

implemented for an automatic control of the phase shift/
time delay imposed by each micro-ring resonator (MRR)
[11]. Similarly, the amplitude of the signals propagating
through the integrated circuit can be suitably controlled by
means of optical attenuator in order to accurately balance
the different power losses within each arm.

A) Operation principle of the integrated
scheme
The chosen approach for realizing an integrated version of the
proposed architecture is based on MRRs in an all-pass filter
(APF) configuration [12]. A MRR-based APF consists of a res-
onant cavity implemented with a circular or race-track wave-
guide, which is connected to input/output ports through a
straight bus waveguide. Such a MRR-based APF produces a
frequency selective phase-response, which results in a bell-
shaped group delay (GD) response (i.e., the derivative of the
phase with respect to angular frequency) centered at a reson-
ant wavelength of the cavity. MRR-APF can be conveniently
fabricated for instance with low-loss, CMOS-compatible,
silicon over insulator (SOI) or silicon nitrade (SiNx) technolo-
gies. The optical properties of the MRR, i.e. its phase/GD
response, can be tuned by varying the coupling strength
between the ring and the bus straight waveguide, which can
be achieved by means of variable couplers [13]. Further, the
resonant wavelength of the cavity can be tuned by introducing
a differential optical path change, i.e. a phase shift for the field
circulating in the cavity, by acting on the refractive index of
the waveguide. A viable solution for the realization of a
phase shift in SOI/SiNx-based MRR is to exploit the strong
thermo-optic effect in silicon, through metallic heaters
placed above the ring cavity.

B) The multicarrier integrated optical BFN
The structure of a multicarrier, multibeam, integrated BFN is
sketched in Fig. 5, representing an integrated version of the
one reported in Section II and depicted in Fig. 1. As shown
in the figure, N different optical carriers, each with M SBs,
generated through single-sideband (SSB) optical modulation,
are considered. The signals are fed into a wavelength demul-
tiplexer (DEMUX) stage that can be suitably integrated
within the circuit resorting to the same technology as for
MRRs, and which is responsible for separating the different
carriers and respective SBs at its N output ports. After the

Fig. 3. Oscilloscope traces related to the curves reported in Fig. 4. RF signals at 12.5 GHz (a) and 37.5 GHz (b) from Port1 (P1), Port2 (P2), Port3 (P3), and Port4
(P4), from black to light gray. The legend vertical order follows the order of the offset sinusoidal curves.

Fig. 4. Measurement of the actual front of the step-like imposed phase shift for
three values of Dw: p/2 (gray line), p (black line), 3p/2 (light-gray line).
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DEMUX block, each optical carrier, together with its SBs, is
routed to a BFN. There, the carrier and SBs comb is equally
split over K-separated paths, and each SB propagates in one
or more different MRRs, undergoing to a different phase
shift, similarly to what described in the previous sections,
where the BV-WSS-based BFN is illustrated. At the outputs
of the BFNs, a PD drives the radiating elements of one out
of K different PAAs, each composed by an array of N ele-
ments. The BFN blocks can be implemented employing
MRRs, in two different ways: either resorting to PS or to TTD.

An integrated implementation of the proposed architec-
ture, exploiting PS for beam steering, can be obtained referring
to the scheme sketched in Fig. 6. One optical carrier lj out of
the N wavelengths considered in Fig. 5 enters the kth BFN. For
the sake of simplicity, only three modulated sidebands (SBji in
the figure) are depicted, and SSB modulation is assumed. This
BFN is based on MRRs to implement add/drop (A/D) blocks
and the phase shift blocks. As previously mentioned, by slight-
ly adjusting the resonant frequencies of the MRRs, by means
for instance of thermal heaters, a different phase shift Dwjik

can be introduced over each SB (where 1 ≤ i ≤ M, 1 ≤ j ≤ N,

1 ≤ k ≤ 4). As depicted in the figure, at the first A/D stage,
SBj3 is dropped and propagates toward the MRR imposing
the desired phase shift Dwj3k. Similarly, the remaining SBs
are dropped one by one and each of them undergoes to a con-
trolled phase shift Dwjik thanks to the MRRs. All the optical
signals are eventually recombined, making them beat in a
PD, converting the SBs back to the RF domain to feed an
element of the PAA. Thus, the different-phase radiated RF
signals sum up, producing a beam with the desired orienta-
tion. The phase relations between the signals and the carrier
can be accurately controlled thanks to a feedback network
driven by the PD output, as shown in Fig. 6. RF signals
phase can be measured much more easily, thus mitigating
the problem of undesired phase mismatch.

With respect to the bulk architecture presented in the pre-
vious sections, the MRR-based implementation offers the pos-
sibility of providing a TTD instead of PS, for the signals
traversing the ring structure, thus making it suitable also for
broad-band signals and/or large array size, should the beam
squint [14] represent an issue. The operation principle for
the TTD-based integrated version of the BFN is schematized
in Fig. 7, which extends to a multi-channel scenario the
binary-tree architecture that has been proposed in [15].
Here again, for the sake of clarity and without any loss of gen-
erality, we can still consider one optical carrier lj, which is SSB
modulated by two RF signals to generate two SBs (SBj1 and
SBj2 in the figure). Similarly to the previous scheme, the
optical signal is split over four different paths, in which
MRRs are used to provide different values of group delay.
The amount of GD can be increased without sacrificing the
useful bandwidth by cascading two or more rings with slightly
detuned resonant frequencies [16]. A dedicated ring cascade
for each SB is present on each path. As discussed, the couplers
and the time delays in the MRRs can be properly tuned ther-
mally, in order to provide the desired GD response at the
wavelength corresponding to either SBj1 or SBj2, leaving
unaffected the other signal. In particular, in the topmost
path (from IN to OUT1), the first ring (deep gray) delays
only SBj1 by a certain GD t1, whereas the second ring (light
gray) delays only SBj2 by a different GD t2. Similarly, on the

Fig. 5. Integrated BFN general scheme. SB, Side Band; DEMUX, Demultiplexer; BFN, Beam-forming Network. PD, Photodiode.

Fig. 6. Integrated version of the proposed BFN architecture, based on MRRs.
The phase response profile of the MRRs, ranging in the 0–2p interval, is
sketched. Dwjik is the phase shift on the ith SB of the jth optical carrier on
the kth demux output. SB, Side Band; PD, Photodiode.
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following lower path, a cascade of two couples of properly
shifted MRRs is used to produce a GD of 2t1 and 2t2 for
SBj1 and SBj2, respectively. Following this principle, for
K-outputs BFN, the signal SBji coming out from OUT-K, is
delayed by Kti; thus, an increasing GD with constant inde-
pendently tunable steps going from OUT1 to OUT4 can be
achieved for both SBs [15]. After being delayed in the
optical domain, the signals eventually beat in the PDs, gener-
ating an RF copy of SBj1 and SBj2, by means of an optical
down-conversion process, with a central frequency equal to
the difference between the carrier and the SBs optical fre-
quency. The output of each PD can thus be used to feed a
PAA element and, by the superposition of the RF signals
radiated from each element, the steering of every transmitted
signal is effectively achieved. By changing the delay ti of each
path and by acting on the MRR phase and coupling strength,
the RF signal can thus be steered at any direction, with a
typical sub-ps resolution for the induced delays.

V . C O N C L U S I O N S

In this paper, we have proposed a novel scheme exploiting
signal processing at a photonic level for realizing the inde-
pendent and simultaneous beam steering of multiple RF
signals. Starting from the scheme proposed in [6], which is
based on the use of BV-WSSs, here we propose integrated
implementations of that architecture. BV-WSS allows control-
ling via software the spectral shaping of the optical amplitude
and phase at each output port; the integrated architecture can
perform either PS or TTD, depending on the bandwidth of the
signals the BFN is designed for.

The capability of the proposed system for simultaneously
obtaining an independent, tunable steering of different
signals has been exhaustively demonstrated, also assessing
the degree of precision of the phase control. However, the
exploited BV-WSS is a device purposely designed for optical
wavelength division multiplexing communication systems,
and we believe that a specific design for beam-forming appli-
cations could achieve better performance. The scheme

therefore appears as a promising solution for feeding the
numerous TRMs in a phased-array antenna, digitally control-
ling the direction of several RF signals simultaneously and
independently.

One of the integrated proposed versions of the multi-beam
BFN exploits MRRs to implement A/D blocks as well as
tunable PS elements, orienting the beam-forming strategy
on PS. Alternatively another integrated design has been con-
sidered, exploiting TTD and integrated optical splitters, ideal
for dealing with broadband signals.
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