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The enzymatic hydrolysis of milk proteins yield final products with improved properties and reduced
allergenicity. The degree of hydrolysis (DH) influences both technological (e.g., solubility, water
binding capacity) and biological (e.g., angiotensin-converting enzyme (ACE) inhibition, antioxida-
tion) properties of the resulting hydrolysate. Phenomenological models are unable to reproduce
the complexity of enzymatic reactions in dairy systems. However, empirical approaches offer
high predictability and can be easily transposed to different substrates and enzymes. In this work,
the DH of goat milk protein by subtilisin and trypsin was modelled by feedforward artificial
neural networks (ANN). To this end, we produced a set of protein hydrolysates, employing
various reaction temperatures and enzyme/substrate ratios, based on an experimental design. The
time evolution of the DH was monitored and processed to generate the ANN models. Extensive
hydrolysis is desirable because a high DH enhances some bioactivities in the final hydrolysate,
such as antioxidant or antihypertensive. The optimization of both ANN models led to a maximal
DH of 23·47% at 56·4 °C and enzyme–substrate ratio of 5% for subtilisin, while hydrolysis with
trypsin reached a maximum of 21·3% at 35 °C and an enzyme–substrate ratio of 4%.
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Enzymatic hydrolysis of proteins is an important process in
the food industry that improves the functional properties of
proteins, reduces potential allergenicity and releases pep-
tides displaying a number of biological activities (Tavano,
2013). Food protein hydrolysates present improved proper-
ties such as solubility, emulsifying capacity, foaming ability,
water- or oil-holding capacities, related to crude proteins
(Muro Urista et al. 2011; García-Moreno et al. 2016).
Moreover, these can be incorporated into nutraceutical for-
mulations where they exert certain biological reactions,
including antimicrobial, antioxidant and antihypertensive
activities (Capriotti et al. 2016). Among a wide range of sub-
strates, cow milk protein hydrolysates have been the subject
of extensive research, while goat milk protein hydrolysates
have only recently been shown to exhibit functional and
bioactive properties (Bernacka, 2011; El-Salam & El-
Shibiny, 2013). Serine endopeptidases, such as subtilisin
and trypsin, are usually employed in the hydrolysis of food
proteins. Particularly, while subtilisin is able to attack a
wide range of peptide bonds, trypsin preferentially cleaves
at arginine and lysine residues. Both enzymes have been
used for producing peptides displaying biological activities
such as antioxidant (Pihlanto, 2006), antihypertensive

(López-Fandiño et al. 2006) or antimicrobial (Gobbetti
et al. 2004). Moreover, these enzymes yield protein hydro-
lysates with improved technological properties such as solu-
bility, emulsifying and foaming capacity (Van der Ven et al.
2001; Severin & Xia, 2006).

Many functional and biological properties of protein
hydrolysates are related to their degree of hydrolysis (DH).
For example, emulsifying and foaming capacities present a
maximum at a specific degree of hydrolysis and, if this is
exceeded, these properties are reduced (de Castro et al.
2015). An extensive DH exerts a positive effect on antihy-
pertensive activity because most of the active peptides
have chain lengths shorter than 12 amino acids (Li et al.
2004; Phelan & Kerins, 2011). Similarly, extensive hydroly-
sis of milk proteins can reduce allergenicity significantly for
use in infant formulas (Duan et al. 2014; Dupont et al.
2015).

It can be concluded the extent of the hydrolysis reaction is
a key parameter which should be controlled and predicted
accurately to obtain hydrolysates with specific characteris-
tics. Mechanistic approaches fail to describe the complexity
of various proteins present in milk and different reactions
that occurs during milk hydrolysis (e.g., product inhibition,
enzyme thermal denaturation: Ba & Boyaci, 2007). In this
context, methods based on direct analysis of experimental
data using response surfaces or artificial neural networks,
are a suitable alternative to those based on*For correspondence; e-mail: rperezga@ugr.es
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phenomenological hypotheses. These empirical methods
are applicable to all types of enzymatic reactions and do
not require kinetic assumptions (Bas ̧ et al. 2007).

In particular, response surface methodology is widely
used for modelling and optimization purposes, for which
the response of interest is influenced by several variables.
However, this method is limited in most cases by the use
of polynomial equations. Instead, ANNs can be used to
ensure better data fit and estimation capabilities (Ba &
Boyaci, 2007; Fatiha et al. 2013).

ANN is composed of individual processing elements (i.e.,
neurons) that transform weighted input variables into an
output by means of an activation function. ANNs comprise
one or more hidden layers of neurons. A key element of this
approach is the training algorithm, which allows one to
update the weights and biases of the neurons to obtain
outputs closer to the targets. This training consists of minim-
izing the average squared error (MSE) between the calcu-
lated values and the experimental data. ANN arises as an
alternative to obtain predictive models for protein hydroly-
sis, especially when a large volume of data is available.
The strength of these models, inspired by the human
brain, lies in its ability to learn from experimental data by
training algorithms. By this approach, the model parameters
are updated iteratively, until minimizing the error between
predicted and actual data. In the field of biochemical pro-
cesses, this approach allows obtaining predictive models
without needing to have extensive knowledge of the under-
lying mechanism. This is especially useful in enzymatic
reactions where several phenomena (i.e. substrate solubil-
ization, substrate or product inhibition, thermal inactivation
of the enzyme) may occur simultaneously.

The ANNs have been successfully employed for model-
ling enzymatic reactions. For example, Bryjak et al. (2000)
applied ANNs to model starch hydrolysis by glucoamylase,
while Bas ̧ et al. (2007) studied the reaction rates of maltose
hydrolysis by amyloglucosidase. As for the protein hydroly-
sis, Abakarov et al. (2011) satisfactorily modelled the
kinetics of enzymatic hydrolysis of squid protein with subti-
lisin using the reaction time and the substrate concentration
as input variables. Buciński et al. (2008) and Li et al. (2016)
evaluated the variation of DH during the hydrolysis of
bovine haemoglobin and pea proteins, respectively. Li
et al. (2006) developed a predictive model for the produc-
tion of antioxidant peptides from fish proteins taking into
account a number of input variables such as pH, tempera-
ture, hydrolysis time, muscle/water ratio and enzyme/sub-
strate ratio. Regarding milk proteins, Pinto et al. (2007)
proposed a hybrid neural-kinetic model for predicting the
molecular mass distribution of whey protein hydrolysates.

The aim of this study was to develop two ANN models for
the enzymatic hydrolysis of goat milk proteins, employing
either subtilisin or trypsin as catalysts. For each model, the
DH was modelled as a function of temperature, enzyme–
substrate ratio and the reaction time. Firstly, the architecture
of the neural network (i.e., number of neurons in the hidden
layer) and the training algorithm were chosen to maximize

the degree of fitness (i.e., mean-squared error) of the
model. Both ANN models were then optimized for the
maximal DH, which is desirable because it improves ACE
inhibitory and antioxidant activities of the resulting
hydrolysates.

Materials and methods

Materials

Commercial UHT goat milk (33 g protein/l) was purchased
from a local store. The enzymes used for the assays were
subtilisin (EC 3.4.21.62) and trypsin (EC 3.4.21.4), both sup-
plied by Novozymes (Denmark).

Enzymatic reaction and determination of the degree of
hydrolysis

Before hydrolysis, the milk was skimmed by centrifugation
at 4 °C and 5000 g for 20 min in a Sigma 6k15 centrifuge
(Sigma Laborzentrifugen, Germany). Skimmed goat milk
(200 ml) was then hydrolysed in a stirred tank reactor for
5 h. Initially, the pH of the milk was set at pH 8 with 1 M

NaOH. After reaching the desired temperature, the
enzyme was added at different enzyme–substrate ratio. In
alkaline medium, the cleavage of peptide bonds releases
protons which cause the pH to drop. An automatic titrator
was employed (718 Stat Titrino, Metrohm, Switzerland) to
keep the pH constant during the reaction by adding
NaOH (1 M). The degree of hydrolysis (DH), defined as the
percentage of available peptide bonds which are cleaved
during the reaction, can be related to the amount of base
consumed by Eq. 1 (Adler Nissen, 1986):

DH ¼ nB=(α �mP � hTOT) ð1Þ
where DH is the degree of hydrolysis, nB (mol) is the amount
of NaOH consumed to keep the pH constant, α is the
average degree of dissociation of α-NH2 groups released
during hydrolysis, mP = 6·6 g is the mass of protein in the
substrate and hTOT = 0·0082 eq/g is the average number of
equivalents of peptide bonds per gram of casein protein.

Experimental design

A total of 60 hydrolysates were produced, broken down into
two factorial designs of 30 experiments where subtilisin or
trypsin was employed as catalysts. Each hydrolysate was
produced at a given combination of reaction temperature
(T) and enzyme–substrate ratio (ES), which were the input
variables of the factorial designs. The reaction temperature
was varied at six levels according to the thermal stability
of the enzyme assayed. Subtilisin exhibits wide thermal sta-
bility, presenting optimal activity around 50–55 °C. As for
trypsin, it presents maximal activity around 40 °C (Adler
Nissen, 1986). Therefore, subtilisin was tested at 45, 50,
55, 60, 65 and 70 °C, while trypsin was at 30, 35, 40, 45,
50 and 55 °C. The levels assayed for the enzyme to substrate
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ratio were 1, 2, 3, 4 and 5% for both enzymes. As for the
time of reaction (t), the DH value was recorded every 60 s
over the course of the reaction (5 h). This yields an
amount of 300 experimental data (T, ES, t, DH) for each
hydrolysis curve.

Structure and training of the artificial neuronal network

Two artificial neural network (ANN) models were devel-
oped in this work (i.e. subtilisin and trypsin), where DH
was related to the reaction temperature (T), the enzyme-sub-
strate ratio (ES) and the time of reaction (t) as input variables.
Both ANN models were constructed by means of the Neural
Network Toolbox, implemented in Matlab 7.0 (Mathworks,
USA).

Both artificial neural networks comprised an input layer, a
single hidden layer and an output layer. The input layer
comprised three neurons, corresponding to the 3 input vari-
ables (T, ES, t). This layer is connected to the hidden layer,
whose number of neurons was varied from 1 to 10
neurons. Each neuron k of the hidden layer received a
weighted signal from the input layer sk, expressed as
follows:

sk ¼
X3
i¼1

wik � Xi þ bk ð2Þ

wherewikwere the weight factors and bkwas the bias for the
neuron k. Each neuron of the hidden layer processes the
signal sk by means of a transfer function. The sigmoid func-
tion (implemented in Matlab as logsig) was selected as trans-
fer function in the hidden layer, which returns a value
ranging between 0 and 1 according to Eq. 3:

logsigðskÞ ¼ 1
1þ exp (�sk)

ð3Þ

The k responses exiting the hidden layer are combined into
a single weighted signal t, which is received by an output
neuron, which returns the predicted value of DH. The satu-
rated symmetric lineal function was chosen as transfer func-
tion for the output layer. This function truncates the
weighted signal t within the interval [0,1], avoiding either
negative DH values or above 1.

Three training algorithms were tested in this work: gradi-
ent descent with momentum backpropagation (traingdm),
resilient backpropagation (trainrp) and Levenberg–
Marquardt backpropagation (trainlm). These algorithms
update the weight and bias values in order to minimize
the mean squared error (MSE) between observed and pre-
dicted DH.

For a fixed number of hidden neurons in the hidden layer
and training algorithm (traingdm, trainrp and trainlm), 30
runs were carried, ensuring an appropriate population of
predicted data. At the beginning of each run, the dataset
was normalized and then randomly divided into three
subsets: training, validation and test. The biggest subset
(70% of the total amount of experimental data) was used

for training the network using the algorithm selected.
During the training, the error obtained from the validation
set (15% of the data) was employed for early stopping (i.e.
interruption of the iteration process when over-fitting in
the training dataset is detected). In back-propagation
methods, over-fitting occurs when an improvement in the
fit of the training data is accompanied by larger generaliza-
tion errors. The number of iterations per training run was
limited to 10 000. As an early stopping criterion, the training
process stopped when the MSE increased for 10 iterations.
At this point, the algorithm returned the weights and
biases corresponding to the minimal MSE recorded so far.
Finally, the remaining data (15%) are employed to
compute the test error, which assesses the predictive cap-
ability of the network. This error is also useful to know if a
good division of the data set (i.e. training, validation and
evaluation subset) has been done.

ANN model for DH and optimization procedure

The objective of the ANN procedure was to obtain a predict-
ive model of DH for each of the enzymes employed. Each
model allowed the calculation of DH as a function of the
experimental conditions of temperature, enzyme-substrate
ratio and time of reaction, as expressed by Eq. 4:

DH ¼
XN
k¼1

ωk � logsig
X3
i¼1

wki � Xi þ bk

 !
þ β ð4Þ

X (T, eS, t) denotes the vector of input variables (i.e, the
experimental conditions for each hydrolysis assay); wki
and bk are the weight factors and bias of the input layer,
respectively; ω and β are the weights and bias of the
hidden layer and the transfer function logsig was defined
by Eq. 3.

The training procedure allowed the estimation of the set
of parameters wk, bk, ω and β yielding the minimal
squared error between predicted and observed DH (i.e.,
the best fit between the experimental DH and the predictive
model).

The goal of the optimization problemwas to find the set of
experimental conditions X (T, eS, t), within their experimen-
tal range, which maximizes DH calculated by Eq. 4. To this
end, the Generalized Reduced Gradient (GRG), implemen-
ted in the Solver tool of the MS Excel, was chosen for the
optimization of both models. GRG is a non-linear optimiza-
tion algorithm, which basically evaluates the gradient or
slope of the objective function (i.e. predicted DH) as the
input values (i.e. experimental conditions Xi in Eq. 4)
change and determines that it has reached an optimum solu-
tion when the partial derivatives equal zero. Since GRP is a
local method, the multistart method was chosen to find a
globally optimal solution of the problem. This option con-
sists in operating the GRP algorithm from a set of starting
points, reaching different local optimums which are then
compared to select a global optimum.
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Results and discussion

Architecture and training algorithm of the ANN

The time evolution of the DH was modelled by two artificial
neural networks, depending on the enzyme employed for
the hydrolysis. Each ANN comprised an input layer of
three neurons corresponding to each one of the experimen-
tal factors (T, ES, t), connected to a hidden layer with a vari-
able number of neurons between 1 and 10. The hidden layer
is connected to an output layer with a single neuron, which
returns the predicted value for the degree of hydrolysis. An
average of 30 simulations was performed by a combination
of three training algorithms (i.e. trainrp, traingdp, trainlm)
and a fixed number of neurons in the hidden layer (i.e. 1
to 10). Every training procedure was executed 30 times,
starting from different initial values of weights and biases.
For each trial, the mean squared errors of the training, valid-
ation and test subsets were recorded. Average training and
validation errors were in all cases very similar to test error
values. Indeed, the differences between these errors were
below 1 and 2% for subtilisin and trypsin networks, respect-
ively. Fig. 1 presents the test error of the networks obtained
for the hydrolysis with subtilisin (a) and trypsin (b) as a func-
tion of the training algorithm and the number of neurons in
the hidden layer. For both ANN models, the Levenberg-
Marquardt algorithm showed the best performance, fol-
lowed by trainrp and traingdm. Indeed, test errors decreased
with an increasing number of neurons in the hidden layer for
the trainlm algorithm, resulting in final MSE values of and
5 × 10−4 and 10−3 at 10 neurons for the subtilisin and
tripsin network, respectively. Contrarily, the traingdp algo-
rithm presented overfitting above 6 neurons for both ANN
models. According to these results, the Levengberg–
Marquardt training algorithm was chosen to model the
degree of hydrolysis for both enzymes.

The predictability of both ANN models and the trainlm
algorithm was assessed by the slope and intercept of the
linear fit between predicted and observed values of DH
(Fig. 2). Ideally, the slope and the intercept should be 1
and 0, respectively. In the case of the subtilisin ANN, the
network with 2 neurons in the hidden layer led to an
average slope (i.e. mean value from 30 trials) above
0·950, which increased up to 0·996 at 8 neurons. This
value remained steady in 9 and 10 neurons. The intercept
value for the subtilisin ANN was 6 × 10−3 at 2 neurons
and decreased down to 4 × 10−4 at 10 neurons. Similarly,
the average slope and intercept values for the trypsin
ANN increased and decreased, respectively, with the
number of neurons in the hidden layer. This model
reached a maximal slope of 0·984 and a minimal intercept
of 2 × 10−3 at 10 neurons.

In line of the above, two ANNmodels were proposed to fit
the experimental data employing the Levengberg-
Marquardt training algorithm. The number of neurons in
the hidden layer was fixed at 8 and 10 for the subtilisin
and trypsin ANN, respectively. Under these conditions,

the predictability of both models (i.e. MSE and slope
values) was acceptable while their complexity and time of
computation were limited. This algorithm has been success-
fully employed to model enzymatic processes. For example,
Pinto et al. (2007) modelled the molecular weight distribu-
tion of whey protein hydrolysates. Feed-forward ANNs
trained by the Levensberg–Marquardt algorithm was used
to model the time evolution of DH in the hydrolysis of
blood protein (Pérez-Gálvez et al. 2016) and horse mackerel
protein (Morales-Medina et al. 2016) with subtilisin.
Abakarov et al. (2011) used gradient descent algorithm to
predict the hydrolysis of squid protein using subtilisin.
Similarly, Buciński et al. (2008) use it for hydrolysis of pea
protein employing trypsin.

ANN models for the hydrolysis with subtilisin and trypsin

In all cases, the time evolution of DH followed the charac-
teristic curve described for enzymatic hydrolysis. As an
example, Figs. 3a, b represent the observed values of DH
(point markers) against the time of reaction and enzyme-
substrate ratio for subtilisin and trypsin at 50 °C. It can be
observed that DH presented a sharp linear increase at the
beginning of the hydrolysis, followed by a slight reduction

Fig. 1. Test error as a function of the number of neurons in the
hidden layer for (a) subtilisin and (b) trypsin. Test errors reported
as average of 30 trials trained by gradient descent with
momentum (solid line), resilient backpropagation (dotted line)
and Levensberg-Marquardt algorithm (dashed line).
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to achieve steady state. As the proteolysis progresses, the
remaining number of peptide bonds available for enzyme
attack decreases and so, therefore, does the reaction rate
(Adler Nissen, 1986; Valencia et al. 2014). Depending on
its thermal stability, prolonged times of reaction at high tem-
peratures may provoke thermal inactivation of the enzyme.
The denaturation of the quaternary structure of the enzyme
results in a decrease of its enzymatic activity. Finally, some
authors such as Valencia et al. (2014) relate the decrease of
the reaction rate to the occurrence of product inhibition. In
this case, the peptides released during hydrolysis may
inhibit the reaction progress by forming stable complexes
with substrate or enzyme.

The hydrolysis curves depicted in Fig. 3 show that
increasing enzyme–substrate ratios improved the final
values of DH for the subtilisin reaction. This trend was not
clear for the trypsin reactions, where hydrolysis curves at
ES 4% and 5% were very close or even overlapped with
each other.

As example, at 50 °C, the final DH values observed for
substilisin and trypsin were in the range of 18–24%, and
16–23%, respectively. The solid lines in Fig. 3 represent
the predicted DH calculated from the ANN models pre-
sented above. Fig. 3 illustrates the high degree of fitting
between the observed values of DH and those calculated
by ANN modelling. The determination coefficients of the
linear fit between experimental and calculated values of

DH were r2 = 0·996 and r2 = 0·994 for subtilisin and
trypsin, respectively.

Optimization of the degree of hydrolysis

The application of the Levengsberg–Marquardt algorithm
allowed estimation of the weights and biases of both ANN
models (Eq. 2) for a fixed number of neurons in the hidden
layer. This set of parameters allowed computation of DH
as a function of the reaction conditions (i.e. T, ES and t).
Furthermore, these models were optimized by an evolution-
ary algorithm to determine the optimal parameters for
maximal DH. Extensive hydrolysis seems to enhance a
number of biological activities such as the ACE-inhibitory
and the antioxidant activities. Some of the most potent
ACE inhibitors identified in milk protein hydrolysates corres-
pond to di and tripeptides (Hernández-Ledesma et al. 2014).
Similarly, several short peptides (500–1800 Da) have been
identified as potent antioxidants (Samaranayaka & Li-Chan
2011; Ahmed et al. 2015; Moreno-Montoro et al. 2017).
Peptide size is also a crucial factor for bioavailability of bio-
active peptides. According to the literature, there is no evi-
dence that peptides bigger than tripeptides can move
across the tissues of gastrointestinal tract intact and enter
into the blood stream in bioactive concentrations (Miner-
Williams et al. 2014). The contour plots shown in Figs. 4a, b
represent the calculated values of the final DH (5 h) against
the reaction temperature and the enzyme-substrate ratio.
Both contour plots confirm the positive effect of increasing
enzyme-substrate ratio on DH. This trend was clear for the
hydrolysis with subtilisin, regardless the reaction temperature.
Increasing ES ratios favoured the proteolysis with subtilisin,
obtaining maximum DH of 22–23% with 5% ES ratio.
Optimization of the ANN model confirmed that maximum
DH (23·47%) can be achieved for goat milk proteins using
subtilisin at 56·4 °C with 5% ES ratio. The optimal reaction
temperature is within the range of maximal activity reported
for subtilisin (Adler Nissen, 1986; Ma et al. 2015).
According to the contour plot, the final values of DH at 5%
ES ratio kept above 22% within the experimental range from
45 to 70 °C. This suggests that this enzyme was not signifi-
cantly affected by thermal deactivation, and therefore its
proteolytic activity remained unaltered. This is in line with
previous studies which highlight the high resistance of
subtilisin against thermal denaturation (Adler-Nissen, 1986;
Nagodawithana & Reed, 2013). Subtilisin-like serine proteases
contain a variable number (2–7) of Ca2+-binding sites. Binding
of the calcium ions has been reported to greatly stabilize the
protein structure against thermal unfolding (Foophow et al.
2010).

In contrast, the contour plots for the hydrolysis with
trypsin (Fig. 4b) indicated that the final DH was influenced
by the reaction temperature. This may have resulted from
inactivation of trypsin at higher temperature. The optimal
conditions for maximal DH (21·3%) were 35 °C and ES
4%. Higher levels of enzyme-substrate ratio did not
improve the extent of the hydrolysis, suggesting the

Fig. 2. Slope (dashed line) and intercept (solid line) of the linear fit
of experimental against calculated DH as a function of the number
of neurons in the hidden layer for (a) subtilisin and (b) trypsin. Slope
and intercept reported as average of 30 trials trained by the
Levengsberg–Marquardt algorithm.
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saturation of the peptide bonds available. Trypsin exhibits
narrow specificity towards arginine and lysine residues
(Olsen et al. 2004), while subtilisin is a wide-spectrum pro-
tease. This fact could explain the saturation of available
peptide bonds at ES ratios above 4%. The optimal tempera-
ture condition calculated for trypsin was 35 °C, similar to
the maximum of 37 °C reported in scientific literature
(Adler-Nissen, 1986; Morales-Medina et al. 2016).

For validation purposes, the optimal operating conditions
for maximal DH were reproduced experimentally for both
enzymes. To this end, the predicted optimum conditions
for both subtilisin (56·4 °C and ES 5%) and trypsin (35 °C
and ES 4%) were experimentally evaluated as illustrated in

Fig. 5. Some of the observed values of DH were represented
by point markers, while the curves predicted from the ANN
model were depicted as solid lines. Both curves fitted satis-
factorily the observed data. This was confirmed by the coef-
ficients of determination R2 for both models, which were
0·9883 and 0·9929 for subtilisin and trypsin, respectively.
Moreover, the average deviation between observed and pre-
dicted values was 1·9 ± 1·7% for the hydrolysis with subtili-
sin and 1·7 ± 1·6% for trypsin. The verification hydrolysis
with subtilisin led to a maximal DH of 23·26% at experi-
mental conditions 56·4 °C, 5% ES ratio and 5 h of reaction,
which was similar to the optimum DH (23·47%, 56·4 °C,
5% ES ratio, 5 h) predicted by the proposed ANN model

Fig. 3. Experimental (marker points) and predicted (solid lines) values of DH against time of reaction and enzyme-substrate ratio for (a)
subtilisin at 50 °C and (b) trypsin at 50 °C.
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with 8 neurons in the hidden layer. However, maximumDH
obtained for trypsin mediated hydrolysis under experimen-
tal conditions (35 °C, 4% ES ratio and 5 h of reaction) was
22·17%, which is slightly higher than the predicted value
(21·3%) with optimum conditions (35 °C, ES 4% and 5 h)
using the ANN model with 10 neurons.

In conclusion, ANNmodelling was successfully employed
to predict the degree of hydrolysis of skimmed goat milk pro-
teins with subtilisin and trypsin as a function of the operating
conditions, namely the reaction temperature, the enzyme-
substrate ratio and the time of hydrolysis. The predictability
of both ANN models was improved by testing three training
algorithm and a variable number of neurons (i.e. 1–10) in the
hidden layer. In this regard, two ANN models with 8 and 10
neurons in the hidden layer were selected for subtilisin and
trypsin hydrolysis, respectively. As for the training algorithm,
the Levengsberg-Marquardt led to the minimal test errors
(MSE) for both subtilisin and trypsin with determination coef-
ficients of 0·996 and 0·984, respectively. Furthermore, these

models were optimized by an evolutionary algorithm to
obtain the combination of operating conditions leading to
the maximal DH. Maximum DH (23·47%) was calculated
for subtilisin at 56·4 °C, ES 5% and 5 h of reaction, while
the máximum DH obtained for trypsin was 21·3% at 35 °C,
ES 4% and 5 h reaction. There was a significant correlation
between DH predicted using ANN models and DH obtained
under experimental conditions.

This work was funded by the project P07-TEP-02579 from the
Consejería de Economía, Innovación, Ciencia y Empleo of Junta
de Andalucía, Spain.
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