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Abstract

Description Logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful
formalism for the integration of answer set programming with description logics, for the Semantic
Web. In this paper, we generalize the notions of completion and loop formulas of logic programs to
description logic programs and show that the answer sets of a dl-program can be precisely captured
by the models of its completion and loop formulas. Furthermore, we propose a new, alternative
semantics for dl-programs, called the canonical answer set semantics, which is defined by the models
of completion that satisfy what are called canonical loop formulas. A desirable property of canonical
answer sets is that they are free of circular justifications. Some properties of canonical answer sets
are also explored.
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1 Introduction

Logic programming under the answer set semantics (ASP) is a nonmonotonic reasoning
paradigm for declarative problem solving (Marek and Truszczynski 1999; Niemelä 1999).
Recently, there have been extensive interests in combining ASP with other computational
and reasoning paradigms. One of the main interests in this direction is the integration of
ASP with ontology reasoning, for the Semantic Web.

The Semantic Web is an evolving development of the World Wide Web in which the
meaning of information and services on the web are defined, so that the web content can
be precisely understood and used by agents (Berners-Lee et al. 2001). For this purpose,
a layered structure including the Rules Layer built on top of the Ontology Layer has
been recognized as a fundamental framework. Description Logics (DLs) (Baader et al.
2007) provide a formal basis for the Web Ontology Language which is the standard of the
Ontology Layer (W3C OWL Working Group 2009).
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Adding nonmonotonic rules to the Rules Layer would allow default reasoning with
ontologies. For example, we know that most natural kinds do not have a clear cut definition.
For instance, a precise definition of scientist seems to be difficult by enumerating what
a scientist is, and does. Though we can say that a scientist possesses expert knowledge
on the subject of his or her investigation, we still need a definition of expert knowledge,
which cannot be defined quantitatively. Using nonmonotonic rules, we can perform de-
fault, typicality reasoning over categories, concepts, and roles. The integration of DLs and
(nonmonotonic) rules has been extensively investigated as a crucial problem in the study
of the Semantic Web, such as Semantic Web Rule Language (SWRL) (Horrocks and Patel-
Schneider 2004), MKNF knowledge base (Motik and Rosati 2010), and Description Logic
Programs (dl-programs) (Eiter et al. 2008).

There are different approaches to the integration of ASP with description logics. The
focus of this paper is on the approach based on dl-programs. Informally, a dl-program is a
pair (O ,P ), where O is a DL knowledge base and P is a logic program whose rule bodies
may contain queries, embedded in dl-atoms, to the knowledge base O . The answer to such
a query depends on inferences by rules over the DL knowledge base O . In this way, rules
are built on top of ontologies. On the other hand, ontology reasoning is also enhanced,
since it depends not only on O but also on inferences using (nonmonotonic) rules. Two
semantics for dl-programs have been proposed, one of which is based on strong answer
sets and the other based on weak answer sets.

In this paper, we generalize the notions of completion and loop formulas of logic pro-
grams (Lin and Zhao 2004) to dl-programs and show that weak and strong answer sets
of a dl-program can be captured precisely by the models of its completion and the cor-
responding loop formulas. This provides not only a semantic characterization of answer
sets for dl-programs but also an alternative mechanism for answer set computation, using
a dl-reasoner and a SAT solver.

As commented by (Eiter et al. 2008), the reason to introduce strong answer sets is
because some weak answer sets seem counterintuitive due to “self-supporting” loops.
Recently however, one of the co-authors of this paper, Yi-Dong Shen, discovered that
strong answer sets may also possess self-supporting loops, and a detailed analysis leads
to the conclusion that the problem cannot be easily fixed by an alternative definition of
reduct, since the reduct of dl-atoms may not be able to capture dynamically generated
self-supports arising from the integrated context.

The solution proposed in this paper is to use loop formulas as a way to define answer sets
for dl-programs that are free of self-supports. Thus, we define what are called canonical
loops and canonical loop formulas. Given a dl-program, the models of its completion sat-
isfying the canonical loop formulas constitute a new class of answer sets, called canonical
answer sets, that are minimal and noncircular.

The paper is organized as follows. In the next section, we recall the basic definitions of
description logics and dl-programs. In Section 3, we define completion, weak and strong
loop formulas for dl-programs. The new semantics of dl-programs based on canonical
loop formulas is given in Section 4. Section 5 discusses related work, and finally Section 6
gives concluding remarks. The proofs of the main theorems can be found at http://
webdocs.cs.ualberta.ca/˜you/papers/iclp2010-full-paper.pdf.
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2 Preliminaries

In this section, we briefly review the basic notations for description logics and description
logic programs (Eiter et al. 2008).

2.1 Description logics

In principle, the description logics employed in description logic programs can be arbitrary,
with the restriction that the underlying entailment relation is decidable. Due to space
limitation, we introduce the basic description logic ALC (Baader et al. 2007), instead
of the description logics SHIF and SHOIN described in (Eiter et al. 2008). The
notations introduced here will be used throughout the paper, particularly the entailment
relation O |= F , given at the end of this subsection.

For the languageALC, we assume a vocabulary Ψ = (A ∪ R, I), where A,R and I are
pairwise disjoint (denumerable) sets of atomic concepts, roles (including equality ≈ and
inequality �≈), and individuals respectively. The concepts ofALC are defined as follows:

C ,D −→ A|�|⊥|¬C |C 	 D |C 
 D |∀R · C |∃R · C

where A is an atomic concept and R is a role. The assertions of ALC are of the forms
C (a) or R(b, c), where C is a concept, R is a role, and a , b, c are individuals. An inclusion
axiom of ALC has the form C 
 D where C and D are concepts. A description
knowledge base (or ontology) of ALC is a set of inclusion axioms and assertions of
ALC.

The semantics of ALC is defined by translating to first-order logic and then using
classical first-order interpretations as its semantics. Informally, let the transformation be
τ: (1) τ(A) = A(x ), τ(R) = R(x , y) where A is an atomic concept and R a role; (2)
τ(∀R · C ) = ∀x · R(y , x ) ⊃ τ(C )(x ), and τ(∃R · C ) = ∃x · R(y , x ) ∧ τ(C )(x ); (3)
τ(¬C ) = ¬τ(C )(x ), τ(C 	D) = τ(C )(x )∧ τ(D)(x ), and τ(C 
D) = τ(C )(x )∨ τ(D)(x );
(4) τ(A(a)) = A(a), τ(R(b, c)) = R(b, c); (5) τ(C 
 D) = ∀x ·τ(C )(x ) ⊃ τ(D)(x ). Then,
the semantics ofALC follows from that of first-order logic, so is the entailment relation
O |= F , for a description knowledge base O and an assertion or inclusive axiom F .

2.2 Description logic programs

Let Φ = (P,C) be a first-order vocabulary with nonempty finite sets C and P of constant
symbols and predicate symbols respectively such thatP is disjoint from A ∪ R and C ⊆ I.
Atoms are formed from the symbols in P and C as usual.

A dl-atom is an expression of the form

DL[S1 op1 p1, . . . , Sm opm pm ; Q](�t), (m � 0) (1)

where

• each Si is either a concept, a role or a special symbol in {�, ��};
• opi ∈ {⊕,�,�};
• pi is a unary predicate symbol inP if Si is a concept, and a binary predicate symbol

in P otherwise. The pi s are called input predicate symbols;
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• Q(�t) is a dl-query, i.e., either (1) C (t) where�t = t ; (2) C 
 D where�t is an empty
argument list; (3) R(t1, t2) where�t = (t1, t2); (4) t1 � t2 where�t = (t1, t2); or their
negations, where C and D are concepts, R is a role, and�t is a tuple of constants.

The precise meanings of {⊕,�,�}will be defined shortly. Intuitively, S⊕p (resp. S�p)
extends S (resp. ¬S ) by the extension of p, and S � p constrains S to p.

For example, suppose the interface is such that if any individual x is registered for
a course (the information from outside an ontology) then x is a student (x may not be a
student by the ontology before this communication), and we query if a is a student. We can
then write the dl-atom DL[Student ⊕ registered ; Student](a). Similarly, DL[Student �
registered ;¬Student 	 ¬Employed ](a) queries if a is not a student nor employed, with
the ontology enhancement that if we cannot show x is registered, then x is not a student.

A dl-rule (or simply a rule) is an expression of the form

A← B1, . . . ,Bm , not Bm+1, . . . , not Bn , (n � m � 0) (2)

where A is an atom, each Bi (1 � i � n) is an atom1 or a dl-atom. We refer to A as its
head, while the conjunction of Bi (1 � i � m) and not Bj (m + 1 � j � n) is its body. For
convenience, we may abbreviate a rule in the form (2) as

A← Pos, not Neg (3)

where Pos = {B1, . . . ,Bm} and Neg = {Bm+1, . . . ,Bn}. Let r be a rule of the form (3).
If Neg = ∅ and Pos = ∅, r is a fact and we may write it as “A” instead of “A ←”.
A description logic program (dl-program) K = (O ,P ) consists of a DL knowledge
base O and a finite set P of dl-rules. In what follows we assume the vocabulary of P

is implicitly given by the constant symbols and predicates symbols occurring in P , unless
stated otherwise.

Given a dl-programK = (O ,P ), the Herbrand base of P , denoted by HBP , is the set
of atoms formed from the predicate symbols inP occurring in P and the constant symbols
in C occurring in P . An interpretation I (relative to P ) is a subset of HBP . Such an I is a
model of an atom or dl-atom A under O , written I |=O A, if the following holds:

• if A ∈ HBP , then I |=O A iff A ∈ I ;
• if A is a dl-atom DL(λ; Q)(�t) of the form (1), then I |=O A iff O(I ; λ) |= Q(�t)

where O(I ; λ) = O ∪
⋃m

i=1 Ai (I ) and, for 1 � i � m ,

Ai (I ) =

⎧⎨
⎩
{Si (�e)|pi (�e) ∈ I }, if opi = ⊕;
{¬Si (�e)|pi (�e) ∈ I }, if opi = �;
{¬Si (�e)|pi (�e) /∈ I }, if opi = �;

where�e is a tuple of constants over C. The interpretation I is a model of a dl-rule of the
form (3) iff I |=O B for any B ∈ Pos and I �|=O B ′ for any B ′ ∈ Neg implies I |=O A. I is
a model of a dl-programK = (O ,P ), written I |=O K, iff I is a model of each rule of P .
I is a supported model ofK = (O ,P ) iff, for any h ∈ I , there is a rule (h ← Pos, not Neg)
in P such that I |=O A for any A ∈ Pos and I �|=O B for any B ∈ Neg.

1 Different from that of (Eiter et al. 2008), we consider ground atoms instead of literals for convenience.
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A dl-atom A is monotonic relative to a dl-program K = (O ,P ) if I |=O A implies
I ′ |=O A, for all I ⊆ I ′ ⊆ HBP , otherwise A is nonmonotonic. It is clear that if a dl-atom
does not mention � then it is monotonic. However, a dl-atom may be monotonic even if it
mentions�. E.g., the dl-atom DL[S�p, S�p;¬S ](a) is monotonic (which is a tautology).
Clearly, the� operator is the only one that may cause a dl-atom to be nonmonotonic. Thus
one has no reason to use � in monotonic dl-atoms. It is a reasonable assumption that we
can rewrite a monotonic dl-atom into an equivalent one without using � at all.

We use DLP to denote the set of all dl-atoms that occur in P , DL+
P ⊆ DLP to denote the

set of monotonic dl-atoms, and DL?
P = DLP \DL+

P . A dl-programK = (O ,P ) is positive
if (i) P is “not”-free, and (ii) every dl-atom is monotonic relative toK. It is evident that if
a dl-programK is positive, thenK has a (set inclusion) least model.

2.3 Strong and weak answer sets

Let K = (O ,P ) be a dl-program. The strong dl-transform of K relative to O and an
interpretation I ⊆ HBP , denoted byKs ,I , is the positive dl-program (O , sPI

O ), where sPI
O

is obtained from P by deleting:

• the dl-rule r of the form (2) such that either I �|=O Bi for some 1 � i � m and
Bi ∈ DL?

P , or I |=O Bj for some m + 1 � j � n; and
• the nonmonotonic dl-atoms and not A from the remaining dl-rules where A is an

atom or dl-atom.

The interpretation I is a strong answer set ofK if it is the least model ofKs ,I .
The weak dl-transform ofK relative to O and an interpretation I ⊆ HBP , denoted by
Kw ,I , is the positive dl-program (O ,wPI

O ), where wPI
O is obtained from P by deleting:

• the dl-rules of the form (2) such that either I �|=O Bi for some 1 � i � m and
Bi ∈ DLP , or I |=O Bj for some m + 1 � j � n; and
• the dl-atoms and not A from the remaining dl-rules where A is an atom or dl-atom.

The interpretation I is a weak answer set ofK if I is the least model ofKw ,I .

Example 1
Consider the following dl-programs:

• K0 = (O ,P0) where O = {c 
 c′} and P0 = {w (a)←DL[c ⊕ p; c′](a); p(a)←}.
For this dl-program to make some sense, let’s image this situation: c′ and c are
classes of good conference papers and ICLP papers respectively, p(x ) means that
x is a paper in the TPLP special issue of ICLP 2010, w (x ) means that x is worth
reading, and a stands for “this paper”. Note that c and c′ are concepts in O , and
p and w are predicates outside of O . The communication is through the dl-rule,
w (a) ← DL[c ⊕ p; c′](a), which says that if “this paper” is a good conference
paper, given that any paper in the TPLP special issue of ICLP 2010 is an ICLP paper
and ICLP papers are good conference papers (by the knowledge in O), then it is
worth reading.K0 has exactly one strong answer set {p(a),w (a)}, which is also its
unique weak answer set.
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• Now, suppose someone writes K1 = (O ,P1) where O = {c 
 c′} and P1 =

{p(a) ← DL[c ⊕ p; c′](a)}. This program has a unique strong answer set I1 = ∅
and two weak answer sets I1 and I2 = {p(a)}. It can be seen that there is a circular
justification in the weak answer set I2: that “this paper” is in the TPLP special issue
of ICLP 2010 is justified by its being in it.
The interested reader may verify the following. By the definition of⊕, O(I2; c⊕p) =

O ∪ {c(a)}, and clearly O �|= c′(a) and {c(a), c 
 c′} |= c′(a). So the weak dl-
transform relative to O and I2 isKw ,I2

1 = (O , {p(a) ←}). Since I2 coincides with
the least model of {p(a)←}, it is a weak answer set ofK1. Similarly, one can verify
that the strong dl-transform relative to O and I2 isKs ,I2

1 = (O ,P1). Its least model
is the empty set, so I2 is not a strong answer set ofK1.

• K2 = (O ,P2) where O = ∅ and P2 = {p(a)← DL[c⊕p, b�q; c	¬b](a)}. Both
∅ and {p(a)} are strong and weak answer sets of the dl-program.

• K3 = (∅,P3) where P3 = {p(a) ← DL[c � p, b � q;¬c 	 ¬b](a)}. ∅ and {p(a)}
are both strong and weak answer sets of the dl-program.
• K4 = (∅,P4) where P4 = {p(a) ← DL[c � p;¬c](a)}.K4 has no weak answer

set, and thus it has no strong answer set either.

These dl-programs show that strong (and weak) answer sets may not be (set inclusion)
minimal. It has been shown that if a dl-program contains no nonmonotonic dl-atoms then
its strong answer sets are minimal (Eiter et al. 2008). However, this does not hold for weak
answer sets as shown by the dl-programK1 above, even if it is positive. It is known that
strong answer sets are always weak answer sets, but not vice versa (Eiter et al. 2008).

3 Completion and loop formulas

In this section, we define completion, characterize weak and strong answer sets by loop
formulas, and outline an alternative method of computing weak and strong answer sets.

3.1 Completion

Given a dl-programK = (O ,P ), we assume an underlying propositional languageLK,
such that the propositional atoms ofLK include the atoms and dl-atoms occurring in P .
The formulas ofLK are defined as usual using the connectives ¬,∧,∨,⊃ and↔. The dl-
interpretations (or simply interpretations if it is clear from context) of the languageLK
are the interpretations relative to P , i.e., the subsets of HBP . For a formula ψ ofLK and
an interpretation I of LK, we say I is a model of ψ relative to O , denoted I |=O ψ,
whenever (i) if ψ is an atom, then ψ ∈ I ; (ii) if ψ is a dl-atom, then I |=O ψ; and (iii) the
above is extended in the usual way to arbitrary formulas ofLK.

LetK = (O ,P ) be a dl-program and h an atom in HBP . The completion of h (relative
toK), written COMP (h ,K), is the following formula ofLK:

h ↔
∨

1�i�n

⎛
⎝ ∧

A∈Posi

A ∧
∧

B∈Negi

¬B

⎞
⎠ ,

where (h ← Pos1, not Neg1), . . . , (h ← Posn , not Negn ) are all the rules in P whose heads
are the atom h . The completion ofK, written COMP (K), is the collection of completions
of all atoms in HBP .
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Recall that a model M ⊆ HBP of a dl-programK = (O ,P ) is a supported model if for
any atom a ∈ M , there is a rule in P whose head is a and whose body is satisfied by M .

Proposition 1
LetK = (O ,P ) be a dl-program and I an interpretation of P . Then I is a supported model
ofK if and only if I |=O COMP (K).

Proposition 2
Every weak (resp. strong) answer set of a dl-programK is a supported model ofK.

3.2 Weak loop formulas

In order to capture weak answer sets of dl-programs using completion and loop formulas,
we define weak loops. Formally, let K = (O ,P ) be a dl-program. The weak positive
dependency graph ofK, written Gw

K, is the directed graph (V ,E ), where V = HBP (note
that a dl-atom is not in V ), and (u , v ) ∈ E if there is a dl-rule of the form (2) in P such
that A = u and Bi = v for some i (1 � i � m). A nonempty subset L of HBP is a weak
loop ofK if there is a cycle in Gw

K which goes through only and all the nodes in L.
Given a weak loop L of a dl-programK = (O ,P ), the weak loop formula of L (relative

toK), written wLF(L,K), is the following formula ofLK:

∨
L ⊃

∨
1�i�n

⎛
⎝ ∧

A∈Posi

A ∧
∧

B∈Negi

¬B

⎞
⎠

where (h1 ← Pos1, not Neg1), . . . , (hn ← Posn , not Negn ) are all the rules in P such that
hi ∈ L and Posi ∩ L = ∅ for any i (1 � i � n).

Theorem 1
LetK = (O ,P ) be a dl-program and I an interpretation of P . Then I is a weak answer
set ofK if and only if I |=O COMP (K) ∪ wLF(K), where wLF(K) is the set of weak
loop formulas of all weak loops ofK.

3.3 Strong loop formulas

LetK = (O ,P ) be a dl-program. The strong positive dependency graph ofK, denoted
by Gs

K, is the directed graph (V ,E ), where V = HBP and (p(�c), q(�c′)) ∈ E if there is a
rule of the form (2) in P such that, (1) A = p(�c) and, (2) for some i (1 � i � m), either

• Bi = q(�c′), or
• Bi is a monotonic dl-atom mentioning the predicate q and�c′ is a tuple of constants

matching the arity of q . (If this condition is ignored then it becomes the definition of
weak positive dependency graph.)

A nonempty subset L of HBP is a strong loop ofK if there is a cycle in Gs
K which passes

only and all the nodes in L.
To define strong loop formulas of a dl-program K = (O ,P ), we need to extend the

vocabulary Φ, such that, for any predicate symbol p and a nonempty set of atoms L, Φ

contains the predicate symbol pL that has the same arity as that of p.
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Let L be a nonempty set of atoms, A = DL[λ; Q](�t) be a dl-atom. The irrelevant formula
of A relative to L, written by IF(A,L), is the conjunction of (1) DL[λL; Q](�t), where λL is
obtained from λ by replacing each predicate symbol p with pL whenever p appears in both
λ and L and, (2) for each predicate symbol p mentioned in both λ and L, the instantiation
on C (Chen et al. 2006) of the formula:

∀�X ·

⎡
⎣pL(�X )↔

⎛
⎝p(�X ) ∧

∧
p(�c)∈L

�X �=�c

⎞
⎠

⎤
⎦ (4)

where �X is a tuple of distinct variables matching the arity of p, and �X �= �c stands for
¬(�X = �c), i.e., ¬(x1 = c1 ∧ . . . ∧ xk = ck ) if �X = (X1, . . . ,Xk ) and�c = (c1, . . . , ck ).
Please note that, the instantiation of a formula ∀x · ψ on a finite set D of constants is the
formula

∧
d∈D ψ[x/d ], in which c = c (resp., c = c′) is replaced with � (true) (resp., ⊥

(false)), where c and c′ are two distinct constants. In what follows, we identify the formula
(4) with its instantiation whenever it is clear from its context, unless otherwise stated.

For instance, let A = DL[c ⊕ p; c](a) and L = {p(a), p(b)}. Then IF (A,L) is the
formula:

DL[c ⊕ pL; c](a) ∧ (pL(a)↔ p(a) ∧ a �= a) ∧ (pL(b)↔ p(b) ∧ a �= b)

which is equivalent to

DL[c ⊕ pL; c](a) ∧ ¬pL(a) ∧ (pL(b)↔ p(b))·

Intuitively, the irrelevant formula of A relative to L says that the truth of A only depends
on the truth of the atoms not in L.

We are now in a position to define strong loop formulas. Let L be a strong loop of
K = (O ,P ). The strong loop formula of L (relative to K), written sLF(L,K), is the
following formula ofLK:

∨
L ⊃

∨
1�i�n

⎛
⎝ ∧

A∈Posi

γ(A,L) ∧
∧

B∈Negi

¬B

⎞
⎠

where

• (h1 ← Pos1, not Neg1), . . . , (hn ← Posn , not Negn ) are all the rules in P such that
hi ∈ L and Posi ∩ L = ∅ for all i (1 � i � n),
• γ(A,L) = IF(A,L) if A is a monotonic dl-atom, and A otherwise.

In general, we have to recognize the monotonicity of dl-atoms in order to construct
strong loops of dl-programs. In this sense, the strong loops and strong loop formulas are
defined semantically. If a dl-atom does not mention the operator � then it is obviously
monotonic. Thus for the class of dl-programs in which no monotonic dl-atoms mention �,
the strong loops and strong loop formulas are given syntactically, since it is sufficient to
determine the monotonicity of a dl-atom by checking whether it contains the operator �.

Example 2
LetK = (∅,P ) be a dl-program where P consists of

p(a)← DL[c ⊕ p; c](a); p(a)← not DL[c ⊕ p; c](a)·
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The dl-programK has a unique strong loop L = {p(a)}, but doesn’t have any weak loops.
Its completion is the formula:

p(a)↔ DL[c ⊕ p; c](a) ∨ ¬DL[c ⊕ p; c](a)

which equals to the formula p(a) ↔ �, i.e., p(a). Note that, the strong loop formula
sLF(L,K) is the formula:

p(a) ⊃
[

DL[c ⊕ pL; c](a) ∧ (pL(a)↔ p(a) ∧ a �= a)

∨¬DL[c ⊕ p; c](a)

]
·

It is clear that the interpretation I = {p(a)} is a model of COMP (K) relative to the DL
knowledge base O = ∅. However, I �|=O sLF(L,K).

Theorem 2

LetK = (O ,P ) be a dl-program and I an interpretation of P . Then I is a strong answer
set ofK if and only if I ′ |=O COMP (K) ∪ sLF(K), where sLF(K) is the set of strong
loop formulas of all strong loops ofK and I ′ is the extension of I satisfying (4).

Since a weak loop of a dl-programK is also a strong loop ofK, as a by-product, our
loop formula characterizations yield an alternative proof that strong answer sets are also
weak answer sets.

Proposition 3

LetK = (O ,P ) be a dl-program, I an interpretation of P and L a weak loop ofK. Then
we have I ′ |=O sLF(L,K) ⊃ wLF(L,K), where I ′ is the extension of I satisfying (4).

3.4 An alternative method of computing weak and strong answer sets

Theorems 1 and 2 serve as the basis for an alternative method of computing weak and
strong answer sets using a SAT solver, along with a dl-reasonerR with the following prop-
erty: R is sound, complete, and terminating for entailment checking. LetK = (O ,P ) be
a dl-program and T = COMP (K). We replace all dl-atoms in T with new propositional
atoms to produce T ′. Let ξA be the new atom in T ′, for the dl-atom A in T , and X be
the set of all such new atoms in T ′. Below, we outline an algorithm to compute the weak
answer sets ofK (here we only describe how to compute the first such an answer set). To
compute a strong answer set, replace the word weak with strong.

(i) Generate a model I of T ; if there is none, then there is no weak answer set.

(ii) Check if I is a weak answer set ofK,

(a) if yes, return I as a weak answer set ofK.
(b) if no, add a weak loop formula into T that is not satisfied by I relative to O , and

goto (i).

To generate a model of T , we compute a model M of T ′ using a SAT solver, and then use
R to check the entailment: For any dl-atom A in T , if M |= ξA then M |=O A otherwise
M �|=O A. Let M ′ = M /X . It is not difficult to verify that M ′ is a model ofK.
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The strong and weak answer set semantics of dl-programs have been implemented in a
prototype system called SWLP2, using the ASP solver DLV and a dl-reasoner. The main
difference in the method outlined here is that we use a SAT solver to generate candidate
models, which allows to take the advantages of the state-of-the-art SAT technology.

For strong answer sets, the construction of a strong loop formula requires checking
monotonicity of dl-atoms. However, for the class of dl-programs mentioning no �, this
checking is not needed and the construction of a strong loop formula is hence tractable.

4 Canonical answer sets

4.1 Motivation: the problem of self-support

As commented by Eiter et al. (Eiter et al. 2008), some weak answer sets may be consid-
ered counterintuitive because of “self-supporting” loops. For instance, consider the weak
answer set {p(a)} of the dl-programK1 in Example 1. The evidence of the truth of p(a)

is inferred by means of a self-supporting loop: “p(a)⇐ DL[c ⊕ p; c′](a)⇐ p(a)”, which
involves not only the dl-atom DL[c ⊕ p; c′](a) but the DL knowledge base O . Thus the
truth of p(a) depends on the truth of itself. This self-support is excluded by the strong loop
formula of the loop L = {p(a)}.

Let’s consider the dl-program K2 in Example 1 again. Note that {p(a)} is a strong
answer set ofK2. The truth of the atom p(a) depends on the truth of [c 	 ¬b](a) which
depends on the truth of p(a) and¬q(a). Thus the truth of p(a) depends on the truth of itself.
The self-supporting loop is: “p(a)⇐ DL[c ⊕ p, b � q; c 	¬b](a)⇐ (p(a)∧¬q(a))”. In
this sense, some strong answer sets may be considered counterintuitive as well.

The notion of “circular justification” was formally defined by (Liu and You 2008) to
characterize self-supports for lparse programs, which was motivated by the notion of un-
foundedness for logic programs (Van Gelder et al. 1991) and logic programs with aggre-
gates (Calimeri et al. 2005). With slight modifications, we extend the concept of circular
justification to dl-programs. Formally, letK = (O ,P ) be a dl-program and I ⊆ HBP be a
supported model ofK. I is said to be circularly justified (or simply circular) if there is a
nonempty subset M of I such that

I \M �|=O

∧
A∈Pos

A ∧
∧

B∈Neg
¬B (5)

for any dl-rule (h ← Pos, not Neg) in P with h ∈ M and I |=O

∧
A∈Pos A∧

∧
B∈Neg ¬B .

Otherwise, we say that I is noncircular. Intuitively speaking, Condition (5) means that the
atoms in M have no support from outside of M , i.e., they have to depend on themselves.

Example 3
LetK = (∅,P ) where P consists of

p(a)← not DL[b � p;¬b](a)·

It is not difficult to verify thatK has two weak answer sets ∅ and {p(a)}. They are strong
answer sets ofK as well. In terms of the above definition, {p(a)} is circular.

2 https://www.mat.unical.it/ianni/swlp/; also see (Eiter et al. 2008) for the details of the implementation and
interesting dl-programs
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It is interesting to note that weak answer sets allow self-supporting loops involving
any dl-atoms (either monotonic or nonmonotonic), while strong answer sets allow self-
supporting loops only involving nonmonotonic dl-atoms and their default negations. These
considerations motivate us to define a new semantics which is free of circular justifications.

4.2 Canonical answer sets by loop formulas

LetK = (O ,P ) be a dl-program. The canonical dependency graph ofK, written Gc
K, is

the directed graph (V ,E ), where V = HBP and (u , v ) ∈ E if there is a rule of the form
(2) in P such that A = u and there exists an interpretation I ⊆ HBP such that either of the
following two conditions holds:

(1) I �|=O Bi and I ∪ {v} |=O Bi , for some i (1 � i � m). In this case, we say that v

is a positive monotonic (resp., nonmonotonic) dependency of Bi if Bi is a monotonic
(resp., nonmonotonic) dl-atom. Intuitively, the truth of Bi may depend on that of v

while the truth of u may depend on that of Bi . Thus the truth of u may depend on that
of v .

(2) I |=O Bj and I ∪ {v} �|=O Bj , for some j (1 + m � j � n). Clearly, Bj must be
nonmonotonic. In this case, we say that v is a negative nonmonotonic dependency
of Bj . Intuitively, the truth of u may depend on that of “not Bj ”, while its truth may
depend on that of v . Thus the truth of u may depend on that of v .

A nonempty subset L of HBP is a canonical loop ofK if there is a cycle in Gc
K that goes

through only and all the nodes in L. It is clear that if Bi = v then the interpretation I = {v}
satisfies v while I \ {v} does not. Thus the notion of canonical loops is a generalization of
that of weak loops given in Subsection 3.2, and a generalization of the notion of loops for
normal logic programs (Lin and Zhao 2004).

Note further that the canonical dependency graph is not a generalization of the strong
positive dependency graph, since some strong loops are not canonical loops. E.g., with
the dl-program K = (∅,P ), where P = {p(a) ← DL[c � p, c � p,¬c](a)}, the dl-
atom A = DL[c � p, c � p,¬c](a) is equivalent to �. So it is monotonic. It follows that
L = {p(a)} is a strong loop ofK. However L is not a canonical loop ofK because there
is no interpretation I such that I �|=O A and I ∪ {p(a)} |=O A.

Due to the two kinds of dependencies in a canonical dependency graph defined above,
to define canonical loop formulas, we need two kinds of irrelevant formulas: Let L be a set
of atoms and A = DL[λ; Q](�t) a nonmonotonic dl-atom. The positive canonical irrelevant
formula of A with respect to L, written pCF(A,L), is the conjunction of (1) DL[λL; Q](�t),
where λL is obtained from λ by replacing each predicate p with pL if L contains an atom
p(�c) which is a positive nonmonotonic dependency of A and, (2) for each predicate p

occurring in λ, the instantiation on C of the formula (4) if L contains an atom p(�c) which
is a positive nonmonotonic dependency of A. The negative canonical irrelevant formula of
A with respect to L, written nCF(A,L), is the conjunction of (1) DL[λL; Q](�t), where λL

is obtained from λ by replacing each predicate p with pL if L contains an atom p(�c) which
is a negative nonmonotonic dependency of A and, (2) for each predicate p occurring in λ,
the instantiation on C of the formula (4) if L contains an atom p(�c) which is a negative
nonmonotonic dependency of A.
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LetK = (O ,P ) be a dl-program, M ⊆ HBP and L a loop ofK. The canonical loop
formula of L relative toK under M , written cLF(L,M ,K), is the following formula:

∨
L ⊃

∨
1�i�n

⎛
⎝ ∧

A∈Posi

δ1(A,L) ∧
∧

B∈Negi

¬δ2(B ,L)

⎞
⎠

where

• (h1 ← Pos1, not Neg1), . . . , (hn ← Posn , not Negn ) are all the rules in P such that
hi ∈ L, Posi ∩L = ∅ and M |=O

∧
A∈Posi

A∧
∧

B∈Negi
¬B for each i (1 � i � n),

• δ1(A,L) = pCF(A,L) if A is a nonmonotonic dl-atom, γ(A,L) otherwise,
• δ2(B ,L) = nCF(B ,L) if B is a nonmonotonic dl-atom, and B otherwise.

Given a dl-programK = (O ,P ) and an interpretation I ⊆ HBP . We call I a canonical
answer set ofK if I ′ is a model of COMP (K)∪ cLF(I ,K) relative to O , where I ′ is the
extension of I satisfying (4) and cLF(I ,K) = {cLF(L, I ,K)|L is a canonical loop ofK}.
It is not difficult to prove that every canonical answer set of a dl-programK is a supported
model ofK.

Example 4
Consider the dl-program K2 in Example 1, i.e., K2 = (∅,P2) where P2 = {p(a) ←
DL[c⊕p, b�q; c	¬b](a)}. It is easy to see that the dl-atom DL[c⊕p, b�q; c	¬b](a)

is nonmonotonic, ∅ �|=O DL[c⊕p, b�q; c	¬b](a), and {p(a)} |=O DL[c⊕p, b�q; c	
¬b](a). Thus L = {p(a)} is a canonical loop ofK2. Let I = {p(a)}. The canonical loop
formula cLF(L, I ,K) is equivalent to

p(a) ⊃ DL[c ⊕ pL, b � q; c 	 ¬b](a) ∧ (pL(a)↔ p(a) ∧ (a �= a))

where the last conjunct is equivalent to ¬pL(a). Thus, the loop formula is not satisfied by
the extension of I satisfying (4) relative to the knowledge base ∅. So I is not a canonical
answer set ofK2, even if I is a model of COMP (K2) relative to the knowledge base ∅.

The next example demonstrates the difference among the positive dependency graphs of
dl-programs.

Example 5
LetK = (O ,P ) be a dl-program where O = ∅ and P consists of the following rules:

p(a1)← DL[c ⊕ p, c](a1), p(a3)← not DL[c � p,¬c](a3),
p(a2)← DL[c ⊕ p, b � q; c 	 ¬b](a2),p(a4)← p(a4).

The only weak positive dependency on HBP is (p(a4), p(a4)), the strong positive depen-
dency includes (p(a1), p(a1)) besides the weak one, while the canonical positive depen-
dency contains (p(a2), p(a2)) and (p(a3), p(a3)) in addition to the strong ones. Figure 1
depicts the various dependency relations on HBP . The weak positive dependency graph is
Gw
K = (V ,E ) where V = {p(ai ), q(ai )|1 � i � 4} and E = {(p(a4), p(a4))}, while the

strong one is Gs
K = (V ,E ′) where E ′ = E ∪ {(p(a1), p(a1))}. The canonical dependency

graph is Gc
K = (V ,E ′′) where E ′′ = E ′ ∪ {(p(a2), p(a2)), (p(a3), p(a3))}.

Comparing with the previous definitions of loop formulas, in addition to the irrelevant
formulas of nonmonotonic dl-atoms, the definition of canonical loop formulas has a notable
distinction: it is given under a set M of atoms whose purpose is to restrict that the support
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Fig. 1. The positive dependency relations on HBP

of any atom in L come from the rules whose bodies are satisfied by M (relative to a
knowledge base). The next proposition shows that the canonical loops and canonical loop
formulas for dl-programs are indeed a generalization of loops and loop formulas for normal
logic programs (Lin and Zhao 2004) respectively.

Proposition 4
Let P be a normal logic program, L ⊆ HBP and M a model of the completion of P .

(1) L is a loop of P if and only if L is a canonical loop ofK = (∅,P ).
(2) M |= LF (L,P ) if and only if M |=O cLF(L,M ,P ), where LF (L,P ) is the loop

formula associated with L under P (Lin and Zhao 2004) and O = ∅.

Proposition 5
LetK = (O ,P ) be a dl-program and I a canonical answer set ofK. Then I is minimal
in the sense thatK has no canonical answer set I ′ such that I ′ ⊂ I .

The following two propositions show that the canonical answer sets of dl-programs are
noncircular strong answer sets. Thus canonical answer sets are weak answer sets as well.

Proposition 6
LetK = (O ,P ) be a dl-program and I ⊆ HBP a canonical answer set ofK. Then I is
noncircular.

Proposition 7
LetK = (O ,P ) be a dl-program and I ⊆ HBP a canonical answer set ofK. Then I is a
strong answer set ofK.

The following proposition, together with Proposition 6, implies that the operator � is
the only cause that a strong answer set of a dl-program is circular.

Proposition 8
Let K = (O ,P ) be a dl-program in which P does not mention the operator �. Then
I ⊆ HBP is a canonical answer set ofK if and only if I is a strong answer set ofK.

5 Related work

Integrating ASP with description logics has attracted a great deal of attention recently.
The existing approaches can be roughly classified into three categories. The first is to
adopt a nonmonotonic formalism that covers both ASP and first-order logic (if not for
the latter, then extend it to the first-order case) (Bruijn et al. 2007; Motik and Rosati 2010),
where ontologies and rules are written in the same language, resulting in a tight coupling.
The second is a loose approach: An ontology knowledge base and the rules share the
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same constants but not the same predicates, and the communication is via a well-defined
interface, such as dl-atoms (Eiter et al. 2008). The third is to combine ontologies with
hybrid rules (Rosati 2005; Rosati 2006; de Bruijn et al. 2007), where predicates in the
language of ontologies are interpreted classically, whereas those in the language of rules
are interpreted nonmonotonically.

Although each approach above has its own merits, the loose approach possesses some
unique advantages. In many situations, we would like to combine existing knowledge
bases, possibly under different logics. In this case, a notion of interface is natural and
necessary. The loose approach seems particularly intuitive, as it does not rely on the use
of modal operators nor on a multi-valued logic. One notices that dl-programs share similar
characteristics with another recent interest, multi-context systems, in which knowledge
bases of arbitrary logics communicate through bridge rules (Brewka and Eiter 2007).

However, the relationships among these different approaches are currently not well
understood. For example, although we know how to translate a dl-program without the
nonmonotonic operator � to an MKNF theory while preserving the strong answer set
semantics (Motik and Rosati 2010), when � is involved, no such a translation is known.
Similarly, although a variant of Quantified Equilibrium Logic (QEL) captures the existing
hybrid approaches, as shown by (de Bruijn et al. 2007), it is not clear how one would apply
the loop formulas for logic programs with arbitrary sentences (Lee and Meng 2008) to dl-
programs, since, to the best of our knowledge, there is no syntactic, semantics-preserving
translation from dl-programs to logic programs with arbitrary sentences or to QEL.

In fact, the loop formulas for dl-programs are more involved than any previously known
loop formulas, due to mixing ASP with classical first-order logic. This is evidenced by the
fact that weak loop formulas permit self-supports, strong loop formulas eliminate certain
kind of self-supports, and finally canonical loop formulas remove all self-supports. This
seems to be a unique phenomenon that arises to dl-programs, not to any other known
extensions of ASP, including logic programs with arbitrary sentences.

6 Concluding remarks

In this paper, we characterized the weak and strong answer sets of dl-programs by program
completion and loop formulas. Although these loop formulas also provide an alternative
mechanism for computing answer sets, building such a system presents itself as an inter-
esting future work. We also proposed the canonical answer sets for dl-programs, which
are minimal and noncircular in a formal sense. From the perspective of loop formulas, we
see a notable distinction among the weak, strong and canonical answer sets: the canonical
answer sets permit no circular justifications, the strong answer sets permit circular justifica-
tions involving nonmonotonic dl-atoms but not monotonic ones, whereas the weak answer
sets permit circular justifications that involve any dl-atoms but not atoms.

We remark that, for a given dl-programK = (O ,P ), to decide if a set M ⊆ HBP is a
strong or canonical loop and to construct the strong or canonical loop formula of M are
generally quite difficult, since we have to decide the monotonicity of the dl-atoms occurring
in P . The exact complexity of deciding if a set of atoms is a strong or canonical loop is
one of our ongoing studies, in addition to the complexity of deciding if a given dl-program
has a canonical answer set.
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