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We introduce the λ-coiteration schema for a distributive law λ of a functor T over a functor

F. Parameterised by T and λ it generalises the basic coiteration schema uniquely

characterising functions into a final F-coalgebra. Furthermore, the same parameters are used

to generalise the categorical notion of a bisimulation to that of a λ-bisimulation, while still

giving rise to a proof technique for bisimilarity. We first present a theorem showing the

validity of the resulting definition and proof principles for categories with countable

coproducts.

Our approach gives a unifying categorical presentation and justification of several extensions

of the basic coinduction schemata that have been treated separately before, and some only

for specific types of system. As examples, the duals of primitive recursion and

course-of-value iteration, which are known extensions of coiteration, arise as instances of

our framework.

Moreover, we derive schemata involving auxiliary operators definable with GSOS-style

specifications such as addition of streams, regular operators on languages, or parallel and

sequential composition of processes. The argument is based on a variation of the theory in

the setting of monads and copointed functors. The schemata justify guarded recursive

definitions and an up-to-context proof technique for operators of the type mentioned. The

latter can ease bisimilarity proofs considerably.

1. Introduction

Since around the early nineties, the notion of an F-coalgebra for a functor F on some

category C has been more widely used to formally model dynamical systems in computer

science. These include processes or automata, but also datatypes such as infinite streams

or trees of possibly unbounded depth (see, for example, the introductions by Jacobs and

Rutten (Jacobs and Rutten 1996; Rutten 2000b)). The instance of the functor F determines

the type of behaviour under consideration. This uniform description of different kinds of

system allowed for an abstract formulation of definition and proof principles that had been

studied separately for various applications before. For instance, definitions of bisimilarity

have been proposed for numerous types of systems to model behavioural equivalence of

states. Many of these have been shown to be the corresponding instances of an abstract

notion of bisimilarity defined in terms of F-bisimulations (Aczel and Mendler 1989).

A final F-coalgebra, if it exists, provides a canonical domain for behaviours of the

type F. The term coinduction is used for the definition and proof techniques for such a
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system. To be more precise, we will be talking about the coiteration schema if the finality

of a coalgebra is exploited directly as a definition principle. And, as the coinduction proof

principle, we refer to a technique that uses F-bisimulations to prove equality among the

states of the final F-coalgebra. This is made possible by the fact that bisimilarity and

equality coincide on its state space.

Unfortunately, these basic definition and proof principles are often too rigid to cover

given examples nicely. Many interesting functions into the carrier of a final coalgebra are

not coiterative and many statements about behavioural equivalence require bisimulations

that are difficult to exhibit and check. Therefore various extensions have been proposed,

again initially for particular kinds of systems. An example are process calculi, where

infinite processes are usually specified by systems of recursive equations involving given

composition operators, and often bisimilarity proofs are simplified using bisimulations

up-to (see, for example, Milner (1989)). On the categorical level, two particular extensions

have been formulated that arise as dualisations of schemata from the algebraic world,

namely the duals of primitive recursion and course-of-value iteration (see, for example,

Uustalu and Vene (1999)). The first is often referred to as primitive corecursion.

Our aim is to give a broader categorical account of extended coinduction principles

covering in one approach and in greater generality several of the aforementioned aspects.

We do so by introducing a parameterised framework that can be instantiated to yield

several coinductive definition and proof schemata. It is based on the following idea.

Roughly speaking, the standard way to turn the elements of a set X into states of a

dynamical system of the type F (possibly showing an infinite behaviour) is to specify in

one go, for each inhabitant, direct observations and successors in X, that is, to declare

an F-coalgebra structure on X. Since the successors are taken from the same set, the

same specification can be applied to them to reveal the second layer of observations,

and so on. Our approach generalises this idea as follows: for another functor T, which

enters as a new parameter, the successor states are appointed in TX instead of X (in

other words, we now ask for an FT-coalgebra structure). This is intended to add new

possibilities for the following stages by choosing T such that TX is ‘richer’ than X alone.

For the observations to be continued with these successors, one needs to know how to

lift the original specification to this new set of states. This information takes the shape

of a distributive law λ of T over F (see, for example, Lenisa et al. (2000)), in which the

framework is also parametric.

In essence, the specification for X is taken as a kernel around which a larger system

is constructed in a systematic manner determined by T and λ. The advantage of this

approach is that propositions involving the whole system can sometimes be stated in

terms of this smaller kernel alone, so that the construction can be left implicit. In

particular, certain homomorphisms out of the generated coalgebra can be constructed

from functions out of its kernel that we call homomorphisms up-to. On the one hand,

this lets us introduce the λ-coiteration schema, which defines arrows into the final

F-coalgebra based on the unique existence of homomorphisms up-to. It allows one also

to characterise directly such arrows for sets X that do not carry an appropriate coalgebra

structure themselves. On the other hand, we define the notion of a λ-bisimulation

based on homomorphisms up-to, and prove a λ-coinduction proof principle that enables

https://doi.org/10.1017/S0960129502003900 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003900


Generalised coinduction 323

bisimilarity proofs on the basis of simple relations that are the ‘kernels’ of more complex

bisimulations.

The main statements of this paper express that the above principles work under different

additional assumptions, which are needed to show that the large system can actually be

constructed inside the category. The basic theorem requires the existence of countable

coproducts. Later we also present a variant where the functor T comes as a monad, the

functor F is taken from a copointed functor, and the distributive law λ is assumed to

interact nicely with this additional structure (that is, λ should be a distributive law of the

monad over the copointed functor, again see Lenisa et al. (2000)).

As a trivial instance of the new framework, one recovers the basic coiteration schema

and the standard coinduction proof principle. More interesting settings for T and λ yield

the known schemata of primitive corecursion and the dual of course-of-value iteration

mentioned above. In some more detail, we explain another instance of the framework,

which deals with certain sets of auxiliary operators, like, for example, parallel and

sequential composition for labelled transition systems. More precisely, it can handle such

operators that are definable by a format introduced by Turi and Plotkin (Turi and Plotkin

1997) as a categorical generalisation of the known GSOS rule format (Bloom et al. 1995).

On the one hand, one obtains definition principles guaranteeing unique solutions for

(guarded) recursive equations involving these operators, and on the other hand, this leads

to a proof principle up-to-context for contexts built from them.

1.1. Related work

A first proposal for a parameterised description covering several extended coinduction

principles on a categorical level was made by Lenisa in the course of her comparison of

set-theoretic and coalgebraic (categorical) formulations of coinduction (Lenisa 1999).

Recently, but independently of us, Pardo, Uustalu and Vene introduced a schema for

inductive definitions parametric in a comonad over which the algebra functor distributes

(Uustalu et al. 2001). It turns out to be the dual of our λ-coiteration schema in a version

involving monads.

For labelled transition systems, the bisimulation up-to technique has been put into

a systematic framework by Sangiorgi (Sangiorgi 1998). In particular, he investigates

conditions under which bisimulations up-to-context yield a sound proof principle.

Our presentation uses the notion of a distributive law of a functor T over a functor

F, where T may also come with additional structure, namely as a pointed functor or a

monad, and the functor F may be taken from a copointed functor. These cases have been

presented systematically by Lenisa, Power and Watanabe (Power and Watanabe 1999;

Lenisa et al. 2000). Bialgebras for a distributive law have been taken from the work of

Turi and Plotkin (Turi and Plotkin 1997).

A comparison with some of these papers is given in Section 7.

1.2. Overview of the paper

Following this introduction, we recall the basic coinduction principles in Section 2. In

Sections 3 and 4, we develop basic versions of the definition schema of λ-coiteration and
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the λ-bisimulation proof principle. In Section 5 an instance involving auxiliary operators

is studied in more detail and requires a reformulation of the principles in a more complex

setting. Some further instances of the framework are listed in Section 6 before we conclude

by relating our schemata to the work of other authors and mentioning directions for future

investigations.

The work reported here was presented at the Coalgebraic Methods in Computer Science

2001 Workshop (Bartels 2001).

1.3. Notation

We write C for some category. The category of sets and total functions, to which all our

informal explanations refer, is denoted by Set.

For objects X1, X2, and Xi (i ∈ I), we write X1×X2 and X1+X2 for the binary categorical

product and coproduct and
∐

i∈I Xi for an arbitrary coproduct. The corresponding

projections and injections are denoted by πj : X1 × X2 → Xj and inj : Xj → X1 + X2

for j = 1, 2, and by inj : Xj →
∐

i∈I Xi for j ∈ I . The pairing of two functions

fj : Y → Xj (j = 1, 2) given by the universal property of the product is denoted by

〈f1, f2〉 : Y → X1 × X2. Dually, case analysis is written as [g1, g2] : X1 + X2 → Y and

[gj]j∈I :
∐

i∈I Xi → Y for gj : Xj → Y (j = 1, 2 or j ∈ I). For fi : Xi → Yi (i = 1, 2) we

further abbreviate 〈f1 ◦ π1, f2 ◦ π2〉 to f1 × f2 and [in1 ◦ f1, in2 ◦ f2] to f1 + f2.

We use T,F : C → C to denote two functors, write Id for the identity functor, and A

again for the constant functor associated to an object A. Furthermore, we use F × T and

F + T for the product and coproduct of two functors, P for the power set functor, and

(.)A for exponentiation with an object A. In diagrams we use double arrows for identities

as well as morphisms in the functor category (that is, natural transformations).

2. Standard coinduction principles

In this section we will recall the definition of an algebra and a (final) coalgebra of

a functor, the coiteration definition schema and the bisimulation proof principle. For

detailed expositions we advise the reader again to take a look at the overview papers of

Jacobs and Rutten (Jacobs and Rutten 1996; Rutten 2000b).

Definition 2.1 (T-algebra, F-coalgebra). An algebra for the functor T, or T-algebra for

short, is a pair 〈X, β〉 where X is an object of C and β : TX → X is an arrow. We will

sometimes call X and β the carrier and operation of the algebra. Dually, an F-coalgebra

is a pair 〈X, α〉 where the operation is an arrow α : X → FX.

Generally, algebra operations can be seen as a means for constructing elements of their

carrier. The operation of a coalgebra – also called destruction or unfolding elsewhere –

gives us information about its states. For this information α(x) ∈ FX, we will in our

explanations sometimes distinguish between the observation the state x ∈ X allows and its

dynamics. The first is intended to describe the part of α(x) that does not involve elements

from X, like attributes, whereas with the second we want to focus on these successor

states.
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Definition 2.2 (Homomorphism). An arrow h : X → Y is a T-algebra homomorphism

from one T-algebra 〈X, βX〉 to another T-algebra 〈Y , βY 〉 if it makes diagram (a) below

commute. Similarly, it is an F-coalgebra homomorphism from one F-coalgebra 〈X, αX〉 to

another F-coalgebra 〈Y , αY 〉 if it makes diagram (b) commute.

TX
Th ��

βX

��
(a)

TY

βY

��

X
h ��

αX

��
(b)

Y

αY

��
X

h
�� Y FX

Fh
�� FY

We will often just talk about homomorphisms when their type is clear from the context.

T-algebras and F-coalgebras, together with the corresponding homomorphisms form the

categories AlgT and CoalgF, respectively.

Definition 2.3 (Final F-coalgebra). A final F-coalgebra is a final object in CoalgF, that

is, a coalgebra – usually denoted here by 〈ΩF, ωF〉 – such that there is exactly one

homomorphism from every F-coalgebra to it.

Example 2.4 (Stream systems). Consider the Set-functor FX := IR × X. Its coalgebras

are of the shape 〈X, 〈o, s〉〉 for a set X and two functions o : X → IR and s : X → X. That

is, each state x ∈ X gives rise to an observation o(x) ∈ IR and a successor state s(x) ∈ X.

We will call such a coalgebra a stream system, because, by assuming that we have access

to its states only via its operation, all we can learn about an element x ∈ X is the infinite

stream 〈o(x), o(s(x)), o(s2(x)), . . .〉 ∈ IRω of observations for all the elements consecutively

reachable from it.

In fact, the set of streams of real numbers IRω itself forms a stream system when

equipped with the F-coalgebra structure 〈head, tail〉, where for a stream σ = 〈s0, s1, . . .〉
the observation is given by its first element head(σ) := s0 and the successor by the stream

that remains after removing it, tail(σ) := 〈s1, s2, . . .〉. Moreover, this system can be shown

to be final (see Rutten (2000a) for a proof). We often write the stream σ as 〈s0 : σ′〉 to

mean that head(σ) = s0 and tail(σ) = σ′.

Every F-coalgebra operation α on an object X determines an arrow from it into the

carrier of the final coalgebra, namely the unique homomorphism from 〈X, α〉 to 〈ΩF, ωF〉.
Such an arrow is then called the coiterative arrow defined (or coinduced) by α:

X
∃!h ���������

∀α
��

coiteration

ΩF

ωF

��
FX

Fh
�������� FΩF

Example 2.5 (Coiteration for streams). The coiteration schema for stream systems from

Example 2.4 states that for every pair of functions o : X → IR and s : X → X there is a

unique function h : X → IRω satisfying

head(h(x)) = o(x) and tail(h(x)) = h(s(x)).
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As one example, for A := {f : IR → IR | f analytic in 0} we might want to define the

mapping T : A → IRω sending such a function f to the stream 〈f(0), f′(0), f′′(0), . . .〉 of

its derivatives of all orders at 0 (that is, its Taylor coefficients). It arises as the coiterative

arrow from the F-coalgebra 〈A, α〉 to 〈IRω, 〈head, tail〉〉, where α(f) := 〈f(0), f′〉. In other

words, T is the unique function satisfying

head(T(f)) = f(0) and tail(T(f)) = T(f′).

Second, we would like to define a binary operation ⊕ on IRω compatible with the

addition of analytic functions in the sense that for f, g ∈ A we require

T(f + g) = T(f) ⊕ T(g). (1)

We will show below that by setting α(σ, τ′) := 〈s0 + t0, 〈σ′, τ′〉〉 for σ = 〈s0 : σ′〉 and

τ = 〈t0 : τ′〉 the coiterative morphism ⊕ from 〈IRω × IRω, α〉 to 〈IRω, 〈head, tail〉〉 has this

property. This definition amounts to saying that ⊕ is the unique operation satisfying

head(σ ⊕ τ) = s0 + t0 and tail(σ ⊕ τ) = σ′ ⊕ τ′.

Many types of dynamical systems have been equipped with the notion of a bisimulation

as a tool to define behavioural equivalence. For coalgebras of a functor, an abstract

definition can be given that specialises to many of the concrete proposals. Our version is

based on the notion of a span.

Definition 2.6 (Span). A span R = 〈R, r1, r2〉 between two C objects X and Y consists of

an object R and two arrows r1 : R → X and r2 : R → Y . A span between X and itself is

called a span on X.

There is a preorder � of spans between the objects X and Y defined as 〈R, r1, r2〉 �
〈S, s1, s2〉 if and only if there is an arrow f : R → S such that both triangles in the

following diagram commute:

Rr1

�������� r2

��������

∃f
���
�
�

X Y

S
s1

�������� s2

��������

Definition 2.7 (Bisimulation). A bisimulation between two F-coalgebras 〈X, αX〉 and

〈Y , αY 〉 is a span B = 〈B, b1, b2〉 between their carriers X and Y such that there is

an F-coalgebra operation γ : B → FB turning b1 and b2 into homomorphisms:

X

αX

��

B

∃γ
���
�
�

b1�� b2 �� Y

αY

��
FX FB

Fb1

��
Fb2

�� FY

A bisimulation between an F-coalgebra 〈X, α〉 and itself is called a bisimulation on 〈X, α〉.

In Set one often considers only bisimulations that are relations, that is, spans 〈R, π1, π2〉
for a relation R ⊆ X × Y (see, for example, Rutten (2000b)). We use the formulation
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based on spans because it generalises to other categories and is sometimes easier to

work with. We will still often talk about bisimulation relations. This is justified by the

observation that every span 〈R, r1, r2〉 in Set can be regarded as representing the image

〈r1, r2〉[R] ⊆ X × Y . The order � of spans corresponds to relational inclusion of images.

Furthermore, the image of a (span) bisimulation is a (relational) bisimulation (Rutten

2000b, Lemma 5.3).

The category Set further allows us to talk about the states of a coalgebra, meaning the

elements of its carrier (this is also true for many other – say Set-like – categories, but for

simplicity we will not elaborate on this point here). Two such states s and t are usually

called bisimilar (written s ∼ t) if they are related by some bisimulation. Taking this notion

to mean behavioural equivalence is supported by the fact that when a final F-coalgebra

exists, bisimilar states are identified by the coiterative morphisms.

Theorem 2.8 (Coinduction proof principle). Let 〈X, αX〉 and 〈Y , αY 〉 be two coalgebras

for the Set-functor F. Let hX and hY denote the coiterative morphisms from 〈X, αX〉 and

〈Y , αY 〉 to a final F-coalgebra 〈ΩF, ωF〉. For x ∈ X and y ∈ Y we have

x ∼ y ⇒ hX(x) = hY (y).

In particular, for p, q ∈ ΩF, this means that p ∼ q implies p = q.

Proof. Let R ⊆ X×Y be a bisimulation between 〈X, αX〉 and 〈Y , αY 〉 containing 〈x, y〉,
and let the bisimulation property be witnessed by γ : R → FR. We get the diagram below in

CoalgF, which commutes by finality. This yields hX(x) = hX(π1(〈x, y〉)) = hY (π2(〈x, y〉)) =

hY (y), as required. The special case follows from the fact that the coiterative morphism

from a final coalgebra to itself is the identity.

〈R, γ〉
π2

���
��

��π1

		��
��

�

〈Y , αY 〉

hY		��
��

�
〈X, αX〉

hX ���
��

��

〈ΩF, ωF〉

Example 2.9. As an example, we consider again the operator ⊕ defined coiteratively in

Example 2.5. We can use the coinduction proof principle to prove that it indeed satisfies

equation (1), because the relation

R := {〈T(f + g),T(f) ⊕ T(g)〉 | f, g ∈ A} ⊆ IRω × IRω

can easily be shown to be a bisimulation on the final stream system.

3. Definition by λ-coiteration

The coiteration schema allows us to define a function f : X → ΩF by setting up an

F-coalgebra structure α on X and taking f to be the unique homomorphism from the

resulting coalgebra to 〈ΩF, ωF〉, given by finality. Unfortunately, for many interesting
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functions f : X → ΩF there is no such α making f the coiterative morphism, or it may

not be obvious from the given specification of f.

In this section we are first going to present an example of such a specification. Then

we will formulate the pattern encountered more abstractly and – as the main theorems

of this paper – state sufficient conditions for it to characterise uniquely arrows into the

carrier of a final coalgebra. This yields a definition schema, which we call λ-coiteration.

3.1. Example: multiplication of streams

In Example 2.5 we designed the operation ⊕ such that when applied to the Taylor Series

T(f) and T(g) of two functions f, g ∈ A, it produced T(f + g), the Taylor Series of the

sum of the functions. Similarly, we would now like to specify a multiplication ⊗ on IRω

that agrees with the functional product f · g via the translation T, that is, we would like

to have

T(f) ⊗ T(g) = T(f · g). (2)

Computing the head and tail of the right-hand expression (using (1)), and generalising

T(f) = 〈f(0) : T(f′)〉 to σ = 〈s0 : σ′〉 and T(g) = 〈g(0) : T(g′)〉 to τ = 〈t0 : τ′〉, yields

head(σ ⊗ τ) = s0 · t0 and tail(σ ⊗ τ) = (σ ⊗ τ′) ⊕ (σ′ ⊗ τ).

These two equations do not form a coiterative definition as in Example 2.5 because of

the use of ⊕ in the expression for the tail. To get a better picture of the type of definition

we have here, we set X := IRω × IRω and (for o : X → IR, sl , sr : X → X)

o(σ, τ) := s0 · t0, sl(σ, τ) := 〈σ, τ′〉, and sr(σ, τ) := 〈σ′, τ〉,

to get that ⊗ satisfies the above equations just when it fits into the following diagram:

X
⊗ �������������

φ:=〈o,〈sl ,sr〉〉
��

IRω

〈head,tail〉
��

IR × (X ×X)
idIR×(⊕◦(⊗×⊗))

���������� IR × IRω

Furthermore, consider the functor T := Id × Id. It makes ⊕ a T-algebra operation on

IRω and φ an FT-coalgebra operation on X, since we can express the object in the lower

left-hand corner as FTX (remember that we are using F = IR× Id). Moreover, the arrow

on the bottom can be rewritten as F(⊕ ◦ T⊗). Taken together, we can redraw the diagram

above as follows (adding an arrow to illustrate the typing of ⊕):

TIRω

⊕
��

X
⊗ ��������

φ
��

IRω

〈head,tail〉
��

FTX
F(⊕◦T⊗)

������� FIRω

(3)

Does such an arrow ⊗ exist, and if so, is it unique? This situation will turn out to be an

instance of a more general framework to be developed below.
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3.2. The λ-coiteration definition schema

To describe the format above more abstractly, the following notions are helpful.

Definition 3.1 (〈T,F〉-bialgebra). A 〈T,F〉-bialgebra is a triple 〈X, β, α〉 of an object X

and two arrows β : TX → X and α : X → FX, that is, a T-algebra and an F-coalgebra

operation on a common carrier. Given two 〈T,F〉-bialgebras 〈X, βX, αX〉 and 〈Y , βY , αY 〉,
a 〈T,F〉-bialgebra homomorphism from 〈X, βX, αX〉 to 〈Y , βY , αY 〉 is an arrow h : X → Y

that is both a T-algebra homomorphism from 〈X, βX〉 to 〈Y , βY 〉 and an F-coalgebra

homomorphism from 〈X, αX〉 to 〈Y , αY 〉. As with T-algebras and F-coalgebras, 〈T,F〉-
bialgebras and their homomorphisms form a category BialgT

F.

Definition 3.2 (Homomorphism up-to). Let 〈X,φ〉 be an FT-coalgebra, 〈Y , β, α〉 be a

〈T,F〉-bialgebra, and f : X → Y be an arrow. Writing

f|β := β ◦ Tf : TX → Y

as depicted in diagram (a), we call f a homomorphism up-to from 〈X,φ〉 to 〈Y , β, α〉, if it

makes diagram (b) commute (again we have added the arrow β to illustrate its typing).

TY
β��

TX
Tf ��

f|β





�
�

	



� � �

TY

β

��

(a)

X
f ��

φ

��
(b)

Y

α

��
X

f
�� Y FTX

Ff|β
�� FY

The following straightforward statement about homomorphisms up-to will be useful

later.

Lemma 3.3. Let 〈X,φ〉 and 〈X ′, φ′〉 be FT-coalgebras and let 〈Y , β, α〉 and 〈Y ′, β′, α′〉 be

〈T,F〉-bialgebras.

(i) If f is a homomorphism up-to from 〈X,φ〉 to 〈Y , β, α〉 and h is a bialgebra

homomorphism from 〈Y , β, α〉 to 〈Y ′, β′, α′〉, then h ◦ f is a homomorphism up-to

from 〈X,φ〉 to 〈Y ′, β′, α′〉.
(ii) If g is an FT-coalgebra homomorphism from 〈X ′, φ′〉 to 〈X,φ〉 and f is a homo-

morphism up-to from 〈X,φ〉 to 〈Y , α, β〉, then f ◦ g is a homomorphism up-to from

〈X ′, φ′〉 to 〈Y , α, β〉.

The specification of the arrow ⊗ in (3) now amounts to asking it to be a homomorphism

up-to from 〈X,φ〉 to the 〈T,F〉-bialgebra 〈IRω,⊕, 〈head, tail〉〉 built from the final

F-coalgebra (note that ⊗|⊕ := ⊕ ◦ T⊗). Thus, we are looking for a setting in which

any FT-coalgebra 〈X,φ〉 uniquely determines a homomorphism up-to from 〈X,φ〉 to a

〈T,F〉-bialgebra obtained by equipping the final F-coalgebra 〈ΩF, ωF〉 with a T-algebra

operation β. We will have to come up with a characterisation of suitable such β, since it

is easy to find candidates for which this does not work. Our approach uses the notion of

a bialgebra for a distributive law.
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Definition 3.4 ((Bialgebra for a) Distributive law). A natural transformation λ : TF ⇒ FT

is called a distributive law of the functor T over the functor F.

A bialgebra for the distributive law λ, or a λ-bialgebra for short, is a 〈T,F〉-bialgebra

〈X, β, α〉 such that the following diagram commutes:

TXTα
��







β

��
TFX

λX

��
X

α

��

λ-bialg.

FTX

Fβ 

������

FX

The full subcategory of BialgT
F containing all λ-bialgebras is denoted by λ-Bialg.

A major application of bialgebras for a distributive law λ in computer science has

been given by Turi and Plotkin (Turi and Plotkin 1997), who used them as semantic

models of programming languages with given operational rules. There the two functors

represent program syntax and behaviour, and they come as a monad and a comonad,

respectively. Additional coherence axioms, about the interaction of the extra monad and

comonad structure with λ on the one hand, and with the algebra and coalgebra operations

of the bialgebras on the other hand, are assumed (see Power and Watanabe (1999) for

a structured account of this setting). Subsequently, distributive laws were also used

in situations where less of the extra structure is given and – correspondingly – fewer

coherence axioms are considered (Lenisa et al. 2000). For the moment we only treat plain

functors and no coherence axioms, but we will also encounter some of them later.

Lemma 3.5 (λ-lifting). Given a distributive law λ of a functor T over a functor F, we can

lift T : C → C to the functor Tλ : CoalgF → CoalgF by setting

Tλ 〈X, α〉 := 〈TX, λX ◦ Tα〉 and Tλ h := Th,

for any F-coalgebra 〈X, α〉 and homomorphism h.

Proof. We need to show that for a homomorphism h : 〈X, αX〉 → 〈Y , αY 〉 we get a

homomorphism Th : 〈TX, λX ◦ TαX〉 → 〈TY , λY ◦ TαY 〉. This follows easily from the

naturality of λ (see also Rutten (2000b, Theorem 15.3)).

Note that the condition for a 〈T,F〉-bialgebra 〈X, β, α〉 to be a λ-bialgebra is equivalent

to saying that β is a homomorphism from Tλ 〈X, α〉 to 〈X, α〉. In other words, it is

equivalent to 〈〈X, α〉, β〉 being a Tλ-algebra in CoalgF. With this observation we easily get

the following statement.

Lemma 3.6. Let λ be a distributive law of T over F. For a final F-coalgebra 〈ΩF, ωF〉
there exists a unique T-algebra operation βλ on ΩF such that 〈ΩF, βλ, ωF〉 is a λ-bialgebra.

Furthermore, this λ-bialgebra is final.

Proof. Trivially, for any functor T̃ on any category C̃ with a final object 1 the final

arrow !T̃1 is a unique T̃-algebra operation on 1, and 〈1, !T̃1〉 is final:
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T̃X
T̃ !X �������

β
��

finality

T̃1

!T̃ 1
��

X
!X

�������� 1

The statement follows by considering C̃ = CoalgF, T̃ = Tλ, and 1 = 〈ΩF, ωF〉.

In the case of our example (F = IR× Id and T = Id × Id), the distributive law λ should

give a global account of the addition of two states. For a set X we thus define λX as

λX := 〈〈ox, sx〉, 〈oy, sy〉〉 �→ 〈ox + oy, 〈sx, sy〉〉. (4)

This definition turns the bialgebra 〈IRω,⊕, 〈head, tail〉〉 under consideration into a

λ-bialgebra, which is final according to Lemma 3.6.

Our aim is to show the unique existence of homomorphisms up-to into this final

λ-bialgebra to yield a definition principle. Therefore, we take 〈X,φ〉 as a basis for the

construction of a (larger) F-coalgebra 〈LX, αφ〉. We first show that for any λ-bialgebra

〈Y , β, α〉, homomorphisms up-to from 〈X,φ〉 to 〈Y , β, α〉 factor through an F-coalgebra

homomorphism from 〈LX, αφ〉 to 〈Y , α〉. Second, we prove that for the final λ-bialgebra

the converse is also true: by precomposing the coiterative morphism from 〈LX, αφ〉 to

〈ΩF, ωF〉 with a suitable arrow we get a homomorphism up-to. Our first statement makes

an assumption on the category C, allowing the construction of 〈LX, αφ〉. Later we will

also present a different approach, which exploits extra structure coming with T and F

instead.

Lemma 3.7. Assume the category C has countable coproducts and let λ be a distributive

law of the functor T over the functor F. For an FT-coalgebra 〈X,φ〉, consider the

F-coalgebra 〈LX, αφ〉 with LX :=
∐∞

i=0 TiX and αφ := [Fini+1 ◦ φi]∞
i=0 for φ0 := φ and

φi+1 := λTi+1X ◦ Tφi. A homomorphism up-to f from 〈X,φ〉 to a λ-bialgebra 〈Y , β, α〉
factors as h ◦ in0 for an F-coalgebra homomorphism h from 〈LX, αφ〉 to 〈Y , α〉.

Proof. With the universal property of the countable coproduct one easily gets that h is

a homomorphism from 〈LX, αφ〉 to 〈Y , α〉 if and only if

α ◦ hi = Fhi+1 ◦ φi for all i ∈ IN (5)

where hi := h ◦ ini. We show that h := [fi]
∞
i=0 with f0 := f and fi+1 := fi|β (for which

f = h ◦ in0 holds trivially) satisfies (5) by induction on i. For i = 0 we find back the

assumption on f being a homomorphism up-to. For the induction step, by exploiting

(a) the assumption on 〈Y , β, α〉 being a λ-bialgebra, (b) the induction hypothesis, and

(c) the naturality of λ, we get

α ◦ fi+1 = α ◦ β ◦ Tfi
(a)
= Fβ ◦ λY ◦ T(α ◦ fi)

(b)
= Fβ ◦ λY ◦ T(Ffi+1 ◦ φi)

(c)
= F(β ◦ Tfi+1) ◦ λTi+1X ◦ Tφi = Ffi+2 ◦ φi+1.

In the case of the example, the states of the coalgebra 〈LX, αφ〉 can be viewed as full

binary trees, that is, binary trees where all paths have the same length. Each inner node
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represents an application of ⊕ and each leaf one application of ⊗ to two streams. Given

such a tree of depth i, the structure αφ first expands each leaf into a first element and

another sum for the tail (by applying Tiφ), and then sums up all the heads level by level

(by applying Ti−1λTX through λTiX), resulting in one first element and a tree of depth

i+1 for the tail. If f is a homomorphism up-to from 〈X,φ〉 to the λ-bialgebra 〈Y ,⊕Y , α〉,
then h in the above lemma evaluates a tree by first mapping f to the leaves and then

removing the inner nodes step-by-step by applying ⊕Y .

Theorem 3.8 (λ-coiteration (1)). Assume the category C has countable coproducts. Let

λ be a distributive law of the functor T over the functor F and let 〈ΩF, ωF〉 be a final

F-coalgebra. There exists a unique homomorphism up-to f from any FT-coalgebra 〈X,φ〉
to 〈ΩF, βλ, ωF〉 as in Lemma 3.6, which we call the λ-coiterative arrow coinduced by φ.

TΩF
βλ��

X
∃!f ��������

∀φ
��
λ-coiteration

ΩF

ωF

��
FTX

Ff|βλ
������� FΩF

Proof. Using Lemma 3.7 and its notation, the only candidate for f is h0 = h ◦ in0

for the unique coiterative arrow h : 〈LX, αφ〉 → 〈ΩF, ωF〉. We show that it is indeed a

homomorphism up-to: from (5) we get α ◦ h0 = Fh1 ◦φ, from which the statement follows

when h1 = h0|βλ . This equation is an immediate consequence of [hi+1]
∞
i=0 = [hi|βλ]∞

i=0

which in turn follows by finality from the fact that both arrows are homomorphisms

from 〈LTX, αφ1
〉 (that is, the coalgebra that arises by leaving out the X-component of

〈LX, αφ〉) to 〈ΩF, ωF〉. For the left-hand one this is easy to see. The right-hand one can be

rewritten as the composition βλ ◦ [Thi]
∞
i=0 of two homomorphisms [Thi]

∞
i=0 : 〈LTX, αφ1

〉 →
Tλ 〈ΩF, ωF〉 and βλ : Tλ 〈ΩF, ωF〉 → 〈ΩF, ωF〉. For the first one we show that it satisfies

the corresponding instance of condition (5), where we use (a) condition (5) for h and (b)

naturality of λ:

λΩF
◦ T(ωF ◦ hi)

(a)
= λΩF

◦ T(Fhi+1 ◦ φi)
(b)
= FThi+1 ◦ λTj+1X ◦ Tφi = FThi+1 ◦ φi+1.

And βλ is a homomorphism by definition.

Using this theorem, we can conclude that the specification in Section 3.1 did indeed

uniquely define the function ⊗, because the example was living in Set, which has countable

coproducts. In Section 4 we will further show that this ⊗ satisfies (2) as intended.

We conclude this section by showing that the proof principle from Theorem 2.8 can

easily be adapted to λ-coiterative arrows.

Corollary 3.9. In Set let F, T, λ, and 〈ΩF, ωF〉 be as in Theorem 3.8. For two FT-coalgebras

〈X,φX〉 and 〈Y , φY 〉 with λ-coiterative morphisms fX and fY , respectively, we have

x ∼ y ⇒ fX(x) = fY (y),

where ∼ now denotes FT-bisimilarity.
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Proof. In a similar way to the proof of Theorem 2.8, let R ⊆ X × Y be an FT-

bisimulation with 〈x, y〉 ∈ R and let φR be an FT-coalgebra operation witnessing the

bisimulation property of R. The statement follows from the equation fX ◦ π1 = fY ◦ π2,

which holds by the uniqueness part of Theorem 3.8 since both composites are homo-

morphisms up-to from 〈R,φR〉 to 〈ΩF, ωF〉 by Lemma 3.3 (ii).

We should not conceal an important difference in the significance of the two statements:

in many important cases the converse direction of Theorem 2.8 is also true (for example,

when the functor F weakly preserves pullbacks), so that it yields a complete proof principle.

Unfortunately, this is not true for Corollary 3.9.

4. Proof by λ-coinduction

When developing a bisimilarity proof, there is often more to do to arrive at a bisimulation

than just relate the pairs of states that one wants to prove bisimilar. Many more pairs of

successor states are usually needed, and the hard part is often to come up with a simple

description of a relation sufficiently large to cover them all. This work can sometimes be

eased by considering relations that satisfy conditions weaker than being a bisimulation

but strong enough for a general argument to show that the relation is expandable

to some bisimulation. Such relations are often called bisimulations up-to. We will now

show how one can get such conditions out of the framework presented in the previous

section.

4.1. Example: functional product and stream product

In this section we would like to show that the multiplication of streams of real numbers

defined in Section 3.1 does indeed satisfy equation (2). With the coinduction proof

principle (Theorem 2.8) it suffices to prove that the streams on both sides of the equation

are bisimilar. Ideally, this should be possible by considering the relation

R := {〈T(f · g),T(f) ⊗ T(g)〉 | f, g ∈ A} ⊆ IRω × IRω. (6)

But, unfortunately, the attempt to prove that it is a bisimulation fails: it is easy to show

that all streams related have equal heads, but for the tails one obtains

(σ′ :=) tail(T(f · g)︸ ︷︷ ︸
=:σ

) = T(f · g′)︸ ︷︷ ︸
=:σ′

l

⊕ T(f′ · g)︸ ︷︷ ︸
=:σ′

r

(τ′ :=) tail(T(f) ⊗ T(g)︸ ︷︷ ︸
=:τ

) = (T(f) ⊗ T(g′)︸ ︷︷ ︸
=:τ′

l

) ⊕ (T(f′) ⊗ T(g)︸ ︷︷ ︸
=:τ′

r

).
(7)

This shows that for 〈σ, τ〉 ∈ R instead of containing 〈σ′, τ′〉, as required for a bisimulation,

R relates two pairs 〈σ′
l , τ

′
l〉 and 〈σ′

r, τ
′
r〉 with σ′ = σ′

l ⊕ σ′
r and τ′ = τ′

l ⊕ τ′
r .

In the following we will show that the above condition is sufficient to conclude that B

is contained in some larger bisimulation, which is what we need in order to prove our

initial goal.
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4.2. λ-coinduction

In Section 3 we demonstrated how an FT-coalgebra 〈X,φ〉 can be taken to construct a

(larger) F-coalgebra, and how homomorphisms out of this coalgebra can be constructed

from homomorphism up-to from 〈X,φ〉. Here we will exploit the same idea for bisimilarity

proofs: we will take an FT-coalgebra structure on a relation R to construct a larger relation

containing R. The new relation will be a bisimulation, when R is a λ-bisimulation, a notion

we introduce here.

Definition 4.1 (λ-bisimulation). Let λ be a distributive law of a functor T over a functor

F. A span B = 〈B, b1, b2〉 is a λ-bisimulation between the λ-bialgebras 〈X, βX, αX〉
and 〈Y , βY , αY 〉, if there exists an FT-operation ψ on B, such that b1 and b2 are

homomorphisms up-to from 〈B,ψ〉 to 〈X, βX, αX〉 and 〈Y , βY , αY 〉, respectively:

TX
βX ��

TY
βY��

X

αX

��

B

∃ψ

���
�
�
�

b1�� b2 �� Y

αY

��
FX FTB

Fb1|βX
��

Fb2|βY
�� FY

A λ-bisimulation between 〈X, β, α〉 and itself will be called a λ-bisimulation on 〈X, β, α〉.

A λ-bisimulation can be extended to a standard bisimulation using the construction

from Lemma 3.7.

Theorem 4.2. Let the category C have countable coproducts, let λ be a distributive law of

the functor T over the functor F, and let 〈X, βX, αX〉 and 〈Y , βY , αY 〉 be λ-bialgebras. If

B = 〈B, b1, b2〉 is a λ-bisimulation between 〈X, βX, αX〉 and 〈Y , βY , αY 〉, then there exists

a (conventional) bisimulation B̃ between the F-coalgebras involved with B � B̃.

Proof. Let ψ : B → FTB be a witness for B being a λ-bisimulation (Definition 4.1).

Lemma 3.7 says that there exist F-coalgebra homomorphisms h1 : 〈LB, αψ〉 → 〈X, αX〉
and h2 : 〈LB, αψ〉 → 〈Y , αY 〉 such that bi = hi ◦ in0 for i = 1, 2. This makes αψ a witness

that B̃ := 〈LB, h1, h2〉 is a bisimulation between 〈X, αX〉 and 〈Y , αY 〉, and in0 shows

B � B̃.

Since Set has countable coproducts, Theorem 2.8 can be modified using Theorem 4.2.

Corollary 4.3 (λ-coinduction proof principle). Given a distributive law λ of a functor T

over a functor F in Set, a final F-coalgebra 〈ΩF, ωF〉, and a λ-bisimulation relation R on

〈ΩF, βλ, ωF〉 as in Lemma 3.6, we have that 〈p, q〉 ∈ R implies p = q.

The relation R from the example can be seen to be a λ-bisimulation on the final

λ-bialgebra 〈IRω,⊕, 〈head, tail〉〉 for λ as in (4). The operation ψ : R → FTR in

Definition 4.1 can be chosen as follows: for analytic functions f, g ∈ A it maps the pair

〈σ, τ〉 to 〈f(0) · g(0), 〈〈σ′
l , τ

′
l〉, 〈σ′

r, τ
′
r〉〉〉, where we have again used the abbreviations from

the equations (7). Corollary 4.3 now proves that ⊗ satisfies equation (2), as required.
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5. λ-coiteration and operators

In this section we are again looking for a schema for coinductive specifications involving

auxiliary operators. But this time they should be more freely usable in the sense that the

successor states can be described by multiple applications of them. Moreover, it should

allow operators that would not have been available inside the schema we have considered

so far. Our investigations will lead to a statement based on a variant of the λ-coiteration

theorem living in the world of monads and copointed functors. Again we start with an

example.

5.1. The stream of Hamming Numbers

Taking up an example from Dijkstra’s (Dijkstra 1981), we consider the stream ham ∈ INω

containing all natural numbers in increasing order with no prime factors other than 2

and 3. These numbers are often referred to as the Hamming Numbers (admittedly we have

omitted the prime factor 5 for simplicity). As with the previous examples, the infinite

streams of natural numbers INω are equipped with the operation 〈head, tail〉 turning

them into a final coalgebra, namely for the functor F := IN×Id. Consider the specification

head(ham) = 1 and tail(ham) = merge(map×2(ham), map×3(ham)) (8)

where merge : INω×INω → INω and mapg : INω → INω (for g : IN → IN) are the operators

given coiteratively by declaring that for all σ = 〈s0 : σ′〉 and τ = 〈t0 : τ′〉,

〈head, tail〉(merge(σ, τ)) =




〈s0, merge(σ′, τ)〉 if s0 < t0
〈s0, merge(σ′, τ′)〉 if s0 = t0
〈t0, merge(σ, τ′)〉 if s0 > t0

〈head, tail〉(mapg(σ)) = 〈g(s0), mapg(σ′)〉,

and ×2,×3 : IN → IN are the functions that double and triple their arguments.

To view this as a specification of a function, we treat the constant stream as an arrow

ham : 1 → INω , where 1 = {∗} is a singleton set. To be precise, the stream of Hamming

Numbers would then arise as ham(∗) ∈ INω , but we still denote it by ham alone for

simplicity. Again, the question is whether there exists a unique function satisfying (8). We

are going to give an answer to this type of question in the remainder of this section.

5.2. The problems posed by the example

The example cannot be handled by the framework we have developed so far for two

reasons.

First, the specification for tail(ham) involves the application of three different operators

at the same time. If we work again with a functor T capturing the typing of all the

auxiliary operators under consideration, this would not yield an arrow φ : 1 → FT1. As

a solution, we will take T to represent all terms that we can build. But without any extra

precautions, we would not know whether the T-algebra structure βλ appearing in the

schema would evaluate these terms in the way we expect, namely by iteratively applying
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suitable operators. The algebras doing this are the algebras of the term monad, and we

can guarantee a reasonable outcome by working entirely with these.

Second, it turns out that the operation merge cannot be handled by the present

framework, because for σ = 〈s0 : σ′〉, τ = 〈t0 : τ′〉 ∈ INω the tail of merge(σ, τ) is not

expressed in terms of s0, t0, σ
′, and τ′ only, but also with reference to σ and τ themselves.

To illustrate why this is a problem, assume we wanted to use merge instead of ⊕
within our first example from Section 3.1. This would require a distributive law λ such

that 〈INω, merge, 〈head, tail〉〉 is a λ-bialgebra. Consider the instance of the pentagonal

diagram from Definition 3.4 for σ and τ as above with s0 < t0:

〈σ, τ〉�〈head,tail〉×〈head,tail〉
��





 �

merge

��
〈〈s0, σ′〉, 〈t0, τ′〉〉

�

λINω

���
�
�

merge(σ, τ)
�

〈head,tail〉

��
〈s0, 〈σ′, τ〉〉

�
idIN×merge 

����

〈s0, merge(σ′, τ)〉
It turns out that λINω needs to produce a result involving τ, even though it is not among

its arguments. One may be tempted to suggest that this could be solved by reconstructing

τ from t0 and τ′, but λ should be a natural transformation and how would we generalise

this approach to λX for other sets X?

This limitation of the present framework is due to the fact that given only α(x) for

some arbitrary (unknown) F-coalgebra 〈X, α〉, there is no way to arrive back at x ∈ X.

To overcome this problem, we turn towards a special class of coalgebras for which

the application of the coalgebra structure α can be inverted (even without knowing α),

namely, to coalgebras for a copointed functor. This will later allow us to handle operators

like merge by transforming a given F-coalgebra into a coalgebra of the cofree copointed

functor generated by F, which exists when C has binary products.

We are going to take the following approach. Starting with a signature Σ and a

behaviour functor F, we will apply an adapted version of the λ-coiteration theorem to

the term monad generated by Σ and the cofree copointed functor generated by F. Then

we are going to reformulate the resulting statement in terms of the original ingredients Σ

and F, which will yield a generalisation of the corresponding instance of the λ-coiteration

schema.

5.3. λ-coiteration for monads and copointed functors

In this section we are going to restate the λ-coiteration framework for algebras for a

monad and coalgebras for a copointed functor. We recall the definitions first.

Definition 5.1 (Monad, copointed functor). A monad is a triple 〈T, η, µ〉 of a functor

T : C → C and two natural transformations η : Id ⇒ T and µ : T2 ⇒ T, called the unit

and multiplication of the monad, such that the three parts of the diagrams below commute

– we will call them the unit and multiplication laws of the monad.
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T
ηT ��

id 



T2

µ

�

unit unit

T
Tη��

id��

T2

µ


�
mult.

T3
Tµ��

µT


�
T T T2

µ
��

A copointed functor on a category C is a pair 〈F, ε〉 of a functor F : C → C and a natural

transformation ε : F ⇒ Id, called its counit.

A T-algebra 〈X, β〉 is called an algebra for the monad 〈T, η, µ〉 if the left and middle

diagram below commute – we will refer to them as the unit and multiplication law for

β. The full subcategory of AlgT containing all such algebras is denoted by Alg〈T,η,µ〉. A

coalgebra for a copointed functor 〈F, ε〉 is an F-coalgebra 〈X, α〉 such that α satisfies the

counit law in right diagram below. The full subcategory of CoalgF containing all such

coalgebras is denoted by Coalg〈F,ε〉.

X
ηX ��

id ��

TX

β

��

unit β

TX

β

��
mult. β

T2X
µX��

Tβ

��

X

α

��

id

��
X X TX

β
�� FX εX

��
counit α

X

A natural transformation λ : TF ⇒ FT is called a distributive law of the monad 〈T, η, µ〉
over the copointed functor 〈F, ε〉 if it satisfies the unit, multiplication and counit laws for

λ depicted in the diagrams below. In this setting, a 〈T,F〉-bialgebra 〈X, β, α〉 is called a

λ-bialgebra if it makes the diagram in Definition 3.4 commute, 〈X, β〉 is an algebra for

the monad, and 〈X, α〉 is a coalgebra for the copointed functor.

F

ηF

��

Fη

��
unit λ

TF
λ �� FT TF

λ ��

Tε

��

FT

εT

��
TF

λ
�� FT T2F

µF

��
��������

��������

Tλ �������
����� FT2

Fµ

����������

��������

T

counit λ

TFT
λT

�������
�����

mult. λ

Lemma 5.2 (λ-lifting (2)). Given a distributive law λ of a monad 〈T, η, µ〉 over a copointed

functor 〈F, ε〉, we can lift the monad 〈T, η, µ〉 on C to a monad 〈Tλ, η, µ〉 on Coalg〈F,ε〉 by

setting

Tλ 〈X, α〉 := 〈TX, λX ◦ Tα〉, Tλ h := Th, η〈X,α〉 := ηX, and µ〈X,α〉 := µX,

for any coalgebra for the copointed functor 〈X, α〉 and homomorphism h.

Proof. For Tλ, in addition to the proof of Lemma 3.5, we need to show that λX ◦ Tα

satisfies the counit law. This follows easily from the counit laws for α and λ. For η

and µ one easily gets from the unit and multiplication law of λ that ηX and µX are

homomorphisms from 〈X, α〉 and Tλ
2 〈X, α〉, respectively, to Tλ 〈X, α〉.
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Lemma 5.3. Let λ be a distributive law of the monad 〈T, η, µ〉 over the copointed functor

〈F, ε〉. For a final coalgebra 〈Ω〈F,ε〉, ω〈F,ε〉〉 for the copointed functor there exists a unique

T-algebra operation βλ on Ω〈F,ε〉 such that 〈Ω〈F,ε〉, βλ, ω〈F,ε〉〉 is a λ-bialgebra. Furthermore,

this λ-bialgebra is final.

Proof. The algebra operation βλ is set as in the proof of Lemma 3.6 (with CoalgF

replaced by Coalg〈F,ε〉). In addition, we need to show that this yields an algebra for the

monad. Let 〈T̃, η̃, µ̃〉 be a monad in a category C̃ with a final object 1. The unique T̃-

algebra operation !T̃1 on 1 is an algebra for the monad, since both parts of the following

diagram commute by finality:

1
η̃1 ��

id
��

T̃1

!T̃ 1

��

T̃2 1
µ̃1��

T̃ !T̃ 1

��
1 T̃1

!T̃ 1

��

This argument yields the statement when instantiated with the monad 〈Tλ, η, µ〉 from

Lemma 5.2 (modulo the application of the forgetful functor U : Coalg〈F,ε〉 → C).

When the functor T comes as a monad 〈T, η, µ〉 and the distributive law λ interacts

with η and µ as in the above definition, the construction of the F-coalgebra from an

FT-coalgebra in Lemma 3.7 can be simplified as follows. For every i ∈ IN the elements

from TiX can be represented within TX, by applying η or (possibly several times) µ.

The additional assumptions on λ ensure that these mappings ‘preserve behaviours’, so it

suffices to take this second component of the countable coproduct considered previously

as the carrier of the F-coalgebra that is to be constructed. This allows us to drop the

assumption on C. Moreover, the counit law for λ together with an additional assumption

on φ guarantees that the resulting coalgebra is a coalgebra for the copointed functor.

Lemma 5.4. Let λ be a distributive law of the monad 〈T, η, µ〉 over the copointed functor

〈F, ε〉. Every FT-coalgebra 〈X,φ〉 making the the diagram (∗) below commute gives

rise to a λ-bialgebra 〈LX, µX, αφ〉 with LX := TX and αφ := FµX ◦ φ1, where again

φ1 := λTX ◦ Tφ.

X

φ

��

ηX

��
FTX εTX

��
(∗)

TX

Proof. We need to check that

(i) 〈LX, µX, αφ〉 satisfies the pentagonal law from Definition 3.4,

(ii) µX is an algebra for the monad, and

(iii) αφ is a coalgebra for the copointed functor.

Item (ii) is obvious with the monad laws and for (i) and (iii) we do the left and right

diagram chase below.
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T2X

Tαφ

��

µX ��

T2φ
��

nat. µ

TX

αφ

��

Tφ
��

TX

αφ

��

Tφ
��

TηX

��

id

��

T2FTX
µF TX ��

TλTX
�� mult. λ

TFTX

λTX
��

TFTX

λTX
��

T εTX ��
T(∗)

counit λ

T2X

µX

��

unit

TFT2X

TFµX
��

λT2 X ��

nat. λ

FT3X

FTµX
��

FµTX ��

T(mult.)

FT2X

FµX
��

FT2X

FµX
��

εT2 X

��

TFTX
λTX

�� FT2X
FµX

�� FTX FTX εTX
��

nat. ε

TX

Lemma 5.5. Let λ, 〈T, η, µ〉, 〈F, ε〉, and 〈X,φ〉 be given as in Lemma 5.4. A homomorphism

up-to f from 〈X,φ〉 to any λ-bialgebra 〈Y , β, α〉 factors as h ◦ ηX for a bialgebra

homomorphism h from 〈LX, µX, αφ〉 to 〈Y , β, α〉.

Proof. By setting h := f|β with (a) the naturality of η and (b) the unit law of β, we

indeed get

h ◦ ηX = β ◦ Tf ◦ ηX
(a)
= β ◦ ηY ◦ f (b)

= f.

Furthermore, (a) the naturality of µ and (b) the multiplication law for β yields that h is a

T-algebra homomorphism from 〈LX, µX〉 to 〈Y , β〉:

h ◦ µX = β ◦ Tf ◦ µX
(a)
= β ◦ µY ◦ T2f

(b)
= β ◦ T(β ◦ Tf) = β ◦ Th. (9)

From this and (a) the fact that hf is a homomorphism up-to from 〈LX, φ1〉 to 〈Y , β, α〉, it

finally follows that h is also a coalgebra homomorphism from 〈LX, αφ〉 to 〈Y , α〉:

α ◦ h (a)
= Fh|β ◦ φ1 = F(β ◦ Th) ◦ φ1

(9)
= F(h ◦ µX) ◦ φ1 = Fh ◦ αφ.

To show (a), we instantiate Lemma 3.3 (i) with Tf, β and the intermediate bialgebra

〈TY ,Tβ, λY ◦ Tα〉. From the assumption that 〈Y , β, α〉 is a λ-bialgebra, it follows that β

fits as a bialgebra homomorphism, and Tf fits as a homomorphism up-to with (a) the

assumption on f and (b) the naturality of λ:

λY ◦ T(α ◦ f) (a)
= λY ◦ T(Ff|β ◦ φ)

(b)
= FTf|β ◦ λTX ◦ Tφ = F(Tf)|(Tβ) ◦ φ1.

Theorem 5.6 (λ-coiteration (2)). Let λ be a distributive law of the monad 〈T, η, µ〉 over

the copointed functor 〈F, ε〉, and let 〈Ω〈F,ε〉, ω〈F,ε〉〉 be a final coalgebra for 〈F, ε〉. For every

FT-coalgebra 〈X,φ〉 making diagram (∗) in Lemma 5.4 commute, there exists a unique

homomorphism up-to f from 〈X,φ〉 to 〈Ω〈F,ε〉, βλ, ω〈F,ε〉〉 for βλ as in Lemma 5.3, which

we again call the λ-coiterative arrow coinduced by φ.

Proof. Instantiating Lemma 5.5 with 〈Ω〈F,ε〉, βλ, ωΩ〈F,ε〉 〉 shows that the only candidate

for f is h ◦ ηX , where h is the unique bialgebra homomorphism from 〈LX, µX, αφ〉 to

this final λ-bialgebra. That it is indeed a homomorphism up-to follows from Lemma 3.3

(i) because from (a) the naturality of η, (b) the unit law of λ, and (c) the unit laws of the
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monad, one gets that ηX is a homomorphism up-to from 〈X,φ〉 to 〈LX, µX, αφ〉:

αφ ◦ ηX = FµX ◦ λTX ◦ Tφ ◦ ηX
(a)
= FµX ◦ λTX ◦ ηFTX ◦ φ

(b)
= F(µX ◦ ηTX) ◦ φ (c)

= Fid ◦ φ (c)
= F(µX ◦ TηX) ◦ φ

= FηX |µX ◦ φ.

Note that there is actually a range of λ-coiteration theorems involving more or less extra

structure for T and F, of which Theorem 3.8 (plain functors) and Theorem 5.6 (monad

and copointed functor) are actually two extreme representatives. One intermediate version

uses distributive laws of a monad 〈T, η, µ〉 over a functor F. The proof is based on the same

construction as that of Theorem 5.6, but requires fewer side conditions to be checked. This

version is most appropriate for showing that a number of known schemata are covered

by λ-coiteration, but for space limitations we have not presented it separately here.

As in Section 4, we can also develop a corresponding notion of a λ-bisimulation and

a variant of the λ-coinduction proof principle (Corollary 4.3) in this setting involving a

monad and a copointed functor.

5.4. λ-coiteration for operators

Let Σ = (Σn)n∈IN be a signature, which is to say a set of operator symbols, each with an

associated arity (σ ∈ Σn is an operator symbol with arity n). As usual, this gives rise to a

signature functor, which we will again call Σ, namely,

ΣX :=
∐
n∈IN

Σn ×Xn = {σ(x1, . . . , xn) | n ∈ IN, σ ∈ Σn, x1, . . . , xn ∈ X},

where for readability we write the tuple 〈σ, x1, . . . , xn〉 like a function application.

The signature functor Σ freely generates a monad 〈T, η, µ〉, which we will call the term

monad. The functor T maps a set X to the set of free Σ-terms over X, that is, TX is the

carrier of the initial (X + Σ)-algebra (it can alternatively be characterised as the smallest

set such that X ⊆ TX and ΣTX ⊆ TX). Calling X a set of variables in this context,

the arrow part of T amounts to the renaming of variables. The unit η : Id ⇒ T yields

the embedding of variables into terms (we will usually leave its application implicit) and

µ : T2 ⇒ T flattens terms having again terms as variables.

By induction on the term structure, any Σ-algebra operation Γ : ΣX → X can be

extended to a T-algebra operation [[.]]Γ : TX → X. The T-algebra operations obtained in

this way are precisely the algebras for the term monad (c.f. Definition 5.1). This gives us

that AlgΣ and Alg〈T,η,µ〉 are isomorphic.

For the coalgebra part, note that in a category with binary products every functor

F gives rise to the copointed functor 〈Id × F, π1〉, which can be regarded as the cofree

copointed functor generated by F (Lenisa et al. 2000). One aspect of the special relation

between these two structures is that CoalgF is isomorphic to Coalg〈Id×F,π1〉: each coalgebra

for the copointed functor can be written as 〈X, 〈idX, α〉〉 for an F-coalgebra operation

α. In particular, we have that a final F-coalgebra 〈ΩF, ωF〉 yields a final coalgebra

〈ΩF, 〈idΩF
, ωF〉〉 for 〈Id × F, π1〉
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With these two correspondences we can derive the following statement from

Theorem 5.6.

Corollary 5.7. Let F be a functor with a final coalgebra 〈ΩF, ωF〉 and let Σ be a signature

(also regarded as a functor) generating the term monad 〈T, η, µ〉. If for all n ∈ IN each

σ ∈ Σn comes with a natural transformation

ρσ : (Id × F)n ⇒ FT, (10)

we can uniquely associate to each such σ an operation δσ : (ΩF)n → ΩF such that diagram

(a) below commutes, where ∆ : ΣΩF → ΩF is given by

∆(σ(p1, . . . , pn)) := δσ(p1, . . . , pn).

Furthermore, for every FT-coalgebra 〈X,φ〉 there is a unique arrow f : X → ΩF fitting

into diagram (b).

(ΩF)n〈id ,ωF〉n
��




δσ
���
�
� ΣΩF

∆
��

(ΩF × FΩF)n

ρσΩF

��
ΩF

ωF

��

(a) X

φ

��

f ����������

(b)

ΩF

ωF

��
FTΩF

F[[.]]∆


��

FΩF FTX
Ff|[[.]]∆

��������� FΩF

Proof sketch. The ρσ can be combined with the natural transformation ρ : Σ(Id × F) ⇒
FT, which can be inductively extended to a distributive law λρ : T(Id × F) ⇒ (Id × F)T

of the term monad 〈T, η, µ〉 over the copointed functor 〈Id × F, π1〉 (cf. Theorem 5.4 in

Lenisa et al. (2000)). Lemma 5.3 now yields a unique algebra for the monad βλ such

that 〈ΩF, βλ, 〈id, ωF〉〉 is a final λρ-bialgebra. The isomorphism AlgΣ ∼= Alg〈T,η,µ〉 gives us

a unique Σ-algebra operation ∆ on ΩF such that βλ = [[.]]∆, and this ∆ is equivalent to a

set of operators δσ for n ∈ IN and σ ∈ Σn as mentioned in the statement. The diagram in

Definition 3.4 for the bialgebra now decomposes into the collection of diagrams (a) for

each δσ .

The second part follows by applying Theorem 5.6 to the (Id × F)T-coalgebra 〈ηX, φ〉 :

X → TX × FTX, which trivially satisfies condition (∗) from Lemma 5.4. The charac-

terisation of the λ-coiterative arrow obtained from this theorem can be simplified (using

naturality of η and the unit law for [[.]]∆) to diagram (b).

We will now use this statement to conclude the Hamming Number example. The

signature Σ = (Σn)n∈IN will be set as Σ1 := {map
g

| g : IN → IN}, Σ2 := {merge}, and

Σi := � for i ∈ IN \ {1, 2}. For the ρσ we take

ρ
merge

X (〈x, 〈x0, x
′〉〉, 〈y, 〈y0, y

′〉〉) :=




〈x0, merge(x′, y)〉 if x0 < y0

〈x0, merge(x′, y′)〉 if x0 = y0

〈y0, merge(x, y′)〉 if x0 > y0

ρ
map

g

X (〈x, 〈x0, x
′〉〉) := 〈g(x0), mapg(x

′)〉.
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It is easy to check that the definitions of merge and mapg are equivalent to the

corresponding instances of diagram (a) in the above corollary, so we find δmerge = merge

and δmap
g

= mapg . The specification (8) is translated into the function φ : 1 → IN × T1

defined by

φ(∗) := 〈1, merge(map×2
(∗), map×3

(∗))〉. (11)

Instantiating Corollary 5.7 with this yields a unique arrow ham : 1 → INω satisfying

diagram (b). With

(Fham|[[.]]∆ ◦ φ)(∗) = (F([[.]]∆ ◦ Tham))(〈1, merge(map×2
(∗), map×3

(∗))〉)
= 〈1, [[merge(map×2

(ham), map×3
(ham))]]∆〉

= 〈1, merge(map×2(ham), map×3(ham))〉

we have that this is equivalent to ham satisfying Equation (8). So the latter has a unique

solution, as required.

5.5. Bisimulation up-to-context

Along the same lines we can also adapt the λ-coinduction proof principle based on

Theorem 4.2. For simplicity we will concentrate on λ-bisimulation relations on the final

λ-bialgebra. The basic observation here is that for a relation R ⊆ ΩF × ΩF, a span

of the shape 〈TR, π1|[[.]]∆ , π2|[[.]]∆〉, as it appears inside the corresponding definition of a

λ-bisimulation, describes the congruence closure R∆ of R under ∆. By this we mean the

smallest relation containing R such that for all components δ of ∆ with arity n we have

that 〈δ(p1, . . . , pn), δ(q1, . . . , qn)〉 ∈ R∆ if 〈pi, qi〉 ∈ R∆ for 1 � i � n.

Corollary 5.8. Let F, Σ and ρσ be given as in Corollary 5.7, and take ∆ to be the set

of operators provided by the first part of its statement. We call a relation 〈R, π1, π2〉 on

the carrier of the final F-coalgebra 〈ΩF, ωF〉 a bisimulation up-to-context if there exists

a function ψ : R → FR∆ (where 〈R∆, π′
1, π

′
2〉 is the congruence closure of R under the

operators δσ in ∆) making both parts of the following diagram commute:

ΩF

ωF

��

R

∃ψ
���
�
�

π1�� π2 �� ΩF

ωF

��
FΩF FR∆

Fπ′
1

��
Fπ′

2

�� FΩF

For such a relation R, 〈p, q〉 ∈ R implies p = q for all p, q ∈ ΩF.

The successors of two states related by a bisimulation up-to-context R need not be

related by R themselves, but they need to be obtainable by plugging related states into

the ‘holes’ of the same context, which is an open term built with the operators under

consideration (see, for example, Sangiorgi (1998)).

5.6. Some instances of the format

The Hamming Numbers example does not exploit all the power given by the framework:

in the definition of the ρσ the tails are specified by applying the same operator once. The
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framework allows several applications – possibly also including the other operators. In

order to see a bit better which sets of operators ∆ can be captured by this approach, we

will look more closely at its instances for two functors F.

First, we consider again the setting of infinite streams Aω of elements of some set A (that

is, F := A×Id). The principle allows us to work with sets ∆ of operators such that for every

δ ∈ ∆ with arity n there are functions hδ : An → A and tδ : An → T{x1, . . . , xn, x
′
1, . . . , x

′
n}

such that for τi = 〈ai : τ′
i〉 ∈ Aω we have

head(δ(τ1, . . . , τn)) = hδ(a1, . . . , an),

tail(δ(τ1, . . . , τn)) = [[tδ(a1, . . . , an)[xi := τi, x
′
i := τ′

i]]]∆.

To mimic the famous rule notation for non-deterministic transition systems, we could write

τ
t0−→ τ′ for τ = 〈t0 : τ′〉 and denote such a definition by giving for every a1, . . . , an ∈ A a

rule of the shape

xi
ai−→ x′

i 1 � i � n

δ(x1, . . . , xn)
hδ (a1 ,...,an)−→ tδ(a1, . . . , an)

The two binary operators ⊕ and ⊗ on streams of real numbers, for example, arise by

declaring for all r1, r2 ∈ IR the rules

x1
r1−→ x′

1 x2
r2−→ x′

2

x1 ⊕ x2
r1+r2−→ x′

1 ⊕ x′
2

x1
r1−→ x′

1 x2
r2−→ x′

2

x1 ⊗ x2
r1·r2−→ (x′

1 ⊗ x2) ⊕ (x1 ⊗ x′
2)

Like these, most of the operators defined by Rutten (Rutten 2000a) fit into this format.

Consider a system of guarded recursive equations, which consists of two equations

head(x) = hx and tail(x) = tx for all x in a (not necessarily finite) set of variables X,

where hx ∈ A and tx ∈ TX. Corollary 5.7 yields a unique solution for such a system,

which is an assignment of streams to the variables making the equations hold. (We use the

term ‘guarded’ to express the fact that for every variable x ∈ X the equations immediately

provide the first element hx of the stream to be assigned to x.)

As an example of the use of bisimulations up-to-context in this setting, we show that ⊗
distributes over ⊕: this follows from Corollary 5.8 instantiated with the set ∆ := {⊕,⊗}
containing the two operators under consideration and the relation

R := {〈σ ⊗ (τ⊕ ρ), (σ ⊗ τ) ⊕ (σ ⊗ ρ)〉 | σ, τ, ρ ∈ IRω}.

To see that it is a bisimulation up-to-context, one first easily checks that all related states

have equal heads. Next, for streams σ, τ, and ρ with tails σ′, τ′ and ρ′, we further compute

(using associativity and commutativity of ⊕)

tail(σ ⊗ (τ⊕ ρ)) = (σ ⊗ (τ′ ⊕ ρ′))︸ ︷︷ ︸
=:x1

⊕ (σ′ ⊗ (τ⊕ ρ))︸ ︷︷ ︸
=:x2

,

tail((σ ⊗ τ) ⊕ (σ ⊗ ρ)) = ((σ ⊗ τ′) ⊕ (σ ⊗ ρ′))︸ ︷︷ ︸
=:y1

⊕ ((σ′ ⊗ τ) ⊕ (σ′ ⊗ ρ))︸ ︷︷ ︸
=:y2

,
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We need to show 〈x1 ⊕ x2, y1 ⊕ y2〉 ∈ R∆. This follows easily by applying the closure

condition for ⊕ once, since 〈xi, yi〉 ∈ R ⊆ R∆ for i = 1, 2.

The above identity is one of those Rutten proves for his stream calculus (Rutten 2000a).

In a similar way, the up-to-context principle enables simpler proofs for many of the

equations he states, for example, in Theorem 4.1 in loc. cit.

As a second example for a functor F, consider (image finite) labelled transition systems

with label set A. They can be modelled as coalgebras of the functor F := (Pf )
A, where

Pf denotes the finite power set functor (a state of such a system is often called a process).

Turi and Plotkin (Turi and Plotkin 1997) have shown a close connection between sets

of natural transformations of the type (10) instantiated by this functor and structural

operational rules in GSOS format (Bloom et al. 1995). In this format, for δ ∈ ∆ with arity

n and processes pi, the outgoing transitions of δ(p1, . . . , pn) are determined by the labels

for which the pi have transitions, and they lead to states that can be composed of the pi
and their immediate successors by the operators in ∆.

6. Further properties and instances

As an interesting, though trivial, observation, note that by taking T to be the identity

functor (monad) and λ to be the identity natural transformation, the coiteration schema

itself arises as the λ-coiteration schema and λ-bisimulations are ordinary bisimulations.

Furthermore, many single instances of the framework are extensions of these basic

schemata, in particular, in the following situation. When there is a unit natural trans-

formation η : Id ⇒ T for which λ satisfies the unit law from Definition 5.1, a coiterative

arrow f from the F-coalgebra 〈X, α〉 can be obtained as the λ-coiterative arrow from the

FT-coalgebra 〈X,FηX ◦ α〉, and, with a similar construction, every ordinary bisimulation

on the final coalgebra is a λ-bisimulation. This is because, using an argument similar to

that for Lemma 5.3, the assumption on λ makes βλ satisfy the unit law from Definition 5.1

which yields f|βλ ◦ ηX = f.

One simple extension of the coiteration schema arises as the dual of primitive recursion

and is therefore sometimes called primitive corecursion (see, for example, Uustalu and

Vene (1999)). It states that in a category with binary coproducts, every arrow φ : X →
F(X + ΩF) uniquely determines a morphism f : X → ΩF making the diagram below

commute:

X
∃!f �������������

∀φ
��

primitive corecursion

ΩF

ωF

��
F(X + ΩF)

F[f,id]
����������� FΩF

This characterisation can be obtained from the λ-coiteration schema for the functor

T := Id + ΩF (which can be extended to a monad) and the distributive law

λ : TF ⇒ FT defined as λX := [Finl ,Finr ◦ ωF] : FX + ΩF → F(X + ΩF).
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On the final F-coalgebra the corresponding λ-bisimulations could be called bisimulations

up-to-equality, since the larger bisimulation constructed corresponds to the reflexive closure

of the original relation.

The schema that arises as the dual of (a categorical presentation of) course-of-value

iteration (as given also in Uustalu and Vene (1999)) can also be obtained as an instance

of λ-coiteration. For space limitations, we do not present details here, but we claim that

for this second example the use of the λ-coiteration framework simplifies the justification

of the schema considerably when compared to a proof from scratch.

For a more concrete instance consider the functor F := 2×(Id)A capturing deterministic

automata with alphabet A. The set of languages over A, L := P(A∗), carries a

final F-coalgebra structure (Rutten 1998). The coiterative arrow from any deterministic

automata (that is, F-coalgebra) to this final one assigns to each state the language it

accepts. Non-deterministic automata can be described as FP-coalgebras. A distributive

law λ of the power set monad over F can be given such that the λ-coiterative arrow from

an FP-coalgebra to the final F-coalgebra above captures the classical definition of the

language accepted by a state in a non-deterministic automaton.

7. Related and future work

Our use of a second functor T to generalise coinductive definition schemata was inspired

by work of Lenisa (Lenisa 1999), who was probably the first to give a framework for

extended formats on the categorical level. She introduced the principle of coiteration up-

to-T for a pointed functor T = 〈T, η〉 – that is, a functor with a natural transformation

η : Id ⇒ T. Distributive laws and FT-coalgebras are not mentioned in her schema in

the first place, but they appear later in a proof principle for certain arrows coiterative

up-to-T (although they appear as a technical prerequisite rather then being viewed as

specifications determining the resulting schema).

Lemma 5.5 shows that in the setting involving a monad 〈T, η, µ〉 whose structure is

respected by the distributive law λ, the λ-coiterative arrows from a set X factor as h ◦ ηX
for a coiterative arrow h, which is to say they form a special class of arrows coiterative up-

to-〈T, η〉 in the sense of Lenisa. Her framework yields a statement about the equivalences

induced by such arrows, a subject that we have not devoted much attention to here

admittedly. The technical assumption in her main theorem (stated in a revised version in

Lenisa et al. (2000) as Theorem 6.9 based on Theorem 6.6) is almost equivalent to the

statement in Lemma 5.4, and thus satisfied, but unfortunately the resulting principle in

this case does not go beyond Corollary 3.9.

For the mentioned statement, Lenisa introduced the notion of a bisimulation up-to-T
between coalgebras of a special shape as a proof tool. We found that the concept is useful

for other types of bisimilarity proofs as well. A generalisation to arbitrary λ-bialgebras

resulted in our notion of a λ-bisimulation.

For the functional programming community, Pardo, Uustalu and Vene (Uustalu et al.

2001) have recently, but independently from us, introduced a framework for generalised

inductive definitions parametric in a comonad over which the algebra functor distributes.

Their schema turns out to be the dual of the mentioned version of the λ-coiteration

https://doi.org/10.1017/S0960129502003900 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003900


F. Bartels 346

schema involving a monad and a plain functor. They show that standard iteration,

primitive recursion, and course-of-value iteration arise as instances of their format,

and they give an implementation in the functional language Haskell. Their work does

not contain a dual to our treatment of λ-bisimulations and to our schema involving

auxiliary operators (Corollary 5.7). Interestingly, the latter does dualise to their setting,

which yields formats going beyond the instances considered in loc. cit. in that they

allow the value of f(t) to depend on function values f(t′) for certain t′ that are not

necessarily sub-terms of t. We plan to present the details of this instance in a forthcoming

paper.

Various other individual definition schemata for arrows into a final coalgebra that are

developed from coiteration appear in the literature. As recent examples we mention the

Flattening Lemma by Moss (Moss 2001, Lemma 2.1) and the Solution Theorem by Aczel,

Adámek and Velebil (Aczel et al. 2001, Theorem 3.3), which can be seen as variants of

primitive corecursion and the dual of course-of-value iteration, respectively.

We should stress that our framework (and its dual above) needs to be distinguished

from another approach to generalise coinductive definition principles, which also involves

a monad and a distributive law, but this time of the behavioural functor F over the monad

(Power and Turi 1999). The aim there is to define arrows with a codomain constructed

from a final coalgebra, like sets of streams or the choice between a standard behaviour

and an exception (or, for the dual case, arrows from an initial datatype plus parameters

(Pardo 2000)).

Our work on bisimilarity proofs is related to that of Sangiorgi (Sangiorgi 1998). He

works more concretely with labelled transition systems in Set and develops a framework

yielding sound conditions for bisimulations up-to. Our more global approach cannot

handle all aspects he covers, like bisimulation up-to-bisimilarity, because it refers to

the (local) bisimilarity relation on one specific coalgebra, but the theories overlap, for

example, for the important instance of bisimulations up-to-context. Sangiorgi proves that

the principle is sound for operators given by (unary) De Simone rules. Besides generalising

the setting to arbitrary types of systems, we improve this result by showing that one can

move to the more powerful format of GSOS rules.

We based this result on a categorical formulation of GSOS rules given by Turi and

Plotkin (Turi and Plotkin 1997). They have shown that such specifications lead to

distributive laws of a free monad over a cofree comonad. Lenisa et al. (2000) sharpened

this result by showing that they correspond precisely to the class of distributive laws

of the free monad over the cofree copointed functor. With the definition and proof

principles from Corollaries 5.7 and 5.8, we can now justify the fact that this narrower

class is interesting in its own right, because the statements do not hold in the larger class

considered by Turi and Plotkin. This follows from an example of Sangiorgi’s (see the end

of Section 2 in Sangiorgi (1998)) demonstrating that the up-to-context proof technique

is not sound for all operators. It turns out that the operators used in this example are

definable by safe tree rules, a format covered by distributive laws of a monad over a

comonad as well (Turi and Plotkin 1997).

Our framework yields yet another indication of the importance of the categorical

treatment of GSOS rules. This makes it even more interesting to spell out this formulation
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for further types of systems. As an example, we have made preliminary steps towards

applying it in the area of probabilistic transition systems.

We have also left for future work a strengthening of the statement about equivalences

induced by λ-coiterative arrows in Corollary 3.9. Another direction might be a study of

invariance in this context.
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