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Abstract

Gyrating ion beams, produced by quick ionization of neutral beams, employed for plasma heating, are susceptible to ion
Bernstein and ion cyclotron instabilities. The Bernstein wave, having large parallel phase velocity, is excited via cyclotron
interaction whereas the ion cyclotron wave with lower parallel phase velocity could be driven by Cerenkov interaction as
well. The maximally growing modes have transverse wave number of the order of inverse ion Larmor radius. The nonlocal
effects cause reduction in the growth rate.
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1. INTRODUCTION

The ion Bernstein waves (IBWs) play an important role in
radio frequency heating of tokamak in the ion cyclotron
range of frequencies (ICRF), hence are a subject of continued
attention (Bonoli et al., 1997; Tripathi et al., 1987; Paoletti
et al., 1999; Brizard & Kaufman, 1996; Sharma & Tripathi,
1988; Myra & D’lppolito, 1997; Zhao et al., 2001; Li et al.,
2003; Sharma et al., 1994). A large amplitude IBW can
strongly couple with low frequency turbulence and influence
plasma transport. It may also give rise to parametric instabil-
ities and ponderomotive effects that have been suggested as
cause for serious impurity release from the walls in exper-
iment on IBW heating (Li et al., 2001; Clark & Fisch,
2000; Kumar & Sharma, 1989). The IBW can penetrate the
hot plasma core without strong attenuation until approaching
the harmonic cyclotron layers where strong ion cyclotron
damping occurs (Cardinali, 1993; Ono, 1993; Cardinali
et al., 1998). Plasma heating by directly launched ion Bern-
stein waves (IBWH) has been actively investigated in recent
years (Sugaya, 1987; Ono et al., 1988). As a result of their
relatively short wavelength, the IBW can heat the bulk-ion
distributions, and the wave polarization, and the relatively
wide operating frequency range permit a flexible waveguide
launcher design attractive for the compact ignition device.
IBWH can also interact nonlinearly with subharmonics of

the ion cyclotron frequencies, giving rise to new heating
scenarios. Porkolab (1985) has shown that nonlinear ion
Landau (cyclotron) damping efficiently absorbs the pump-
wave power during ion Bernstein wave heating experiments
in tokamak and tandem mirrors. The heating experiments
on the Frascati Tokamak UP-grade (Cesario et al., 2001)
have reported efficient ion heating up to the fourth harmonic
of hydrogen plasma. There is also a possibility that the IBW
could be employed to enhance plasma confinement and drive
poloidal current.

There is yet another potential source of IBW excitation,
viz., the neutral particle beam injected into tokamak for
auxiliary heating. The neutral beam quickly gets ionized to
convert into a gyrating ion beam and latter can excite IBW.
Saha et al. (1988) have experimentally observed the exci-
tation of IBW by an ion beam in a beam created-plasma in
an axial magnetic field. Lonnroth et al. (2002) have observed
ion Bernstein mode excitation in their particle in cell simu-
lations. Kuo et al. (1998) have studied parametric excitation
of IBW by parallel-propagating Langmuir wave in a colli-
sional magneto-plasma. Langmuir wave propagating along
the geomagnetic field is considered as a pump for the para-
metric excitation of IBW and daughter Langmuir waves.
Itoh et al. (1984) have obtained the nonlocal eigenmode of
ICRF instability in the presence of parallel high energy
beam component in toroidal plasma in an inhomogeneous
magnetic field. The mode is the combination of the fast
wave and IBW and is excited via kinetic interactions with
beam particles. When the driving source of high energy par-
ticles overcomes the damping due to the bulk plasma and the
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resistive loss on the wall, the instability can occur. Mikhai-
lenko et al. (2008) have developed linear theory of electro-
static ion cyclotron instabilities (Sperling & Perkins, 1976;
Chen, 2000; Svidzinski & Swanson, 2000; Utsunomiya
et al., 2001; Brambilla, 1999) of the collisional magnetic
field-aligned plasma shear flow, which is applicable to the
ionospheric F-region. Chibisov et al. (2009) have investi-
gated the electrostatic ion cyclotron instability of hydrogen
plasma driven by an oxygen ion beam and resulting turbulent
heating of both the ion species.
In this paper, we study the excitation of ion Bernstein and

ion cyclotron instabilities by neutral beam turned gyrating
ion beam in a plasma. We use Vlasov theory to obtain the
response of gyrating ion beam to the field of the IBW. In Sec-
tion 2, we study the problem in local approximation and
deduce the growth rate. In Section 3, we develop the nonlocal
theory using a slab model. The results are discussed in
Section 4.

2. BEAM AND PLASMA RESPONSE

Consider plasma with static magnetic field Bsẑ, ion
density n0p, ion mass mi, and ion charge e. A gyrating ion
beam of charge Zbe and mass mb propagates through the
plasma with equilibrium distribution function

f0 = n0b
2πv0⊥

δ(v⊥ − v0⊥)δ(v|| − v0||). (1)

We perturb this equilibrium by an electrostatic wave in the
ion cyclotron range of frequency. In the local approximation,
one may write the electrostatic potential as,

f = f0e
−i(ωt−k.r). (2)

The response of the gyrating ion beam is governed by the
Vlasov equation

∂f
∂t

+ v.∇f + Zbe

mb
E+ v

c
× B

( )
.
∂f
∂v

= 0. (3)

We express f= f0+ f1, linearize the Vlasov equation,

df1
dt

= Zbe

mb
∇f.

∂f0
∂v

, (4)

and solve it by following the usual procedure of integration
along the unperturbed trajectories to obtain (Stix, 1962)

f1 = −Zbef
∑
s′

∑
s

Js′ (k⊥ρ)Js(k⊥ρ)
(ω− k||v|| − sωcb)

× s
∂f0
∂μ

+ k||
mb

∂f0
∂v||

[ ]
exp [− i{ωt − k.r− (s− s′)θ}], (5)

where s and s′ are integers, ρ= v⊥/ωcb, ωcb= ZbeBs/mc,
μ= (1/2)mb v⊥

2 /ωcb is the magnetic moment, and θ is the

gyrophase angle (v⊥ makes with x̂). The density perturbation
turns out to be

n1b = ∫
∞

0 ∫
2π

0 ∫
∞

−∞ f1v⊥dv||dθdv⊥ = −(k2/4πZbe)χbf, (6)

χb = −ω2
pb

ω2
cb

∑
s

2sk⊥
v0⊥k2

Js(k⊥ρ0)J
′
s(k⊥ρ0)

(ω− k||v0|| − sωcb)

[

+ k2||
k2

ω2
cbJ

2
s (k⊥ρ0)

(ω− k||v0|| − sωcb)2
+ k2||

k2
ω2
cbJ

2
s−1(k⊥ρ0)

(ω− k||v0||)2

]

where ρ0= v0⊥ωcb, ωpb= (4πZbnbe
2/mb)

1/2.
The beam coupling to the wave is strong when ω− k||v0||≅

0 or ω− k||v0||≅ ωcb. Thus, retaining only these three terms,
we may write χb as (Kumar & Tripathi, 2004)

χb = −ω2
pb

ω2
cb

k2⊥
k2

ωcb{J20 (k⊥ρ0)− J22 (k⊥ρ0)}
2(ω− k||v0|| − ωcb)

[

+ k2||
k2

ω2
cbJ

2
1 (k⊥ρ0)

(ω− k||v0|| − ωcb)2
+ k2||

k2
ω2
cbJ

2
0 (k⊥ρ0)

(ω− k||v0||)2

]
. (7)

The density perturbation of Maxwellian plasma ions due to f
can be written as (Jain & Tripathi, 1987)n1i=−(k2/4πe)χi f,

χi =
2ω2

pi

k2v2thi
1−

∑
n

ω

(ω− nωci)
In(bi) exp (−bi)

[ ]
, (8)

where bi= k⊥
2 vthi

2 /2ωci
2 , ωpi= (4πn0pi e2/mi)

1/2, In (bi),
and vthi are the ion plasma frequency, modified Bessel func-
tion and thermal velocity of ions; and we have assumed
ω− nωci≫ k|| vthi.
The density perturbation of plasma electrons due to the

wave is

n1e = (k2/4πe)χef, (9)

where

χe = −ω2
p

k2
k2||
ω2

− k2⊥
ω2
c

( )
forω ≫ k||vth, (10)

corresponding to the ion Bernstein wave,

χe =
2ω2

p

k2v2th
1+ i

��
π

√ ω

kzvth

( )

= ω2
pi

k2c2s
1+ i

��
π

√ ω

kzvth

( )
forω ≪ k||vth, (11)

corresponding to ion cyclotron wave, ωp= (4πn0p e
2/m)1/2,

vth, and cs are the electron plasma frequency, thermal velocity
of electrons and ion acoustic speed, respectively.
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3. INSTABILITY IN THE LOCAL APPROXIMATION

Using n1b, n1p, n1e in the Poisson’s equation ∇2 f=
4πe(n1b+ n1i+ n1e), we obtain

εf = 0, (12)

Where ε= 1+ χb+ χi+ χe. We consider two cases.

3.1. Ion Bernstein Mode Excitation (ω≫ kz vthe)

In this limit, the second and third terms in χb can be ignored
and the dispersion relation Eq. (12) in the low beam density
limit (n0b ≪ n0p ) can be written as

(ω− ωR)(ω− k||v0|| − ωcb) = Δ, (13)

ωR = ωci 1+ I1(bi)e−bi

1+ k2v2thi
2ω2

pi

( )
1+ ω2

p

ω2
c

( ){ }
⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦,

Δ = ω2
pb

ω2
cb

ωciωcbI1(bi)e−bi{J20 (k⊥ρ0)− J22 (k⊥ρ0)}

2 1+ k2v2thi
2ω2

pi

1+ ω2
p

ω2
c

( ){ }2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦.

Strong coupling between the beam and the wave occurs when
ωR= k|| v0||= ωcb or

k||v0|| = ωci − ωcb + ωciδ
′, (14)

where

δ′ = I1(bi)e−bi

1+ k2v2thi
2ω2

pi

(1+ ω2
p/ω

2
c ).

The last term in Eq. (14) is smaller than ωci. For ωci> ωcb,
k|| v0||> 0, i.e., the parallel phase velocity of the ion cyclotron
wave is parallel to the parallel velocity of the beam, where as
for ωci< ωcb, they are antiparallel. Under Eq. (14), we write
ω= ωR+ iγ= k||v0||+ ωcb+ iγ in Eq. (13) and obtain the
growth rate,

γ = (−Δ)1/2

= ω pb

ωcb

ωciωcbI1(bi)e−bi{J20 (k⊥ρ0)− J22 (k⊥ρ0)}

2 1+ k2v2thi
2ω2

pi

1+ ω2
p

ω2
c

( ){ }2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1/2

. (15)

The growth rate scales as half power of beam density. The
parallel wave number for the maximally growing mode
is given by Eq. (14). This k|| must also satisfy (1) k||≪

(ω− ωci)/vthi= ωci δ
′
/vthi, i.e., v0||≥ 2(ωci− ωcb)vthi/δ

′
,

and (2) k||≪ ω/vthe or (ωci− ωcb)/ωci≪ v0||/vthe. The
second condition is quite restrictive. It is satisfied when
either the beam and plasma ions are the same species or
the beam energy is in the MeV range when electron tempera-
ture is around 1 KeV. We have carried out the calculations of
the growth rate for a hydrogen beam in a deuterium plasma
with the following parameters: mi/mb= 2, ρ0/ρi= 2.5,
ωpb/ωcb= 2, k2vthi

2 /ω pi
2 = k2ρ0

2/1600. In Figure 1, we plot
the variation of growth rate as a function of k⊥ρi. The
growth rate is maximum for k⊥ρi ∼ 1.8 and falls off at
larger k⊥ρi.

3.2 ION CYCLOTRON INSTABILITY (ω≪ kz vthe)

In this case there are two possibilities, (a) ω ∼ k|| v0|| +ωcb

and (b) ω∼ k|| v0||. In the former case of cyclotron interaction,
the second term in χb dominates and the dispersion relation
takes the form

(ω− ωR + iΓ)(ω− k||v0|| − ωcb)
2 = Δ′, (16)

ωR = ωci 1+ I1(bi)e−bi

1+ (Ti/Te)+ [(k2v2thi)/(2ω
2
pi)]

{ }
⎡
⎣

⎤
⎦,

Γ = ��
π

√ Ti
Te

ω2
ciI1(bi)e

−bi

kzvthe 1+ Ti
Te

+ k2z v
2
thi

2ω2
pi

( )2
⎡
⎣

⎤
⎦
,

Δ′ = ω2
pb

ω2
cb

k2||ωciω2
cbI1(bi)e

−bi J21 (k⊥ρ0)

k2 1+ k2v2thi
2ω2

pi

1+ 2ω2
p

k2v2th

( ){ }2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦,

Fig. 1. Variation of local growth rate γ/ωci with k⊥ρi for ion Bernstein
wave for ωcb/ωci= 2, ωp/ωc= 1.5, k||ρ0= 0.2, ωpb/ωcb= 2, ωp/ωc= 1.5,
ρ0/ρi= 2.5, k2vthi

2 /ωpi
2 = k2 ρ0

2 /1600.
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Γ is the damping rate of the ion cyclotron wave in the absence
of the beam. Maximum growth occurs when ωR= k||v0||+
ωcb. Expressing ω= ωR+ δ, we obtain

δ3 + iΓδ2 = Δ′. (17)

The roots of this equation are complex. Imaginary part of δ
gives the growth rate. For Γ≪ δ, Eq. (17) gives the growth
rate

γ =
��
3

√

2

k2||ω
2
pbωciI1(bi)e−bi J21 (k⊥ρ0)

k2 1+ k2v2thi
2ω2

pi

1+ 2ω2
p

k2v2th

( ){ }2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1/3

. (18)

The growth rate scales as one-third power of the beam-
density. In Figure 2, we have plotted the growth rate as a
function of k⊥ρi for ion cyclotron wave for ωcb/ωci= 2,
k|| ρ0= 0.2, ωpb/ωcb= 2, ωp/ωc= 1.5, ωpb/ωci= 2,
ωp
2/k2vth

2 = 1600/k⊥
2 ρ0

2. The growth rate is maximum at
k⊥ρi= 0.7. For these parameters, the electron Landau damp-
ing term is weak.
In the other case of ω ∼ k|| v0||, corresponding to Cerenkov

interaction the last term in χb dominates, giving the dis-
persion relation

(ω− ωR + iΓ)(ω− k||v0||)2 = Δ′′, (19)

where Δ
′′
= Δ′J0

2 (k⊥ρ0)/J1
2 (k⊥ρ0). The maximum growth

rate turns out to be

γ′ = γ
J20 (k⊥ρ0)

J21 (k⊥ρ0)

[ ]1/3
. (20)

4. NONLOCAL EFFECTS ON ION BERNSTEIN
MODE EXCITATION (ω≫ kz vthe)

Consider a plasma slab of x— width 2R and electron density
n0p. An ion beam of x— width 2Rb, beam density nob, beam
charge Zbe, and beam mass mb propagates through it. Other
plasma parameters are the same as before. The wave equation
governing f inside the plasma can be obtained from Eq. (12)
by replacing k⊥

2 by ky
2− ∂2/∂x2 and expanding ε using Taylor

expansion as ε = ε(k2⊥ = k2y )−
∂ε
∂k2⊥

(∂2/∂x2),

∂2f
∂x2

+ β2f = − χb
β2

f, (21)

Where β= (β1/β2)
1/2,

β1 =
ω2

pi

ω2
cibi

1− ω

(ω− ωci)
I1(bi)e

−bi − mi

m

k2||
k2y

ω2
ci

ω2
bi

[ ]
,

β2 =
ω2

pi

ω2
ci k

2
y

− m

mi

k2||
k2y

+ 1
bi
+ ωbi

(ω− ωci)
∂
∂bi

I1(bi)e−bi

bi

{ }[ ]
,

I1(bi) ≈ 1− bi = 1− k2⊥v
2
thi/(2ω

2
ci)

{ }
. We solve this

equation iteratively. First, we ignore the beam term. Then
Eq. (21) gives

f = A cos βx. (22)

The boundary condition, f= 0 at x= R, gives β= βl, where

βlR = (2l+ 1)π/2, l = 0, 1, 2, (23)

In the first order perturbation theory, when beam term is non-
zero (but small) the Eigen function may be treated to be un-
modified, only the Eigen frequency is modified. Thus, using
Eq. (22) in Eq. (21), multiplying the resulting equation by f
(where ∗ denotes the complex conjugate) and integrating over
x, we obtain

(β2 − β2l )∫
R

−Rcos
2 βlxdx = − χb

β2
∫
Rb

−Rb
cos2 βlxdx. (24)

Further simplifying Eq. (24) may be written as

(ω− ωR)(ω− k||v0|| − ωcb) = Δ1,

ωR = ωci 1+ I1(bi)e−bi

1− bi
mi

m

k2||
k2y

− β2l β2bi

( )
⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦,

Δ1 = p1bi
ω2
ci

ω2
pi

ω2
pb

ω2
cb

ωcbωciI1(bi)e−bi{J20 (k⊥ρ0)− J22 (k⊥ρ0)}

2 1− bi
mi

m

k2||
k2y

− ω2
ci

ω2
pi

β2l β2bi

( )2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦,Fig. 2. Variation of local growth rate γ/ωci with k⊥ρi for ion cyclotron wave

for ωcb/ωci= 2, ωp/ωc= 1.5, k||ρ0= 0.2, ωpb/ωcb= 2, ωpb/ωci= 2,
ρ0/ρi= 2.5, k2vthi

2 /ωpi
2 = k2 ρ0

2 /1600, ωp
2/k2vth

2 = 1600/k⊥
2 ρ0

2.
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p1 = (2βlRb + sin 2βlRb)/(2βlR). The factor p1 characterizes
the nonlocal effects.
The instability occurs with large growth rate when

ω = k||v0|| + ωcb.

and the maximum growth rate turns out to be

γ = (Δ1)
1/2

= p1bi
ω2
ci

ω2
pi

ω2
pb

ω2
cb

ωcbωciI1(bi)e−bi{J20 (k⊥ρ0)− J22 (k⊥ρ0)}

2 1− bi
mi

m

k2||
k2y

− ω2
ci

ω2
pi

β2l β2bi

( )2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1/2

.

(25)

In Figure 3, we have plotted the nonlocal growth rate γ/ωci

with k⊥ρi for ion Bernstein wave for ωcb/ωci= 2,
ωp/ωc= 1.5, k||ρ0= 0.2, ωpb/ωcb= 2, ωp/ωc= 1.5, Rb= vthi
/ωci, R= 2vthi /ωci, ρ0/ρi+ 2.5, k2vthi

2 /ωpi
2 = k2 ρ0

2 /1600.
The growth rate of IBW is maximum at k⊥ρi= 1..8 and then
falls sharply for larger k⊥ρi.

5. NONLOCAL EFFECTS ON ION CYCLOTRON
INSTABILITY (ω ≪ kz vthe)

Expanding ε in a Taylor series around k⊥2= ky
2 and replacing

kx by− i(∂/∂x) in Eq. (12), we obtain

∂2f
∂x2

+ β′2f = − χb
β′2

f, (26)

Where β
′
− (β1

′
/β2

′
)1/2,

β′1 =
ω2

pi

ω2
cibi

1− ω

(ω− ωci)
I1(bi)e

−bi + 2ω2
p

ω2
pi

ω2
ci

k2v2th
bi

[ ]
,

β′2 =
ω2

pi

ω2
ci k

2
y

2mi

m

k2yω
2
ci

k4v2th
+ 1

bi
+ ωbi

(ω− ωci)
∂
∂bi

I1(bi)e−bi

bi

{ }[ ]
.

Including the nonlocal effects as in Section 4, Eq. (26) gives

f = A′ cos β′x. (27)

The boundary condition,f= 0 at x= R, gives β
′
= βl

′

β′lR = (2l+ 1)π/2, l = 0, 1, 2, . . . (28)

Thus, using Eq. (27) in Eq. (26), multiplying the resulting
equation by f∗ and integrating over x, we obtain

(β′2 − β′2l )∫
R

−Rcos
2 β′lxdx = − χb

β2
∫
Rb

−Rb
cos2 β′l xdx. (29)

Now, there are two possibilities (c) ω ∼ k| v0||+ ωcb (d)ω ∼
k||v0||. In the former case, the second term in χb dominates and
Eq. (29) takes the form

(ω− ω′
R)(ω− k||v0|| − ωcb)

2 = Δ′
1, (30)

where

ω′
R = ωci 1+ I1(bi)e−bi

1+ bi
2mi

m

ω2
ci

k2v2th
− ω2

ci

ω2
pi

β′2l β
′
2bi

( )
⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦,

Δ′
1 = p′1bi

ω2
ci

ω2
pi

ω2
pb

ω2
cb

k2||
k2

ω2
cbωciI1(bi)e−bi J21 (k⊥ρ0)

1+ bi
2mi

m

ω2
ci

k2v2th
− ω2

ci

ω2
pi

β′2l β
′
2bi

( )
2

,

p′1 = (2β′lRb)+ sin 2β′lRb/(2β
′
lR). Here p1′ characterizes the

nonlocal effects.
To obtain the growth rate we write, ω= ωR+ iγ= ωcb+

k|| v0||+ iγ and the growth rate turns out to be

γ =
��
3

√

2
(Δ′

1)
1/3

=
��
3

√

2
p′1bi

ω2
ci

ω2
pi

ω2
pb

ω2
cb

k2||
k2

ω2
cbωciI1(bi)e−bi J12(k⊥ρ0)

1+ bi
2mi

m

ω2
ci

k2v2th
− ω2

ci

ω2
pi

β′2l β2bi

( )2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

1/3

.

(31)

In the other case of ω ∼ k|| v0||, the last term in χb dominates

Fig. 3. Variation of nonlocal growth rate γ/ωci with k⊥ρi for ion Bernstein
wave for ωcb/ωci= 2, ωp/ωc= 1.5, k||ρ0= 0.2, ωpb/ωcb= 2, ωp/ωc= 1.5,
mi/m= 65, Rb= vthi /ωci, ωp/ωpi= 65, R= 2vthi /ωci, ρ0/ρi= 2.5, k2vthi

2 /
ωpi
2 = k2 ρ0

2 /1600.
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and Eq. (29) takes the form

(ω− ω′
R)(ω− k||v0||)2 = Δ′′

1 , (32)

where ω′
R = ωci 1+ I1(bi)e−bi

(1+ bi
2mi

m

ω2
ci

k2v2th
− β′

2

l β
′
2bi)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

Δ′′
1 = Δ′

1J
2
0 (k⊥ρ0)/J

2
1 (k⊥ρ0).

The maximum growth rate turns out to be

γ′ = γ
J20 (k⊥ρ0)

J21 (k⊥ρ0)

[ ]1/3
. (33)

In Figure 4, we have plotted the nonlocal growth rate γ/ωci

with k⊥ρi for ion cyclotron wave for ωcb/ωci= 2, ωp/ωc=
1.5, k||ρ0= 0.2, ωpb/ωcb= 2, ωpb/ωci= 2, mi/m= 65,
Rb= vthi/ωci,R= 2vthi/ωci, ρ0/ρi= 2.5, k2vthi

2 /ωpi
2 = k2 ρ0

2/
1600, ωp

2/k2vth
2 = 1600/k⊥

2 ρ0
2. The growth rate of the ion cy-

clotron wave is small for smaller value of k⊥ ρi and is maxi-
mum at k⊥ρ0= 1.7 and falls for larger k⊥ρi.

6. DISCUSSION

A gyrating ion beam with delta function distributions in v⊥
and v||, like the one produced by the ionization of neutral
beam atoms during neutral beam heating of tokamak, can
excite ion Bernstein and ion cyclotron waves of long and
short parallel wavelengths. These waves propagate nearly
perpendicular to the axial magnetic field. The growth rate
of the IBW scales as one-third power of the ion beam density
and is large for frequencies close to cyclotron harmonics ω∼
nωci. It is maximum for ω ∼ ωci (n= 1) and decreases for
higher values of n. When the region of destabilization is

limited and x extent of the mode is relatively larger, then
the growth rate of the instability is reduced. The total
energy content of the mode is determined by its radial
extent whereas the rate of energy supplied to its growth is de-
termined by the size of the beam and also by the location of
the beam with respect to the field structure of the mode.
In BWI, a beam of energetic neutral atoms is injected into

the plasma. As the beam penetrates the plasma an increasing
fraction of the beam atoms become ionized and trapped in the
magnetic field of the tokamak. The deposition of the beam
ions on available range of particle orbits is sensitive to the
geometry of the beam injectors as well as the magnetic geo-
metry. Ion cyclotron harmonic damping and the collisional
energy exchange between the ions and electrons are main
ion heating mechanisms for IBW heating. It can be used
not only for ion heating, but also for electron heating via elec-
tron Landau damping. IBW experiments have been carried
out in the HT-7 tokamak for several topics, such as heating,
pressure profile and transport control and instability
stabilization.
PIBW’s are undamped plasma modes with k ⊥ Bs and

become Landau damped by electrons when the direction of
propagation deviates by a small amount from exact perpendi-
cularity. In an experiment for P (pressure of the interaction
chamber)= 3− 10 × 10−5 torr, ne= 2− 15 × 107 cm−3,
Te≈ 1.2 eV, Ti ∼ 0.5 eV, Bs= (600–800 G), (ωpi

2 + ωpb
2 )/

ωci
2 = 14.0, npi/nb= 0.4, Saha et al. (1988) found in most

situations that kz= 0 and in some cases, the weak axial
phase shift observed indicates a maximum value of 7.4 ×
10−3 cm−1 for kz. Taking k⊥= 6.7 cm−1, the measured
value, Saha et al. (1988) find that the propagation direction
deviates from exact perpendicularity to Bs by 0.06° maxi-
mum. Also, the frequency of PIBW increases slightly with
increase in npi/nb, as observed experimentally. The value
of the instability frequency found experimentally is 21%
below the value of the instability frequency for the
parameters:Bs= 720 G, npi= 2.1 × 107 cm−3, nb= 5.3 ×
107 cm−3, vthi= 0.49 × 106 cms−1, v0⊥= 1.45 × 106

cms−1, and (ωpi
2 + ωpb

2 )/ωci
2 = 11.05. The instability is a

strong one as evidenced by the large growth rate of Im
(ω/ωci)≈ 0.2. The value of k⊥ found theoretically for
these parameters is 4.9, which is below the value found
experimentally by 34%. Since the experimental value of k⊥
is determined (for constant mode number) by the radius at
which the wave amplitude is maximum, it is subjected to
some uncertainty. For the parameters, Bs= 600 G, npi=
2.1 × 107 cm−3, nb= 5.3 × 107 cm−3, vthi= 0.49 × 106

cms−1, v0⊥= 1.45 × 106 cms−1, (ωpi
2 + ωpb

2 )/ωci
2 = 11.05;

the instability is stronger [Im (ω /ωci)≈ 0.3] than before.
IBW heating in tokomaks is based on the fact that the finite

Larmor radius waves in the range of the ion cyclotron fre-
quency excited from the low-field side of machine can pene-
trate into the hot plasma core without strong attenuation until
the waves approach the harmonic cyclotron layers. The
superconducting tokama (HT-7) has major radius 122 cm
and minor radius 27.5 cm. The plasma current is about

Fig. 4. Variation of nonlocal growth rate γ/ωci with k⊥ρi for ion cyclotron
wave for ωcb/ωci= 2, ωp/ωc= 1.5, k||ρ0= 0.2, ωpb/ωcb= 2, ωpb/ωci= 2,
mi/m= 65, Rb= vthi /ωci, R= 2vthi /ωci, ρ0/ρi= 2.5, k2vthi

2 /ωpi
2 = k2 ρ0

2

/1600, ωp
2/k2vth

2 = 1600/k⊥
2 ρ0

2.
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120–170 kA. The toroidal magnetic field is in the range of
(1.5 – 5) × 1013 cm−3. The electron and ion temperatures
are about 700 eV and 400 eV. The RF frequency is 24 –

30 MHz and the RF power of the generator can reach 300
kW. The IBW frequency is 24 – 30 MHz. For the plasma par-
ameters of HT-7 with two species (hydrogen and deuterium)
of working gas and assuming k⊥0 ρi ≪ 1, k⊥0 is the perpen-
dicular wave number of the pump and ρi is the ion Larmor
radius; the two parametric decay processes are: (1) decay
into an IBW and ion cyclotron quasi mode where the quasi
mode are characterized by ω= nωci and (2) decay into an
IBW and a low-frequency electron Landau damped quasi-
mode characterized by ω= k|| vthe.
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