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We consider the problem of admission control to a multiserver finite buffer queue
under partial information. The controller cannot see the queue but is informed imme-
diately if an admitted customer is lost due to buffer overflow. Turning away (i.e.,
blocking) customers is costly and so is losing an admitted customer. The latter cost
is greater than that of blocking. The controller’s objective is to minimize the aver-
age cost of blocking and rejection per incoming customer. Lin and Ross [11] stud-
ied this problem for multiserver loss systems. We extend their work by allowing a
finite buffer and the arrival process to be of the renewal type. We propose a control
policy based on a novel state aggregation approach that exploits the regenerative
structure of the system, performs well, and gives a lower bound on the optimal
cost. The control policy is inspired by a simulation technique that reduces the vari-
ance of the estimators by not simulating the customer service process. Numerical
experiments show that our bound varies with the load offered to the system and is
typically within 1% and 10% of the optimal cost. Also, our bound is tight in the
important case when the cost of blocking is low compared to the cost of rejection
and the load offered to the system is high. The quality of the bound degrades with
the degree of state aggregation, but the computational effort is comparatively small.
Moreover, the control policies that we obtain perform better compared to a heu-
ristic suggested by Lin and Ross. The state aggregation technique developed in this
article can be used more generally to solve problems in which the objective is to
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control the time to the end of a cycle and the quality of the information available to
the controller degrades with the length of the cycle.

1. INTRODUCTION

We consider the problem of admission control to a finite buffer queue under partial
information. In this problem, a controller decides whether to admit a customer. The
controller cannot see the queue but is informed immediately if an admitted cus-
tomer is rejected due to buffer overflow. Turning away (i.e., blocking) customers is
costly and so is losing an admitted customer due to buffer overflow. The latter cost
is greater than that of blocking. The controller’s objective is to minimize the aver-
age cost of blocking and rejection.

This problem was originally posed in the context of computer and telecommu-
nications networks. Lin and Ross [11] established that the optimal policy is of a
threshold type for single-server loss systems (i.e., a queue with no buffer). In this pol-
icy, arrivals are blocked for a fixed period of time following a rejection, after which
all arrivals are admitted until a new rejection takes place. They showed that the opti-
mal policy does not have a similar structure for multiserver systems but that it can be
obtained by solving a dynamic program (DP). Unfortunately, the state space of the
DP grows exponentially with the number of servers and the size of the buffer.

We consider an extension suggested in Lin and Ross [11] to the case when the
queue has a finite buffer and the arrival process is of the renewal type. It is extremely
difficult to solve this problem to optimality. For example, to determine the optimal
policy to a reasonable accuracy for a system in which the combined size of the
buffer and the number of servers is equal to 10, the number of states in the corre-
sponding DP can exceed 30 million. We therefore propose to solve the DP using a
new state aggregation technique. The novelty of our technique is that it yields both
a control policy and a lower bound on the average cost. Moreover, the computa-
tional effort does not grow with the size of the buffer or the number of servers. We
find in our experiments that the bound given by this technique is within 1%—10% of
the optimal cost. In many instances, our method improves on the performance of
the heuristic proposed by Lin and Ross. The bound is tight when the cost of block-
ing is low compared to the cost of rejection and the control policy performs espe-
cially well when the cost of blocking is high and the offered load is high. Finally,
we also provide an efficient simulation technique to compute the average cost per
customer without simulating the customer service process.

The key observation we use in this article is that the state space for the con-
trolled Markov chain can be either the set of events since the last rejection or the
probability distribution of the number of customers in the system, computed at arrival
epochs of customers. The latter, although convenient to numerically determine the
optimal control to any given accuracy, grows very quickly with the size of the buffer
and the number of servers. The former grows with the number of events since the
last rejection. However, if we retain only the information about the last few admit-
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ted customers, we can curtail the growth of the state space. If we then reconstruct
the events based on this limited information (i.e., reconstruct the entire set of admis-
sion events since the last rejection) in a careful manner, taking into account the
structure of the stochastic system, we show that we can achieve a lower bound on
the minimum average cost per incoming customer, as well as a good control policy.
The main contribution of this article is the idea of state reconstruction using limited
information as a basis for state aggregation.

The method developed by us can be used to bound the average cost in systems
in which the objective is to control the time to the end of a cycle and the quality of
the information available to the controller degrades with the length of the cycle.
Examples of such applications include equipment maintenance, cash management
problems, and inventory management problems. In the case of equipment mainte-
nance, the problem is to minimize the average cost of maintenance and breakdown
repair. One might have to schedule preventive repairs on a machine with imperfect
information about the state of the equipment. The repairs have the effect of delay-
ing failure and a cost that is lower than that of a breakdown repair. Regeneration
occurs when the machine finally breaks down and has to be replaced. The problem
is to minimize the average cost of maintenance and breakdown repair. In the cash
management setting, one might have to decide to give loans without knowing the
exact amount of resources available (i.e., without information about the actual cash
inflows from interest and repayment of the principal). By refusing to grant certain
loans, the controller can extend the time until the firm runs out of resources. If there
are inadequate funds and a loan is sanctioned, the firm incurs a significant cost and
has to add assets to the balance sheet. The problem is to determine the loans to
sanction until resources run out. Finally, one can apply our solution technique to
decide whether to fill an order without knowing the actual number of items in stock.
By refusing to take an order, the controller is able to delay the time until a customer
whose order was taken experiences shortage. In this case, a fixed cost is incurred to
replenish the inventory.

The rest of the article is organized as follows. A review of the relevant litera-
ture is given in Section 2. Section 3 presents the model. Section 4 is devoted to
analyzing the optimal policy. Sections 5—8 present our main results. Numerical exam-
ples are given in Section 9.

2. LITERATURE REVIEW

There is a growing literature on control of queues with delayed or incomplete infor-
mation on the state of the system. These articles consider either routing or admis-
sion (or both) control issues. In this article we focus on admission control.
Altman, Marquez, and Yechiali [4] considered the optimal routing and ad-
mission control in a multiserver loss system when the controller has delayed
information or no information at all. With delayed information, they compare a
“round-robin” policy, where customers are sent to servers before the information
about their state becomes available, with a “wait” policy, where customers are first
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grouped in a finite buffer then sent to a server once information becomes available.
They established the existence of a threshold on delays below which the wait policy
gives a higher throughput. When the controller has no information at all, they pro-
posed a timer mechanism where the interadmission time is set equal to the maxi-
mum of the interarrival time and some random variable and customers are assigned
to servers in a cyclic fashion. For a given distribution of the random variable, they
show how to choose the parameters of the timer to achieve the maximum through-
put. Litvak and Yechiali [13] performed the same type of analysis in a system with
limited buffer and the objective of minimizing the average queue length. In their
system, the information on service completions is delayed by a random time. They
showed that there exists a threshold value of the average information delay below
which the wait policy performs better.

The problem of admission control with delayed information in a single-server
discrete-time queue has been studied by Altman, Kofman, and Yechiali [2], Altman
and Stidham [6], Altman and Nain [5], Altman and Basar [1], as well as Kuri and
Kumar [9]. In all these papers the information on queue lengths is delayed by an
arbitrary number of periods. Altman, Kofman, and Yechiali [2] focus on computing
the distribution of the queue length in steady state. Altman and Stidham [6], Altman
and Koole [3], and Altman and Nain [5] prove, in different contexts, that the opti-
mal policy is characterized by a threshold on the queue length. Altman and Koole
[3] consider the control of a random walk where the controller has noisy informa-
tion on the current state of the queue but full information on previous states. They
also establish the optimality of a threshold policy in this setting.

Kuri and Kumar [10] studied the control of arrivals to a queue with delayed
information. They argued that the standard approach for solving a partially observ-
able controlled Markov chain is to define the “state” of the system to be the con-
ditional probability measure on the space of the underlying unobservable system.
For example, in their problem (and in ours), the state is the distribution of the num-
ber of customers in the system. They suggested that an alternate and direct formu-
lation is to appropriately define an enlarged state such that it captures all of the
relevant information. They gave several references in which such an approach has
been successfully used. For example, the pattern of arrivals to the queue along with
the delay in information is sufficient to predict the state of the queue in their (and
our) model. Therefore, this enlarged state space can serve to develop the optimal
control. Their model differed from ours in several ways. They modeled a discrete
time system with a single server, whereas we consider multiple servers. They mod-
eled a system with delayed information, whereas we model one with partial infor-
mation. Their main insight was also different. They show that even though there are
many different arrival patterns, the control corresponding to subsets of patterns is
the same. They sought to exploit this property; therefore, they explored state-space
reduction, not state-space aggregation. Finally, they provided a lower and upper
bound on the optimal cost based on a policy that never accepts customers. Our
lower bound is based on changing the transition probability in each aggregate state
and is obtained by solving a DP. Despite these differences, we believe that their
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insight that the direct formulation will give valuable results is the key to our results
as well.

The work of Lin and Ross described in Section 1 is different from all of the
work cited above because it deals with incomplete and not delayed information. In
Lin and Ross [12], they extended their work and showed that a threshold policy,
which is optimal in the case of a single server with exponential service time distri-
bution, is not necessarily optimal with general service time distributions. In this
latter work, they also provided a sufficient condition for the existence of an optimal
policy that is of the threshold type.

3. PROBLEM SETTING

We consider a multiserver queue with finite buffer that has s identical servers. The
size of the buffer is b, so that the system is full when there are b + s customers.
The arrival process of customers to this queuing system is an ordinary renewal pro-
cess such that interarrival times are independent and identically distributed (i.i.d.)
with distribution F and mean 1/A. The service time distribution is exponential with
mean 1/u.

A controller observes the arrival process. He knows the parameters of the arrival
and service processes. However, he cannot observe the number of customers in the
system and cannot observe departures from the system. A control is exercised at each
arrival instance: The controller has to decide whether to admit or block an arriving
customer. The cost of blocking a customer is ¢ < 1 and that of admitting a customer
is zero. If the customer is blocked, she leaves the system immediately without being
served. If the customer is admitted and does not find the buffer full, she is accepted,
that is, she joins the queue or starts service if a server is free. If the customer finds
the system full, she is rejected at a cost of 1 and instantly leaves the system. The con-
troller is informed immediately of the rejection. The objective of the controller is to
minimize the average cost of blocking and rejection per incoming customer.

We consider systems in which it is not optimal to block all incoming customers
and restrict our attention to control policies under which the expected time until a
customer is rejected is finite. When the controller is informed of a rejection, he
knows that at that instant there are exactly b + s customers in the system. In par-
ticular, all servers are busy, and because service times are exponential, their remain-
ing processing times are exponentially distributed with mean 1/, independent of
one another and of the past. Also, the next arrival takes place after one interarrival
time, which is independent of the past as well. Given these observations, the control-
ler’s estimate of the distribution of the number of customers in the system does not
depend on what happened before the rejection occurred. It follows that the only
information the controller needs to consider is the set of events since the last rejec-
tion. Moreover, customers that are blocked do not impact the distribution of the
number of customers in the system; therefore, the controller only needs to consider
the admission epochs since the last rejection and the elapsed time since the last
rejection. This information is sufficient to compute the probability distribution of
the number of customers in the system, at every arrival epoch.

https://doi.org/10.1017/50269964807070027 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964807070027

24 D. Honhon and S. Seshadri

Therefore, we define a state to be the set of admission epochs since the last rejec-
tion along with the elapsed time since the last rejection, or, equivalently, the prob-
ability distribution of the number of customers in the system calculated from this
information. These alternate definitions for the state space are examined in greater
detail in Section 4. For now, let S denote the state space, under either definition.

Let W be the set of control policies adapted to the processes of the number of
arriving, blocked, and rejected customers since the last rejection. Let A(i) denote
the action space for state i € S; we have

A(i) = A= {“admit”,“block}.

Because the cost is computed per customer arrival, we define stage k of the DP
to be the decision epoch when the kth customer arrives to the system. Let i; and a;
respectively denote the state visited and the action taken in stage k. Let g(i,ay)
denote the cost incurred at stage k, in state iy € S, and under action a; € A. It is

equal to
c if a, = “block”
fli) if a, = “admit”,

g(ik9ak) = {

where f(i;) is the probability that the buffer is full in state .
Let J (1) be the average cost per customer under control policy = € ¥:

1 n
J(7T) = lim sup — IE:’n' 2 g(ik’ak) .
n—oo N k=1

Let 6 be the minimum average cost per incoming customer:

8= inf J(m).

TEW
Also, for 0 < B <1, let J4(i) be the optimal total discounted cost for initial state
i€ S:
Jg(i) = infE, [ > Bkg(ik,ak):| )
TeEWY k=1
Let V(i) be the relative discounted value function in state i € S, given by

V/;(i) = ]B(i) _}ggjﬁ(])

In other words, V(i) is equal to the difference in optimal total discounted cost
between two systems: one that starts in state i and one that starts in the state for
which the total discounted cost is minimum. This quantity is bounded by the sums
of costs in the two systems, each up fo the next time a rejection occurs, because
from that point onward, the probabilistic evolutions of the two systems are the same.
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Using this observation and the assumption that the expected time to a rejection
is finite and because per-stage costs are bounded, we obtain that

sup Vg(i) < oo, Vi€ES.
B<1

Therefore, the system satisfies the “boundedness” condition (B) of Schél [ 17]. More-
over, since the set of actions available in each state is finite, the system also satis-
fies condition (S) of Schil [17]. Hence, by Theorem 3.8 of Schil, there exists an
admissible stationary policy u*, which is average optimal, in the sense that

J(u*) =4.

Therefore, we limit the search for an optimal policy to the set of admissible
stationary policies, denoted as ¥,. In what follows, u denotes an admissible station-
ary policy.

4. TWO REPRESENTATIONS OF THE STATE SPACE

As mentioned in Section 3, there are two possible representations for the state space.
We examine each below.

4.1. State Defined as Information Since Last Rejection

Let time O correspond to the epoch of the last rejection. Let 7 denote the time since
the last rejection. Let n be the number of admitted customers since the last rejec-
tion. Let ¢; for j = 1,...,n be the admission epoch of the jth customer. A state is
represented by the vector (#,n,t,...,1,). The state space S is given by

S={tnt,...,t,):n=0,1,2,...,0<f, = ... =1, =t} (1)

The controller uses this vector to compute the probability distribution of the num-
ber of customers in the system. We propose the following method for comput-
ing the probability distribution. First, from (z,n,t,,...,t,) we compute the (b +
s + 2)-dimensional vector of probabilities p(t,n, t,,...,1,) = (p(t,n, t1,...,t,); x =
0,...,b+s+1),wherep,(t,n,t,...,1,) for 0 = x =< b + s is the probability that the
system has x customers at time ¢ given that customers were admitted (but not nec-
essarily accepted) at times 7y, . .., 1,,. Also, pp+ s+1(t, 1, 14, . . ., 1,,) is the probability that
the system has incurred a rejection since time O given that customers were admitted
at times 1y, ..., t,. We refer to vector p as the vector of unconditional probabilities
associated with state (t,n, 1,,...,1,) because it does not factor in the condition that
the arrivals were accepted. There is a nice algebraic method to determine p, which
we describe next. This vector will then be used to derive the vector of conditional
probabilities r, which factors in the condition that the arrivals were accepted.

Let e”™* be a (b + s + 2)-row vector with 1 in the (b + s)st column and zero
otherwise. At the time a customer is rejected, the controller sets the probability
distribution of the number of customers in the system equal to e’** because he
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knows that there are exactly b + s customers in the system at this time. At each
customer arrival epoch, the controller updates the distribution, using matrix M
defined below, to account for the fact that customers may have left the system dur-
ing the inter-arrival time. Finally every time he admits a customer he updates the
distribution using matrix Z below. The vector of unconditional probabilities p asso-
ciated with state (#,n,1y,...,1,) is computed as follows:

p(tn,t,...,1,) =" “M(1,)ZIM(t, — 1))Z ... M(z1, — 1,_)ZM(t — 1,) ~ (2)
for all (t,n,1,,...,1,) € S.
In this expression, M(7) is the (b + s + 2) X (b + s + 2) transition probability

matrix such that component M, ,(7) is the probability that the number of customers
in the system changed from x to y during an interarrival time of 7 units. It can be

written as
(Cr(e ™) (1—e ), 0=x=s50=y=x
T (S‘u)(ks)
x—=s—1  ,—suz s ,—u(r—2z)\y _ ,u(r—z)\s—y
—z e HCi(e 1—e dz,
rep—y M ) ( )
stl=x=b+s50=y=ys
M, (1) ={ (usT)*™ 3
NOEX o cil=x=bissil=y=x D
(x = y)!
1, x=0,y=0
1, x=b+s+1l,y=b+s+1
\ 0 otherwise.

In the case of a single server, it simplifies to

( x—1
1-DP(D,=k), 1=x=b+1,y=0
k=0
P(D,=x—y), I=sy=x,1=x=b+1
Mx,y(T) = <
1’ x:(),y:()
1, x=b+2,y=b+2
\ 0 otherwise,

where D, is a Poisson random variable with mean ur.
Z is the (b + s + 2) X (b + s + 2) transition probability matrix that represents
the impact on the probability distribution due to the admission of a customer:

1, y=x+Lx<b+s+1,
Z =31 y=x=b+s+1

0 otherwise.
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If x < b + s, then admitting a customer increases the number of customers in the
system by one. If x = b + s, then the admitted customer is rejected.

Let the (b + s + 1)-dimensional vector r(t,n,t,,...,t,) = (r.(t,n,t1,...,1,);
x=0,...,b +s), be the vector of conditional probabilities because it factors in the
condition that the arrivals were accepted. r.(t,n,t,...,t,) is the probability that
there are x customers in the system ¢ units of time after the last rejection given that
n customers were accepted at epochs #,,...,1,.

From the vector p(t,n, t,, ..., t,,) the controller obtains the vectorr(z,n, 1y, ..., 1,)
by dividing the first b + s + 1 components of p by the probability that the system
has not incurred a rejection so far; that is, 1 — ppyr1(f,n,81,...,1,):

rtnty, ... t,) = Peltitty: s by) x=0,...,b+s. @)
L= pprsri(tn by, .. t,)

One reason that we introduced the unconditional vector p is for ease of computa-
tion of r. Another reason will become apparent in Section 6.

The state space S defined in (1) is infinite because each component of the state
vectors is continuous and unbounded and the size of the vector itself is not bounded
from above. For this reason, Lin and Ross [11] used the second definition of a state
for solving the problem.

4.2. State Defined as Probability Distribution

Let a state be the vector of conditional probabilities r, as defined in (4). The set of
all possible values for this vector is continuous and infinite. In order to make this
state space discrete (and finite), select a positive integer m, called the discretizing
constant, such that the probabilities are rounded off to a multiple of 1/m (see details
in Lin and Ross [11, p. 648]). Let S,, be the set of discretized vector of conditional
probabilities obtained using the discretizing constant .

As explained in Section 3, the cost of policy u in state r € S,, is given by

c if u(r) = “block”

g(l',u(r)) = {f(l') if M(r) = “admit”,

where f(r) is the probability that the buffer is full in state (r) and is given by
f(l') = rb+s;

that is, f(r) is given by the (b + s)th component of the state vector.
Let P(r, F;u) be the transition probability, under control u, from state r to state
F, where r, ¥ € S,,. The components of the matrix P are functions of f(r) and A.
Let J,,(u) denote the average cost per customer, under stationary control policy
u defined on state space S,,. Let §,, be the minimum average cost per customer
when the state space is S,,,:
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8,, = inf J (u).

uew;

m

m(u;;) = am' The Bell—
man equation associated with this discrete-time problem is given by

Let u, be the control that achieves this minimum, such that J,

V,,(r) + 6, = min {g(l‘,u) + X P(r, f;u)Vm(f)}, Vr €S, &)
uEW,

reS,

m

where V,(r) is the relative value function in state r.

The minimum average cost 6,, and optimal control policy u;, on state space S,
can be obtained using value iteration. We assume that as m — oo, 6, tends to 6 and
u,, tends to u™. It follows that for large m, solving the problem with state space S,,
gives a good approximation of u*. However, for a given precision m, the state space
becomes very large as either the buffer size b or the number of servers s increases
(see Section 1). In particular, the number of states in S,, is equal to

(m +b+s+1
b+s '
For this reason we provide an alternative method to obtain a good control policy for

which the size of the state space is independent of b and s. Our method consists of
aggregating the state space S defined in (1).

5. POLICY BASED ON STATE AGGREGATION

If we use the state space S defined in (1), the controller has to remember all of the
admission epochs since the last rejection. We suggest a method in which the con-
troller keeps in memory a finite number of the most recent admission epochs. For-
mally, let [ be the size of the controller’s memory (i.e., the maximum number of
past admission epochs he remembers). For example, [ = 1 means that states are
of the type (¢,n,1,) when n = 1 and they are called aggregate states with memory
size 1. In general for I < oo, aggregate states with memory size [ are of the type
(t,n, t—141)a15 - - -5 1) for n =1 (Where a A b = min(a, b)) and (z,0) otherwise. To
simplify the notation, we denote a generic aggregate state with memory size [ as
(t,n,ty—1+1,...,1,) with the understanding that the size of each vector is n + 2. The
states described in Section 4.1, (t,n, 1, ...,1,), are such that / = co and are referred
to as full memory states.

The variables in this section are denoted with a superscript [ to refer to the size
of the controller’s memory. Note that when / = co, the variables are equivalent to
those defined in Section 4.1. Let S’ be the state space for memory size I:

S'={(t,n,t,_p1y..t):n=0,12,...,0<t,_,. =-- =t <t} 6)

Given the information that the system is currently in aggregate state
(t,n,t,—j41,--.,t,) € S' such that n > [, the controller does not have all of the
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information necessary to compute the exact unconditional distribution of the num-
ber of customers in the system (i.e., p). In particular, he does not remember when
the first n — [ customers were admitted (i.e., 71, ..., t,_;). However, he can obtain an
estimate of p, denoted p’, by taking a weighted average of the vector of uncondi-
tional probabilities associated with all possible values of #;,...,7,_;:

pl(t’ n, tn7]+la s tn)

W(t,n,tl,A.A,t,l)p(tan’tl"",tn) 1f}’l>l
= Hoeousty—pi(tyn,ty, ... 1,)ES (7)

p(t,n,ty,...,1,) otherwise,

where p is defined in (2) and

W(t,n,t],...,l‘,,) =1
ooty i(tn,ty, ..., 1,)ES

The constants w should be interpreted as conditional probabilities or weights on
each full memory state in which the values of 7,,_;;, ..., t, are equal to those in the
aggregate space.

We define the probability that the buffer is full in the aggregate state

(t, Ny by 415y tn) as
Fitnt, igyeeosty)

! !
_ pb+s+l(t7n + 17tn71+27- . -’tn’ t) _pb+s+1(t7n’ tn*l+l’ . "’tn)

1
1 _pb+s+l(t7 n, tn71+17 LR} tn)

The numerator corresponds to the probability that the system has incurred a rejec-
tion when admitting the nth customer since time 0. By dividing this value by the
probability that the system has not incurred any rejection before the arrival of the
nth customer, we obtain the probability that the buffer is full at time 7 given that
there has been no rejection since time 0.

The set S’ defined in (6) is infinite. To make it finite, we do two things. First,
we discretize the distribution of the interarrival time F in steps of A; that is, the
probability that the time until the next arrival is k for k = A,2A, ... is given by ¢,
where

G=F(k)—F(k—1), k=A24A,....

Second, we bound the maximum number of admissions per cycle by 7. We define
the set of aggregate states S} 7:

Si,T = {([,l’l, tn*l+l9- . -’tn):tnflJrla-' . t;nt S {A7~- '7AT}7 ne {0717 --wT_ 1}7

t

n

T U+DA=S =, +A=1)
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To avoid end effects due to the choice of 7, we formulate the problem as
a discrete-time semi-Markov decision process (SMDP). We describe the formu-
lation briefly. Notice that aggregate states outside of Si  can occur once time
AT is exceeded. To deal with this, we assume that the controller admits every
arriving customer in aggregate states outside S ; until a rejection occurs. Let
' (t,n ty_yi1,...,1,) be equal to 1 if the next arrival takes place within AT with
probability 1 or 1 plus the expected number of transitions until the next rejection
otherwise. The cost incurred in state i = (t,7n,%,_;41,...,1,) € SLT using control
policy u is given by

<c+ > qk> if u(i) = “block”
k=T—1t

7'(i)
g'(i,u) =

0 (fl(i) +[1=f£4i)] k_Zthk> if u(i) = “admit”.
Also, let P'(i,i;u) be the probability of going from aggregate state i to i, where
i,i € Si 7, under control u.

Let 84 ; and ul'; respectively denote the minimum average cost per customer
and the optimal stationary policy when Si,r is the state space and P! is the transi-
tion probability matrix. The Bellman equation associated with the SMDP is the
following (see Ross [14, p. 162]):

V’(i)=min{g’(i,u)T’(i)—5LTT/(1')+ > P’(i,f;u)v‘(i)}, Vi€ Sk 1
UEW,

iest -

where V(i) is the relative value function in aggregate state i € Sy ;-
The problem can be transformed into an Markov decision process by allowing
self-transitions. The corresponding Bellman equation is:

VI(i) + 8y = min] g'(i,u) + ' ())P'(i,i;0) V' (i) + (1 = 7'())) >, P'(i,;u)V'(i){,
uEY; iesh -
i#i

Vie 8L, )]
where

1

Tt t,_jiyse..st,)

ﬁl(t,n, Lyl e ey tn) =1-

is the probability of staying in aggregate state (z,n,%,_;41,...,1,) and is such that
the expected number of transitions in aggregate state (t,n, 1, _;y1,...,1,) is equal to
T/(t7 n, tn*l+l7 ey tn)
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The minimum average cost 83  and optimal control policy uﬁ“ , on state space
84,7 can be obtained using value iteration. Also, as 7 — co and A — 0, 84 ; tends to
8!, where

8! = inf J'(u)

ueEw;

and J'(u) denotes the average cost per customer under stationary control policy
u € ¥, defined on state space S’. Also, uy  tends to u"™, which is the control that
minimizes the average cost for state space S' [i.e., such that J/(u™) = §'].

The advantage of using this method is that the size of the state space does not
depend on the size of the system (i.e., b and s). The disadvantage is the problem of
defining the weights in (7). The conventional method for doing this is described
below, but it does not have any guarantee of convergence or any result with regard
to the performance of the resulting policy. An alternate method that has both of
these properties is suggested in Section 7.

The conventional way to determine the weights is to use the following re-
cursive procedure. First, fix a control u,, where k = 1 at the first step. By simu-
lation, estimate the steady-state probabilities v(, , ., for every full memory
state (t,n,t,,...,t,). Then compute the weights w at step k using

Up
i Vin ..

Wtnty,.ot) =

Uy
Vi, ....1,)
toeoustygi(tyn,ty, .., 1,)ES

Next, solve the DP in (8) to obtain the control u;.; and repeat this procedure.
It is not easy to provide a proof of convergence for this method (see Bertsekas [7,
p. 44] for a discussion). Also, this method does not use knowledge of the system to
determine the weights. Therefore, we propose an alternate method for selecting w
that is inspired by the simulation algorithm given in the next section.

6. SIMULATION TO DETERMINE THE AVERAGE COST

In this section we describe an efficient simulation technique for estimating the aver-
age cost per incoming customer under policy u, for a given size of the controller’s
memory /. We refer to the time between two rejections as one cycle. Successive
cycles length are i.i.d. because state transitions are Markovian and the control is a
stationary policy. Also, cycles are assumed to have finite expected length.

In the algorithm below, we simulate the arrival process; that is, we generate
random numbers according to the interarrival time distribution F. Note that we do
not simulate the departure process. In other words, we do not determine whether
each admitted arrival was accepted or not. However, we can compute the probabil-
ity that a customer was accepted based on the knowledge of past admission epochs.
The simulation of a cycle ends when the probability of no rejection in the cycle falls
below a predetermined small value.
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We keep track of two quantities in cycle k:

* A running estimate of the expected cycle length (in number of transitions):
C

* A running estimate of the expected number of blocked customers per cycle:
By

The two quantities are updated at every customer arrival until the simulation of the
cycle ends. At this time, Cy is an estimate of the expected length of cycle k, where
the expectation is taken with respect to the departure process, for a given sample
path of the arrival process.

Simulation algorithm
For a given stationary policy u € W:

e Step 0: Set k = 1.
e Step 1: Simulate cycle k.
Step 1.0: Initialization
. Seték=0and1§k=0.
e Setr=0andn =0.
Step 1.1: Transition
* Generate X ~ F.
e Setr:=tr+X.
e Given that the state is (z,n, %, _;11,...,1,), compute the probability
of no rejection so far:

= 1
pP=1 _ph+s+](t’n’ tn—1+|,. . .,ln),

» Update the expected cycle length:

C,=C.+P
* Update the number of blocked customers and the state:
Ifu(t,n, t,—i41,...,t,) = “admit”:
n=n-+1l,
t, =1

n

ult,n,t, 1s1s...,1,) = “block™
B, =B, +P.

e If P=¢, gobackto Step 1.1, otherwise setk := k+ 1 and go to Step 1.
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e Step 2: Compute averages:

= | B
C(K7E):Ek§l ko
= 1 XK .
B(K,e)=Ek§::IBk

The algorithm requires the specification of K, the number of cycles generated,
and €, the small probability value that determines the end of a cycle.

LEMMA 1: For a given control policy u € V,, we have

1+ cé(K,e)
J'(«) = lim lim —————
K—o0 €0 C(K,E)

’

where E(K, €) and é(K,e) are obtained using the simulation algorithm.

Proor: Let C; denote the length of the first cycle (i.e., the number of transitions
until a rejection) given that the system was full at time 0. Let G, denote the total
cost incurred in the first cycle:

C

G, = 2 gy, u(iy)).

k=1

Because of the assumption that the cycle length has finite expectation and given
that per-stage costs are bounded, we get that E[G,] < oo. Since the control is a
stationary policy, total costs in each cycle are i.i.d. and, therefore, we have

E[G,
JHu) = —EEC }

Let C; and G be the length and total cost in cycle &, respectively. Given that
E[C,] < o0 and E[G,] < oo, the strong law of large numbers (see Chung [8,
Thm. 5.4.2]) implies that

lim 1[2 Ck] =E[C],

K—owo K k=1

lim L [ﬁ Gk] = E[G,].

K—wo K k=1
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We now prove that

lim imC(K,e) = E[C,], 9)
K— o0 €0
lim lim[1 + cB(K,€)] = E[G,]. (10)
K—o0 €0

For this, simulate one cycle with the simulation algorithm. Let w denote the
sample path of interarrival times generated in this cycle. Let ® C S’ be the set of
states that are reached during the repetitions of Step 1.1 for this cycle, using pol-
icy u. Let i; € ® denote the state reached in the jth transition (i.e., the jth repetition
of Step 1.1). State i is visited if the system does not incur a rejection before the jth
transition, which happens with probability 1 — p}, ., (i;). It follows that the
expected length of the cycle, given sample path w, is greater than or equal to

2 [1 _p[[)+s+l(ij)] = 61-

JiED

It follows that if € — 0, the expected length of the cycle, given w, tends to C. Using
the strong law of large numbers, we obtain (9).
The expected cost of blocking an arrival in state i; € ® is given by

c[1 _P1[;+s+1(ij)]’

which is the cost of blocking multiplied by the probability that j; is visited.

The expected cost of accepting an arrival in state i; € @ is equal to the prob-
ability that the system is full multiplied by the probability of visiting the state;
that is,

! . ! .
Po+s+1 (lj+1) T Pots+1 (lj

1 _Pz[;+s+|(ij)

fl(ij)[l - pl]7+s+l(ij)] = ) [1 _pzl;+s+1(ij)]

= P£+:+1(l'j+1) - p£+s+l(ij)'

The expected total cost incurred in the first cycle, given a sample path w, is
greater than or equal to

Z c[l— plly+s+l(ij)] + 2 [Pz[;+s+| (ij+l) - pl[7+s+] (ij)]
Jii;ED, Ji(i))ED,
u(i;)="block” u(i;)="admit”

=c§,+l—6.

It follows that if € — 0, the expected total cost incurred in the first cycle, given w,
tends to 1 + ¢B,. Finally, using the strong law of large numbers, we obtain (10).
|
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It follows that for sufficiently high K and small €, we have

1+ cé(K,e)

Jl(l/t) ~ = )

C(K,¢€)

that is, the average cost per incoming customer under policy u can be approximated
using the simulation algorithm. Note that this simulation technique has a lower vari-
ance of the estimators B(K,e) and C(K,€) because we avoid introducing the
additional variance due to the service process (see similar arguments in Ross and
Seshadri [16] and Ross [15]).

7. DEFINING THE WEIGHTS TO OBTAIN A LOWER BOUND

Based on the proposed simulation method, we suggest choosing the weights
Wi 1,,...0y i0 (7) in the following way:

B 1 if (e, )=,y b))
Wi = {O otherwise, (b
where
(Bt ety yitseesly)
= argmin DPissit (Bt ety iy by ity enesly) (12)

toenostyyi(tyn by, .., 1,)ES

and p is given by (2). In the event that more than one set of values achieves the
minimum, pick one of them randomly.

It follows that the vector of unconditional probabilities associated with aggre-
gate state (t,n,f, ;y1,t,s,...,1,) is the vector of unconditional probabilities asso-
ciated with the full memory state (t, 7, f1, ..., b1y by—141,---51,), Where fi, ..., 5,
are chosen such that they minimize the unconditional probability that the system

has incurred a rejection since time 0. In other words, we have
Pt gy t,) =P Ty g5 1),
and, therefore,
Frtnt, gyeeaty) = F6 00 e Ty by s ee s ty)
= 1 (B Ey e By bty e s b)),

with r defined in (4).
The reason for the choice of (t,n, f;,...5,_;,t,_j+1,...,1,) is established in the
following proposition.

PROPOSITION 1: With w given by (11), we have 81 = &' for 1 > 0.
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ProOF: By (12), we have, for every (t,n,1,,...,t,) € S,

pétlyrl (tv n, tn*l’ R tn) = p£+s+l(t’ n, z‘nf[Jrlv LR tn)' (13)
Fix a policy u and use the simulation algorithm of the previous section to esti-
mate J'"!(u) and J'(u). We use the subscripts [ + 1 and [ for the simulation of
J'" Y (u) and J'(u), respectively.
Using the same sample path of arrivals for each simulation, we get from (13)
that at any given transition of cycle k,

Pl = p!, (14)
It follows that
érr=ct
and, therefore,
C*1(K,e) = C(K,e). (15)

Now consider control policy u'*1*, which is optimal when the memory size is

[+ 1. Again, use the simulation algorithm of Section 6 in two different systems: one
with memory size / and one with / + 1. We refer to these two cases as systems / and
I + 1, respectively. Let t/*! be the time at which the simulation of system [ + 1
stops. By (14), the simulation of system / has not ended by then. After #/*!, start
admitting all customers in system /. The two simulations result in the same number
of blocked and rejected customers. However, (15) implies that the cycle length is
longer for system /. By Lemma 1, this implies that the cost of this policy for system
[ is less than that for system / + 1; that is,

Jl(ul+1*) = ]H—](MH—]*)'
Finally, by the optimality of u'*,

8l = Jl(u™) = JIH (u! 1) = 811,
|

By applying Proposition 1 to the case of full memory (I = o), we get the fol-
lowing corollary.

COROLLARY 1: 8' = 68 for | < oo.

We have obtained lower bounds on the optimum average cost 6, which do not
require the computation of the optimal control u*. The quality of the lower bound
improves as / increases however, so does the complexity of the DP needed to
obtain the control #*!. The numerical results of Section 9 show that the pol-
icies obtained with weights (11) perform quite well also. The question of how to
find the original state (t,n,%,...,%, /,t_s+1,--.,1,) fOr each aggregate state
(t,n,t,_1+1,...,1,) is considered in the following section.
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8. DETERMINING THE STATE (£, ..+ .. £y e jr1s v s £,)

In this section we derive properties that can be used to determine 7,,...,7,_; given
(t,n,t,_j11,...,1,) with n > [. We refer to f,,...,1,_; as the variable admission
epochs (versus #, ;.1,..., 1, that are fixed). Also, let 7, denote the instant just
before the admission of the kth customer.

LEMMA 2: ppysii(6m, Ey eyl gy by gi1ye-sby) isconvexinty fork=1,...,n—1
Proor: Choose 1 = k=n—1[ (assume that 7,_; =0if k=1 and 7,1 = t,_;4 if
k=n—1).From (2), we get that the probability that there is a rejection before time
t can be written as

Poisit(G bty sty pigseeesty,) = PM(G = 6 )ZM (B — 8) Y. pisins
(16)
where
p=e"""MENZ.. M5 — 1,5)Z,
Y =ZM(tyop — Giyqy)... ZM(t —1,).

In words, P is the vector of unconditional probabilities vector estimated at time 7,
and Y, ;.1 wWithy = b + s is the probability that the system experiences a rejection
in the interval [ 7., 1], given there are y in the system at time 7, ,. From the def-
inition of ¥, ;4 1, we get

YO,b+x+l = Yl,h+s+1 =-. = Yh+s,h+s+1 =1= Yb+s+l,h+x+l' a7

Let x denote the number of customers that are in the system at time 7;_;; we
refer to them as original customers. Let i = x denote the number of original cus-
tomers that are still in the system at time 7, ;. We consider six cases. For each one,
we show that the probability of rejection before time ¢ is either independent of 7; or
is a convex function of 7. Let customer k be the customer that is admitted at time 7.

Case 1: x < s. The probability of a rejection before ¢ is given by
M, (G — G )[e ™Y+ (L= e @)y, ]

In this expression, p, is the probability that there are x customers in the system
at time 7,_; and M, ;(#;+; — #;—;) is the probability that out of these x customers, i
are still in the system at time 7, ;. Because the number of original customers is less
than the number of servers, there is at least one free server at time 7; so that cus-
tomer k starts service right away. With probability e #+1~-1)  customer k is still
being served at time 7, , and there is a total of i + 1 customers in the system at that
time, so that the probability of a rejection after 7, | iS ¥;1 p+,+1. With probability
(1 — e #@e1=%-1)) customer k has left the system and there are i customers at 7, |,
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so that the probability of a rejection after 7, ; is ¥; j+,+. By (17), this expression is
convex in f.

Case2: s=x<b+sands=i=ux Attime 7, some original customers are still
in the queue, waiting to be served. It follows that customer k does not start service
before time 7, | and, hence, there are i + 1 customers in the system at time 7, ;. By
a logic similar to that in Case 1, the probability of a rejection before ¢ is given by

i’xMx,i(;k+l - l_‘kfl)Yi+l,b+s+l7
which does not depend on 7.

Case 3: s =x < b+ sandi < s. At time 7., there is at least one free server.
Therefore, customer k starts service in the interval [7;, &4 ). Let 7 € [f_y, frr1)
denote the time when the number of original customers becomes s — 1. Customer k&
starts service at time max{f#;, 7} = I, v 7. The probability of a rejection before ¢ in
Case 3 is given by

i)xMx,sfl(T - t_kfl)MSfl,i(Ek+l - T)

X [e# WY g+ (1= e =y ]

This is a convex function of 7.

Case 4: x = b + s and i = b + s. The system is full at time #,_, and all of the
original customers are still in the system at time 7, ,. Therefore, customer k is
rejected. The probability of a rejection before ¢ is given by

f)b+.\-Mb+.v,h+s(t_k+l - t_kfl)’
which does not depend on 7.

Case 5: x=Db + sand s =i < b + s. The system is full at time 7,_; and some
original customers are still in the queue at time 7, ;. If at least one original cus-
tomer leaves the system before time 7, then this case is equivalent to Case 2. If
none of the original customers leaves the system by time 7, which happens with
probability My pos(fx — fr—1) My, i(fi+1 — %), then customer k is rejected. The
probability of a rejection before ¢ is the sum of these:

f)h+sMh+.v,i(fk+1 - t_kfl)YiJrl,bJrerl + l~)h+sMb+s,b+s(fk - E/\»71)
X Mb+s,i(fk+l - fk)[l - Yi+1,b+s+l]'
It can be shown using (3) that this is a convex function of 7.

Case 6: x = b + s and i < s. The system is full at time 7;_; and there is at least
one free server at time 7, ;. Again, let 7 € [f;_;, f;+;) denote the time when the
number of original customers becomes s — 1. If at least one original customers
left before time 7, then this case is similar to Case 3. However, if no original
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customer leaves the system before time 7, which happens with probability
Mg prs(te — G 1)Mpig -1 (7 — H)M,— ;(fr+1 — 7), then customer k is rejected.
The probability of a rejection before ¢ is the sum of these:

f)b+sMb+s,sfl(T - fk*l)Msfl,i(karl —7)

X [e MGy, (L= e WGy, ]

+ f)h+.vMb+s,h+x(lTk - fkfl)Mth,\v,.yﬂ(T - t_k)fol,i(karl —7)

X [e = (] — Yiiiprssr) (1 — e M) (1 — Yi,b+s+])]'

It can be shown using (3) that this is a convex function of 7. u

It follows from Lemma 2 that a local optimum in the search for the minimum
value of p,,, (,n, t,...,1,) can be found by a line search. We also observe from the
proof that the optimal value of 7, is the result of a trade-off between the risk of
losing that customer because the system was full at the time he was admitted and
the benefit of serving that customer as soon as possible in order to free the servers
for future admissions.

The following corollary establishes that it is optimal to set the most recent
b — [ variable admission epochs (i.e., f(,—p)n15 - - - » I,—;) €qual to the earliest admis-
sion epoch the controller remembers (i.e., f,—;41).

COROLLARY 2: The state (t,n,ty, ..., 5,y t,_i11,1,) is such that for n = 2,

tnepyal = =0 =l = by

ProoF: The proof is by induction. Let (n — b) A | =k =n — [ and assume that
t_j =t, g forj=k+1,...,n—1[ thatis, n — [ — k + 1 customers are admitted at
time 7, ;1 = f;4,. After that, [/ — 1 customers are admitted at times ¢, _;40,...,L,.
The probability of a rejection before time 7 is given by (16). In this expression,
Y, b+s+1 is the probability that the system incurs a rejection in the interval [ 7, 1],

given that there are y in the system at time 7, ,. We claim that

Yors—tti—t,prst1 = " = Vprgprsr1 = I, (18)
0<Yoirstnwysipist1=""=Yprs (nirrn),prst1 =1, (19)
Yorirst1= " = Yorg (nrybistt = 0. (20)

Since there are n — [ — k + 1 admissions at time 7, |, there is a rejection at this
time if and only if there are more than b + s — (n — [ — k + 1) customers at time
te+1, which gives (18). The [ — 1 subsequent customers are rejected if they find the
system full at the time of their arrival, which can only happen if there are more than
b+s—(I—1)—(n—1—k+1)=>b+s— (n— k) at time 7,_; therefore, we get
(19) and (20).

https://doi.org/10.1017/50269964807070027 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964807070027

40 D. Honhon and S. Seshadri

As shown in the proof of Lemma 2, the probability of a rejection before time ¢
can be analyzed in six cases. In Cases 2 and 4, the probability does not depend on
f,. We can eliminate Cases 1 and 3 and the first term of Case 6, as i < s=b + s —

(n — k) and (20) implies Y; j1 541 = Yis1.p+5+1 = O in these expressions. How-
ever, the second term of Case 6 is a function of 7. Summing up all of those terms
fori=0,...,5s — 1, we get

s—1
f’b+sMb+s,b+s(fk — i) 2 Mb+s,i(t_k+1 — 1)
i=0
In Case 3, the first term does not depend on 7;. As for the second term,
it is positive only if Y4 44+ < 1, which from (19) is true fors =i = b + s —
(n — k — 1) — 2. Therefore, only the second term depends on 7 if s < i <b + s —
(n — k — 1) — 2. Summing up all of those terms, we get

b+s—(n—I—k+2)
PorsMy g pis(te = Biy) > My i(tr =81 = Yier prgin ]
i=s
Adding up the two expressions, we get

bts—(n—1—k+2)
i)l)+sMb+s,b+x(t_k — 1) 2) Mb+s,i(t_k+1 - fk)[l - Yi+l,h+s+1]'
=

The first term is the probability that the system remains full in the interval [ 7, f;].
This probability decreases as 7; increases since more customers have time to finish
service. The second term is the probability that there is no rejection in the interval
[fx+1,1], given that the system has b + s customers at time 7. The second term can
be made equal to zero when #;, = #;;, and, therefore, it is optimal to do so. u

The intuition behind this result is the following. There can be a rejection either
at time 7; or in the interval [7; , ¢ ]. The former happens if the system is full at time
f; and the probability of this happening decreases with 7,. The latter happens if there
are more than b + s — (n — k) customers at 7, ,, which is more than the number of
servers because k = n — b. The probability of this happening is independent of 7;
because customer k does not start service in this case and therefore has no chance of
leaving the system before time 7, . It follows that it is optimal to set f; = #;_; to
minimize the probability of a rejection at time 7.

There is a remarkable special case in which we can establish a symmetry prop-
erty of the variable admission epochs. The result is given in the following lemma.

LEMMA 3: When s = 1, the state (t,n,t,...,1,_1,1,) corresponding to aggregate
state (t,n, t,) is such that forn = b + 1,

tl = tn - tn—b—l’

o _ _ -b—1
= by = by pgi1 — bep—is k=2,...,|——|. 21

https://doi.org/10.1017/50269964807070027 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964807070027

ADMISSION CONTROL WITH INCOMPLETE INFORMATION 41

PrOOF: Let us assume for ease of presentation that n — b > 1 (the proof when
n — b =1 is similar). By Corollary 2, we have 7,_, = --- = 1,,; that is, (b + 1) cus-
tomers are accepted at time #,. This will result in a rejection unless the system is empty
at time ¢, . So we wish to determine 7y, ..., %,_,_; S0 as to maximize the probability
that the system is empty at time 7, . Let 7, = 0 denote the epoch of the last rejection.

Let s; denote the number of departures in the interval (z, f;4 ] fork=0,...,n —
b — 1. Given that the buffer is full at time 0, the number of departures should satisfy
the following conditions in order to have (b + 1) customers at time ¢, and no rejec-
tion in the interval [0, 7,,]:

k
s =k+1l,  k=0,....n—b—1, (22)
i=0
k
s, =k+1,  k=0,...,n—b—1, (23)
i=0
n—b—1
> s =n. (24)
i=0

The first condition guarantees that the system is not full at each admission epoch.
The second condition makes sure that the customers that have been admitted after
time O have left the system before time #,. The third condition states that all of the
customers that were ever in the system in the time interval [0, 7, | should have left
the system before time ¢, . This includes the b + 1 customers that were in the system
at time O plus the n — b — 1 customers who arrived in (0, 7,,).

Now, suppose that we let time run backward so that we start with a full system
at time 7,,, and have customers come at time 7,,_,_, . .., ;. Denote this as the reversed
system. Due to the symmetry of (22) and (23), the same conditions would apply for
the reversed system to be empty at time 0 without any rejection in the “interval”
[#,,0].

It follows that every realization of the forward system in which there is no loss
corresponds to a realization of the reversed system in which there is no loss. Sim-
ilarly, every realization of the reversed system in which there is no loss corresponds
to a realization of the forward system where there is no loss. Thus, the sample paths
over which there is no loss are in 1-1 correspondence in the two systems.

If the epochs 7y, ..., f,—,—; maximize the probability that the system is empty
in the forward system, then the reversed epochs maximize the same probability in
the reversed system. Therefore, we conclude that the arrival epochs 7, ..., %,—;—;
must be symmetric in [0, 7,,]. u

9. NUMERICAL RESULTS

In this section we compute the optimal average cost, the lower bounds, and the
performance of the policies on the aggregate state space. We use the MDP in (5) to
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TABLE 1. Parameters Used in Experiments

Scenario s b u p
1 1 1 0.5 1.18
2 1 1 0.2 2.96
3 3 3 0.1 1.97

obtain the optimal policy and we use the MDP in (8) with weights defined by (11)
to obtain the policies on the aggregate state spaces S’ with [ = 1,2. Average costs
are estimated using the simulation algorithm described in Section 6.

We choose the following discretizing parameters: m = 50,A = 1,T = 75. Also,
we set A = 0.9 and take interarrival time X to be distributed according to

P[X=k]=e *k"Dr — =K\ k=12,...,

such that the mean interarrival time is (1 — ¢ *)"!.

Table 1 shows the different sets of parameter values we use in each scenario,
including p = (1 — e~ *)(su)™", the load offered to the system.

For each set of parameters, we vary the cost of blocking ¢ in steps of 0.05 for
a range of values within which it is optimal to block and also to admit some
customers.

Figure 1 shows that computing the bound with I = 2 (i.e., 62) significantly
improves the bound obtained with / =1 (i.e., 8'). 8! is, on average, 11.14% lower

0.34 -
0.32

0.3 -
0.28
0.26 ~
0.24

0.22

0.2

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Cost of blocking (c)

—x—optimal —s—bound |=1 ——bound =2

FIGURE 1. Scenario 1: bounds.
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0.34 -
0.32 -

0.3
0.28 +
0.26 -
0.24 -

0.22 -

0.2

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Cost of blocking (c)

—— optimal —— policy I=1 —— policy |=2 —+— RG policy

FIGURE 2. Scenario 1: performance of policies.

than the optimal average cost, whereas 87 is, on average, 8.03% lower. The quality
of the two bounds increases as ¢ decreases. In contrast, Figure 2 shows that the
policies u'* and u** improve as ¢ increases. They both perform better than the Reject—
Gapping policy of Lin and Ross (depicted as RG) with an average optimality gap of
2.30% and 1.72%, respectively, for [ = 1 and [ = 2 versus 3.15% for the Reject—
Gapping policy.

Figure 3 shows that the performance of the policy with / =1 and the quality of
the bound improve as the offered load increases. The bound is, on average, 1.1%

0.7 ~
0.65 -
0.6 A
0.55 4
0.5
0.45 -
0.4
0.35 4

0.3 T T T T T T T T T T T )
04 045 05 055 06 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Cost of blocking (c)

—»— optimal —=— policy I=1 —— bound |I=1 —— RG policy

F1GURE 3. Scenario 2: performance and bound.

https://doi.org/10.1017/50269964807070027 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964807070027

44 D. Honhon and S. Seshadri

0.5 4
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0.2 1
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0.1 T T T T T T T T T T T T )
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Cost of blocking (c)

—s—bound |I=1 ——bound I=2 —— policy I=1

FI1GURE 4. Scenario 3: bounds.

lower than the optimal policy and the policy u'* performs, on average, only 1.01%
worse than the optimal policy, as opposed to 4.66% for the Reject—Gapping policy.

In scenario 3, we cannot obtain the optimal policy because of the large state
space, however, we can compute ' and 2. Figure 4 shows that the difference
between these bounds increases with ¢ and is, on average, equal to 2.01%. Figure 5
shows that the performance of the policies are very similar. However, our policies
tend to perform better than the RG policy for small values of c. The average per-

0.5
0.45
0.4 1
0.35 4
0.3 -
0.25 -
0.2 1
0.15 4

0.1 . . . . . . .
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Cost of blocking (c)

0.65 0.7 0.75 0.8

—=—policy I=1 —— policy I=2 —— RG policy

FIGURE 5. Scenario 3: performance of policies.
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centage difference between the cost given by our policy, J (#**), and 62 is 5.03%,
so that even without knowing the optimal policy, we have an estimate of the opti-
mality gap.

A good feature of our lower bound is that is is tight when the cost of blocking
is low, because, in this case, the optimality gap is likely to be larger given that it is
optimal for the controller to frequently block arriving customers. In contrast, when
c is high, all policies tend to converge quickly to one that admits most customers
and, therefore, the case when c is high is not as interesting.

10. CONCLUSION

We have provided a method for finding a control policy based on aggregation of the
state space by discarding some information about the admissions to the system. By
remembering only a finite number / of the most recent admission epochs along with
the time and number of customers admitted since the last rejection, the controller
can construct a control policy on a state space that does not grow with either the
size of the buffer or the number of servers.

For each aggregate state, we set the unconditional probability of a rejection
equal to the minimum of the rejection probability over all of the full memory states
with the same values of the / most recent admission epochs. The full memory state
that realizes this minimum is given a weight of one, whereas every other state is
given a weight of zero. Our approach uses knowledge about the system to define
and efficiently identify this state. It is interesting to note that the weights we obtain
differ from the conditional probabilities induced by the control. The conventional
approach of state aggregation uses these conditional probabilities but has no guar-
antee of convergence. In contrast, our method for defining the weights allows us to
obtain a lower bound on the performance of the optimal policy. This is particularly
useful when the buffer size and the number of servers are large and computing the
optimal policy is very computationally intensive. We show numerically that the
bound is tight in the important case when the cost of blocking is low and the load
offered to the system is high. Moreover, the policies that we obtain perform gen-
erally better than the Reject—Gapping policy of Lin and Ross [11] and their perfor-
mance naturally improves with the number of admission epochs the controller
remembers. Finally, they perform best when the cost of blocking is high and the
offered load increases. An opportunity for future research is to determine a tech-
nique for policy improvement that at the same time maintains the lower bound.
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