
Math. Struct. in Comp. Science (2007), vol. 17, pp. 647–673. c© 2007 Cambridge University Press

doi:10.1017/S0960129507006214 Printed in the United Kingdom

Coalgebraic description of generalised binary

methods†

FURIO HONSELL‡, MARINA LENISA‡ and REKHA REDAMALLA‡§

‡ Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206,

33100 Udine, Italy
§ B.M. Birla Science Centre, Adarsh Nagar, Hyderabad, 500 063 A.P., India

Received 16 October 2005; revised 3 November 2006

We extend the coalgebraic account of specification and refinement of objects and classes in

object-oriented programming given by Reichel and Jacobs to (generalised) binary methods.

These are methods that take more than one parameter of a class type. Class types include

products, sums and powerset type constructors. To allow for class constructors, we model

classes as bialgebras. We study and compare two solutions for modelling generalised binary

methods, which use purely covariant functors.

In the first solution, which applies when we already have a class implementation, we reduce

the behaviour of a generalised binary method to that of a bunch of unary methods. These

are obtained by freezing the types of the extra class parameters to constant types. If all

parameter types are finitary, the bisimilarity equivalence induced on objects by this model

yields the greatest congruence with respect to method application.

In the second solution, we treat binary methods as graphs instead of functions, thus turning

contravariant occurrences in the functor into covariant ones.

We show the existence of final coalgebras in both cases.

1. Introduction

The papers Reichel (1995), Jacobs (1996) and Jacobs (1997) describe a categorical

framework based on the notion of coalgebra to provide semantics to objects and

classes. The idea underpinning this approach to class specification and refinement is

that coalgebras, which are duals to algebras, allow us to focus on the behaviour of objects

while abstracting from the concrete representation of the state of the objects. Algebras

have ‘constructors’ (operations packaging information into the underlying carrier set);

coalgebras have ‘destructors’ or ‘observers’ (operations extracting information from the

carrier set), which allow us to detect certain behaviours.

Classes in object-oriented languages are given in terms of attributes (fields) and methods.

The values of attributes determine the states of the class, that is, the objects; methods act

on objects.

In the coalgebraic approach of Reichel (1995), Jacobs (1996) and Jacobs (1997), a class

is modelled as an F-coalgebra (A, f : A → F(A)) for a suitable functor F . The carrier

† Work partially supported by the Project ART(PRIN 2005015824), and by the UE Project TYPES(IST-

510996).

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 648

A represents the space of objects, and the coalgebra operation f represents the public

methods of the class, that is, the methods that are accessible from outside the class.

Methods are viewed as functions acting on objects. The coalgebraic model, that is, the

unique morphism into the final F-coalgebra, induces precisely the behavioural equivalence

on objects, in which two objects are equated if, for each public method, the application of

the method to the two objects, for any list of parameters, produces equivalent results. A

benefit of this coalgebraic approach is a coinduction principle for establishing behavioural

equivalence.

So that we can also treat class constructors, in this paper, we introduce an algebra part

in our model, thus modelling classes as bialgebras: Rothe et al. (2001) and Cirstea (2000)

use a similar approach.

Following Jacobs (1996), we distinguish between class specifications and class imple-

mentations (or simply classes). A class specification is like an abstract class, in which only

the signatures of constructors and (public) methods are given, without any actual code.

Assertions enforce behavioural constraints on constructors and methods. On the other

hand, the implementation of constructors and methods is given in a class implementation.

In the bialgebraic approach, a class specification induces a pair of functors, determined

by the signatures of constructors and methods, respectively. A class implementation is

any bialgebra satisfying the assertions.

Binary methods, that is, methods with more than one class parameter, do not appear to

be susceptible to this simple co(bi)algebraic approach†. The extra class parameters produce

contravariant occurrences in the functor modelling class methods, and hence cannot be

handled by a straightforward application of the standard coalgebraic methodology.

In this paper, we extend the Reichel–Jacobs coalgebraic approach to generalised binary

methods, that is, methods whose type parameters are built over constants and class

variables, using products, sums and the powerset type constructor. This is a fairly large

collection of methods, including all the methods that are commonly used in object-oriented

programming.

Our interest is focused on equivalences for objects that are ‘well behaved’, that is,

are congruences with respect to method application. Hence they induce a minimal

implementation of the given class specification by considering the quotient of the class

through the equivalence.

The principal contribution of this paper is to show that canonical models can also be

built for classes with generalised binary methods using purely covariant tools, at least in

the case of finitary binary methods, that is, methods where type constructors range over

finite product, sum and powerset. We propose two different solutions. Our first solution

applies to the case where we already have a class implementation. It is based on the

observation that the behaviour of a generalised binary method can be captured by a

bunch of unary methods obtained after a suitable manipulation of the original method.

The key step is to ‘freeze’ in turn each of the types of the class parameters in the states

of the class implementation given at the outset, that is, to view them as constant types.

† By a standard abuse of terminology, binary methods refer to methods with n � 2 class parameters.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 649

Our second solution is based on a set-theoretic understanding of functions in which

binary methods in a class specification can be viewed as graphs instead of functions. Thus,

contravariant function spaces in the functor are rendered as covariant sets of relations.

We prove that the bisimilarity equivalence induced by the ‘freezing approach’ amounts

to the greatest congruence with respect to method application on the given class, at least

for finitary binary methods. As a by-product, we provide a (coalgebraic) coinduction

principle for reasoning about such greatest congruence.

As far as the graph model is concerned, the bisimilarity equivalence is not a congruence,

in general, even for finitary binary methods. The graph approach, however, yields an

equivalence that always includes the freezing equivalence. Therefore, and somewhat

remarkably, a necessary and sufficient condition for the graph bisimilarity to be a

congruence is that the graph and freezing equivalence coincide. As a consequence, when

this is the case, we obtain a spectrum of coinduction principles for reasoning about the

greatest congruence.

In this paper, we present various non-trivial examples of class specifications and

implementations, where the graph bisimulation is a congruence. Inter alia, we consider

a class, which generalises the one given in Honsell and Lenisa (1995), for representing

terms of the λ-calculus, together with the lazy notion of reduction strategy of Abramksy

(1993).

It is natural to ask what the cause is when the freezing and graph approaches do not

coincide. We do not have a fully satisfactory answer, but we feel that it may be a symptom

of the fact that something is underspecified in the public interface of the class; a similar

comment can be made when no maximal congruence exists in the realm of infinitary

binary methods.

The interest provided by the graph approach goes beyond coalgebraic semantics, since

it suggests a new way for solving the well-known problem of typing binary methods when

subclasses are viewed as subtypes, see, for example, Bruce et al. (1995). In this paper, we

will hint at an intriguing solution based on a new typing system, which utilises a relation

type for typing (binary) methods when these are viewed as graphs, rather than functions.

Our solution takes classes seriously, that is, it does not utilise multiple dispatching. In

concrete object-oriented languages, such as Java, the problem of typing binary methods

when subclasses are involved is normally solved by implementing method calls with

multiple dispatching, that is, by choosing which method code to activate according to the

types of all class parameters, and not just the object type.

We emphasise the fact that, in the case of finitary binary methods, we do provide

satisfactory canonical models, which can be conveniently understood in terms of final

coalgebras, for suitable derived functors. Therefore, a set-theoretical comment on the

existence of final coalgebras is in order. The existence of a final coalgebra is important,

since it provides a canonical implementation of a given specification. Since we do not

want to introduce unnecessary restrictions resulting from the choice of our ambient

category, we work in the category of sets and proper classes (Aczel et al. 1989; Forti and

Honsell 1983), where all covariant functors can be shown to have a final coalgebra, see

Cancila et al. (2006). Thus, throughout the paper, we fix C to be a category whose objects

are the sets and classes of a (wellfounded or non-wellfounded) set-theoretic universe, and

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 650

whose morphisms are the functions between them. For basic definitions and results on

coalgebras, see Appendix A and Jacobs and Rutten (1996).

Comparison with related work

In this section we describe a number of other approaches in the literature that address

the problem of extending the coalgebraic model to binary methods.

In Jacobs (1996a), binary methods are allowed only when they are definable in terms

of the unary methods of the class. This means, in particular, that binary methods do

not contribute to the definition of the observational equivalence. The same observation

applies to the approach in Hennicker and Kurz (1999), where binary methods are defined

as algebraic extensions, thus only the case where the resulting type is the class itself is

considered. Our approach is more general, since we do not require any a priori connection

between binary and unary methods in the class.

Binary methods in full generality have been extensively studied in Tews (2002), where

various classes of mixed covariant–contravariant functors have been considered, and a

theory of coalgebras and bisimulations has been studied for such functors. Tews’ approach

is very interesting, but quite different from our approach, since from the outset we use

purely covariant tools. Nonetheless, there are interesting connections between the two

approaches. We include the powerset type constructor, which Tews does not consider, but,

apart from this, our generalised binary methods should correspond, essentially, to Tews’

class of extended polynomial functors†. Similarly, our finitary generalised methods should

correspond to Tews’ extended cartesian functors. Tews’ bisimulations amount to congruence

relations, and do not give rise, in general, to a coinduction principle, since the union of all

congruences fails to be a congruence. However, for extended cartesian functors, the union

of all congruences is again a congruence (Poll and Zwanenburg 2001; Tews 2002). Our

notion of freezing bisimulation is weaker, in the sense that any bisimulation in the sense

of Tews is a freezing bisimulation, but the converse is not true. Moreover, our notion of

bisimulation, being monotone, always gives rise to a coinduction principle. However, the

greatest freezing bisimulation fails, in general, to be a congruence. It is a congruence (the

greatest one, in fact) exactly in the case of finitary methods. Thus, in this case, our notion

of bisimilarity equivalence coincides with the one by Tews. To conclude this comparison,

we make the following two remarks. First, our approach is more elementary. By modelling

binary methods using purely covariant functors, we can reuse the standard coalgebraic

machinery. On the other hand, Tews develops a theory of coalgebras and bisimulations for

mixed functors, which is also interesting in itself. Second, in our setting, final coalgebras

always exist, so we have canonical models, while mixed functors in Tews (2002) do not

admit final coalgebras.

Yet another approach in the theory of coalgebraic semantics consists of avoiding binary

methods altogether by considering a whole system of objects in place of single objects,

† Tews’ extended polynomial functors appear to cover a wider collection of methods, but we conjecture that

the specific cases that appear not to be covered by our approach should be recoverable using manipulations

similar to those introduced in Section 6. However, more work needs to be done on this.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 651

for example, by considering a class representing a list of points in place of a class for a

single point – see van den Berg et al. (1999) and Huisman (2001). This approach is quite

different from ours.

Finally, there is an interesting connection between our approach and the approach of

hidden algebras (Goguen and Malcolm 2000; Rosu 2000), where the focus is on behavioural

congruences, rather than on bisimulations. Our freezing model has the positive features of

both approaches: the behavioural equivalence that we define is both a greatest bisimulation

and the greatest congruence with respect to method application.

Synopsis

In Section 2, the notions of class specification and class implementation are presented

together with examples. In Section 3, we present the bialgebraic description of objects and

classes in the unary case. In Section 4, which contains the main content of the paper, we

present, discuss and compare our two bialgebraic accounts of generalised binary methods.

In Section 5, we sketch a new solution for typing binary methods, which is inspired by our

graph coalgebraic semantics. Final remarks and directions for future work are presented

in Section 6. Examples appear throughout the paper.

2. Class specifications and class implementations

Following Jacobs (1996), we distinguish between class specifications and class implement-

ations. Informally, a class specification consists of constructor and method declarations,

and assertions, which regulate the behaviour of objects. A class implementation consists

of fields, constructor and method codes.

Before introducing the formal definitions of class specification and implementation, we

need to introduce the grammar for the types of fields, and constructor and method

parameters. We distinguish between finitary generalised types, which corresponds to

polynomial types extended with finite powerset, and (infinitary) generalised types, which

extend the previous class of types with possibly infinitary sums, products and powerset

constructors.

Definition 2.1 (Generalised parameter types).

— Finitary generalised types range over the following grammar:

(TF �) T ::= X | K | T × T | T + T | Pf(T),

where X ∈ TVar is a variable for class types, and K is any constant type. Constant

types include Unit, denoted by 1, Boolean, denoted by �, and Integer, denoted by �.

— (Infinitary) Generalised types range over the following grammar:

(T �) T ::= X | K |
∏
i∈I

Ti |
∑
i∈I

Ti | P(T),

where I is a possibly infinite set of indices.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 652

Note that the product type
∏

i∈I Ti in Definition 2.1 above subsumes the function space

K → T . That is, we allow functional parameters, where variable types can only appear in

strictly positive positions.

For simplicity, in this paper we will consider only one class in isolation; there would be

no additional conceptual difficulty in dealing with the general case.

Definition 2.2. A class specification S is a structure consisting of:

— a finite set of constructor declarations

c : T1 × . . . × Tp → X

— a finite set of method declarations

m : X × T1 × . . . × Tq → T0

— a finite set of assertions regulating the behaviour of the objects belonging to the class.

The language for assertions is any formal language with constant symbols, function

symbols for denoting constructors and methods, and relation symbols for denoting

(extensions of) behavioural equivalences at all types. Typical assertions are equations,

see, for example, Rothe et al. (2001) for more details.

A class (implementation) consists of attributes (fields), constructors and methods.

Attributes and methods of a class can be private or public. For simplicity, we assume

all attributes to be private and all methods to be public. We do not use a specific

programming language to define classes since we are working at a semantic level; any

programming language would do. From this perspective: a class is represented by a

set (of objects) X; a field f of type T is represented by a function f : X → T ; the

code corresponding to a constructor declaration c :
∏p

j=1 Tj → X is given by a set-

theoretic function β :
∏p

j=1 Tj → X; and the code corresponding to a method declaration

m : X ×
∏q

j=1 Tj → T0 is given by a set-theoretic function α : X ×
∏q

j Tj → T0.

Summarising, we have the following definition.

Definition 2.3. A class C = 〈X, {fi : X → Ti}ni=1, {ci :
∏pi

j=1 Tij → X}hi=1, {mi : X ×∏qi
j=1 Tij → Ti0}ki=1〉 is defined by:

— a set of objects/states X;

— functions fi : X → Ti representing fields;

— functions βi :
∏pi

j=1 Tij → X, implementing constructors ci;

— functions αi : X ×
∏qi

j=1 Tij → Ti0 implementing methods mi.

Definition 2.4. A class C implements a specification S if constructor and method declara-

tions correspond and their implementations satisfy the assertions in S .

Our classes feature a quite general notion of binary methods, which we call generalised

binary methods, where parameter types are (infinitary) generalised types as defined in

Definition 2.1 above. Throughout the paper, we fix the following terminology.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 653

Definition 2.5 (Binary methods). Let m : X × T1 × . . . × Tq → T0 be a method, with

T0 ∈ T. Then:

— m is (generalised) binary if T1, . . . , Tq ∈ T;

— m is finitary binary if T1, . . . , Tq ∈ TF;

— m is simple binary if T1, . . . , Tq are either constants or the class type X;

— m is unary if T1, . . . , Tq are all constant types.

Note that our simple binary methods correspond to ordinary binary methods. Through-

out the paper, generalised binary methods will often simply be called binary methods.

2.1. Examples

In Table 1, we present four examples of class specifications, together with some examples

of class implementations.

The class specification Stack(A), which is taken from Jacobs (1997), specifies the

recursive data type of stacks with elements in A. As is customary in object-oriented

languages such as Java, we use the same name new for all constructors, which differ in

the number and type of their parameters. The symbol ≈ in the assertions denotes equality

on objects of class type. All methods in this example are unary.

Our second example of a class specification, Register, features the simple binary method

eq for comparing the contents of two registers.

The class specification λ-calculus in Table 1 represents the recursive data type of λ-terms

under lazy evaluation – see Abramksy (1993). There are three constructors, corresponding

to the syntax of λ-terms (namely, variable, application and abstraction):

M ::= z | MM | λz.M

for z ranging over an infinite set of variables. The method isval tests whether a λ-

term converges, that is, it reduces to an abstraction using the leftmost strategy. Lazy

convergence, denoted by ⇓, is defined by

λz.M ⇓ λz.M
M[N1/z]N2 . . . Nk ⇓ P
(λz.M)N1 . . . Nk ⇓ P

.

The first assertion in the λ-calculus class specification expresses the fact that method

app is a simple binary method that behaves like the constructor for application. The

second assertion is used to axiomatise the notion of convergence.

As we will see, the λ-calculus class specification is intended to provide the standard

notion of lazy observational equivalence when restricted to closed λ-terms.

Note that the code in the class implementation of Λ is not effective, since it uses the

predicate ⇓ as a primitive, which is only semi-decidable. It could not be otherwise, but it

makes the point nevertheless.

A more sophisticated example of a generalised binary method is given by the cell-

component of a cellular automaton. In the general case, where neighbourhoods can vary

at each generation, they can be best specified using sets of cells.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 654

Table 1. Examples of class specifications and classes.

class spec : Stack(A) class T
constructors : attributes :

new : 1 → X first : 1 + A
new : X × A → X next : T

methods : constructors :
push : X × A → X
pop : X → X methods :
top : X → 1 + A s.push(a) = s′

assertions : where s′.first = a and
s.push(a).top = a s′.next = s
s.push(a).pop ≈ s s.pop = if s.first = ∗
s.top = ∗ ⇒ s.pop ≈ s then s
new.top = ∗ else s.next
new(s, a) ≈ s.push(a) s.top = s.first

end class spec end class

class spec : Register class R
constructors : attributes :

new : 1 → X val : int
methods : constructors :

set : X × N → X
get : X → N methods :
eq : X × X → � r.get = r.val

assertions : r.set(n) = r′

r.set(n).get = n where r′.val = n
r1.get = r2.get ⇔ r1.eq(r2) = if (r1.get = r2.get)

r1.eq(r2) = true then true
new.get = 0 else false

end class spec end class

class spec : λ-calculus class Λ
constructors : attributes :

new : X × X → X term : λ-string
new : Var → X constructors :
new : Var × X → X

methods : methods :
isval : X → � M.isval = if M.term ⇓
app : X × X → X then true

assertions : else false
new(M,N) ≈ M.app(N)
M.isval = true ⇔ M.app(N) = P

∃zN. M ≈ new(z, N) where P .term = (M.term)(N.term)
end class spec end class

class spec : Cell class C
constructors : attributes :

new : N × N × State → X valx : int
methods : valy : int

getx : X → N neighborhood : P(X)
gety : X → N state : State
setstate : X × State → X constructors :
setneighborhood : X × P(X) → X . . .

getneighborhood : X → P(X) methods :

assertions : . . .
. . .

end class spec end class

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 655

3. Bialgebraic description of objects and classes: unary case

In this section we illustrate the bialgebraic description of class specifications and class

implementations in the case of unary methods. We extend the coalgebraic description given

in Reichel (1995) and Jacobs (1996) with an algebra part modelling class constructors; a

similar approach appears in Rothe et al. (2001) and Cirstea (2000).

We will begin by explaining how a class specification induces a pair of functors.

Each constructor declaration c :
∏p

j=1 Tj → X in a class specification determines a

functor L : C → C defined by

LX =

p∏
j=1

Tj . (1)

In this way, c : LX → X will induce an L-algebra structure on X.

The treatment of methods is more indirect. By currying the type in a method declaration

m : X ×
∏q

j=1 Tj → T0, we get the type X → [
∏q

j=1 Tj → T0]. Thus, we define the functor

H : C → C induced by m as follows:

HX �
q∏

j=1

Tj → T0 . (2)

Thus, m will induce an H-coalgebra structure on X.

Note that the functor H is a well-defined covariant functor only if the method m is

unary. Binary methods, such as the method eq in the class specification Register, or app

in Λ, produce contravariant occurrences of X in the corresponding functor. For example,

the functor induced by eq would be HeqX � X → �. The coalgebraic approach does not

apply directly to the case of binary methods; we discuss how to overcome this problem

in Section 4. Here we focus on the unary case. In this case, we can immediately associate

a pair of functors to a class specification as follows.

Definition 3.1. Let S be a class specification with constructor declarations

ci :

pi∏
j=1

Tij → X, i = 1, . . . , h

and method declarations

mi : X ×
qi∏
j=1

Tij → Ti0, i = 1, . . . , k ,

where all methods are unary. The constructor declarations in S induce the functor

L : C → C defined by

L �
h∐

i=1

Li ,

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 656

where Li : C → C is the functor determined by the constructor declaration ci defined as

in (1). The method declarations in S induce the functor H : C → C defined by

H �
k∏

i=1

Hi ,

where Hi : C → C is the functor determined by the method declaration mi, defined as in

(2).

A class implementation induces a bialgebra for the functors determined by its con-

structor and method declarations as follows.

Definition 3.2. A class C = 〈X, {fi : X → Ti}ni=1, {ci :
∏pi

j=1 Tij → X}hi=1, {mi : X ×∏qi
j=1 Tij → Ti0}ki=1〉 induces a bialgebra (X, β, α) (where α and β are defined below) for

the functor pair 〈L,H〉 determined by the declarations of constructors and methods as in

Definition 3.1 above:

— the algebra map β : LX → X is defined by β � [βi]
h
i=1, where βi : LiX → X is the

function implementing the constructor ci, and [] denotes the standard case function;

— the coalgebra map α : X → HX is defined by α � 〈αi〉ki=1, where αi : X → HiX is the

function implementing the method mi, and 〈 〉 denotes the standard pairing functor.

Thus, the class implementations corresponding to a given specification can be viewed

as bialgebras as follows.

Definition 3.3. Let S be a class specification inducing a functor pair 〈L,H〉. A class

implementing S is an 〈L,H〉-bialgebra satisfying the assertions in S .

Note that in Definition 3.3 the classes are taken up to fields because these are private.

3.1. Coalgebraic behavioural equivalence

In this section we characterise the behavioural equivalence on objects induced by the

coalgebraic part of a class implementation.

A preliminary step in discussing behavioural equivalences and congruences consists of

extending the behavioural equivalence on the set of objects X of a class to the whole

structure of (sets interpreting) types over X. Such an extension is defined through the

following definition, which extends the notion of relational lifting given in Hermida and

Jacobs (1998) to the powerset. We abuse notation in the definition below and do not

distinguish between types and their usual set-theoretic interpretation.

Definition 3.4 (Relational lifting). Let RX be a relation on X and T ∈ T be such that

Var(T) ⊆ {X}. We define the extension RT ⊆ T × T by induction on T as follows:

— If T = K, then RT = IdK×K.

— If T =
∏

i∈I Ti, then RT = {(�a,�a′) | ∀i ∈ I.aiR
Tia′

i}.
— If T =

∑
i∈I Ti, then RT = {((i, a), (i, a′)) | i ∈ I ∧ aRTia′}.

— If T = P(T1), then RT = {(u, u′) | ∀a ∈ u ∃a′ ∈ u′. aRTa′ ∧ ∀a′ ∈ u′ ∃a ∈ u. aRTa′}.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 657

In the following we will often make an abuse of notation by just using R to denote the

lifted relation RT when its type is clear from the context.

A strong motivation for the coalgebraic account of objects is that the quotient by the

bisimilarity equivalence of a given class, when viewed as a coalgebra, can yield, in many

cases, such as that of unary methods, a new model of the same class. For this to hold,

we at least need that the bisimilarity equivalence is a congruence with respect to method

application.

Definition 3.5 (Congruence). Let ≈X be an equivalence on the set of objects X of a class

C , and let m : X × T1 × . . . × Tq → T0 be a method in C implemented by α. Then, ≈X is

a congruence with respect to m if

x ≈X x′ ∧ a1 ≈T1 a′
1 ∧ . . . ∧ aq ≈Tq a′

q =⇒ α(x)(�a) ≈T0 α(x′)(�a′) ,

where ≈Ti denotes the extension of ≈X to the type Ti according to the definition above.

Finally, having defined the coalgebraic account of a class in this way, we have that the

coalgebraic equivalence in the unary case equates objects with the same behaviour under

the application of methods.

Proposition 3.1 (Coalgebraic bisimilarity equivalence). Let S be a class specification and

(X, [βi]
h
i=1, 〈αi〉ki=1) be an 〈L,H〉-bialgebra implementing S . Then:

(i) An H-bisimulation on (X, 〈αi〉i) is a relation R ⊆ X × X satisfying

xR x′ =⇒ ∀αi. ∀�a. αi(x)(�a)R αi(x
′)(�a) .

(ii) The coalgebraic bisimilarity equivalence ≈H , that is, the greatest H-bisimulation on

(X, 〈αi〉i), can be characterised by

x ≈H x′ ⇐⇒ ∀αi. ∀�a. αi(x)(�a) ≈H αi(x
′)(�a) .

In particular, the following coinduction principle holds:

R is an H-bisimulation on (X, 〈αi〉i) xR x′

x ≈H x′ .

Proof. The proposition follows from the definition of coalgebraic bisimulation (see

Definition A.3 of Appendix A) and Theorem A.1 of Appendix A.

Thus we also have the following theorem.

Theorem 3.1. ≈H is the greatest congruence with respect to methods.

Proof. Since all methods are unary, by the definition of relational lifting on constant

types, we immediately have that ≈H is a congruence with respect to methods. The fact

that ≈H is the greatest congruence follows by observing that any congruence with respect

to methods is an H-bisimulation.

As we mentioned earlier, a major benefit of the coalgebraic approach to classes is that

bisimilarity equivalences naturally yield, via quotienting, classes of the same signature as

the original class, and, furthermore, preserve various kinds of assertions. This can also be

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 658

expressed by saying that a suitable subcoalgebra of the final coalgebra still provides an

implementation of the specification, in fact, it is the canonical one.

It goes without saying that in dealing with bialgebras we would like to preserve the

above important feature of the purely coalgebraic approach. To this end, we require

that final bialgebras exist, and, furthermore, that the behavioural equivalence is also a

congruence with respect to constructors. Turi and Plotkin (1997) and Corradini et al.

(2002) investigated general conditions on categories of bialgebras to ensure the above

properties.

These results can be extended/adapted to include the collection of functors modelling

generalised binary methods considered later in this paper, at least for assertions of

a simple equational shape. In this case, if there is a ‘tight connection’ between the

algebraic and the coalgebraic structure for a given bialgebra satisfying the assertions,

then the corresponding functors admit final bialgebras still satisfying the assertions, and

the behavioural equivalence is a congruence with respect to constructors. We will not

elaborate further on this issue here, but instead focus on the coalgebraic part, which is

the most problematic one.

4. Coalgebraic description of generalised binary methods

In this section we show how to extend the bialgebraic approach to binary methods. Our

first proposal (Section 4.1) applies when a concrete bialgebra (that is, class implementation)

is already available. It is based on the observation that the behaviour of a binary method

can be simulated by a bunch of unary methods, each determined by ‘freezing’ all but

one of the occurrences of X in the parameter types and object type. The bunch is then

obtained after suitable manipulations of the original method. ‘Freezing’ an occurrence of

X means that X is replaced by the carrier, that is, the set of states, of the given class. This

allows us to define a covariant freezing functor F , where the contravariant occurrences

in the original generalised binary method are replaced by a constant type, namely the

carrier of the given bialgebra. The freezing procedure is carried out in such a way that,

at least in the case of finitary binary methods, the bisimilarity equivalence induced by F

turns out to be the greatest congruence with respect to the original binary methods.

In Section 4.2 we present an alternative solution to the freezing functor, which we call

a graph functor. Here we turn contravariant occurrences in the type of parameters of a

generalised binary method m into covariant ones simply by interpreting m as a graph

instead of a function. To this end, we introduce a new functor G (graph functor), where

the function space is substituted by the corresponding space of graph relations.

The advantage of this latter solution compared with the previous one is that this

approach applies directly to specifications. The drawback is that the graph bisimilarity

equivalence is not a congruence with respect to method application in general. One

may ask why this is the case, but, as yet, there is no general explanation. In many

cases it means that the specification is under-determined, or, alternatively, there exist class

implementations without a common refinement. However, there are many interesting

situations where the graph equivalence is a congruence with respect to methods. In these

cases a rich spectrum of conceptually independent coinduction principles is available.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 659

We discuss this issue in Section 4.3, together with a comparison of freezing and graph

bisimilarity equivalences.

Throughout this section, we assume that S is a class specification with constructors

ci :
∏pi

j=1 Tij → X, i = 1, . . . , h, and methods mi : X ×
∏qi

j=1 Tij → Ti0, i = 1, . . . , k, and

that L is the functor induced by the constructors.

4.1. The freezing functor

Given a class implementation C , with carrier X̄, we transform C into a class C∗ containing

only unary methods. The procedure is carried out in two steps:

1 We first reduce each binary method m to a bunch of simple binary methods with the

same observable behaviour as m. To this end, we process the parameters with complex

types as follows:

(a) For each parameter with type
∑

i∈I Ti in m, we consider methods {mi}i∈I , where

the method mi has a parameter of type Ti.

(b) Each parameter with type
∏

i∈I Ti can be viewed as the product of |I | parameters.

(c) The treatment of parameters with type P(T ′) is more subtle. If m has a parameter

of type P(T ′), that is, m : X × . . . × P(T ′) × . . . → T0, the behaviour of m can

be simulated by a pair of methods m1 : X × . . . → T0, where the parameter of

type P(T ′) disappears, and m2 : X × . . . × P(T ′[X̄|X]) × T ′ × . . . → T0, where we

‘freeze’ the powerset parameter as a constant type and add an extra parameter

T ′. Intuitively, the method m1 accounts for the behaviour of m when the powerset

parameter is the empty set, while the method m2 accounts for the case of non-empty

sets (the precise definition of m1 and m2 will be given in Definition 4.1).

By applying the above transformations to a binary method, we get a (possibly infinite)

set of simple binary methods m : X ×
∏

j∈J Tj → T0, where J is a possibly infinite set

of indices (if all sum and product types in the original method are finite, the number

of simple binary methods together with their parameters are finite).

2 In the second step, we reduce each simple binary method to a bunch of unary methods.

Let m : X ×
∏

j∈J Tj → T0 be a simple binary method implemented by the function α.

In order to capture the observable behaviour of the method m, we need to consider

a bunch of unary methods ml , one for each class parameter, where ml describes the

behaviour of an object when it is used as the lth class parameter.

Formally, steps 1 and 2 are defined in terms of the following method transformation.

Definition 4.1 (Method/class transformation).

(i) Let τF be the one-step method transformation function that takes a method m :

X ×
∏q

j=1 Tj → T0, implemented by α, and produces a set of methods, defined by

induction on types of m as follows:

— Case: m is simple binary.

Let I be the set of indices corresponding to the class parameters of type X in m.

We define

τF (m) = {ml | l ∈ I}

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 660

where

ml : X ×
q∏

j=1

(Tj[X̄/X]) → T0

is defined by

αl(x)(a1, . . . , aq) � α(al)(a1, . . . , al−1, x, al+1, . . . , aq) .

— Case: m is non-simple generalised binary.

Assume the leftmost non-constant parameter different from X is Ti. Then:

– Case: Ti =
∑qi

j=1 Tij .

We define

τF (m) = {mij | j = 1, . . . , qi}
where

mij : X × . . . × Ti−1 × Tij × Ti+1 × . . . × Tq → T0

is defined by

αij(x)(a1, . . . , ai−1, aij , ai+1, . . . , aq) � α(x)(a1, . . . , ai−1, inj(aij), . . . , aq) ,

where

inj : Tij →
qi∑
j=1

Tij

is the canonical injection.

– Case: Ti =
∏qi

j=1 Tij .

We define

τF (m) = {m′} ,
where

m′ : X × . . . × Ti−1 × Ti1 × . . . × Tiqi × . . . Tq → T0

is defined by

α′(x)(a1, . . . , ai−1, ai1, . . . , aiqi , ai+1, . . . , aq) � α(x)(a1, . . . , ai−1,�ai, ai+1, . . . aq) .

– Case: Ti = P(T ′
i).

We define

τF (m) = {m1, m2} ,
where

m1 : X × . . . × Ti−1 × Ti+1 × . . . × Tq → T0

is defined by

α1(x)(a1, . . . , ai−1, ai+1, . . . , aq) � α(x)(a1, . . . , ai−1, φ, ai+1, . . . aq)

and

m2 : X × . . . × Ti−1 × P(T ′
i [X̄|X]) × X × Ti+1 × . . . × Tq → T0

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 661

is defined by

α2(x)(a1, . . . , ai−1, u, y, ai+1, . . . , aq) � α(x)(a1 . . . ai−1, u ∪ {y}, ai+1, . . . , aq) .

(ii) Let τ∗
F be the transformation function that takes a method and iteratively applies τF

defined by

τ∗
F (m) =

{
τ(m) if m is simple binary⋃

{τ∗
F (mi)|mi ∈ τF (m)} otherwise.

(iii) Finally, for a class C , let C∗ be the class with the same carrier, fields and constructors

as C , and with unary methods
⋃

{τ∗
F (m)|m is a method of C} .

In the following example we apply the above method transformation to a given class.

Example 4.1. Let R′ be a class of registers with carrier �, including the method

m : X × PfX → � defined by:

α(x)(u) =

{
true if x ∈ u

false otherwise.

Then τ∗
F (m) = {τ∗

F (m1), τ
∗
F (m2)}, where:

— m1 : X → � is defined by α1(x) = α(x)(φ) = false

— m2 : X × Pf(�) × X → � is defined by α2(x)(u, y) = α(x)(u ∪ {y})
— τ∗

F (m1) = {m1}
— τ∗

F (m2) = {m′
2, m

′′
2}, where

– m′
2 : X × Pf(�) × � → � is defined by α′

2 = α2

– m′′
2 : X × Pf(�) × � → � is defined by α′′

2(x)(u, y) = α2(y)(u, x) = α(y)(u ∪ {x}).

Now, given a class C , we can define a coalgebraic model of the transformed class C∗

using purely covariant tools, as in Section 3 for unary methods.

Definition 4.2 (Freezing coalgebraic model). Let C be a class and C∗ be the class obtained

from the transformation τ∗ starting from C . We call the functor induced by the methods

of C∗ according to Definition 3.1 the freezing functor F , and the bisimilarity equivalence

induced by this coalgebraic model the freezing equivalence ≈F .

Finally, we are left to establish the result that motivated our treatment, namely, we

need to prove that the freezing bisimilarity equivalence for finitary binary methods is the

greatest congruence with respect to methods of the original class C .

Theorem 4.1. Let C be a class with finitary binary methods. Then the freezing bisimilarity

equivalence ≈F is the greatest congruence on C .

Proof. The theorem follows if we establish:

1. ≈F is the greatest congruence with respect to methods in C∗.

2. Any equivalence on objects of C is a congruence with respect to the methods of C if

and only if it is a congruence with respect to the methods of C∗.

Fact 1 is immediate by Lemma 3.1.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 662

For fact 2, it is sufficient to show that an equivalence ∼ on a set of objects X̄ is

a congruence with respect to a method m : X ×
∏

j∈J Tj → T0 if and only if it is a

congruence with respect to the methods in τF (m). We prove this by induction on the

structure of the parameters
∏

j∈J Tj .

Base case: m is a simple binary method implemented by α.

If ∼ is a congruence with respect to m, then ∼ is immediately a congruence with

respect to the methods in τF (m), by definition.

For the other direction, assume that ∼ is a congruence with respect to the methods in

τF (m). Let xa1 . . . aq, x
′a′

1 . . . a
′
q ∈ X ×

∏q
j=1 Tj be such that xa1 . . . aq ∼ x′a′

1 . . . a
′
q . We

prove that α(x)(�a) ∼ α(x′)(�a′) by induction on the number n of different parameters

in the lists xa1 . . . aq, x
′a′

1 . . . a
′
q.

If n = 0, the thesis is immediate from reflexivity of ∼.

We now assume that the thesis holds for n − 1 different parameters. We assume that

xa1 . . . aq and x′a′
1 . . . a

′
q have n > 0 different parameters, and let aj , a

′
j be the nth

different parameter. By the induction hypothesis,

α(x)(a1, . . . , aj , . . . aq) ∼ α(x′)(a′
1, . . . , aj , . . . a

′
q) .

Moreover,

α(x′)(a′
1, . . . , aj , . . . a

′
q) ∼ α(x′)(a′

1, . . . , a
′
j , . . . a

′
q) ,

by the hypothesis that ∼ is a congruence with respect to τF (m). Hence, by transitivity

of ∼, we get the thesis.

Induction step:

— If the leftmost non-constant parameter in m that is different from X has the shape∑
k∈K TiK or

∏
k∈K TiK , the thesis is immediate from the definitions of τF (m) and

relational lifting.

— If the leftmost non-constant parameter in m that is different from X is Ti = Pf(T
′
i),

then τF (m) = {m1, m2}, where

m1 : X × . . . × Ti−1 × Ti+1 × . . . × Tq → T0

m2 : X × . . . × Ti−1 × Pf(T
′
i [X̄|X]) × X × Ti+1 × . . . × Tq → T0 .

Assume that ∼ is a congruence with respect to m, that is,

x ∼ x′ ∧ a1 ∼ a′
1 ∧ . . . ∧ ai−1 ∼ a′

i−1 ∧ u ∼ u′ ∧ ai+1 ∼ a′
i+1 ∧ . . . ∧ aq ∼ a′

q

=⇒ α(x)(a1, . . . , ai−1, u, ai+1, . . . , aq) ∼ α(x′)(a′
1, . . . , a

′
i−1, u

′, a′
i+1, . . . , a

′
q)

Then, in particular, ∼ is a congruence with respect to both m1 and m2.

For the other direction, assume that ∼ is a congruence with respect to m1, m2, that

is,

x ∼ x′ ∧ a1 ∼ a′
1 ∧ . . . ∧ ai−1 ∼ a′

i−1 ∧ ai+1 ∼ a′
i+1 ∧ . . . ∧ aq ∼ a′

q

=⇒ α(x)(a1, . . . , ai−1,�, ai+1, . . . , aq) ∼ α(x′)(a′
1, . . . , a

′
i−1,�, a′

i+1, . . . , a
′
q) (3)

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 663

and for all u,

x ∼ x′ ∧ a1 ∼ a′
1 ∧ . . . ∧ ai−1 ∼ a′

i−1 ∧ y ∼ y′ ∧ ai+1 ∼ a′
i+1 ∧ . . . ∧ aq ∼ a′

q

=⇒ (4)

α(x)(a1, . . . , ai−1, u ∪ {y}, ai+1, . . . , aq) ∼ α(x′)(a′
1, . . . , a

′
i−1, u ∪ {y′},

a′
i+1, . . . , a

′
q)

Now let

x ∼ x′ ∧ a1 ∼ a′
1 ∧ . . . ∧ ai−1 ∼ a′

i−1 ∧ u ∼ u′ ∧ ai+1 ∼ a′
i+1 ∧ . . . ∧ aq ∼ a′

q .

We have to show that

α(x)(a1, . . . , ai−1, u, ai+1, . . . , aq) ∼ α(x′)(a′
1, . . . , a

′
i−1, u

′, a′
i+1, . . . , a

′
q) .

We proceed by induction on the number of elements in (u \ u′) ∪ (u′ \ u):

– If u = u′ = φ, the thesis follows immediately by (3).

– If u = u′ �= φ, the thesis follows by (5).

– If |u \ u′| > 0, let y ∈ u \ u′. Since u ∼ u′, there exists y′ ∈ u such that y ∼ y′. By

(5), we have

α(x)(a1, . . . , ai−1, u, ai+1, . . . , aq) ∼ α(x′)(a′
1, . . . , a

′
i−1, (u \ {y}) ∪ {y′},

a′
i+1, . . . , a

′
q) .

Now, by the definition of relational lifting, using the fact that ∼ is an

equivalence, we get (u \ {y}) ∪ {y′} ∼ u′. Then, by the induction hypothesis,

α(x′)(a′
1, . . . , a

′
i−1, (u \ {y}) ∪ {y′}, a′

i+1, . . . , a
′
q) ∼ α(x′)(a′

1, . . . , a
′
i−1, u

′,

a′
i+1, . . . , a

′
q) .

The thesis then follows by the transitivity of ∼.

As a by-product of Theorem 4.1, we get that the greatest congruence with respect to

methods always exists for finitary binary methods, that is, we have the following corollary.

Corollary 4.1. Let C be a class with carrier X and whose methods are all finitary binary.

Then ∪{∼⊆ X ×X| ∼ is a congruence with respect to the methods of C} is a congruence.

Note that, to ensure Theorem 4.1, it is essential to give a coalgebraic description of

binary methods that accounts for the behaviour of an object under method application

when the object is viewed as any of the class parameters of the method. Otherwise, if we

observe the behaviour of an object for example, only when it is considered as the target

of a method call and not as a generic class parameter, the congruence property of ≈F

fails in general. The following is a counterexample.

Example 4.2. Consider a class R′ of registers containing a single method m : X×X → �,

defined by α(r1)(r2) = r2.val.

Now, if in the definition of the freezing functor F we consider only the first component

induced by the method m, we have r1 ≈F r2, for all r1, r2. But then ≈F is not a congruence

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 664

with respect to the method m. For example, if we consider r1, r2 such that r1.val = 1

and r2.val = 2, then r1 ≈F r2, however, for any r0, α(r0)(r1) = 1, while α(r0)(r2) = 2. The

problem arises because the result of applying m depends on an unobservable behaviour

of the second parameter.

Nevertheless, there are many interesting cases in which it is sufficient to consider only

some of the components in the definition of F for the bisimilarity equivalence to be a

congruence. An interesting example is that of the λ-calculus (Honsell and Lenisa 1995). In

this case, the freezing functor with only the first component for the method app induces

the applicative equivalence on closed λ-terms. On the other hand, if we consider both

components in the functor (or just the second one), we get an equivalence that can be

viewed as a coinductive characterisation of the contextual equivalence. Applicative and

contextual equivalences can be proved to coincide. This is not immediate, and many

techniques, which apply to various reduction strategies, have been developed to achieve

this, see, for example, Honsell and Lenisa (1995) for more details.

4.1.1. Infinitary binary methods. Theorem 4.1 does not extend to infinitary binary meth-

ods, since the freezing bisimulation equivalence fails, in general, to be a congruence. The

following are two counterexamples.

Example 4.3. Let C be a class with carrier X � � and a single method m : X×P(X) → �
defined by

α(x)(n) =

{
true if |n| < ω

false otherwise.

One can check that the equivalence ∼k= {(n, m)|n, m � k}∪{(n, n)|n > k} is a congruence

for all k. However,
⋃

k∈ω ∼k= {(n, m)|n, m ∈ N}, which coincides with the freezing

equivalence, is not a congruence.

The following example is equivalent to Example 3.5.10 on page 114 of Tews (2002).

Example 4.4. Let C be a class with carrier X � � and with just one method m :

X × [� → X] → � (where [� → X] is an alias for the infinite product type
∏

i∈� Xi),

defined by

α(x)(f) =

{
true if f is bounded

false otherwise,

where f : � → � is bounded if there exists k ∈ � such that ∀n.f(n) � k.

One can check that the equivalence ∼k= {(n, m)|n, m � k}∪{(n, n)|n > k} is a congruence

for all k. However,
⋃

k∈ω ∼k= {(n, m)|n, m ∈ �} coincides with the freezing equivalence

and is not a congruence.

Clearly, in all cases where the union of all congruences is not itself a congruence,

the freezing equivalence cannot be a congruence, since any congruence is, in particular,

a freezing bisimulation. This is not surprising, since in these cases we lack a canonical

congruence, so any semantics would be problematic. It is natural to ask whether the other

implication holds as well, that is, if the union of all congruences is a congruence, then

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 665

the freezing equivalence is a congruence. Somewhat surprisingly, this is not the case, as

shown by the following counterexample.

Example 4.5. Let C be a class with carrier X � � and with just one method m : X×[� →
X] → � defined by:

α(x)(f) =

{
true if f is definitely constantly 0

false otherwise

where f : � → � is definitely constantly 0 if there exists k such that f(n) = 0 for all

n � k.

One can easily check that the greatest congruence on X is {(0, 0)} ∪ {(n, m)|n, m �= 0}.
However, the freezing equivalence is {(n, m)|n, m ∈ �}, which is clearly not a congruence.

Nevertheless, there are many situations where the greatest congruence exists and the

freezing equivalence captures it. We feel that a situation where the greatest congruence

does not exist, or it exists but the freezing equivalence does not capture it, is a situation

where the class specification is underspecified. But more work needs to be done to capture

this.

Finally, note that the problems with infinitary methods arise because of infinite products

and P(). Infinite sums are not problematic. In particular, Theorem 4.1 also holds for the

extension of finitary types with infinite sums.

4.2. The graph functor

In this section, we introduce an alternative approach to dealing with binary methods,

which is satisfactory in most cases, and when it is not, it is a symptom of the fact that

the specification is probably underdetermined.

Contravariant occurrences of the type variable in a generalised binary method can

be turned into covariant ones by interpreting methods as graphs instead of functions.

Consequently, the function space appearing in the functor induced by m is turned into a

set of relations. For example, for the binary method eq : X × X → � of the class R of

registers, we would consider the functor GX � P(X × �).

As with the case of freezing, in order to make the graph bisimilarity equivalence a

congruence in a wider spectrum of cases (including Example 4.2), we need to consider

multiple copies of the binary method in the definition of the graph functor, in order to

account for the behaviour of each class parameter. Thus, the graph functor corresponding

to the method eq becomes GX � P(X × �) × P(X × �). This works straightforwardly

for simple binary methods, but requires a preliminary transformation for methods with

more complex class parameters. Essentially, this corresponds to the method transformation

procedure for the freezing functor, apart from the part that actually freezes the parameters.

To deal with the powerset type constructor, we introduce the new symbol P
√
, which is

used to denote a powerset type constructor that has already been processed.

Formally, we have the following definitions.

Definition 4.3 (Normal form). A binary method m : X ×
∏

j∈J Tj → T0 is in normal form

if its parameter types are either constants or X or P
√
(T), for T ∈ T.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 666

Definition 4.4 (Graph method/class transformation).

(i) Let τG be the one-step method transformation function (which takes a generalised

binary method m : X ×
∏q

j=1 Tj → T implemented by α and produces a set of

methods) defined by:

— m is in normal form.

Let I be the set of indices corresponding to class parameters of type X including

the object itself. We define

τF (m) = {ml | l ∈ I}

where ml : X ×
∏

j∈J Tj → T0 is defined by

αl(x)(a1, . . . , aq) � α(al)(a1, . . . , al−1, x, al+1, . . . , aq) .

— m is not in normal form.

Let Ti be the leftmost parameter not in normal form. Then:

– Case: Ti =
∑qi

j=1 Tij .

We define

τG(m) = {mij | j = 1, . . . , qi}
where

mij : X × . . . × Ti−1 × Tij × Ti+1 × . . . → T0

is defined by

αij(x)(a1, . . . , ai−1, aij , ai+1, . . . , aq) � α(x)(a1, . . . ai−1, inj(aij), . . . aq) .

– Case: Ti =
∏qi

j=1 Tij .

We define

τG(m) = {m′}
where

m′ : X × . . . × Ti1 × . . . × Tiqi × . . . → T0

is defined by

α′(x)(a1, . . . , ai−1, ai1, . . . , aiqi , ai+1, . . . , aq) � α(x)(a1, . . . , ai−1,�ai,

ai+1, . . . aq).

– Case: Ti = P(T ′
i).

We define

τG(m) = {m1, m2}
where

m1 : X × . . . × Ti−1 × Ti+1 × × . . . → T0

is defined by

α1(x)(a1, . . . , ai−1, ai+1, . . . , aq) � α(x)(a1, . . . , ai−1, φ, ai+1, . . . aq)

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 667

and m2 : . . . × P
√
(T ′

i) × X × . . . → T0 is defined by

α2(x)(a1, . . . , ai−1, u, y, ai+1, . . . , aq) � α(x)(a1, . . . ai−1, u ∪ {y}, ai+1, . . . aq) .

(ii) Let τ∗
G be the transformation function that takes a generalised binary method and

produces a set of methods in normal form, defined by

τ∗
G(m) =

{
τG(m) if m is in normal form⋃

{τ∗
G(mi)|mi ∈ τG(m)} otherwise.

(iii) Let S be a class specification. We use S∗ to denote the class specification obtained by

applying the transformation τ∗
G to all method declarations in S .

(iv) Let C be a class implementation. We use C∗ to denote the class implementation

obtained by applying the transformation τ∗
G to all methods in C .

Note that there is a precise correspondence between the transformations τ∗
G and τ∗

F .

Namely, for any method m, there is a one-to-one correspondence between the methods of

τ∗
G(m) and τ∗

F (m), mapping each method of τ∗
G(m) into a method of τ∗

F (m), which differs

from the first one only because of the freezing of some parameter types.

In order to give a graph coalgebraic model to a specification S (implementation C), we

consider the corresponding transformed specification S∗ (implementation C∗) and define

a corresponding graph functor G simply by turning the contravariant function spaces in

method declarations into covariant spaces of graphs.

Definition 4.5 (Graph functor). Let S be a class specification. The method declarations in

S∗ induce the graph functor G : C → C defined by

G �
k∏

i=1

Gi ,

where, for each method mi : X ×
∏

j∈J Tij → Ti0, we have GiX � P((
∏

j∈J Tij) × Ti0).

Given a class C , the corresponding class C∗ immediately induces a coalgebra for the

graph functor determined by the method declarations in C∗, according to Definition 3.2 of

Section 3, by viewing method codes as graphs instead of functions. However, there is no

longer a precise correspondence between classes and coalgebras since not all G-coalgebras

correspond to a class – only the functional ones do, that is, those whose coalgebra map

is a function.

The graph bisimilarity equivalence on the objects of C∗ can be characterised as follows.

Proposition 4.1 (Graph bisimilarity equivalence). Let C be a class, G =
∏k

i=1 Gi be the

functor induced by the method declarations in C∗, and (X, 〈αi〉ki=1) be the G-coalgebra

induced by the methods of C∗. Then:

(i) A G-bisimulation (graph bisimulation) on (X, 〈αi〉ki=1) is a relation R ⊆ X×X satisfying

xR x′ =⇒ ∀αi. ∀�a ∃�a′. (�aR�a′ ∧ αi(x)(�a)R αi(x
′)(�a′)) ∧

∀�a′ ∃�a.(�aR �a′ ∧ αi(x)(�a)R αi(x
′)(�a′)) .

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 668

(ii) The graph bisimilarity equivalence ≈G (the greatest G-bisimulation on (X, 〈αi〉ki=1)) can

be characterised as follows:

x ≈G x′ ⇐⇒ ∀αi. ∀�a ∃�a′.(�a ≈G �a
′ ∧ αi(x)(�a) ≈G αi(x

′)(�a′)) ∧
∀�a′ ∃�a.(�a ≈G

�a′ ∧ αi(x)(�a) ≈G αi(x
′)(�a′)) .

In particular, the following coinduction principle holds:

R is a graph bisimulation xR x′

x ≈G x′ .

Proof. The proposition follows from the definition of coalgebraic bisimulation (see

Definition A.3 of Appendix A) and Theorem A.1 of Appendix A.

Note the alternation of the ∀ and ∃ quantifiers in the definition of graph bisimulation,

which is due to the presence of the powerset in the graph functor.

The functor G has a final coalgebra, see, for example, Cancila et al. (2006). But, in

general, it is not functional, and, moreover, the functionality property of a coalgebra

is not preserved by the unique morphism into the final coalgebra. Therefore, the image

of a class implementation under the final morphism is not guaranteed to be a class

implementation. Thus, in general, we lack minimal class implementations. In Section 4.3

we study conditions for the final morphism to preserve the functionality property, thus

recovering minimal implementations.

4.3. Comparing graph and freezing bisimilarity equivalences

The following is an easy lemma.

Lemma 4.1. ≈F⊆≈G .

Proof. One can easily check that ≈F is a graph bisimulation using the reflexivity of ≈F .

The converse inclusion does not hold in general. For example, it does not hold for the

class R′ obtained from the class R of registers of Table 1 when we drop methods get and

set, and just consider the method eq. Namely, for R′, ≈G equates all pairs of registers,

while ≈F is the identity relation on registers. Moreover, note that in this case ≈G is not a

congruence with respect to eq.

The following result is a fundamental tool for recovering ≈F = ≈G.

Theorem 4.2. Let C be a class with finitary generalised binary methods. Then

≈G = ≈F ⇐⇒ ≈G is a congruence with respect to the methods in the class.

Proof.

(⇒)This direction follows from Theorem 4.1.

(⇐)By Lemma 4.1, ≈F⊆≈G. Since ≈G is a congruence, by Theorem 4.1, ≈G⊆≈F . Thus

≈G=≈F .

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 669

The equality ≈G = ≈F on a given class C is equivalent to the fact that the image of the

G-coalgebra representing C into the final coalgebra is still a functional coalgebra. Hence,

we have the following corollary.

Corollary 4.2. Let C be a class with finitary generalised binary methods. Then the image

of the G-coalgebra representing C into the final coalgebra is a functional coalgebra if and

only if ≈G is a congruence.

Thus Corollary 4.2 above gives an answer to the problem of minimal class implement-

ations for the graph functor that we raised at the end of Section 4.2.

In principle, Theorem 4.2 is all that we may need. However, in practice, it is useful to

have some other alternative sufficient conditions. The following theorem gives a sufficient

condition on the freezing equivalence, ensuring that ≈G = ≈F .

Theorem 4.3. If ≈F is determined only by the unary methods of the class, that is,

x ≈F x′ ⇐⇒ ∀m unary implemented by α. ∀�a. α(x)(�a) ≈F α(x′)(�a′) ,

then ≈G = ≈F .

Proof. By Lemma 4.1, ≈F⊆≈G. For the other direction, we have

≈F = (≈F)|unary methods = (≈G)|unary methods ⊇≈G .

Theorem 4.3 applies to the class R of registers, since the freezing equivalence is already

solely determined by the unary methods get and set.

Remark 4.1. Note that Theorem 4.3 does not apply to the class Λ, where, nevertheless,

≈G = ≈F . Proving this latter result for the λ-calculus is quite a difficult task, and was

addressed in the more general setting of applicative structures in Honsell and Lenisa (1999).

The following corollary is an almost trivial, but useful, application of Theorem 4.3.

Corollary 4.3. If the freezing equivalence restricted to the unary methods of the class is

the identity on objects, then ≈G = ≈F .

5. Relational types

The idea of treating binary methods as graphs, rather than as functions, can be fruitfully

pushed further to produce a typing system that overcomes the well-known problem arising

when inheritance is combined with subtyping, see, for example, Bruce et al. (1995). If we

type binary methods only with the usual arrow type, which is contravariant, we lose the

property that subclasses are subtypes. We propose to introduce a new type constructor,

that is, the relation type, and use this to type binary methods in class declarations. Since

relation types are purely covariant, the subtyping property is maintained by subclasses.

To preserve safety, in contrast to arrow types, we assume that relation types are not

‘applicable’, that is, there is no relational counterpart to the rule

M : α → β N : α

MN : β
.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 670

Table 2. Typing rules for Relational Types ⊗.

x : α M : β α � α′ β � β′

λxα.M : α ⊗ β α ⊗ β � α′ ⊗ β′ α → β � α ⊗ β

Binary methods can, nevertheless, also be typed with the standard arrow type, which is

a subtype of the corresponding relation type, see Table 2. Thus, this typing system is a

conservative extension of the usual one. This solution to the problem of typing binary

methods is quite simple, and it allows for single dispatching in method calls. Moreover,

unlike other proposals, our proposal allows for ‘future code extensions’ without losing

the subtyping property of classes. Of course, type uniqueness fails in this system. We will

study this proposal in a future paper.

6. Final remarks and directions for future work

Here are some final comments and some potentially fruitful lines of research:

— Without the powerset, our (finitary) generalised binary methods are a subset of

the ones handled by Tews using extended polynomial (cartesian) functors. However,

we feel that the two collections of methods essentially correspond. Namely, given

a method m that has an extended polynomial type, m either corresponds directly

(possibly up-to currying) to a generalised binary method or can be cast into a

generalised binary type at the price of extending it vacuously. For example, a method

m : X → ((X → (N → X)) + N) has an extended polynomial type in the sense of

Tews, but does not have a generalised binary type (since the occurrence of + prevents

currying). But, the effects of m can be recovered in our setting, since m can be cast

into a method of type X × X → ((N → X) + N). Of course, this is just an example,

and further investigation is needed to streamline this procedure.

— The existence of final (minimal) models for a given specification is important. To

achieve this, as discussed at the end of Section 3, it is crucial that the bisimilarity

equivalence is a congruence and, moreover, it preserves assertions. It would be quite

interesting to investigate for which kinds of assertions this is the case.

— We plan to use the coalgebraic descriptions of binary methods discussed in this paper

to model classes of concrete object-oriented languages. In particular, it would be

interesting to extend the coalgebraic model for Java-like classes with unary methods

only, which were studied in Honsell et al. (2004). Imperative object-oriented languages

are more difficult to handle than purely functional languages, since accounting for the

store adds extra issues.

— Following Jacobs (1996), one can also define an equivalence between coalgebras

implementing the same specification by taking coalgebras to be equivalent when

initial objects are bisimilar.

— The grammar for parameter types in Definition 2.1 could be extended to include

inductive and coinductive types. However, it appears that it cannot be extended

with the (contravariant) arrow type. In particular, there is no ‘well-behaved’ natural

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 671

extension of the behavioural equivalence to the function type, since the natural

definition RT1→T2 = {(f, f′) | ∀xRT1x′. fxRT2f′x′} of relational lifting fails to preserve

equivalence relations, because, in general, RT1→T2 is not reflexive. A possible remedy

for this problem is to include T → T in the covariant space of binary relations. The

difference compared with the traditional interpretation of the function space arises

when we define bisimulation equivalences.

— Finally, we point out that our approach to the bialgebraic description of classes

involving binary methods is quite general. It can also be used to model coinductive

data types, possibly with binary evolution laws, such as the concurrent process language

with process parameters studied in Lenisa (1996).

Appendix A. Algebraic and coalgebraic preliminaries

In this appendix we recall some notions and results for algebras, coalgebras and bialgebras.

For more details, see, for example, Jacobs and Rutten (1996), Turi and Plotkin (1997)

and Corradini et al. (2002). We work in a category C of sets and proper classes of any

wellfounded universe (or possibly non-wellfounded universe (Forti and Honsell 1983;

Aczel 1988)), and set-theoretic functions. Throughout this section, we assume H,L to be

endofunctors on C.

Definition A.1 (L-algebra, H-coalgebra and 〈L,H〉-bialgebra).

— An L-algebra is a pair (X, βX), where X is a set (the carrier of the algebra) and

βX : LX → X is a function in C (the operation of the algebra).

— Dually, an H-coalgebra is a pair (X, αX), where α : X → HX.

— An 〈L,H〉-bialgebra is a triple (X, βX, αX), where (X, βX) is an L-algebra and (X, αX)

is an H-coalgebra.

L-algebras, H-coalgebras and 〈L,H〉-bialgebras can all be endowed with a suitable

category structure by defining the notions of an L-algebra, H-coalgebra and 〈L,H〉-
bialgebra morphism, as follows.

Definition A.2.

LX

(1)Lf

��

βX �� X

(2)f

��

αX �� HX

Hf

��
LY

βY

�� Y αY
�� HY

A function f : X → Y is an:

— L-algebra morphism from the L-algebra (X, βX) to the L-algebra (Y , βY) if it makes

diagram (1) commute.

— H-coalgebra morphism from the H-coalgebra (X, αX) to the H-coalgebra (Y , αY) if it

makes diagram (2) commute.

— 〈L,H〉-bialgebra morphism from (X, βX, αX) to (Y , βY , αY) if f makes diagrams (1)

and (2) commute.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

F. Honsell, M. Lenisa and R. Redamalla 672

Initial morphisms, that is, algebra morphisms from initial algebras, induce equivalences

that are congruences with respect to algebra operations. Dually, final morphisms, that

is, coalgebra morphisms into final coalgebras, induce equivalences that have coinductive

characterisations in terms of bisimulations.

Definition A.3 (H-bisimulation). Let H be an endofunctor on the category C. A relation

R on objects X,Y is an H-bisimulation on the H-coalgebras (X, αX) and (Y , αY) if there

exists an arrow γ : R → H(R) in C such that the following diagram commutes:

X

αX

��

R
r1�� r2 ��

γ

��

Y

αY

��
H(X) H(R)

H(r1)
��

H(r2)
�� H(Y)

The following theorem expresses the fact that unique morphisms into final coalgebras

induce behavioural equivalences on the starting coalgebras, which can be characterised

coinductively as greatest H-bisimulations.

Theorem A.1. Suppose that H : C → C preserves weak pullbacks and has a final H-

coalgebra (ΩH, αΩH
). Let (X, αX) be a H-coalgebra and M : (X, αX) → (ΩH, αΩH

) be the

unique final morphism. Then

M(x) = M(x′) ⇐⇒ x ≈H x′

where:

— ≈H denotes the greatest H-bisimulation on (X, αX); and

— ≈H=
⋃

{R | R is a H-bisimulation on (X, αX)}.
In particular, the following coinduction principle holds:

R is a H-bisimulation on (X, αX) xR x′

x ≈H x′ .

Acknowledgments

The authors are grateful to the anonymous referees for very useful comments.

References

Abramsky, S. and Ong, L. (1993) Full Abstraction in the Lazy Lambda Calculus. Information and

Computation 105 (2) 159–267.

Aczel, P. (1988) Non-wellfounded sets, CSLI Lecture Notes 14.

Aczel, P. and Mendler, N. (1989) A Final Coalgebra Theorem. In: Pitt, D.H. et al. (eds.) Proc.

category theory and computer science. Springer-Verlag Lecture Notes in Computer Science 389

357–365.

van den Berg, J., Huisman, M., Jacobs, B. and Poll, E. (1999) A type-theoretic memory model for

verification of sequential Java programs. In: Bert et al. (eds.) WADT’99. Springer-Verlag Lecture

Notes in Computer Science 1827 1–21.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

Coalgebraic description of generalised binary methods 673

Bruce, K. B., Cardelli, L., Castagna, G., Eifrig, J., Smith, S. F., Trifonov, V., Leavens, G. T. and

Pierce, B. C. (1995) On Binary Methods. TAPOS 1 (3) 221–242.

Cancila, D., Honsell, F. and Lenisa, M. (2006) Some Properties and Some Problems on Set Functors.

CMCS’06. Electronic Notes in Theoretical Computer Science (to appear).

Corradini, A., Heckel, R. and Montanari, U. (2002) Compositional SOS and beyond: A coalgebraic

view of open systems. Theoretical Computer Science 280 163–192.

Cirstea, C. (2000) Integrating observations and computations in the specification of state-based,

dynamical systems, Ph.D. thesis, University of Oxford.

Forti, M. and Honsell, F. (1983) Set-theory with free construction principles. Ann. Scuola Norm. Sup.

Pisa, Cl. Sci. (4) 10 493–522.

Goguen, J. and Malcolm, G. (2000) A Hidden Agenda. Theoretical Computer Science 245 55–101.

Hennicker, R. and Kurz, A. (1999) (Ω,Ξ)-Logic: On the algebraic extension of coalgebraic

specifications. CMCS’1999. Electronic Notes in Theoretical Computer Science 19.

Hermida, C. and Jacobs, B. (1998) Structural induction and coinduction in a fibrational setting.

Information and Computation 145 (2) 107–152.

Honsell, F. and Lenisa, M. (1995) Final Semantics for Untyped Lambda Calculus. In: Dezani, M.

et al. (eds.) TLCA’95. Springer-Verlag Lecture Notes in Computer Science 902 249–265.

Honsell, F. and Lenisa, M. (1999) Coinductive Characterizations of Applicative Structures.

Mathematical Structures in Computer Science 9 403–435.

Honsell, F., Lenisa, M. and Redamalla, R. (2004) Coalgebraic Semantics and Observational

Equivalences of an Imperative Class-based OO-Language. In: Honsell, F. et al. (eds.)

COMETA’03. Electronic Notes in Theoretical Computer Science 104 163–180.

Huisman, M. (2001) Reasoning about Java programs in Higher-order logic using PVS and Isabelle,

Ph.D. thesis, University of Nijmegen, The Netherlands.

Jacobs, B. (1996) Objects and Classes, co-algebraically. In: Freitag, B. et al. (eds.) Object-Orientation

with Parallelism and Book Persistence, Kluwer Academic Publishers 83–103.

Jacobs, B. (1996a) Inheritance and cofree constructions. In: Cointe, P. (ed.) ECOOP’96. Springer-

Verlag Lecture Notes in Computer Science 1098 210–231.

Jacobs, B. (1997) Behaviour-refinement of object-oriented specifications with coinductive correctness

proofs. In: Bidoit, M. et al. (eds.) TAPSOFT’97. Springer-Verlag Lecture Notes in Computer Science

1214 787–802.

Jacobs, B. and Rutten, J. (1996) A tutorial on (co)algebras and (co)induction. Bulletin of the EATCS

62 222–259.

Lenisa, M. (1996) Final Semantics for a Higher Order Concurrent Language. In: Kirchner, H. et.

al. (eds.) CAAP’96. Springer-Verlag Lecture Notes in Computer Science 1059 102–118.

Poll, E. and Zwanenburg, J. (2001) From algebras and coalgebras to dialgebras. In: Corradini, A.,

Lenisa, M. and Montanari, U. (eds.) CMCS’01. Electronic Notes in Theoretical Computer Science

44.

Reichel, H. (1995) An approach to object semantics based on terminal co-algebras. Mathematical

Structures in Computer Science 5 129–152.

Rosu, G. and Goguen, J. (2000) Hidden Congruent Deduction. FTP’98. Springer-Verlag Lecture

Notes in Artificial Intelligence 1761 252–267.

Rothe, J., Tews, H. and Jacobs, B. (2001) The Coalgebraic Class Specification Language CCSL.

Journal of Universal Computer Science 7 175–193.

Tews, H. (2002) Coalgebraic Methods for Object-Oriented Specifications, Ph.D. thesis, Dresden

University of technology, 2002.

Turi, D. and Plotkin, G. (1997) Towards a mathematical operational semantics. 12th LICS, IEEE,

Computer Science Press 280–291.

https://doi.org/10.1017/S0960129507006214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006214

