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1. Introduction

In this work, we continue our studies in [16] on abstract differential equations with
state-dependent delay. Specifically, we study the existence, uniqueness and qualitative
properties of ‘global solutions’ for abstract state-dependent delay differential equations
of the form

u′(t) = Au(t) + F (t, uσ(t,ut)), t ∈ J, (us ∈ BX = C([−p, 0];X)), (1.1)

where A : D(A) ⊂ X → X is the generator of an analytic semigroup of bounded lin-
ear operators (T (t))t≥0 defined on a Banach space (X, ‖ · ‖), J = [0,∞) or J = R, and
F (·), σ(·) are continuous functions to be specified later.

The theory of state-dependent delay differential equations is a field of great interest
and intense research because of their multiple applications and the fact that the qualita-
tive theory is quite different from the theories of discrete and time-dependent delay. The
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associated literature is extensive. For ordinary differential equations (ODEs) on finite-
dimensional spaces, we cite the early papers by Driver [7,8], Mackey and Glass [27]
and Aiello et al. [1]. We also cite the survey by Hartung et al. [12], and the papers
by Walther [39,40], Hartung [9,10], and Hartung and Turi [11] and the references
therein. Concerning first-order abstract differential equations with applications to par-
tial differential equations, we refer the reader to Hernandez et al. [14], Rezounenko [34],
Rezounenko and Wu [35], Kosovalic et al. [20] and some recent interesting works by
Krisztin and Rezounenko [22], Yunfei et al. [26], Kosovalic et al. [21] and Hernandez
et al. [16]. For second-order problems with state-dependent delay, we only cite [4,5].
Regarding problems defined on unbounded intervals, we cite [19,23,29,38,40] for equa-
tions on finite-dimensional spaces and [2,6,24,32–35] for abstract problems and partial
differential equations.

In comparison with the associated literature, in this work we introduce an unified
abstract approach motivated by applications and theory; see, for instance, the examples
and theoretical developments in [2,6,24,32–35]. In addition, we study the existence
of periodic, almost periodic, asymptotically almost periodic and almost automorphic
solutions.

It is well known that problems of form (2.1)–(2.2) are (in general) not well posed in
the usual space C([−p, 0];X), since the map u→ uσ(·,u(·)) is (in general) not Lipschitz.
In order to apply the contraction mapping principle, we use inequalities of the form

‖uσ(·,u(·)) − vσ(·,v(·))‖C([−p,0];X) ≤ (1 + [v]CLip(J;X)[σ]CLip(J×BX ;R))‖u− v‖C(J;X),

[uσ(·,u(·))]CLip(J;BX) ≤ [u(·)]CLip(J;BX)[σ]CLip(J×BX ;R+)(1 + [u(·)]CLip(J;BX)),

and we prove our results working on spaces of Lipschitz functions, a highly non-trivial
problem in the semigroup framework. The above inequalities also show that the function
u→ uσ(·,u(·)) introduces a special type of nonlinearity, which has obvious implications
concerning the existence of global solutions.

In Theorems 2.1 and 2.2 we establish the existence and uniqueness of solutions for
the cases J = [0,∞) and J = R, respectively. Both theorems are proved assuming that
F (·) and σ(·) are Lipschitz and that the associated Lipschitz constants are small enough.
The cases where F (·) is locally Lipschitz is also considered; see Propositions 2.1 and
2.2. The above results are proved in a very general setting, permitting study of different
situations; see, for instance, Corollary 2.1. The existence and uniqueness of periodic,
almost periodic, asymptotically almost periodic and almost automorphic solutions are
established in Propositions 2.3–2.6. In the last section are presented several applications
of partial differential equations arising in population dynamics.

We include now some notation. Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be Banach spaces. In
this work, BZ = C([−p, 0];Z), Bl(z, Z) = {x ∈ Z; ‖x− z‖Z ≤ r}, L(Z,W ) is the space of
bounded linear operators from Z into W endowed with the operator norm denoted by
‖ · ‖L(Z,W ), and we write L(Z) and ‖ · ‖L(Z) if Z = W .

Let I ⊂ R be an interval. The space C(I;Z) is formed by the continuous bounded
functions from I into Z, endowed with a uniform norm denoted by ‖ · ‖C(I;Z). As
usual, CLip(I;Z) is formed by the functions ξ ∈ C(I;Z) such that [ζ]CLip(I;Z) =
supt,s∈I,t�=s((‖ζ(s) − ζ(t)‖Z)/(| t− s |)) <∞, and endowed with the norm ‖ · ‖CLip(I;Z) =
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‖ · ‖C(I;Z) + [·]Lip(I;Z). The spaces C(I × Z;W ) and CLip(I × Z;W ) and their norms
‖ · ‖C(I×Z;W ) and ‖ · ‖CLip(I×Z;W ) are defined in a similar way.

In this work, A is the generator of an analytic semigroup (T (t))t≥0 (not necessarily a
C0-semigroup) on a Banach space (X, ‖ · ‖) and we assume that the general conditions in
[25, § 2.2.2] are satisfied. In this case, the β-fractional power (−A)β : D(−A)β ⊂ X → X
(β > 0) is well defined. For the sake of simplicity, we assume that 0 ∈ ρ(A) and use the
notation Xβ for the domain of (−A)β endowed with the norm ‖x‖β = ‖(−A)βx‖.

2. Existence of solutions

To begin our studies we discuss the existence of solutions of the problem

u′(t) = Au(t) + F (t, uσ(t,ut)), t ≥ 0, (2.1)

u0 = ϕ ∈ BX = C([−p, 0];X). (2.2)

Next, we adopt the following concepts.

Definition 2.1. A function u ∈ C([−p,∞);X) is said to be a mild solution of (2.1)–
(2.2) if u0 = ϕ and

u(t) = T (t)ϕ(0) +
∫ t

0

T (t− s)F (s, uσ(s,us)) ds, ∀t ∈ [0,∞). (2.3)

Definition 2.2. A function u ∈ C([−p,∞);X) is called a strict solution of (2.1)–
(2.2) if u|[0,a]

∈ C1([0, a];X) ∩ C([0, a];X1) for all a > 0, u0 = ϕ and u(·) satisfies (2.1)
on [0,∞).

Notation 1. In the remainder of this paper, for a Banach space (V, ‖ · ‖V ) and
v ∈ C([−p,∞);V ), we use the notation v(·) for the function v(·) : [0,∞) → BV given by
v(·)(s) = vs. Similarly, for v ∈ C(R;V ), v(·) : R → BV is given by v(·)(s) = vs.

The next result follows from [16, Lemma 1].

Lemma 2.1 (see [16, Lemma 1]). Assume (V, ‖ · ‖V ) is a Banach space, η ∈
CLip([0,∞) × BV ; R+), u, v ∈ CLip([−p,∞);V ) and u0 = v0 = ϕ. Then u(·), uη(·,u(·)) ∈
CLip([0,∞);BV ) and

[u(·)]CLip([0,∞);BV ) ≤ max{[u]CLip([0,∞);V ), [ϕ]CLip([−p,0];V )}, (2.4)

[uη(·,u(·))]CLip([0,∞);BV )

≤ [u(·)]CLip([0,∞);BV )[η]CLip([0,∞)×BV ;R+)(1 + [u(·)]CLip([0,∞);BV )), (2.5)

‖uη(·,u(·)) − vη(·,v(·))‖C([0,∞);BV )

≤ (1 + [v(·)]CLip([0,∞);BV )[η]CLip([0,∞)×BV ;R+))‖u− v‖C([0,∞);V ). (2.6)
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Lemma 2.2. Let (V, ‖ · ‖V ) be a Banach space, η ∈ CLip(R × BV ; R+) and u, v ∈
CLip(R;V ). Then u(·), uη(·,u(·)) ∈ CLip(R;BV ), [u(·)]CLip(R;BV ) ≤ [u]CLip(R;V ) and

[uη(·,u(·))]CLip(R;BV ) ≤ [u]CLip(R;V )[η]CLip(R×BV ;R+)(1 + [u]CLip(R;V )), (2.7)

‖uη(·,u(·)) − vη(·,v(·))‖C(R;BV ) ≤ (1 + [v]CLip(R;V )[η]CLip(R×BV ;R+))‖u− v‖C(R;V ). (2.8)

To prove our results, we introduce the following condition.

HW
F,Z: (W, ‖ · ‖W ), (Z, ‖ · ‖Z) are Banach spaces, (Z, ‖ · ‖Z) ↪→ (W, ‖ · ‖W ) ↪→

(X, ‖ · ‖), T (·) ∈ L1([0,∞);L(W,Z)) and F ∈ CLip([0,∞) × BZ ;W ). In the
following, LF denotes the Lipschitz constant of F .

Notation 2. For convenience, next we use the notation ΦZ,W and ΘZ,W (ϕ) for the
constants ΦZ,W = ‖T (·)‖L1([0,∞);L(W,Z)) and

ΘZ,W (ϕ) = [T (·)ϕ(0)]CLip([0,∞);Z) + ‖ϕ‖CLip([−p,0];Z) + ‖T (·)F (0, ϕ)‖L∞([0,∞);Z).

We can prove now our first theorem.

Theorem 2.1. Assume that the condition HW
F,Z is satisfied, σ ∈ CLip([0,∞) ×

BZ ; R+), ϕ ∈ CLip([−p, 0];Z), σ(0, ϕ) = 0, T (·)ϕ(0) ∈ CLip([0,∞);Z), T (·)F (0, ϕ) ∈
L∞([0,∞);Z), F ([0,∞) ×K) is bounded if K ⊂ BZ is bounded and

1 > 2ΦZ,WLF [2[σ]CLip([0,∞)×BZ ;R+)(1 + 2(ΘZ,W (ϕ) + 2ΦZ,WLF )) + 1]. (2.9)

Then there exists a unique mild solution u ∈ CLip([−p,∞);Z) of (2.1)–(2.2) and u(·) is
a strict solution if ϕ(0) ∈ X1.

Proof. Let P : R → R be the polynomial given by

P (x) = ΘZ,W (ϕ) + 2ΦZ,WLF + (ΦZ,WLF (2[σ]CLip([0,∞)×BZ ;R+) + 1) − 1)x

+ 2ΦZ,WLF [σ]CLip([0,∞)×BZ ;R+)x
2. (2.10)

From (2.9) we have that (ΦZ,W (2[σ]CLip([0,∞)×BZ ;R+) + 1) − 1) < 0 and

(ΦZ,W (2[σ]CLip([0,∞)×BZ ;R+) + 1) − 1)2

− 4(ΘZ,W (ϕ) + 2ΦZ,WLF )2ΦZ,WLF [σ]CLip([0,∞)×BZ ;R+) > 0,

which implies that P (·) has a root R1 > 0 and there exists 0 < R < R1 such that P (R) <
0. From the definition of ΘZ,W (ϕ) and P (·), it is easy to see that

ΘZ,W (ϕ) + 2ΦZ,WLF (1 +R[σ]CLip([0,∞)×BZ ;R+)(1 +R)) ≤ R, (2.11)

ΦZ,WLF (1 +R[σ]CLip([0,∞)×BZ ;R+)) < 1. (2.12)

Let S(R) = {u ∈ C([−p,∞);Z) : u0 = ϕ, [u]CLip([−p,∞);Z) ≤ R}, endowed with the met-
ric d(u, v) = ‖u− v‖C([0,∞);Z), and let Γ : S(R) → C([−p,∞);X) be the map defined by
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Γu(t) = ϕ(t) for t ∈ [−p, 0] and

Γu(t) = T (t)ϕ(0) +
∫ t

0

T (t− s)F (s, uσ(s,us)) ds for t ∈ [0,∞). (2.13)

Let u ∈ S(R). From the assumptions on F (·) and the inequality

‖Γu(t)‖Z ≤ ‖T (t)ϕ(0)‖Z + ‖F (·, uσ(·,u(·)))‖C([0,∞);W )‖T (·)‖L1([0,∞);L(W,Z)) <∞,

(2.14)

we infer that Γu(t) ∈ Z and (Γu)|[0,∞)
∈ C([0,∞);Z). To estimate [Γu]CLip([0,∞);Z), from

Lemma 2.1 we note that uσ(·,u(·)) ∈ CLip([0,∞);BZ),
F (·, uσ(·,u(·))) ∈ CLip([0,∞);W ) and

[F (·, uσ(·,u(·)))]CLip([0,∞);W ) ≤ LF (1 +R[σ]CLip([0,∞)×BZ ;R+)(1 +R)).

From the above estimates, for non-negative numbers t, h, we have that

‖Γu(t+ h) − Γu(t)‖Z

≤ [T (·)ϕ(0)]CLip([0,∞);Z)h+
∫ h

0

‖T (t+ h− s)F (0, ϕ)‖Z ds

+
∫ h

0

‖T (t+ h− s)‖L(W,Z)‖F (s, uσ(s,us)) − F (0, ϕ)‖W ds

+
∫ t

0

‖T (t− s)‖L(W,Z)‖F (s+ h, uσ(s+h,us+h)) − F (s, uσ(s,us))‖W ds

≤ [T (·)ϕ(0)]CLip([0,∞);Z)h+ ‖T (·)F (0, ϕ)‖L∞([0,∞);Z)h

+ [F (·, uσ(·,u(·)))]CLip([0,∞);W )h‖T (·)‖L1([0,∞)];L(W,Z))

+ [F (·, uσ(·,u(·)))]CLip([0,∞);W )‖T (·)‖L1([0,∞)];L(W,Z))h

≤ ΘZ,W (ϕ)h+ 2ΦZ,WLF (1 +R[σ]CLip([0,∞)×BZ ;R+)(1 +R))h,

which implies that [Γu]CLip([0,∞);Z) ≤ R. Moreover, since ‖ϕ‖CLip([−p,0];Z) ≤ R, we obtain
that [Γu]CLip([−p,∞);Z) ≤ R. Thus, Γu ∈ S(R) and Γ(·) is a S(R)-valued function. On the
other hand, from Lemma 2.1, for u, v ∈ S(R) and t ≥ 0 we get

‖Γu(t) − Γv(t)‖Z

≤
∫ t

0

‖T (t− s)‖L(W,Z)LF ‖uσ(s,us) − vσ(s,vs)‖BZ
ds

≤
∫ t

0

‖T (t− s)‖L(Z,W )LF (1 + [v(·)]CLip([0,∞);BZ)[σ]CLip([0,∞)×BZ ;R+))d(u, v) ds

≤ ΦZ,WLF (1 +R[σ]CLip([0,∞)×BZ ;R+))d(u, v),

which proves that Γ(·) is a contraction on S(R) and there exists a unique mild solution
u ∈ CLip([0,∞);Z) of (2.1)–(2.2). In addition, from [31, Theorem 4.3.2] we infer that
u(·) is a strict solution when ϕ(0) ∈ X1. �
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Remark 2.1. The abstract formulation of Theorem 2.1 permits consideration of dif-
ferent situations and applications. In the next corollary we consider the interesting case
in which W = Xβ and Z = Xα for 1 > α ≥ β ≥ 0. If (T (t))t≥0 is exponentially asymp-
totically stable, then there are δ > 0, Dβ,α > 0 (with δ independent of α, β) such that
‖T (s)‖L(Xβ ,Xα) ≤ Dβ,α(e−γs)/(sα−β) for all s > 0. Under these conditions, for α > β we
see that

ΦXα,Xβ
=

∫ ∞

0

‖T (s)‖L(Xβ ,Xα) dθ ≤ Dβ,α

(∫ ∞

1

e−γs dθ +
∫ 1

0

dθ
sα−β

)
,

and hence ΦXα,Xβ
≤ Dβ,α((1/γ) + (1/(1 + β − α))). If α = β, then ΦXα,Xα

≤ ((Dα,α)/γ).

Corollary 2.1. Assume α > β ≥ 0, the assumptions in Remark 2.1 and that condition

HXβ

F,Xα
is satisfied. Suppose that σ ∈ CLip([0,∞) × BXα

; R+), σ(0, ϕ) = 0, ϕ(0) ∈ X1+α,
ϕ ∈ CLip([−p, 0];Xα), F (0, ϕ) ∈ Xα, F ([0,∞) ×K) is bounded if K ⊂ BXα

is bounded
and

1 > 2νLF [2[σ]CLip([0,∞)×BZ ;R+)(1 + 2(μ+ 2νLF )) + 1] (2.15)

where μ, ν are given by μ = D0,0((1/γ)‖ϕ(0)‖X1+α
+ ‖F (0, ϕ)‖Xα

) + ‖ϕ‖CLip([−p,0];Xα)

and ν = Dβ,α((1/γ) + (1/(1 + β − α))). Then there exists a unique strict solution u ∈
CLip([−p,∞);Xα) of (2.1)–(2.2). Moreover, u|[0,∞)

∈ C1([0,∞);X) ∩ C([0,∞);X1) and

u|[0,a]
∈ Cα([0, a];X1) ∩ C1+α([0, a];X) for all a > 0 if Aϕ(0) + F (0, ϕ) ∈ Xα.

Proof. The first assertion follows combining Theorem 2.1 and Remark 2.1 with W =
Xβ and Z = Xα. We only note that ‖T (·)F (0, ϕ)‖L∞([0,∞);Xα) ≤ D0,0‖F (0, ϕ)‖Xα

and

‖(−A)α(T (t) − T (s))ϕ(0)‖ ≤
∫ t

s

‖T (τ)A1+αϕ(0)‖dτ ≤ ‖ϕ(0)‖X1+α
D0,0

∫ t

s

e−γτ dτ,

which implies that [T (·)ϕ(0)]CLip([0,∞);Xα) ≤ ((D0,0)/γ)‖(−A)1+αϕ(0)‖.
On the other hand, noting that F (·, uσ(·,u(·))) ∈ CLip([0,∞);X), we have that

‖Au(t)‖ ≤ D0,0‖Aϕ(0)‖ +
∫ t

0

‖AT (t− s)(F (s, uσ(s,us)) − F (t, uσ(t,ut)))‖ds

+ ‖(T (t) − I)F (t, uσ(t,ut))‖

≤ D0,0‖Aϕ(0)‖ + [F (·, uσ(·,u(·)))]CLip([0,∞);X)

∫ t

0

D0,1e−γ(t−s) ds

+ ‖(T (t) − I)F (t, uσ(t,ut))‖

≤ D0,0‖Aϕ(0)‖ + ‖F (·, uσ(·,u(·)))‖CLip([0,∞);X)

(
D0,1

γ
+ 2D0,0

)
,

which implies that ‖u‖C([0,∞);X1) <∞ and u|[0,∞)
∈ C1([0,∞);X) ∩ C([0,∞);X1). The

last assertion follows from [25, Theorem 4.3.1]. �

Introducing some minor modifications to the proof of Theorem 2.1, we can study the
case where F (·) is locally Lipschitz. To this end, we introduce the next condition.
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HW
Floc,Z (W, ‖ · ‖W ), (Z, ‖ · ‖Z) are Banach spaces, (Z, ‖ · ‖Z) ↪→ (W, ‖ · ‖W ) ↪→

(X, ‖ · ‖), T (·) ∈ L1([0,∞);L(W,Z)) and there are functions NF , LF ∈
C([0,∞); R) such that ‖F (s, ψ)‖W ≤ NF (r) and ‖F (t, φ) − F (s, ψ)‖W ≤
LF (r)(| t− s | +‖ψ − φ‖BZ

) for all r > 0, t, s ∈ R and ψ, φ ∈ Br(0,BZ).

Arguing as in the proof of Theorem 2.1, we can prove the next proposition.

Proposition 2.1. Let condition HW
Floc,Z hold. Assume that σ ∈ CLip([0,∞) ×

BZ ; R+), ϕ ∈ CLip([−p, 0];Z), σ(0, ϕ) = 0, T (·)ϕ(0) ∈ CLip([0,∞);Z), T (·)F (0, ϕ) ∈
L∞([0,∞);Z), F ([0,∞) ×K) is bounded if K ⊂ BZ is bounded, and there is r > ‖ϕ‖BZ

such that (2.9) is valid with LF (r) in place of LF and

‖T (·)ϕ(0)‖C([0,∞);Z) +NF (r)‖T (·)‖L1([0,∞);L(W,Z)) ≤ r. (2.16)

Then there exists a unique mild solution u ∈ CLip([−p,∞);Br(0,BZ)) of (2.1)–(2.2).
Moreover, u(·) is a strict solution if ϕ(0) ∈ X1 and u|[0,a]

∈ Cα([0, a];X1) ∩ C1+α([0, a];X)
for all a > 0 if Aϕ(0) ∈ Z, Aϕ(0) + F (0, ϕ) ∈ Z and (Z, ‖ · ‖Z) ↪→ (Xα, ‖ · ‖) for some
α ∈ (0, 1).

Proof. The proof is similar to the proof of Theorem 2.1. Let P : R → R be the
polynomial

P (x) = ΘZ,W (ϕ) + 2ΦZ,WLF (r) + (ΦZ,WLF (r)(2[σ]CLip([0,∞)×BZ ;R+) + 1) − 1)x

+ 2ΦZ,WLF (r)[σ]CLip([0,∞)×BZ ;R+)x
2. (2.17)

From the assumptions, P (·) has a root R1(r) > 0 and we can select 0 < R(r) < R1(r)
such that P (R(r)) < 0 and the conditions (2.11) and (2.12) are satisfied with R(r) in
place of R.

Let S(R(r)) = {u ∈ C([−p,∞);Z) : u0 = ϕ, [u]CLip([−p,∞);Z) ≤ R(r)}, endowed with
the metric d(u, v) = ‖u− v‖C([0,∞);Z), and Γ : S(R(r)) ∩Br(0, C([−p,∞);Z)) →
C([−p,∞);Z) be defined as in the proof of Theorem 2.1.

Combining (2.14) and (2.16), from the proof of Theorem 2.1 we obtain that
Γ(S(R(r))) ⊂ Br(0, C([−p,∞);Z)) and that Γ(·) is a contraction on S(R(r)) ∩Br(0, C
([−p,∞);Z)). Thus, there exists a unique mild solution u ∈ CLip([−p,∞);Br(0,BZ)) of
(2.1)–(2.2). From Theorem 2.1 we have also that u(·) is a strict solution if ϕ(0) ∈ X1.
The other assertions follow, arguing as in the proof of Corollary 2.1. �

2.1. Solutions on R

In this section, we study the existence of solutions for the problem

u′(t) = Au(t) + F (t, uσ(t,ut)), t ∈ R. (2.18)

Next, we assume that σ−(A) = {λ ∈ σ(A) : Re(λ) < 0} and σ+(A) = {λ ∈ σ(A) :
Re(λ) > 0} are closed and disjoint, and that δ > 0 is such that sup{Re(λ) : λ ∈ σ−(A)} <
−δ < 0 < δ < inf{Re(λ) : λ ∈ σ+(A)}. Let Ω ⊂ R

2 be a bounded open set with smooth
boundary such that σ+(A) ⊂ Ω ⊆ C+ = {λ ∈ C : Re(λ) > 0} and let P : X → X be given
by Px = (1/2πi)

∫
∂Ω
R(μ;A)xdμ, with ∂Ω oriented counterclockwise. Let X1 = P (X),
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X2 = (I − P )(X), and let A1 : X1 → X, A2 : D(A2) = {x ∈ X1 : x ∈ X2, Ax ∈ X2} →
X2 be given by A1x = Ax and A2y = Ay. From [25, Chapter II] we note the following.

(a) P is a projection, P (X) ⊂ D(An) for all n ∈ N, T (t)Px = PT (t)x for all x ∈ X and
T (t)Xi ⊂ Xi for i = 1, 2 and t ≥ 0.

(b) For i ∈ N, α, β ∈ [0,∞), there are constants Cβ,α, Ci such that ‖AiT (s)P‖ ≤ Cieδs

and ‖T (t)(I − P )‖L(Xβ ,Xα) < Cβ,α(e−γt)/(tα−β) for all s < 0 and each t > 0.

(c) If f ∈ L∞(R;X) and u ∈ C1(R;X) ∩ C(R;X1) is an X-bounded solution of
x′(t) = Ax(t) + f(t), t ∈ R, then u(t) =

∫ t

−∞ T (t− τ)(I − P )f(τ) dτ − ∫ ∞
t
T (t−

τ)Pf(τ) dτ, for all t ∈ R.

From the above, we adopt the following concepts.

Definition 2.3. A function u ∈ C(R;X) is said to be a mild solution of (2.18) if

u(t) =
∫ t

−∞
T (t− s)(I − P )F (s, uσ(s,us)) ds−

∫ ∞

t

T (t− s)PF (s, uσ(s,us)) ds, ∀ t ∈ R.

Definition 2.4. A function u ∈ C(R;X) is said to be a strict solution of (2.18) if
u|[a,b]

∈ C1([a, b];X) ∩ C([a, b];X1) for all a < b and u(·) satisfying (2.18).

To prove our next result, we introduce the following condition.

HW
F,Z (Z, ‖ · ‖Z) ↪→ (W, ‖ · ‖W ) ↪→ (X, ‖ · ‖) are Banach spaces, T (·)(I − P ) belongs

to L1([0,∞);L(W,Z)), T (·)P ∈ L1((−∞, 0];L(W,Z)) and F ∈ CLip(R ×
BZ ;W ). Next, LF is the Lipschitz constant of F .

We can prove now our next result.

Theorem 2.2. Assume that the condition HW
F,Z is satisfied, σ ∈ CLip(R × BZ ; R),

F (R ×K) is bounded if K ⊂ BZ is bounded and

1 > 2ΛZ,WLF ((2ΛZ,WLF + 1)[σ]CLip(R×BZ ;R) + 1), (2.19)

where ΛZ,W = (‖T (·)(I − P )‖L1([0,∞);L(W,Z)) + ‖T (·)P‖L1((−∞,0];L(W,Z))). Then there
exists a unique strict solution u ∈ CLip(R;Z) of (2.18).

Proof. Let P : R → R be given by

P (x) = ΛZ,WLF + (ΛZ,WLF ([σ]CLip(R×BZ ;R) + 1) − 1)x

+ ΛZ,WLF [σ]CLip(R×BZ ;R)x
2. (2.20)

From (2.19) and noting that ΛZ,W ([σ]CLip(R×BZ ;R) + 1) − 1 < 0, we infer that P (·) has a
root R1 > 0 and there exists 0 < R < R1 such that P (R) < 0 and
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ΛZ,WLF (1 + [σ]CLip(R×BZ ;R)R(1 +R)) ≤ R,

ΛZ,WLF (1 + [σ]CLip(R×BZ ;R)R) < 1.

Let S(R) = {u ∈ C(R;Z) : u ∈ CLip(R;Z), [u]CLip(R;Z) ≤ R}, endowed with the norm
d(u, v) = ‖u− v‖C(R;Z), and let Γ : S(R) → C(R,X) be the map given by

Γu(t) =
∫ t

−∞
T (t− s)(I − P )F (s, uσ(s,us)) ds−

∫ ∞

t

T (t− s)PF (s, uσ(s,us)) ds, t ∈ R.

(2.21)

Proceeding as in the proof of Theorem 2.1 and noting that T (·)(I − P ) ∈
L1([0,∞);L(W,Z)) and T (·)P ∈ L1((−∞, 0];L(W,Z)), we can prove that Γu ∈ C(R;Z).
In addition, from Lemma 2.2, for t ∈ R and h > 0 we get

‖Γu(t+ h) − Γu(t)‖Z

≤
∫ t

−∞
‖T (t− s)(I − P )‖L(W,Z)‖F (s+ h, uσ(s+h,us+h)) − F (s, uσ(s,us))‖W ds

+
∫ ∞

t

‖T (t− s)P‖L(W,Z)‖F (s+ h, uσ(s+h,us+h)) − F (s, uσ(s,us))‖W ds

≤
∫ t

−∞
‖T (t− s)(I − P )‖L(W,Z)LF (1 +R[σ]CLip(R×BZ ;R)(1 +R))hds

+
∫ ∞

t

‖T (t− s)P‖L(W,Z)LF (1 +R[σ]CLip(R×BZ ;R)(1 +R))hds

≤ ΛZ,WLF (1 +R[σ]CLip(R×BZ ;R)(1 +R))h,

and hence ]Γu]CLip(R;Z) ≤ R, which implies that Γ is a S(R)-valued function. Moreover,
for u, v ∈ S(R), we get

‖Γu(t) − Γv(t)‖

≤
∫ t

−∞
‖T (t− s)(I − P )‖L(W,Z)LF (1 + [v]CLip(R;Z)[σ]CLip(R×BZ ;R))d(u, v) ds

+
∫ ∞

t

‖T (t− s)P‖L(W,Z)LF (1 + [v]CLip(R;Z)[σ]CLip(R×BZ ;R))d(u, v) ds

≤ ΛZ,WLF (1 + [σ]CLip(R×BZ ;R)R)d(u, v),

which implies that there exists a unique mild solution u ∈ CLip(R;Z) of (2.18).
We now study the regularity of u(·). For a < b, it is easy to see that

u(t) = T (t)u(a) +
∫ t

0

T (t− s)F (s, uσ(s,us)) ds, ∀ t ∈ [a, b]. (2.22)

Noting that F (·, uσ(·,u(·))) ∈ CLip([a, b],X), from [25, Theorem 4.3.1] it follows that u ∈
C1((a, b];X) ∩ C((a, b];X1) and u(·) is (in the nomenclature of [25]) a classical solution
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of (2.22). Since a is arbitrary, we have that u(a) ∈ X1, which permits us to conclude
that u(·) is a strict solution of (2.22) and in turn prove that u(·) is a strict solution
of (2.18). �

Next, we study the existence of solutions for (2.18), assuming that F (·) is locally
Lipschitz.

HW
Floc,Z (Z, ‖ · ‖Z) ↪→ (W, ‖ · ‖W ) ↪→ (X, ‖ · ‖) are Banach spaces, T (·)(I − P ) ∈

L1([0,∞);L(W,Z)), T (·)P ∈ L1((−∞, 0];L(W,Z)), and F (·) is locally
Lipschitz in the sense of condition HW

Floc,Z, but with R in place of [0,∞).

We establish without proof the next proposition.

Proposition 2.2. Let condition HW
Floc,Z hold. Suppose that σ ∈ CLip(R × BZ ; R),

there is r > 0 such that the conditions in Theorem 2.2 are valid with LF (r) in place
of LF , and

NF (r)(‖T (·)(I − P )‖L1([0,∞);L(W,Z)) + ‖T (·)P‖L1((−∞,0];L(W,Z))) ≤ r. (2.23)

Then there exists a unique strict solution u ∈ CLip(R;Br(0;Z)) of (2.18).

In the next sections, we study the existence and uniqueness of almost periodic-type
solutions; here, (V, ‖ · ‖V ) and (Y, ‖ · ‖Y ) are Banach spaces and ω > 0.

2.1.1. Periodic solution

In what follows, we say that a function G ∈ C(R × V ;Y ) is ω-periodic if G(t+ ω, v) =
G(t, v) for all (t, v) ∈ R × V , and we use the notation Cω(R;V ) for the space Cω(R;V ) =
{f : R → V : f isω-periodic} endowed with the norm d(u, v) = ‖u− v‖C(R;V ).

From Theorem 2.2, we infer the next result.

Proposition 2.3. Assume that the conditions HW
F,Z and (2.19) are satisfied and that

F (·), σ(·) are ω-periodic. Then there exists a unique ω-periodic strict solution u(·) of the
problem (2.18) such that u ∈ CLip(R;Z) ∩ Cα(R;X1) ∩ C1+α(R;X) for all α ∈ (0, 1).

Proof. Let S(R) and Γ be defined as in the proof of Theorem 2.2. It is trivial to
note that Γu is ω-periodic if u ∈ S(R) ∩ Cω(R;Z), which allows us to infer that Γ is a
contraction on S(R) ∩ Cω(R;Z) and there exists a unique mild solution u ∈ CLip(R;Z) ∩
Cω(R;Z). Moreover, noting that F (·, uσ(·,u(·))) ∈ Cω(R,X) ∩ CLip(R,X), we have that
F (·, uσ(·,u(·))) ∈ Cα(R,X) for all α ∈ (0, 1), which implies (see [25, Theorem 4.4.7]) that
u(·) is a strict solution and u ∈ Cα(R;X1) ∩ C1+α(R;X). �

If F (·) is locally Lipschitz, we establish without proof the next result.

Corollary 2.2. Assume that the conditions in Proposition 2.2 are satisfied and
that F (·), σ(·) are ω-periodic. Then there exists a unique ω-periodic strict solution
u ∈ CLip(R;Br(0, Z)) of (2.18) such that u ∈ Cα(R;X1) ∩ C1+α(R;X) for all α ∈ (0, 1).
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2.1.2. Almost periodic and asymptotically almost periodic solutions

For completeness, we mention some additional concepts and results.

Definition 2.5 (Zaidman [45]). A function f ∈ C(R;V ) is called almost periodic
(a.p.) if for all ε > 0 there exists a relatively dense subset of R, H(ε, f, V ) such that
‖f(t+ ξ) − f(t)‖V < ε for all t ∈ R and ξ ∈ H(ε, f, V ).

Definition 2.6 (Zaidman [45]). A function f ∈ C([0,∞);V ) is said to be asymp-
totically almost periodic (a.a.p.) if there exists an almost periodic function g(·) and
w ∈ C([0,∞);V ) such that f(·) = g(·) + w(·) and limt→∞ w(t) = 0.

Next, we use the notation AP (V ) and AAP (V ) for the spaces AP (V ) = {f ∈
C(R;V ) : f is a.p.} and AAP (V ) = {f ∈ C([0,∞);V ) : f is a.a.p.} endowed with the
norms ‖ · ‖C(R;V ) and ‖ · ‖C([0,∞);V ). It is well known that AP (V ) and AAP (V ) are
Banach spaces. From [43,44] we have the next result.

Lemma 2.3. Assume that Ω ⊂ V is open. If G ∈ C(R × Ω;Y ) (respectively G ∈
C([0,∞) × Ω;Y )), G(·, v) ∈ AP (Y ) for all v ∈ V (respectively G(·, v) ∈ AAP (Y ) for all
v ∈ V ), G(·) satisfies a local Lipschitz condition at v ∈ Ω, uniformly at t, and y ∈ AP (V )

(respectively y ∈ AAP (V )) is such that {y(t) : t ∈ R}V ⊂ Ω, then G(·, y(·)) ∈ AP (Y )
(respectively G(·, y(·)) ∈ AAP (Y )).

Concerning the existence of almost periodic solutions for (2.18), we have the next result.

Proposition 2.4. Assume that the assumptions in Theorem 2.2 are satisfied, σ(·, ψ) ∈
AP (R) and F (·, ψ) ∈ AP (W ) for all ψ ∈ BZ . Then there exists a unique strict solution
u ∈ AP (Z) ∩ CLip(R;Z) of (2.18).

Proof. Let R, S(R) and Γ(·) be defined as in the proof of Theorem 2.2. From the
proof of Theorem 2.2, it is sufficient to show that Γ(AP (Z) ∩ S(R)) ⊂ AP (Z).

Let u ∈ AP (Z) ∩ S(R). From Lemma 2.3 we have that σ(·, u(·)) ∈ AP (R) and noting
that u(·) is uniformly continuous we can prove that uσ(·,u(·)) ∈ AP (BZ). From the above
and Lemma 2.3, F (·, uσ(·,u(·))) ∈ AP (W ). Finally, a usual argument allows us to prove
that Γu ∈ AP (Z). �

The next result establishes the existence of a.a.p. solutions for (2.1)–(2.2).

Proposition 2.5. Let the conditions in Theorem 2.1 hold. Assume that
‖T (t)‖L(Z,Z) → 0 as t→ ∞, σ(·, ψ) ∈ AAP (R) and F (·, ψ) ∈ AAP (W ) for all ψ ∈ BZ .
Then there exists a unique strict solution u ∈ AAP (Z) ∩ CLip([0,∞);Z) of (2.1)–(2.2).

Proof. Let R, S(R) and Γ(·) be defined as in the proof of Theorem 2.1. Arguing
as in the proof of Proposition 2.4 it follows that F (·, uσ(·,u(·))) ∈ AAP (W ) for all u ∈
S(R) ∩AAP (W ). Moreover, using the condition on ‖T (t)‖L(Z,Z) and arguing as in the
proof of [13, Lemma 2,5], we can prove that Γu ∈ AAP (Z). �
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2.1.3. Almost automorphic solutions

Definition 2.7 (see [17, 45]). A function f ∈ C(R;V ) is said to be almost automor-
phic if for all sequences of real numbers (s′n)n∈N there exists a subsequence (sn)n∈N such
that g(t) := limn�→∞ f(t+ sn) is well defined for each t ∈ R and f(t) = limn�→∞ g(t− sn)
for all t ∈ R. In addition, we say that f(·) is compact almost automorphic if the above
limits are uniform on compact subsets of R.

Next, the spaces AA(V ) = {f ∈ C(R;V ) : f is almost automorphic} and AAc(V ) =
{f ∈ C(R;V ) : f is compact almost automorphic} are endowed with the norm ‖ · ‖C(R;V ).
We remark that both spaces are Banach spaces.

Definition 2.8. A function G ∈ C(R × V ;Y ) is said to be compact almost automor-
phic in t ∈ R for each v ∈ V if for every sequence of real numbers (s′n)N there exists a
subsequence (sn)N of (s′n)N such that H(t, v) := limn�→∞G(t+ sn, v) is well defined for
all t ∈ R and v ∈ V , G(t, v) = limn�→∞H(t− sn, v) for all t ∈ R and v ∈ V , and both
limits are uniform on compact subsets of R. The set of such functions will be denoted by
AAc(V, Y ).

From [15], we note the next result.

Lemma 2.4. If G ∈ AAc(V, Y ) ∩ CLip(R × V ;Y ) and ξ ∈ AAc(V ), then G(·, ξ(·)) ∈
AAc(V ).

Proposition 2.6. Assume that the conditions in Theorem 2.2 are satisfied and F (·)
belongs to AAc(BZ ,W ) ∩ CLip(R × BZ ;W ). Then there exists a unique strict solution
u ∈ AAc(Z) ∩ CLip(R;Z) of (2.18).

Proof. Let R, S(R) and Γ(·) be defined as in the proof of Theorem 2.2. Let u ∈
AAc(Z) ∩ S(R). From Lemma 2.4 it is easy to see that F (·, uσ(·,u(·))) ∈ AAc(Z) ∩ S(R)
and arguing as in the proof of [15, Lemma 2.2] we can show that Γu ∈ AAc(Z). �

Remark 2.2. Arguing as above, results on the existence of solutions for the case where
F (·) is locally Lipschtz can be proved. We decided not to include additional results.

3. Examples

Next, we present some examples motivated by studies in population dynamics. For the
sake of brevity, we assume that A : D(A) ⊂ X → X is the generator of an exponentially
asymptotically stable analytic semigroup of bounded linear operators (T (t))t≥0 on X
with X = L2(Ω; R) or X = C(Ω; R), where Ω ⊂ R

n is an open bounded set with smooth
boundary ∂Ω, and we use all the notation and properties in Remark 2.1. Concerning the
comments in the introduction of § 2.1, we note that the formula in (c) takes the form
u(t) =

∫ t

−∞ T (t− τ)f(τ) dτ. Here, LS is the Lipschitz constant of a given function S(·).
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Motivated by the problems studied in [34], we study the problem

u′(t, x) = Au(t)(x) +
∫

Ω

b(u(ζ(t, u(t), ut), y))f(x− y) dy

+ g(t, u(ζ(t, u(t), ut), x)), t ≥ 0, x ∈ Ω, (3.1)

u(θ, y) = ϕ(θ, y), θ ∈ [−p, 0], y ∈ Ω, (3.2)

where ϕ ∈ CLip([−p, 0];X), X = L2(Ω; R), f ∈ C(Rn; R), g ∈ CLip(R × R; R), b ∈
CLip(R; R), the functions g(·), b(·) are bounded and ζ ∈ CLip(R ×X × BX ; R+). The
study of this class of problems was motivated by the diffusive Nicholson’s blowflies
equation with state-dependent delay; see [36,37] for additional details.

In order to use Theorem 2.1, we assume that (
∫
Ω

∫
Ω
f(x− y)2 dy dx)1/2 <∞

and we define σ : [0,∞) × BX → R and F : BX → X by σ(t, ψ) = ζ(t, ψ(0), ψ) and
F (ψ)(x) =

∫
Ω
b(ψ(0, y))f(x− y) dy + g(t, ψ(0, x)). Under these conditions, σ(·) and F (·)

are Lipschitz, [σ]CLip([0,∞)×BX ;R+) = [ζ]CLip([0,∞)×X×BX ;R+) and LF = Lb(
∫
Ω

∫
Ω
f(x−

y)2 dy dx)1/2 + Lg. Moreover, if ϕ(0) ∈ X1, we can assume that the constants ΘX,X and
ΦX,X in Theorem 2.1 are given by ΦX,X = (D0,0)/γ and ΘX,X(ϕ) = D0,0(‖Aϕ(0)‖ +
‖F (0, ϕ)‖) + ‖ϕ‖CLip([−p,0];X). In the next result, which follows from Theorem 2.1, we
say that u ∈ C([−p,∞);X) is a mild or a strict solution of (3.1)–(3.2) if u(·) is a mild or
a strict solution of the associated problem (2.1)–(2.2). We adopt a similar nomenclature
for the other examples in this section.

Proposition 3.7. Suppose that ϕ(0) ∈ X1, ζ(0,ϕ(0), ϕ) = 0 and the condition (2.9)
is satisfied with ΘX,X(ϕ) = D0,0(‖Aϕ(0)‖ + ‖F (0, ϕ)‖) + ‖ϕ‖CLip([−p,0];X) and ΦX,X =
(D0,0)/γ. Then there exists a unique strict solution u ∈ CLip([−p,∞);X) of (3.1)–(3.2).

We now consider a problem similar to those studied in [33]. Consider the problem

u′(t, x) = Au(t)(x) + b

(∫
Ω

u(ζ(t, u(t), ut), y)f(x− y)l(y) dy
)

+ g(t, u(ζ(t, u(t), ut), x)), (3.3)

u(θ, y) = ϕ(θ, y), θ ∈ [−p, 0], y ∈ Ω, (3.4)

for (t, x) ∈ J × Ω, where J = [0,∞) or J = R, A,X, f(·) and b(·) are as in the first
example, g ∈ CLip(J × R; R), f(·), g(·) are bounded, ζ ∈ CLip(J ×X × BX ;J) and l ∈
C∞

0 (Ω; R).
Let F : BX → X and σ : [0,∞) ×X × BX → R

+ be defined by F (ψ)(x) =
b(

∫
Ω
ψ(0, y)f(x− y)l(y) dy) + g(t, ψ(0, x)) and σ(t, ψ) = ζ(t, ψ(0), ψ). From Theorems

2.1, 2.2 and Propositions 2.3–2.5 we have the next result. In this result, ΦX,X = (D0,0)/
γ, ΘX,X(ϕ) = D0,0(‖Aϕ(0)‖ + ‖F (0, ϕ)‖) + ‖ϕ‖CLip([−p,0];X), [σ]CLip([0,∞)×BX ;R+) =
[ζ]CLip([0,∞)×X×BX ;R+) and LF = Lb(

∫
Ω

∫
Ω
f2(x− y)l2(y) dy dx)1/2 + Lg.

Proposition 3.8. Suppose ϕ(0) ∈ X1 and ϕ ∈ CLip([−p, 0];X).

(a) Assume that J = [0,∞), ζ(0, ϕ(0), ϕ) = 0 and the inequality (2.9) is satisfied. Then
there exists a unique strict solution u ∈ CLip([0,∞);X) of the problem (3.3)–(3.4).
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(b) If J = R and (2.19) is verified, then there exists a unique strict solution u ∈
CLip(R;X) of (3.3) on R. If, in addition, ζ(·) and g(·) are ω-periodic for some
ω > 0, then u(·) is ω-periodic.

(c) If J = R and (2.19) is verified, and σ(·, ψ) and F (·, ψ) are almost periodic for all
ψ ∈ BX (respectively are compact almost automorphic in t ∈ R), then there exists
a unique almost periodic (respectively compact almost automorphic) strict solution
of (3.3) on R.

We now study a problem concerning a diffusive model of haematopoiesis with state-
dependent delay of the form

u′(t, x) = Au(t)(x) +
βu(ζ(t, ut), x)

1 + um(ζ(t, ut), x)
+ g(t, u(ζ(t, ut), x)), t ∈ J, (3.5)

u(θ, x) = ϕ(θ, x), θ ∈ [−p, 0], (3.6)

for t ∈ J, x ∈ Ω, where m ∈ N is even, J = R or J = [0,∞), g ∈ CLip(J × R; R) is
bounded, ζ ∈ CLip(J × BX ;J) and X = L2(Ω). We cite Mackey and Glass [27], Wang
and Li [41] and Rezounenko [34] for additional details on problems of this type.

To study (3.5)–(3.6), we assume that there is α ∈ (0, 1) such thatXα ↪→ C(Ω). We note,
for example, that if A is the realization on X of a strongly elliptic differential operator
of order 2m, then Xθ ↪→ Cν(Ω) for 0 ≤ ν < 2mα− n/p; see [31, § 8.4] for details.

Denote σ : J × BXα
→ J and F : J × BXα

→ X by σ(t, ψ) = ζ(t, ψ) and F (t, ψ)(x) =
((βψ(0, x))/(1 + ψm(0, x))) + g(t, ψ(0, x)). From the choice of α, both functions are well
defined and are Lipschitz, and F (·) takes bounded sets into bounded sets. In addition, for
r > 0 and ψ, φ ∈ Br(0,BXα

), we can show that ‖F (ψ)‖ ≤ NF (r) = β(‖ic‖L(Xα,C(Ω))r +
‖g‖C(R×R;R))m(Ω)1/2 and

‖F (ψ) − F (φ)‖
≤ (β(1 + (1 + 2n)r2n‖ic‖2n

L(Xα,C(Ω))) + ‖ic‖L(Xα,C(Ω))Lg)m(Ω)1/2‖ψ − φ‖BXα
,

where ic is the inclusion map from Xα into C(Ω) and m(Ω) is the Lebesgue measure of Ω.
To use Proposition 2.1, we assume ϕ ∈ CLip([−p, 0];Xα), ϕ(0) ∈ X1+α and F (0, ϕ) ∈ Xα.
In this case, we can suppose that the numbers ΘXα,X(ϕ),ΦXα,X and LF (r) in Proposition
2.1 are given by

ΦXα,X = D0,α

(
1
γ

+
1

1 − α

)
(3.7)

ΘXα,X(ϕ) = D0,0(‖ϕ(0)‖X1+α
+ ‖F (0, ϕ(0))‖Xα

) + ‖ϕ‖CLip([−p,0];Xα), (3.8)

LF (r) = (β(1 + (1 + 2n)r2n‖ic‖2n
L(Xα,C(Ω))) + Lg)m(Ω)1/2. (3.9)

Moreover, concerning the inequality (2.16), we note that

‖T (·)ϕ(0)‖C([0,∞);Xα) +NF (r)‖T (·)‖L1([0,∞);L(X,Xα))

≤ D0,0‖ϕ(0)‖Xα
+ (β‖ic‖L(Xα,C(Ω))r + ‖g‖C(R×R;R))m(Ω)1/2D0,α

(
1
γ

+
1

1 − α

)
.
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In the next result, which follows from Proposition 2.1, ΦXα,X ,ΘXα,X(ϕ) and LF (r) are
given by (3.7)–(3.9).

Proposition 3.9. Assume that ϕ ∈ CLip([−p, 0];Xα), ϕ(0) ∈ X1+α, F (0, ϕ) ∈ Xα,
σ(t, ϕ) = 0 and there is r > 0 with ϕ ∈ Br(0,BXα

) such that

D0,0‖ϕ(0)‖Xα
+ (β‖ic‖L(Xα,C(Ω))r + ‖g‖C(R×R;R))m(Ω)1/2D0,α

(
1
γ

+
1

1 − α

)
< r,

2ΦXα,XLF (r)[[ζ]CLip([0,∞)×BX ;R+)(1 + 2(ΘXα,X(ϕ) + 2ΦXα,XLF (r))) + 1] < 1.

(3.10)

Then there exists a unique strict solution u ∈ CLip([−p,∞);Xα) of (3.5)–(3.6) such that
u|[0,a]

∈ Cα([0, a];X1) ∩ C1+α([0, a];X) for all a > 0.

Using Corollary 2.2, we can prove the existence of a periodic solution for (3.5) with
J = R. In this case, the inequality (2.23) takes the form

(β‖ic‖L(Xα,C(Ω))r + ‖g‖C(R×R;R))m(Ω)1/2D0,α

(
1
γ

+
1

1 − α

)
≤ r. (3.11)

Using the above notation, from Corollary 2.2 we get the next result.

Proposition 3.10. Assume that ζ ∈ CLip(R × BXα
; R) ∩ Cω(R × BXα

; R), g(·) is ω-
periodic, there is r > 0 such that (3.11) is valid and 1 > 2ΛXα,X(r)((2ΛXα,X(r) +
1)[ζ]CLip(R×BXα ;R) + 1). Then there exists a unique ω-periodic strict solution u ∈
CLip(R;Br(0;Xα)) of (3.5). Moreover, u ∈ Cβ(R;X1) ∩ C1+β(R;X) for all β ∈ (0, 1).

To complete this section, we study the existence of asymptotically almost periodic solu-
tions for a model concerning the Fisher–Kolmogoroff equation and Hutchinson’s equation;
see [18,30,34,42] and the examples in [23, Example 1] for details. Consider the diffusive
equations with state-dependent delay

w′(t, ξ) = Aw(t)(ξ) + μ(t)w(t, ξ)[1 − w(ζ(t, wt), ξ)], t ∈ R, ξ ∈ Ω, (3.12)

w(θ, y) = ϕ(θ, y), θ ∈ [−p, 0], y ∈ Ω, (3.13)

where ζ ∈ CLip(R × BX ; R) and μ ∈ CLip(R,R).
For simplicity, we take X = C(Ω) and define F : R × BX → X and σ : R × BX → R by

F (t, ψ)(x) = μ(t)ψ(0, x)[1 − ψ(0, x)] and σ(t, ψ) = ζ(t, ψ). The function σ(·) is Lipschitz
and for r > 0, t, s ∈ R and ψ, φ ∈ Br(0,BX), ‖F (t, ψ)‖ ≤ ‖μ‖C(R;R)r(1 + r) and

‖F (t, ψ) − F (s, φ)‖ ≤ [μ]CLip(R;R) | t− s | r(1 + r) + ‖μ‖C(R;R)(1 + 2r)‖ψ − φ‖BX
,

which implies that the condition HX
Floc,X is satisfied.

Let LF (r)= ‖μ‖CLip(R;R)(r2 + 3r+ 1), NF (r)= ‖μ‖C(R;R)r(1+ r), ΦX,X = ((D0,0)/(γ))
and

Θ(X,X)(ϕ) = D0,0

(
‖Aϕ(0)‖ + ‖μ‖CLip(R;R)

r

γ
(1 + r)

)
+ ‖ϕ‖CLip([−p,0];X). (3.14)

Combining the proofs of Propositions 2.1 and 2.5, we can prove the next result.
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Proposition 3.11. Suppose that ϕ ∈ CLip([−p, 0];X), ϕ(0) ∈ X1, ζ(0, ϕ) = 0 and
there is r > 0 such that ‖ϕ‖BX

< r, D0,0‖ϕ(0)‖ + ‖μ‖C(R;R)r(1 + r)((D0,0)/(γ)) ≤ r and

1 > 2ΦX,XLF (r)[2[σ]CLip([0,∞)×BX ;R+)(1 + 2(ΘX,X(ϕ) + 2ΦX,XLF (r))) + 1]. (3.15)

Then there exists a unique strict solution u ∈ C([0,∞);Br(0,X)) ∩AAP (X) of (3.12)–
(3.13).

Acknowledgement. The work of this author is supported by FAPESP 2017/
13145-8.
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