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Experimental observations of an azimuthal electrolyte flow driven by Lorentz force in
a thin annular fluid layer placed on top of a magnet show that it develops a robust
vortical system near the outer cylindrical wall. It appears to be a result of instabilities
developing on a background of steady axisymmetric flow. Therefore, the goal of this
paper is to establish a scene for a future comprehensive stability analysis of such
a flow. We discuss popular depth-averaged and quasi-two-dimensional approximate
solutions that take advantage of the thin-layer assumption first, and argue that they
cannot lead to the observed flow patterns. Thus, three-dimensional toroidal flows are
considered. Their similarities to various other well-studied rotating flow configurations
are outlined, but no close match is found. Multiple axisymmetric solutions are detected
numerically for the same governing parameters, indicating the possibility of subcritical
bifurcations, namely type 1, consisting of a single torus, and type 2, developing a
second counter-rotating toroidal flow near the outer cylinder. It is suggested that the
transition between these two axisymmetric solutions is likely to be caused by the
centrifugal instability, while the shear-type instability of the type 2 solution may be
responsible for the observed vortex structures. However, a dedicated stability analysis
which is currently underway and will be reported in a separate publication is required
to confirm these hypotheses.

Key words: MHD and electrohydrodynamics

1. Introduction

The interaction between electrically conducting fluids and electromagnetic fields
underlies many technological applications as well as a great variety of natural
phenomena. In laboratory studies, electromagnetic forcing has proved useful for the
exploration of fundamental flow phenomena such as two-dimensional turbulence,
mixing and instabilities. Moreover, conducting fluids driven by electromagnetic forces
have been widely used to model flows of geophysical and astrophysical interest, in
part due to the possibility of producing and controlling motion without the interference
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of mechanical devices. Electromagnetic forces can be created by applying electric
currents to a conducting fluid, either a liquid metal or an electrolyte, exposed to
an external magnetic field. In liquid metals, due to their high electric conductivity,
electromagnetic forces can also be produced by time varying magnetic fields. In
laboratory conditions, such flows are typically characterised by low values of the
magnetic Reynolds number, so that the induced magnetic field is much smaller than
the applied field. In the past, Lorentz forces have been used, for instance, to generate
three-dimensional swirling tornado-like flows in both electrolytes (Kenjeres 2011) and
liquid metals (Vogt et al. 2013).

In the geophysical context, rotating flows are of special interest, and magneto-
hydrodynamic (MHD) flows appear to be particularly suitable for modelling of
large-scale atmospheric or oceanic flow structures. There exists an extensive body
of literature on this subject, notably by Soviet researchers, documenting studies
of such model flows in electrolytes; see, for example, Dovzhenko, Novikov &
Obukhov (1979), Dovzhenko, Obukhov & Ponomarev (1981), Dovzhenko, Krymov
& Ponomarev (1984), Krymov (1989), Manin (1989), Dolzhanskii, Krymov & Manin
(1990), Bondarenko, Gak & Gak (2002) and references therein. Among different
configurations, electromagnetically driven flows in annular cavities offer a convenient
way of producing an azimuthal flow in a simple set-up with the advantage of avoiding
entrance regions. When thin fluid layers are considered, this configuration forms a
paradigm for laboratory studies of large atmospheric events such as hurricanes and
tropical cyclones (Dovzhenko et al. 1984). The main reason for this is that these
natural phenomena occurring on a lateral scale of hundreds of kilometres are, in
fact, ‘very thin’. Their vertical extent is of the order of 10 kilometres or less. In
a laboratory device, the fluid layer is typically contained in the gap between two
vertical coaxial conducting cylinders limited by an insulating bottom wall and a
free surface. Due to the applied electric potential difference between the cylinders, a
radial electric current flows in the electrolyte. If the cavity is placed over a vertical
solenoid or on top of a permanent magnet, the interaction of the radial current and
the approximately axial magnetic field gives rise to an azimuthal Lorentz force that
drives the flow. The direction of the force is determined by the orientation of the
electric current relative to the direction of the magnetic field. Thus, it is easy to form
a region in a flow domain where the Lorentz force changes from one direction to
the opposite one by simply placing two magnets with opposite polarisations next to
each other. The thus-created shearing force in the fluid is the necessary condition
for the appearance of hydrodynamic instabilities which assume the shape of vortices
resembling those existing on a much larger scale in the atmosphere. Shear flows
created by electromagnetic forces leading to unstable flow patterns have also been
studied in a rectangular geometry with the aim of understanding unstable behaviour
of oceanic flows (González Vera & Zavala Sansón 2015).

While stemming from previous research, the situation analysed in the current study
is somewhat different. In our experiments, we used an annular cavity placed over a
single magnet with fixed polarity, so that the direction of the azimuthal Lorentz force
remained the same in the whole flow domain. However, the instability vortices were
still clearly seen in the form of anticyclonic vortices; that is, vortices rotating in the
opposite direction to the global azimuthal flow; see figure 1. We found that their
patterns were very robust: they existed in layers of various thicknesses regardless
of the shape, size or strength of the magnets used and the direction of the electric
current, even though no mean counterflow was detected in experiments. Moreover,
the vortex patterns were always observed near the outer cylinder. Our experiments
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FIGURE 1. (Colour online) Typical experimentally observed vortices in an anticlockwise
flow of electrolyte driven by the azimuthal Lorentz force.

also demonstrated that the observed vortices arise on a background of essentially
axisymmetric flow, and thus it is natural to consider them as growing perturbations
of an axisymmetric basic flow which needs to be accurately computed first. These
intriguing experimental facts prompted us to perform preliminary stability studies
adopting a thin-layer approximation. However, this attempt failed to produce patterns
even qualitatively similar to those seen in experiments. Therefore, in this paper, we
report on a methodological study of various flow approximations and allude to the
reasons for their failure.

We also discuss the relevance of known flow instability scenarios arising in various
other rotating fluid systems to flows in the configuration of our experiments. In doing
so, we identify potential candidates that could be responsible for the formation of
the observed vortices. In particular, these include Ekman layer instability (Ekman
1905; Lilly 1966; Greenspan 1968), Rayleigh centrifugal instability (Rayleigh 1916),
viscous (shear) boundary layer (Tollmien–Schlichting type) instability (Drazin &
Reid 1981) and instability of the Stewartson layer (Stewartson 1957; Hide & Titman
1967; Schaeffer & Cardin 2005). However, we also note substantial differences
between our flows and those that led to such instabilities in configurations reported
in the literature to date. This enables us to set the scene for a comprehensive flow
stability analysis, but to keep the length of the present paper reasonable, we leave
the discussion of such flow stability studies to a separate publication and focus
here exclusively on the discussion of steady axisymmetric solutions. Among others,
these include the correct reproduction of the applied magnetic field distribution
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FIGURE 2. (Colour online) Experimental set-up: 1, disk magnet; 2, acrylic glass block; 3,
outer copper electrode; 4, inner copper electrode; 5, electric current source; 6, wires; 7,
non-magnetic insert; 8, electrolyte layer.

and the proper treatment of the free surface. We report the selected results for
quasi-two-dimensional and three-dimensional toroidal flows, and argue that only
consideration of the stability of toroidal solutions can lead to progress in explaining
the patterns observed experimentally.

The structure of the present paper is as follows. The experimental set-up and
procedure are described in § 2. The mathematical problem is formulated in § 3. In § 4,
the calculation of a realistic magnetic field created by a magnet used in experiments
is described. The semi-analytical quasi-two-dimensional and thin-layer approximations
are discussed in § 5. Various numerical results are presented in §§ 5–7, which are
followed by a discussion of free surface deformation in § 8. The major conclusions
are given in § 9.

2. Experimental set-up and procedure
The experimental set-up is shown in figure 2. It consisted of an open cylindrical

cavity with a diameter of 85.8 mm and a depth of 25.4 mm carved in an acrylic
block. A thin copper ring of 10 mm height which served as the outer electrode was
fitted into the container while a copper cylinder of 25.4 mm in diameter placed at the
centre of the container acted as the inner electrode. The width of the gap between the
electrodes was 30.2 mm. The cavity was filled with a weak electrolytic solution of
sodium bicarbonate (NaHCO3; 8.6 % by weight). Experimentally, the thickness of the
undisturbed fluid layer was controlled by pouring a prescribed volume of electrolyte
into the cavity. The container was placed on top of a vertically polarised permanent
disk magnet with a diameter of 80 mm. An electric potential difference was applied
between the electrodes, and, therefore, a radial electric direct current of magnitude I0
traversed the layer of conducting fluid. The interaction of the radial current and the
predominantly vertical magnetic field led to the appearance of an azimuthal Lorentz
force which caused fluid motion.

When viewed from above, the fluid rotated clockwise (anticlockwise) when the
applied current flowed radially outwards (inwards). The physical properties of the
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h Thickness of electrolyte layer 2.5–10 mm
d Distance between the magnet and the bottom of the layer 6–27 mm
c Magnet half-height 12.7 mm

R1 Radius of the inner electrode 12.7 mm
R2 Radius of the outer electrode 42.9 mm
B0 Magnitude of the magnetic field at a reference point 0.02–0.06 T
ρ Density of electrolyte 1.09× 103 kg m−3

µ Dynamic viscosity of electrolyte 1.09× 10−3 kg (m s)−1

σe Electrical conductivity of electrolyte 4.98 (Ohm m)−1

σCu Electrical conductivity of copper electrodes 5.7× 107 (Ohm m)−1

I0 Total current between electrodes 0–1 A
g Gravity 9.8 m s−2

TABLE 1. Physical parameters and their characteristic values.

electrolyte and electrodes, the geometrical parameters of the experimental device as
well as the characteristic values of the applied magnetic field and electric current
are given in table 1. Experiments were performed for various values of the applied
current and the electrolyte layer thickness.

The experimental flow was analysed with two different methods.
First, the flow patterns were visualised using a dye tracer. The experiments started

from rest with a small blob of liquid dye dripped from the top and initially remaining
near the free surface of the quiescent fluid. To demonstrate the three-dimensionality
of the flow, the dye was also dripped from further above the layer surface so
that it would penetrate deeper on impact. Once the applied current was fixed, the
development of the flow pattern produced by the Lorentz force was revealed by
smearing of the dye blob and, eventually, the appearance of vortices if the applied
current was sufficiently strong. The flows were recorded using a Sony Handycam
videorecorder (model HDR-XR100, with a resolution of 1080 × 720 pixels and a
capture frequency of 30 f.p.s.) placed above the experimental set-up. The recorded
flow patterns were used to identify the onset of instability and the number of vortices
that appeared for given conditions.

Second, detailed measurements of the free surface velocity field were carried out
using particle image velocimetry (PIV). The experiments with PIV also started from
rest, and a uniform illumination was provided by a set of three LED lamps placed on
top of the set-up around the liquid container. Due to the relatively low velocities (of
the order of centimetres per second) of the analysed flows, the same videorecorder was
also used for the PIV analysis. Silver-covered glass spheres with an average diameter
of 10 µm were used as tracers. A centrifuge was used to select only the neutrally
buoyant spheres for PIV measurements. The subsequent analysis was performed using
the PIVlab toolbox in MATLAB. A more detailed discussion of the experimental set-
up and procedure can be found in Pérez-Barrera et al. (2015).

3. Mathematical problem formulation and governing equations

We consider an electrolyte layer of thickness h over a non-conducting solid bottom
with a free top surface. The layer is contained between two vertical coaxial cylindrical
electrodes with radii R1 and R2, as shown in figure 3. The system is placed above
a permanent disk magnet which creates a predominantly vertical magnetic field.
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Electrolyte
Non-magnetic insert
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FIGURE 3. Sketch of the problem geometry and non-dimensional coordinate system.

Since this field is generally non-uniform, we characterise its strength by the field
magnitude B0 in the corner between the solid bottom and the inner electrode.

When an electric potential difference 1φ0 is applied between the electrodes, the
total current

I0 ≈
2πσeh1φ0

ln(R2/R1)
(3.1)

flows predominantly radially through the layer. Expression (3.1) is obtained upon
adopting two assumptions, namely that the surfaces of the electrodes are essentially
equipotential and that the influence of the electrolyte flow on the distribution of
electric potential in a layer is negligible. The former is justified by the fact that
the conductivity of the electrodes (copper) is seven orders of magnitude higher than
that of the electrolyte (see table 1), while the validity of the latter is due to the
negligibility of magnetic induction effects which will be demonstrated numerically in
the subsequent sections.

The interaction of the current and the applied magnetic field creates a Lorentz force
FL= j×B, where j and B are the applied current density and the magnetic induction
field respectively. This predominantly unidirectional azimuthal force drives the flow
which structure we investigate here.

Under the small-magnetic-Reynolds-number approximation (Davidson 2001;
Pérez-Barrera, Ortiz & Cuevas 2016), the non-dimensional equations governing the
steady axisymmetric fluid motion are the Poisson equation for the electric potential,
the momentum equations and the continuity equation for an incompressible fluid.
They are written in cylindrical coordinates as

∂2φ

∂z2
+ ε2

(
∂2φ

∂r2
+

1
r
∂φ

∂r

)
= ε2Ha2

[
−Br

∂uθ
∂z
+ Bz

(
∂uθ
∂r
+

uθ
r

)]
, (3.2)

ur
∂ur

∂r
−

u2
θ

r
+ uz

∂ur

∂z
= −

1
Fr2

∂p
∂r
+

1
ε2Re

( jθBz − jzBθ)

+
1

Re

(
∂2ur

∂r2
+

1
r
∂ur

∂r
−

ur

r2
+

1
ε2

∂2ur

∂z2

)
, (3.3)
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ur
∂uθ
∂r
+

uruθ
r
+ uz

∂uθ
∂z
= +

1
ε2Re

( jzBr − jrBz)

+
1

Re

(
∂2uθ
∂r2
+

1
r
∂uθ
∂r
−

uθ
r2
+

1
ε2

∂2uθ
∂z2

)
, (3.4)

ur
∂uz

∂r
+ uz

∂uz

∂z
= −

1
Fr2ε2

∂p
∂z
+

1
ε2Re

( jrBθ − jθBr)

+
1

Re

(
∂2uz

∂r2
+

1
r
∂uz

∂r
+

1
ε2

∂2uz

∂z2

)
, (3.5)

∂ur

∂r
+

ur

r
+
∂uz

∂z
= 0, (3.6)

where φ is the electric potential, (ur, uθ , uz) and (Br, 0, Bz) are the velocity and
magnetic field components in the radial (r), azimuthal (θ ) and vertical (z) directions
respectively and p is the pressure, including the hydrostatic component. From Ohm’s
law, the electric current density components are

jr =−
∂φ

∂r
+Ha2uθBz, (3.7)

jθ =−Ha2(urBz − ε
2uzBr), (3.8)

jz =−
∂φ

∂z
− ε2Ha2uθBr. (3.9)

Here, the aspect ratio of the electrolyte layer ε, the square of the Hartmann number
Ha2 characterising electromagnetic effects, the square of the Froude number Fr2

describing the influence of gravity on a free surface flow and the Reynolds number
Re quantifying viscous effects are

ε =
h

R2 − R1
, Ha2

=
σeB2

0h2

4µ
, Fr2

=
2U2

0

gh
, Re =

ρU0(R2 − R1)

2µ
, (3.10a−d)

where the velocity scale is defined as U0 = σe1φ0B0h2/2µ(R2 − R1). The typical
experimental values of these parameters are ε ∼ 10−1, Ha2

∼ 10−5, Fr2
∼ 10−1

and Re ∼ 103. Equations (3.2)–(3.9) are made non-dimensional using the following
scalings:

(r∗, z∗)=
R2 − R1

2
(r, εz) , (u∗r , u∗θ , u∗z )=U0 (ur, uθ , εuz) ,

t∗ =
R2 − R1

2U0
t, p∗ =

1
2
ρghp,

( j∗r , j∗θ , j∗z )=
2σe1φ0

R2 − R1

(
jr, jθ ,

1
ε

jz

)
, (B∗r , B∗θ , B∗z )= B (εBr, 0, Bz) ,


(3.11)

where the star symbol denotes dimensional quantities.
The no-slip/no-penetration velocity boundary conditions at the cylindrical electrodes

and non-conducting bottom are

ur = uθ = uz = 0 at z=−1 and at r= α ± 1, (3.12)
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where α = (R2 + R1)/(R2 − R1) (α ≈ 1.84 in our experiments and computations). As
will be justified in § 8, we neglect the deformation of the free surface (see also Satijn
et al. 2001) and apply continuity of the tangential stress condition. This leads to

uz =
∂ur

∂z
=
∂uθ
∂z
= 0 at z= 1. (3.13)

The boundary conditions for the electric potential at the electrode surfaces are

φ = 0 at r= α − 1 and φ = 1 at r= α + 1. (3.14a,b)

The condition jz= 0 at the non-conducting bottom and at the free surface leads to

∂φ

∂z
= 0 at z=−1 and

∂φ

∂z
=−ε2Ha2uθBr at z= 1. (3.15a,b)

4. Magnetic field
The reconstruction of the realistic applied magnetic field is of fundamental

importance for proper modelling of the flow. To calculate a non-uniform magnetic
field created by a permanent vertically polarised magnet, we assume that it is
homogeneously magnetised (i.e. its bulk magnetisation Mz is assumed to be constant),
so that the characteristics of the field depend only on the shape of the magnet
and the distance from its surface. Experiments conducted with rectangular magnets
revealed that the observed flow patterns remain largely the same as those arising
when a smaller disk magnet is used as long as the horizontal dimensions of the
rectangular magnet are larger than the diameter of the disk magnet, and the diameter
of the magnet is not smaller than the outer diameter of the experimental container,
so that no magnetic field reversal occurs within the electrolyte layer. Therefore, for
definiteness, all computations reported here are performed for a vertically polarised
disk magnet of height 2c with the radius equal to the radius R2 of the outer electrode.
Due to axial symmetry, the azimuthal component of the magnetic field of such a
magnet is B∗θ = 0, as has already been taken into account in the governing equations.
Experimentally, the magnitude of the magnetic field driving the flow is controlled by
changing the width d of the gap between the upper surface of the magnet and the
bottom of the electrolyte layer (d is the sum of the bottom container wall thickness
and the air gap between the container and the magnet); see figure 3 and table 1
for details. In particular, variation of the gap width d from 6 to 27 mm leads to a
decrease of the maximum magnetic field intensity by a factor of approximately 3
(from approximately 0.06 to 0.02 T in experiments). The distribution of the magnetic
field also changes, as demonstrated in figure 4. In particular, comparison of (a) and
(b) indicates that the uniform field assumption commonly used in similar studies
is quickly invalidated away from the magnet surface, so that, in general, the gap
width d needs to be considered as an independent experimental control parameter,
the influence of which cannot be accounted for in full by a simple rescaling of the
characteristic magnetic field strength B0.

The magnetic field induced by the weak electric current flowing between the
electrodes is several orders of magnitude smaller than the magnetic field B∗ of the
permanent magnet. Thus, once the induced magnetic field is neglected, B∗ has to
satisfy the following two conditions:

∇ ·B∗ = 0 and ∇×B∗ = 0. (4.1a,b)
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FIGURE 4. Scaled vertical (solid lines) and radial (dashed lines) components of the
magnetic field along the bottom (thick lines) and the free surface (thin lines) of the
electrolyte layer of depth h = 7.5 mm placed (a) d = 6 mm and (b) d = 27 mm above
the disk magnet. Only the magnetic field in the flow region is shown. The outer edge of
the disk magnet coincides with the right edges of the graphs.

To compute the magnetic field, we choose to introduce a scalar magnetic potential
φ∗m, so that B∗ = −∇φm, the second of conditions (4.1a,b) is satisfied identically
and the first one results in the Laplace equation ∇2φ∗m = 0. Subsequently, φ∗m is
computed (up to a multiplicative constant) at discrete collocation points required
by the numerical method (described in Suslov & Cuevas (2017)) by evaluating
numerically the double integrals in

φ∗m(r,
∗ z∗) ∼

∫ 2π

0

∫ R2

0

r′ dr′ dθ ′√
r′2 +

(
d+

h
2
+ z∗

)2

+ r∗2 − 2r′r∗ cos θ ′

−

∫ 2π

0

∫ R2

0

r′ dr′ dθ ′√
r′2 +

(
2c+ d+

h
2
+ z∗

)2

+ r∗2 − 2r′r∗ cos θ ′

(4.2)

using the standard MATLAB two-dimensional quadrature routine quad2d. However,
due to the finite accuracy of the numerical integration, the thus-computed scalar
magnetic potential satisfies the Laplace equation only approximately. Therefore, in
further computations, we use the corrected magnetic potential Φ∗m = φ

∗

m − φ
∗′

m , where
the correction φ∗′m is obtained by solving the Poisson equation ∇2φ∗′m =∇

2φ∗m, with the
homogeneous condition φ∗′m = 0 along the boundary of the computational domain. The
numerical values of Φ∗m are scaled so that ∂Φ∗m/∂z∗ = −B0 at the reference location
shown by a black circle in figure 3. The typical distributions of the vertical and
radial components of the magnetic field along the bottom of the electrolyte layer and
the free surface are shown in figure 4.
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5. Quasi-two-dimensional and thin-layer approximations
The symmetry of the problem suggests that an approximate steady two-dimensional

azimuthal flow solution u = (0, uθ(r, z), 0), j = ( jr(r, z), 0, jz(r, z)), φ = φ(r, z) may
exist which satisfies the following reduced equations:

∂2φ

∂z2
+ ε2

(
∂2φ

∂r2
+

1
r
∂φ

∂r

)
= ε2Ha2

[
Bz

(
∂uθ
∂r
+

uθ
r

)
− Br

∂uθ
∂z

]
, (5.1)

∂2uθ
∂z2
+ ε2

(
∂2uθ
∂r2
+

1
r
∂uθ
∂r
−

uθ
r2

)
=
∂φ

∂z
Br −

∂φ

∂r
Bz +Ha2uθ(B2

z + ε
2B2

r ), (5.2)

∂p
∂r
= Fr2 u2

θ

r
, (5.3)

∂p
∂z
= 0. (5.4)

It should be noted that while the Ha → 0 limit is appropriate in the context
of our experimental studies of electrolyte flows, we choose not to drop terms
multiplied by Ha from the above equations. As will be seen from the subsequent
discussion, this does not overly complicate the algebraic manipulations but will
enable us to derive a more general analytical solution which remains valid for
liquid metal flows characterised by small but finite Hartmann numbers. Given that
uθ = uθ(r, z), as is enforced by the no-slip boundary condition at the bottom of the
layer, (5.3) and (5.4) contradict one another. This means that the problem solution
is inherently three-dimensional, with all velocity components being non-zero. The
quasi-two-dimensional solution with p≈ const. can only exist in the limit

Fr2
≡
σ 2

e1φ
2
0B2

0h
2µ2g

ε2
≡

I2
0 ln2(R2/R1)B2

0

8π2µ2g(R2 − R1)
ε→ 0; (5.5)

that is, in thin layers where ε→ 0. Upon assuming that Bz ≈ 1 and Br ≈ 0 (these are
reasonable assumptions if d→ 0, i.e. if the bottom of the fluid layer is located close
to the surface of a magnet with large lateral dimensions), (5.1) and (5.2) become

∂2φ

∂z2
+ ε2

(
∂2φ

∂r2
+

1
r
∂φ

∂r

)
= ε2Ha2

(
∂uθ
∂r
+

uθ
r

)
, (5.6)

∂2uθ
∂z2
+ ε2

(
∂2uθ
∂r2
+

1
r
∂uθ
∂r
−

uθ
r2

)
=−

∂φ

∂r
+Ha2uθ . (5.7)

Away from the cylindrical electrodes, these equations have the exact solution

φ0 =

ln
r

α − 1

ln
R2

R1

, (5.8)

uθ =
1

Ha2

1

r ln
R2

R1

(
1−

cosh[Ha(1− z)]
cosh(2Ha)

)

≈
(z+ 1)(3− z)

2r ln
R2

R1

(
1+

(z− 1)2 − 20
12

Ha2

)
. (5.9)
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FIGURE 5. (a,b) The quasi-two-dimensional azimuthal velocity profiles and (c) the
Rayleigh criterion for inviscid centrifugal instability for an electrolyte layer placed in a
uniform vertical magnetic field at ε = 0.083, Ha = 1.69 × 10−3, Re = 1.1 × 102 and
Fr2
= 4.4× 10−3 (corresponding to B0 = Bz = 0.02 T, I0 = 0.05 A and h= 2.5 mm). The

profiles are shown for z= 1.0, 0.5 and −0.5 in panels (a) (top to bottom) and (c), and for
r= 1.30, 1.98 and 2.60 (right to left) in panel (b). The solid and dashed lines represent
the numerical and exact solutions (5.9) respectively. The dash-dotted and dotted lines show
the depth-averaged profiles obtained from (5.7) and (5.19) respectively.

It is worthwhile to point out that the distribution of electric potential given by (5.8)
is independent of Ha, even though it enters the expression (5.9) for the azimuthal
velocity and the governing equation (5.6). However, this solution does not satisfy the
no-slip boundary conditions at the surface of the electrodes, where boundary layers
are formed. Thus, the problem is naturally rendered to a singular perturbation analysis
similar to that reported, for example, in Delacroix & Davoust (2014). In the current
paper, however, we do not pursue such an analysis any further and resort to the high-
accuracy numerical spectral solution shown in figure 5. As seen from this figure, away
from the cylindrical walls, the analytical and numerical solutions coincide within the
plotting resolution, but deviate from one another significantly in the boundary layers
(consider also approximate solutions reported in Digilov (2007) for an infinitely deep
layer).

It is important to note that in thin electrolyte layers, the maximum of the azimuthal
velocity is necessarily located near the inner cylinder. As a result, the largest flow
shear is found at small values of r. This is where the shear instability would be
expected to set first, which, however, is not seen in our experiments. The variation
of the geometry and strength of the magnetic field created by a realistic magnet and
shown in figure 4 is expected to only enhance this effect, as it weakens the driving
Lorentz force near the outer edge of the layer.

In figure 5(c), the rate of change of the angular momentum of the fluid is shown. As
can be derived from the Rayleigh criterion for inviscid centrifugal instability (Rayleigh
1916), such an instability can only occur if d/dr(ruθ) < 0. Since uθ ∼ 1/r, see (5.9),
the bulk of the flow is marginally stable with respect to this mechanism. However,
the boundary layer near the outer electrode satisfies this necessary condition and thus
centrifugal instability should be considered as a potential physical mechanism that can
lead to the appearance of the vortices.

To find the approximate radial profile of the azimuthal velocity component in the
complete flow domain, Pérez-Barrera et al. (2016) suggested that one should proceed
with a depth-averaged model that is commonly used in studies of thin fluid layers (see,
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for example, Sommeria (1988), Andreev, Heberstroh & Thess (2001) for discussion
in an MHD context). Such a model is obtained by integrating (5.6) and (5.7) over
the layer thickness and taking into account the boundary conditions (3.12), (3.13) and
(3.15). This results in

d
dr

(
r

dφ̄
dr

)
=Ha2 d

dr
(rūθ) , (5.10)

−
∂uθ
∂z

∣∣∣∣
(r,−1)

+ ε2

(
d2ūθ
dr2
+

1
r

dūθ
dr
−

ūθ
r2

)
=−

dφ̄
dr
+Ha2ūθ , (5.11)

where the overbar denotes depth averaging,

(φ̄, ūθ)≡ 1
2

∫ 1

−1
(φ, uθ)dz. (5.12)

Integrating (5.10) once and eliminating φ̄ from (5.11) results in

dφ̄
dr
=Ha2ūθ +

C
r
, (5.13)

−
1
2
∂uθ
∂z

∣∣∣∣
(r,−1)

+ ε2

(
d2ūθ
dr2
+

1
r

dūθ
dr
−

ūθ
r2

)
=−

C
r
. (5.14)

Since the solution (5.8) for the electric potential is regular in r, it can be used to
eliminate the integration constant C from the above equations,

−
C
r
=−

1

r ln
R2

R1

+Ha2ūθ . (5.15)

It is tempting to use (5.9) to obtain an explicit expression for the bottom friction.
However, because of the boundary layer singularity, this cannot be justified near the
electrodes, where the explicit expression for the bottom friction is not known. Thus,
instead, we adopt the quasi-two-dimensionality assumption (see, for example, the
discussion in Dolzhanskii, Krymov & Manin (1992)), and parameterise it as

∂uθ
∂z

∣∣∣∣
(r,−1)

≈ kūθ , (5.16)

where the value of the proportionality constant can be determined using (5.9),

k=
2Ha2 tanh(2Ha)

2Ha− tanh (2Ha)
≈

3
2
+

2Ha2

5
. (5.17)

Expression (5.17) can be written in dimensional form as

λ=
2µ
ρh2

k=
3µ
ρh2
+
σeB2

0

5ρ
. (5.18)

In the context of a quasi-two-dimensional approximation (Dolzhanskii et al. 1992),
the first term in (5.18) is recognised as Rayleigh friction. It accounts for the viscous
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friction at the bottom of the layer. The second term represents Hartmann friction
which characterises the flow resistance due to the electromagnetic effect. It only
becomes essential in fluids with high conductivity, such as liquid metals, and plays a
negligible role in the electrolytes considered here. Finally, neglecting the higher-order
terms in Ha, we obtain the forced Bessel equation for the depth-averaged azimuthal
velocity profile,

r2 d2ūθ
dr2
+ r

dūθ
dr
−

[
1+

(
3
4
+

6
5

Ha2

)
r2

ε2

]
ūθ =−

1
ε2

r

ln
R2

R1

, (5.19)

with homogeneous boundary conditions

ūθ(α ± 1)= 0. (5.20)

This equation is structurally similar to that discussed in Pérez-Barrera et al. (2016)
but contains rigorously derived coefficients. Its solution, shown by the dotted lines, is
compared with the depth-averaged solution of (5.7), shown by the dash-dotted lines, in
figure 5. The two solutions are virtually indistinguishable except for a small difference
in the boundary layers, where the one-dimensional solution slightly overestimates the
depth-averaged quasi-two-dimensional solution. This is traced back to the inaccuracy
of assumption (5.16) illustrated in figure 6, where the approximation error of (5.16),

Eb =
∂uθ
∂z

∣∣∣∣
(r,−1)

− kūθ , (5.21)

is presented. In the vicinity of cylindrical walls, approximation (5.16) underestimates
the bottom friction and thus predicts a slightly faster depth-averaged velocity than
the full set of equations. It should be noted, however, that even though the overall
performance of the model (5.19) is quite satisfactory, the depth-averaged velocity and
thus the average flow shear are significantly smaller than the maximum local values
that define the stability properties of the flow. Therefore, it is unlikely that the depth-
averaged model could be used to produce accurate information on the stability of the
considered flows. Thus, here, we will not conduct any comprehensive computations
using the depth-averaged equations, and resort to a numerical solution of the quasi-
two-dimensional and axisymmetric three-dimensional equations.

6. Numerical quasi-two-dimensional solutions for realistic magnetic fields
When a realistic magnetic field is considered, as shown in figure 4(a,b), no

analytical solutions are readily available. Thus, (5.1) and (5.2) are solved numerically
using the Chebyshev pseudo-spectral collocation method proposed by Ku &
Hatziavramidis (1984) and Hatziavramidis & Ku (1985) and adapted for large-scale
flow stability calculations by Suslov & Paolucci (1995a,b). The generalisation of the
method for the multi-dimensional spatial approximation used here and the details
of implementation are discussed in Suslov & Cuevas (2017). The numerical results
reported here were obtained using 45× 31 spectral modes, which ensures convergence
to at least 10−6. The numerical solutions were also validated in the limiting cases
against the analytical results; see figure 5.

When the magnetic field is given and fixed, the governing equations are linear, and
their solutions are obtained by a direct matrix inversion. A comparison of the thus-
obtained fully numerical and approximate analytical solutions for the electric potential
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FIGURE 6. The difference between the bottom friction values calculated from (5.7) and
using the approximation (5.16).
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FIGURE 7. The difference between the numerical solution φ of (5.1) with a realistic
magnetic field and the approximate analytical solution for the electric potential φ0 given
by (5.8) for z= 1, 0.5, −0.5 and −1 (bottom to top) and the parameter values specified
for figure 5.

is given in figure 7. For the small Hartmann numbers that are of interest here, the
difference between the two is negligible. Therefore, with a very good accuracy, the
expression (5.8) can be used, and (3.2) and (5.1) can be eliminated from the respective
systems of governing equations.

In figure 8, the azimuthal velocity profiles obtained for a realistic magnetic field
(shown in figure 4) with the same reference magnitude B0 as that of the uniform
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FIGURE 8. The same as figure 5 but for a realistic magnetic field created by a disk
magnet (see figure 4a) placed 6 mm below the bottom of the electrolyte layer.

vertical magnetic field (Bz = 1, Br = 0) used in figure 5 are presented. Comparison
of the two figures demonstrates a remarkable robustness of the velocity profiles.
Even though the details of the magnetic fields used to obtain the two solutions are
drastically different, the velocity profiles remain qualitatively unchanged. However,
quantitatively, the velocity profiles become fuller in the middle part of the flow region
away from the electrodes: the profiles lie somewhat higher (to the right) in figure 8(a)
(figure 8b) than the dashed lines representing the reference analytical solutions. This
trend continues as the depth of the layer and the electric current increase, and the
shape of the velocity profile eventually deviates from that given by the depth-averaged
model; see figure 9. The curvature of the velocity profiles becomes uniformly negative,
but the largest velocity gradient is still found near the inner cylinder. This suggests
that a potential shear instability would still set in preferentially near the inner cylinder.
However, this is not what is observed experimentally.

As is seen from figure 8(c), in a realistic magnetic field, the region near the
outer wall, where the Rayleigh criterion for inviscid centrifugal instability is satisfied,
widens at the expense of the central core flow. However, the magnitude of the radial
derivative of the angular momentum is reduced compared with the idealised uniform
magnetic field situation of figure 5. Therefore, it also remains unclear whether the
inviscid centrifugal mechanism of instability can be directly responsible for the
formation of the observed vortices in thin layers of viscous electrolytes. In turn,
this raises doubts about whether the quasi-two-dimensional approximation given by
(5.1) and (5.2) can be sufficiently accurate to describe the flow at hand in principle,
even though the value of the Hartmann number characterising the Lorentz force
driving the flow remains small. Indeed, it should be recalled that the validity of the
quasi-two-dimensional approximation is dictated by the value of the square of the
Froude number defined in (5.5), which increases linearly with the depth of the layer
and quadratically with the magnitude of the current flowing between the electrodes.
As discussed in § 5, when Fr2 is not negligible, an essentially three-dimensional flow
with non-zero radial and vertical velocity components ur and uz develops, which we
investigate next.

7. Steady toroidal flows

In this section, we discuss steady axisymmetric solutions of the system of governing
equations (3.2)–(3.9). Given that the three-dimensional governing equations are
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FIGURE 9. Numerical solutions of (5.2) for the quasi-two-dimensional azimuthal profiles
for an electrolyte layer placed in a magnetic field created by a disk magnet at ε = 0.248,
Ha= 5.08× 10−3, Re = 1.34× 103 and Fr2

= 0.213 (corresponding to B0 = 0.02 T, I0 =

0.2 A, h= 7.5 mm and d= 6 mm). The profiles are shown for z= 1.0, 0.5 and −0.5 in
panels (a) (top to bottom) and (c), and for r= 1.30, 1.98 and 2.60 (right to left) in panel
(b).
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FIGURE 10. (a) Radial profiles of the azimuthal (solid lines) and vertical (dashed lines)
velocity components uθ and uz, (b) vertical uθ profiles and (c) the Rayleigh criterion for
inviscid centrifugal instability for the type 1 steady three-dimensional solution of (3.2)–
(3.9) for the same values of the parameters as in figure 9. The dotted lines in (a) show
the Stewartson boundary layer solutions (Stewartson 1957).

nonlinear, we solve them using Newton-type iterations. An example of the velocity
profiles obtained by solving a three-dimensional axisymmetric problem is shown in
figure 10. Despite the fact that the fields were computed for the same values of
the governing parameters as used for figure 9, the azimuthal velocity profiles are
strikingly different. First, the maximum value of the azimuthal velocity component
of the three-dimensional axisymmetric solution is more than three times smaller
than that obtained from a quasi-two-dimensional approximation. Second, the location
of the maximum velocity shifts from the inner to the outer cylinder. This is in
good agreement with the experimentally measured surface velocity profile shown in
figure 11. Third, the shape of the three-dimensional axisymmetric velocity profile
becomes a sensitive function of the distance from the bottom of the layer: near the
free surface, the fastest flow occurs close to the outer cylinder (see lines 1 and 2
in figure 10a), while closer to the bottom, the azimuthal velocity profile becomes
more of a ‘plug-flow’ type (line 3 in figure 10a). Fourth, figure 10(b) demonstrates
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FIGURE 11. The experimental (symbols) and computed (dashed line) azimuthal velocity
profiles at the free surface for h= 5 mm and I0= 100 mA. The circles show the averaged
PIV data. The solid line extrapolates the experimental velocity profile towards the walls,
where accurate PIV measurements are impossible, which explains the discrepancy between
the computed and measured profiles in the near-wall regions.
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FIGURE 12. (a) Horizontal velocity hodograph (Ekman-type spiral) and (b) the
corresponding Ekman angle for the type 1 steady three-dimensional solution of (3.2)–(3.9)
for the same values of the parameters as in figure 9. The dashed line in (b) shows the
values for a bottom Ekman layer of infinite lateral extent.

that, somewhat counterintuitively, the fastest azimuthal flow occurs in the bulk of
the layer rather than at the free surface, as predicted by the quasi-two-dimensional
approximation. Fifth, figure 10(c) shows that one of the major effects of the flow
three-dimensionality is a significant redistribution of the fluid angular momentum in
such a way that the core of the flow not only retains its marginal stability with respect
to centrifugal instability, but actually becomes stable, so that d/dr(ruθ) ≈ const. > 0
there. This is mostly due to the development of the radial depth-dependent cross-flow
depicted in figure 12(a), where the hodograph of the horizontal velocity is shown.
It has the characteristic shape of an Ekman spiral (Ekman 1905), with a positive
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(outward) radial velocity component ur near the free surface and negative (inward)
ur near the bottom of the layer. The direction of the horizontal flow is shown in
figure 12(b) by the angle γ = tan−1 (ur/uθ) as a function of the vertical coordinate
z. Similarly to the bottom Ekman layer near the solid surface and close to the
inner cylindrical boundary, this angle tends to −45◦. However, comparison with
the analytical results for an unbounded Ekman layer, shown by the dashed line in
figure 12(b), indicates that this similarity is rather superficial. It breaks both near the
free surface and in the vicinity of the outer cylindrical wall.

It might appear that the considered flow configuration is closer to that of the
Bödewadt boundary layer existing in an infinite layer of fluid rotating over a stationary
solid plane (Bödewadt 1940). However, computational results presented by MacKerrell
(2005) indicate that the velocity vector in such a layer would form an angle of
γ ≈−50.6◦ with the azimuthal direction near the solid bottom. Davidson & Pothérat
(2002) considered the Bödewadt–Hartmann layer that occurs when conducting fluid
placed in a constant vertical magnetic field rotates over a stationary solid bottom. The
approximate solutions obtained by these authors were given in terms of the Elsasser
number A, which in our notation can be written as

A=
Ha2

2ε2Re
→ 0. (7.1)

In this limit, the solution provided by Davidson & Pothérat (2002) predicts γ ≈−59◦
at the bottom of the layer. Although both of these set-ups appear to be similar to
the one considered here, our computations do not confirm the existence of such large
angles in our flows. Therefore, while offering certain guidance, the numerous stability
results available in the literature for Ekman and Bödewadt layers (see, for example,
Faller (1963, 1991), Lilly (1966), Savaş (1987), MacKerrell (2005) and references
therein, to name a few) are not likely to be fully relevant to stability studies of the
flows of interest here.

It is also instructive to compare the obtained radial uθ profiles for the axisymmetric
three-dimensional solutions shown in figure 10(a) with those existing on a stationary
solid cylindrical surface surrounding a fluid rotating almost as a solid body. In our
notation, the leading term of the boundary layer solution derived by Stewartson (1957)
reads as

uθ ≈U

(
r

α + 1
−
α + 1

r
exp

[
−

(
URe

(α + 1)ε2

)1/4

(α + 1− r)

])
, (7.2)

where U is the effective azimuthal velocity at the edge of the boundary layer. In
the bulk of the fluid, this solution predicts a shear-free flow, and thus it is very
different from the velocity profiles computed for our problem. However, agreement
could reasonably be expected near the outer cylindrical wall. Yet this does not appear
to be the case either: figure 10(a) shows that Stewartson boundary layer is somewhat
thicker than that existing in the problem considered here.

The dashed lines in figure 10(a) show that relatively weak vertical flows (it should
be recalled that their magnitude is characterised by εuz, while uz is shown in the
figure) exist near the cylindrical walls. However, they have a rather complicated non-
monotonic structure. To make the visualisation of a complete flow field easy, this is
shown in figure 13, where the non-dimensional transverse flow velocity (ur, εuz), the
azimuthal component ωθ of the vorticity vector

ω= (ωr, ωθ , ωz)=

(
−

1
ε

∂uθ
∂z
,

1
ε

∂ur

∂z
− ε

∂uz

∂r
,
∂uθ
∂r
+

uθ
r

)
(7.3)
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FIGURE 13. (Colour online) Meridional velocity (a) and azimuthal vorticity (b) fields for
the type 1 three-dimensional solution of (3.2)–(3.9) for the same values of the parameters
as in figure 9. The light (dark) regions in (a) correspond to large (near-zero) values
of the azimuthal velocity component uθ . The light (dark) regions in (b) correspond to
positive (negative) values of the azimuthal vorticity ωθ . (c) Streamlines projected onto the
meridional plane.

and the azimuthal projection of the streamlines onto the meridional plane are shown (it
should be recalled that ur = uz = ωθ ≡ 0 if the quasi-two-dimensional approximation
is used). Even though both the maximum radial and maximum vertical velocity
components remain substantially smaller than the maximum azimuthal velocity (in
the example shown, by factors of 3.2 and 5.5 respectively) they have a strongly
pronounced effect on the overall flow and, ultimately, on its stability. Since, in
the considered geometry, fluid moves circumferentially, its inertia attempts to drive it
towards the outer cylinder in the meridional plane shown in figure 13(a). However, the
top–bottom symmetry is broken by the different dynamic conditions (zero tangential
stress at the top boundary and no-slip at the bottom boundary). As a result, a flow
occurs in the radial direction, with fluid moving outward along the free surface,
returning to the centre near the bottom and rising (sinking) near the inner (outer)
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FIGURE 14. The same as figure 10 but for the type 2 three-dimensional solution of (3.2)–
(3.9) for the same values of the parameters as in figure 9.
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FIGURE 15. The same as figure 12 but for the type 2 three-dimensional solution of (3.2)–
(3.9) for the same values of the parameters as in figure 9.

cylindrical boundary. The corresponding vortex is illustrated in figure 13(b), with
meridional streamlines shown in (c).

It is important to note here that, in contrast to the two-dimensional approximation,
the three-dimensional azimuthal velocity profile possesses the largest shear near the
outer cylinder, as can be seen by comparing figures 9(a) and 10(a). This indicates that
the likelihood of a hydrodynamic instability is expected to be higher in the outer flow
region, which is indeed observed in experiments. Thus, it is reasonable to conclude
that the experimentally observed vortical structures appearing near the outer cylinder
are caused by the three-dimensionality of the base axisymmetric flow.

While solving the axisymmetric three-dimensional problem, we found that the
convergence of iterations is very sensitive to the choice of the initial guess. It turned
out that one of the reasons for this is the apparent existence of multiple solutions
for the same set of governing parameters. Figures 14 and 16 show the example of
a second, type 2, solution that was found for the same set of governing parameters
as those used to obtain the type 1 solutions shown in figures 10 and 13. The type 1
and 2 solutions appear to be quite similar, as can be seen by comparing figures 10,
12 and 14, 15, but with a few notable distinctions.
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FIGURE 16. (Colour online) The same as figure 13 but for the type 2 three-dimensional
solution of (3.2)–(3.9).

First, in the bulk of the layer, the type 2 azimuthal velocity profile has a somewhat
larger gradient near the outer cylinder (compare curves 3 in figures 10a and 14a),
which is expected to promote the hydrodynamic instability detected experimentally in
this region.

Second, as seen in figure 16(b), the type 2 solution is characterised by the
existence of a secondary counter-rotating vortex in the top corner near the outer
cylinder. Comparison of the streamlines azimuthally projected onto the meridional
plane, shown for the type 1 and 2 solutions in figures 13(c) and 16(c), indicates
that this vortex reflects very different flow topologies in the two cases. While the
type 1 solution is characterised by a single-torus flow, the most prominent feature
of the type 2 solution is the presence of a second smaller counter-rotating toroidal
flow in the upper outer corner of the meridional cross-section. The structure of this
axisymmetric flow near the outer cylinder may appear to be similar to that computed
for the flow between a pair of shrouded co-rotating disks by Abrahamson, Eaton &
Koga (1989). However, there is an important difference: while a pair of symmetric
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FIGURE 17. (Colour online) Toroidal vortex visualisation in an electrolyte layer of
thickness h = 5 mm driven by a radial current of I0 = 100 mA. The stagnation line of
the radial flow visible on the free surface as a dark ring was located approximately 3
mm away from the outer electrode.

counter-rotating vortices was reported in Abrahamson et al. (1989), the symmetry
between the dynamic boundary conditions at the solid bottom and at the free surface
is broken and only one toroidal vortex is found in our computations. Such a vortex
creates a noticeable radial counterflow along the free surface, with a radial stagnation
point some distance away from the outer cylinder; see figure 16(a). The existence
of such a toroidal structure was also indicated by experimental observations: the dye
tracer released at the free surface away from the side boundaries drifted towards the
outer cylinder, confirming the three-dimensional structure of the flow, with a non-zero
radial component, but never reached it and remained at a distance of approximately
12 % of the total annular width from the wall; see figure 17. This corresponds to
a non-dimensional radial position of rs ≈ 2.62, which is very close to the value of
2.60 for the computed toroidal vortex seen in figure 16. A careful inspection of
the experimental photograph in figure 17 also indicates that this toroidal vortex is
the locus of instability giving rise to the formation of the anticyclonic vortices seen
in figure 1. Thus, these observations suggest that such vortices could be caused by
the interplay between the inviscid Rayleigh-type centrifugal instability and the shear
instability of a Stewartson-type shear layer (Stewartson 1957) near the outer cylinder.

Following up the hypothesis that the anticyclonic vortices observed in our
experiments could be related to the existence of a secondary single-torus structure,
it is of interest to see whether a similarity to other experimental configurations,
where such a structure has been seen before, can be established. Moisy et al. (2004)
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detected it in the flow between two counter-rotating disks. In contrast to the symmetric
two-torus situation discussed in Abrahamson et al. (1989), in the experiments of
Moisy et al. (2004), the top–bottom symmetry was broken by a difference in rotation
speeds between the two disks (even though, for a different physical reason, such a
symmetry breaking also occurs in our flows). Moisy et al. (2004) argued that the
appearance and location of the instability structures that they observed were related
to the existence of a stagnation circle at the slower rotating disk, where the azimuthal
vorticity component ωθ changes sign. Further, Moisy et al. (2004) also observed that
the location of this stagnation circle was close to the location of the maximum of the
vertical vorticity component ωz. These observations enabled the authors to conclude
that, in their experiment, the instability was caused by a classical Kelvin–Helmholtz
instability in the shear layer separating the faster rotating outer region from the
slower rotating inner one and containing a stagnation circle. Somewhat earlier, Lopez
et al. (2002) considered a similar experimental and computational set-up, but with
a larger angular velocity differential. They also found that the instability, somewhat
resembling in shape the one observed in our experiments, was that of a free shear
layer ‘cutting’ the flow domain into two subregions topologically similar to two tori.
Despite the topological similarity to flows discussed by Lopez et al. (2002) and
Moisy et al. (2004), our two-torus flows differ from them in a fundamental way:
the azimuthal velocities within the two regions have the same sign. More precisely,
in our configuration, the location of the stagnation circle on the free surface, where
ur = 0 (it should be noted that, at the free surface next to which the secondary torus
is formed, ωθ ≡ 0, so that it cannot be used to define a boundary between two flow
regions, as was done in Moisy et al. (2004)), does not coincide with the location
of the maximum vorticity component ωz (which is achieved at the outer cylindrical
wall in our case). Therefore, the Kelvin–Helmholtz-type instability responsible for the
bulk flow patterns observed by Lopez et al. (2002) and Moisy et al. (2004) is not
an active physical mechanism in the flows discussed here.

Given the existence of multiple solutions, a continuation procedure, where a
converged steady axisymmetric solution obtained for one set of parameters is used as
an initial guess for a set of slightly varied parameters, was implemented to trace the
parametric evolution of the computed flow. However, this continuation procedure was
found to fail in certain regions of the parameter space. This indicates another likely
feature of the problem: the existence of bifurcation points where the type of solution
changes abruptly. Our computations also indicated that steady solutions might not
always exist. At some parametric values, the iterations neither converged nor diverged,
with the equation residuals oscillating around some small values. Such a behaviour of
steady-state solvers typically occurs when steady solutions bifurcate to time-periodic
solutions. For example, by using the continuation procedure, we were able to trace
the existence of the type 1 and type 2 solutions depicted in figures 10–16 up to a
current value of I0 ≈ 0.235 A (keeping the rest of the physical parameters fixed),
but no steady solutions were detected for larger currents. A similar behaviour of
the numerical solutions was obtained when the magnitude of the magnetic field was
varied instead of the current. These observations provide even stronger motivation
for further flow stability studies which will be reported in a separate dedicated
publication.

8. Estimation of the free surface deformation
To conclude the discussion of methodological aspects of the study of electrically

driven flows in thin cylindrical layers, we have to consider one more important aspect.
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In all of the computations reported so far, it was assumed that the free surface of the
electrolyte layer remains flat. While this is a commonly used assumption (Satijn et al.
2001; Delacroix & Davoust 2014, e.g.) which greatly simplifies modelling of slow
flows in thin cylindrical layers, the physical reality is that the free surface starts to
deform as soon as fluid is set in motion. A depression develops near the centre and
the fluid level rises near the outer boundary (stirred flow in a tea cup is a common
everyday analogy). In the experiments that motivated the present study (Pérez-Barrera
et al. 2015), this deformation remained small (not visible with the naked eye) in all
tested regimes, including the onset of instability and beyond, so that the problem
formulation adopted here ignored it completely. However, the obtained numerical
results can be used to approximately estimate the shape of the deformed free surface
and then obtain a quantitative measure of the error introduced by ignoring the
curvature of the free surface.

Taking the divergence of the momentum equations written in a vector form and
using the continuity equations for incompressible fluid and magnetic induction, we
obtain the following Poisson equation for pressure:

∂2p
∂z2
+ ε2
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1
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, (8.1)

where ω2
=ω2

r +ω
2
θ +ω

2
z and u2

=u2
r +u2

θ +u2
z . Given the magnetic field and velocities,

the above equation is solved (up to an arbitrary additive constant, which is set to make
the pressure at the left lower corner (r, z)= (α− 1,−1) zero) subject to the following
boundary conditions:

∂p
∂r
=

Fr2

Re

(
∂2ur

∂r2
+

1
r
∂ur

∂r

)
at r= α ± 1, (8.2)

∂p
∂z
=

Fr2

Re
∂2uz

∂z2
at z=−1, (8.3)

∂p
∂z
=

Fr2

Re
∂2uz

∂z2
+

Ha2

Re
BrBzur at z= 1. (8.4)

These boundary conditions are consistent with the momentum equations in the vicinity
of the physical boundaries, and take into account the velocity boundary conditions
(3.12) and (3.13).

The resulting solution for the pressure distribution is illustrated in figure 18(a).
Apart from thin layers adjacent to the vertical boundaries, the pressure increases
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FIGURE 18. The cross-layer pressure isolines with the subtracted hydrostatic component
(a) and the estimated free surface shape (b) for the same values of the parameters as in
figure 9. The pressure increases towards the outer cylinder (from left to right in a).

almost linearly in the radial direction from the inner to the outer cylinder. If the
free surface is to remain flat, this distribution is physically impossible, since, in this
case, the pressure (and thus the stress normal to the free surface) would have to be
discontinuous, given that the pressure just above the fluid layer has to be constant
and equal to atmospheric pressure. In reality, this mismatch does not occur because
the free surface deforms and the variable hydrostatic pressure component appears
and balances the dynamic pressure within the moving fluid with its atmospheric
counterpart. To obtain an estimation of the free surface shape 1+ h(r), we can then
write the non-dimensional hydrostatic balance equation

h(r)= p|z=1 +C. (8.5)

The integration constant C is determined from the total mass conservation condition∫ α+1

α−1
h(r)r dr= 0. (8.6)

This estimation predicts the qualitatively expected shape of the free surface illustrated
in figure 18(b): the fluid surface develops a trough near the inner cylinder and is
elevated near the outer vertical boundary, and its slope remains close to zero at
both radial extremes. The plot in figure 18 confirms that the vertical deviation of
the free surface in the considered regimes does not exceed a few tenths of a per

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

55
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.551


598 S. A. Suslov, J. Pérez-Barrera and S. Cuevas

cent. Therefore, neglect of it is not expected to introduce a significant error, let
alone change the obtained solutions qualitatively, if the values of Fr remain small,
as in the considered examples. However, our numerical experiments show that the
issue of properly resolving the free surface deformation quickly becomes pressing
and deteriorates the convergence of iterations significantly as the Froude number
increases.

9. Conclusions
We have undertaken a methodological study of electromagnetically driven axi-

symmetric electrolyte flows in thin fluid layers contained between two vertical
coaxial cylindrical electrodes placed on top of a permanent magnet. We showed
that the frequently used thin-layer approximations such as depth-averaged models
and quasi-two-dimensional treatments are quickly invalidated as the thickness of
the layer (or, more precisely, the value of the associated Froude number) increases,
and cannot adequately describe even qualitative features of the flow such as the
velocity profiles observed in experiments. The flows remain axisymmetric but become
essentially three-dimensional, and have to be treated as such by employing the
appropriate numerical algorithms. At the same time, we confirmed that, when dealing
with electrolytes, the simplifying assumptions of a fixed logarithmic electric potential
distribution between the electrodes and of the free surface remaining flat can be
successfully used without facing the danger of misrepresenting the experimentally
observed flows. Thus, for modelling of the experimentally observed formation of
vortices appearing near the outer cylinder, the stability of the three-dimensional
axisymmetric flat-surface flows presented here may be used.

The flows considered here share several qualitative features with classical flows
arising in Ekman, Bödewadt, Bödewadt–Hartmann and Stewartson layers, and
Taylor–Görtler flows between differentially rotating cylinders. However, the fluid
in our set-up is driven by a different physical mechanism. Moreover, the quantitative
differences between the flows considered here and those discussed in the literature
to date are too great and the combinations of physical flow features are too different
to expect that the stability results and analysis found in the existing literature for
the above well-explored flows could be easily and sufficiently accurately applied
to the reported electrolyte flows. It is also unlikely that the previously reported
instability studies of rotating astrophysical flows, which also share several features
with the flows considered here (see, for example, Velikhov (1959), Balbus & Hawley
(1991) and references therein), could offer a direct analogy. This justifies a dedicated
stability study, which, however, is left for a separate publication to keep the length
of this paper reasonable. Nevertheless, the presented numerical and experimental
results suggest that the observed vortex instability is the result of a two-step flow
development. First, a three-dimensional toroidal flow with the azimuthal vorticity
having the same sign in the flow domain is developed. Subsequently, it bifurcates,
probably due to Rayleigh-type centrifugal instability, to produce a second much
smaller counter-rotating toroidal vortex appearing just under the free surface near
the outer cylindrical wall. This complex axisymmetric flow is in turn destabilised to
produce the vortex system seen in experiments.
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