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By B É R E N G È R E A B O U1†,
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When a ferrofluid layer is subjected to a uniform and vertically oriented magnetic
field, an interfacial instability occurs, above a critical value of the magnetic field,
giving rise to a hexagonal array of peaks. On increasing the magnetic field, a smooth
morphological transition from the hexagonal array to a square array was observed
above a second threshold. The hexagon–square transition phenomenology, in addition
to the role of penta–hepta defects initially present in the hexagonal pattern, was
investigated. Furthermore, the pattern and wavenumber selection was studied by two
different procedures: first by imposing jumps in field intensity and second by varying
the magnetic field in a quasi-static way. The results obtained were very different
for the two procedures. They indicated that the square pattern was a metastable
state induced by the compression of the hexagonal pattern on increasing the control
parameter. This hypothesis was confirmed by performing an additional experiment
where the pattern was isotropically compressed. In this experiment, the transition was
induced at a constant magnetic field lower than the transition onset value. However,
the theoretical values for stability domains of hexagons and squares proposed in the
literature were found to not agree with the experimental values.

1. Introduction
Ferrofluids are colloidal suspensions of small monodomain magnetic particles with

an average size of 100 Å in a non-magnetic carrier fluid. When a ferrofluid layer is
subjected to a uniform and vertically oriented magnetic field, an interfacial instability
occurs, above a critical value of the magnetic field, giving rise to a hexagonal array
(pattern) of peaks. The instability mechanism is described thus: in the presence of
a vertical magnetic field, the perturbations of the ferrofluid surface concentrate the
magnetic flux. The resulting magnetic force tends to drive the perturbation further,
while surface tension and gravitational forces have a stabilizing influence. When the
magnetic force exceeds the stabilizing forces, an instability develops. The stability
analysis, for an infinite and non-viscous ferrofluid layer in vacuum, was carried out

† Present address: Laboratoire de Physique Statistique, UMR CNRS 8550, Ecole Normale
Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France.
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218 B. Abou, J.-E. Wesfreid and S. Roux

by Cowley & Rosensweig in 1967. The critical value of the magnetic field for the
onset of the instability Hcrit, and the critical wavenumber kcrit (or critical wavelength
λcrit = 2π/kcrit) are derived from this analysis:

kcrit = (ρg/γ)1/2 = kc,

Hcrit =

(
2

µ0

(µ0/µ+ 1)

(µ0/µ− 1)2

)1/2

(ρgγ)1/4,

where ρ is the fluid density, γ the surface tension, µ the magnetic permeability, g the
acceleration due to gravity and kc the capillary wavenumber. In a typical experiment,
the critical wavelength (which equals the capillary wavelength) is of the order of 1 cm
and the critical magnetic field of the order of 104 A m−1. Since the work of Cowley
& Rosensweig, the linear stability analysis has been explored further, including the
influence of viscosity and finite thickness of the ferrofluid layer (Zelazo & Melcher
1969; Brancher 1980; Salin 1993; Abou, Néron de Surgy & Wesfreid 1997†).

On increasing the magnetic field, the hexagonal pattern changes to a square pattern
above a second threshold. In 1970, the existence of a stationary square pattern for
higher values of magnetic field was predicted by Gailitis (1977), using an energy-
variational method. This result was also obtained by the mathematical bifurcation
analysis of Twombly & Thomas (1980). At this time, the hexagon–square transition
had only been partially observed in one test of Cowley & Rosensweig’s experiment.
Later, in 1985, it was also confirmed in experiments (Allais & Wesfreid 1985) and
numerical simulations (Boudouvis et al. 1987).

The competition between hexagons and squares can be thought of in the more
general context of transitions between patterns from higher to lower symmetry. This
has been theoretically analysed by means of an energy minimization principle (Gailitis
1977; Kuznetsov & Spektor 1976) or symmetry considerations (Silber & Knobloch
1988), and also in the framework of the generalized Swift–Hohenberg equation
(Herrero, Pérez-Garcı̀a & Bestehorn 1994; Kubstrup, Herrero & Pérez-Garcı̀a 1996).
This competition has also been recently observed in Bénard–Marangoni convection
(Nitschke-Eckert & Thess 1995; Schatz et al. 1999) and in shaken granular media by
Melo, Umbanhowar & Swinney (1995). A number of numerical simulations that take
into account the competition between hexagons and squares in various systems have
been performed (Herrero et al. 1994; Nitschke-Eckert & Thess 1995; Kubstrup et al.
1996; Bestehorn 1996; Bragard & Velarde 1998).

In the present paper, we experimentally study the hexagon–square transition occur-
ring in a ferrofluid. Section 2 describes the experimental design and § 3 presents the
structures of the hexagonal and square patterns, as well as their topological defects,
as revealed by means of a two-dimensional FFT method. In § 4, we describe the
hexagon–square transition phenomenology. The hexagon–square transition involves
a change in the wavenumber at the onset of transition and the formation of fronts, in
which the perpendicular hexagonal pattern wavevector is conserved. Penta–hepta de-
fects contained in the hexagonal pattern constitute nucleation sites for the transition.
In the next section, the wavenumber selection following jumps in control parameter
and when increasing and decreasing the control parameter in a quasi-static way is
presented and discussed, together with hysteresis and stability. We conclude that the

† Note that equation (1) in this article, where the critical magnetic field is defined(
Hcrit =

(
2

µ0

(µ0/µ+ 1)

(µ0/µ− 1)2

)1/2

(ρgγ)1/4

)
contains a misprint.
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Normal field instability in ferrofluids 219

Figure 1. Penta–hepta defects represented by pairs of white and grey dots. The hexagonal pattern
contains lines of defects that form grain boundaries. Several hexagonal patterns with different
orientations in the container are observed.

hexagonal pattern at kcrit and the square pattern above the onset of instability are
metastable states of the system. In the final § 6, an additional experiment performed
in a hopper shows that the transition to the square pattern can be induced by isotrop-
ically compressing the hexagonal pattern, at constant magnetic field lower than the
transition threshold.

2. The experimental design
The experimental design consisted of a cell with a pool of ferrofluid in a uniform,

vertically oriented magnetic field produced by coils (D = 80 cm in diameter) arranged
as a Helmholtz pair, with a water cooling system. A video CCD camera positioned
above the upper coil recorded images of the ferrofluid surface. The camera captured
by reflection any local flat area on the surface (Rosensweig 1985). Digital image
acquisition and analysis were performed by means of the public domain NIH-
Image software.† This programme allowed us to compute a two-dimensional Fourier
transform of the grey level intensity of the images for pattern characterization, defect
identification and localization.

Experiments were conducted in hexagonal, cylindrical or square containers. In
the cylindrical container (16.9 cm in diameter), the hexagonal pattern was found to
have many defects, consisting of pentagonal–heptagonal pairs of peaks, called penta–
hepta defects (figure 1). In most cases, the defects tended to form grain boundaries
separating domains with different orientations. In order to decrease the number of
defects, we performed experiments in a hexagonal-shaped container with Plexiglas
walls and a side length equal to b = 14 cm. The side length was selected on the
basis of a preliminary investigation: at the onset, the hexagonal pattern appeared
with a wavelength λ equal to the capillary wavelength λc, which did not change when
increasing the magnetic field (§ 5). The hexagonal pattern wavenumber is related to

† Developed at the US National Institutes of Health and available on the Internet at
http://rsb.info.nih.gov/nih-image/.
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Figure 2. Hexagonal pattern without any penta–hepta defects; there are about 400 peaks in the
hexagonal container.

the distance between peaks d by λ =
√

3/2 d. The side length was chosen to be an
integer number of the critical distance between peaks (b ' 11dcrit). However, the
presence of a meniscus at the lateral walls (which became higher and larger with
increasing magnetic field) as well as the variation of the ferrofluid surface tension as a
function of temperature made this adjustment approximate. When the side length was
not exactly an integer number of the critical distance between peaks, the maximum
strain of the pattern equalled 0.5/11 ' 5% in the container and the elasticity of the
hexagonal pattern was sufficient for a defect-free structure to occur (figure 2). Once
the instability set in, there were about 400 peaks in the hexagonal container. The
different containers were filled to a depth of a = 1.3 cm, which can be considered as
an infinite depth in terms of magneto-hydrodynamic behaviour (Abou et al. 1997).

The magnetic field, measured with a Hall effect Gaussmeter, at the level of the
liquid surface but with an empty container, was uniform to 4% over the hexagonal
container. In the presence of the fluid, the most severe inhomogeneity of the magnetic
field was expected at the edge of the container where the unavoidable presence of the
meniscus masked its effect. A maximum value of the magnetic field of approximately
28000 A m−1 was obtained. The drift of the magnetic field in these experiments was
within the sensitivity of the Hall probe used, which was less than 3% of the field
range. Hence, hereafter it will be neglected.

Experiments were performed with the ferrofluid APG 512 A, synthetized by Fer-
rofluidics Corporation. It was prepared by grinding 3–8% magnetite by volume in a
synthetic esther to which 18–30% by volume of an oil-soluble dispersant and 1–2%
by volume of an aromatic amine were added. The values of physical parameters of the
magnetic fluid APG 512 A (density ρ, saturation magnetization Msat, initial relative
magnetic permeability µr and dynamic viscosity η), except surface tension γ, were
given by Ferrofluidics Corporation (table 1). The surface tension was measured with
a digital tensiometer KRÜSS (type K10 ST), by means of the Whilhelmy method at
ambient temperature T = 293 K.
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Ferrofluid ρ (kg m−3) η (N m−2 s) µr Msat (A m−1) γ (N m−1)

APG 512 A 1260 0.075 2.4 23810 0.028± 0.002

Table 1. Ferrofluid APG 512 A parameters.

Figure 3. Penta–hepta defects close to each other form a grain boundary in the hexagonal pattern:
two hexagonal patterns with different orientations are observed.

3. The hexagonal and square patterns
The structures of the hexagonal and square patterns, as well as their respective

defects, found in the experiments are shown. The patterns were studied by means
of a two-dimensional Fourier-transform F(k) of the grey level of the images (FFT),
following previous studies in a Rayleigh–Bénard system (Ciliberto, Pampaloni &
Pérez-Garcı̀a 1991). The FFT method provided the modulus F̃(k) in Fourier space.
For a hexagonal pattern, F̃(k) consists of three pairs of peaks (ki,−ki), i = (1, 2, 3)
at 120◦ with respect to each other and their harmonics. In the analysis, all but one
pair of peaks are filtered out at the fundamental modes k and −k on F(k) and an
inverse transform is performed: one straight-line pattern is then reconstructed. The
hexagonal pattern can be viewed as the linear superposition of three modes at 120◦
with respect to one another, each mode contributing a pair of peaks. The picture
grey level is not a direct measurement of the amplitude of the surface deformation
however; digital image analysis allows us to obtain the values of |kj | but not the
values of the amplitudes of these Fourier modes.

As mentioned earlier, the hexagonal pattern is not regular in practice and contains
defects. They have been studied mainly in Bénard–Marangoni instability conditions
(Pantaloni & Cerisier 1983). Boundary conditions that are incompatible with the
formation of a regular pattern can force the structures to develop defects. In the case
of a pattern with a penta–hepta defect, the FFT method shows that the core of the
defect corresponds to two dislocations in the hexagonal pattern. Two out of the three
directions of the hexagonal pattern are altered by these dislocations. At the core of
the defect, only one straight-line pattern out of the three survives this translocation
(Ciliberto et al. 1990; Abou 1998).

When several penta–hepta pairs are close to each other in the hexagonal pattern,
they form lines of defects called grain boundaries (figure 3). While a single defect
only locally alters the hexagonal pattern, a line of such defects separates the medium
into two hexagonal patterns with different orientations. Above the threshold of
instability, the hexagonal pattern appears with a configuration and number of defects
that depends on its formation process. The whole structure undergoes a slow time
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(b)

(a)

(c) (d)

Figure 4. Dislocations in the square pattern: (a) image of the square pattern; (b) power spectrum
of the grey level image – this figure also shows the fundamental modes; (c, d) the two fundamental
modes of (a) at 90◦ with respect to each other as produced by the Fourier filtering.

relaxation over a period of a few hours during which the various defects present in
the structure can move or disappear while the magnetic field remains constant and
uniform.

On increasing the magnetic field above the value for the formation of the hexagonal
pattern, the peaks move to form a square lattice, above a second threshold. A Fourier
analysis of the image of a square pattern shows that it can be viewed as the linear
superposition of two modes at 90◦ with respect to each other. When the boundary
conditions (cylindrical and hexagonal containers) are incompatible with the formation
of a square pattern without any defects, either isolated dislocations (figure 4) or a grain
boundary produced by the junction of two sets of squares with different orientations
(figure 5) occur.

4. Transition between hexagonal and square patterns
4.1. The phenomenology of the hexagon–square transition

On progressively increasing the magnetic field, the hexagonal pattern formed at the
threshold of instability initially remains exactly the same. The peak height increases,
but no change in their number is observed and there is no variation in the location
or number of penta–hepta defects. Thus, the hexagonal pattern wavenumber – equal
to the capillary wavenumber kc – remains constant. Upon further increase of the
magnetic field, a smooth morphological transition to the square pattern, above a
certain value of the magnetic field was observed. The peaks of the ferrofluid in the
container move and rearrange from a triangular symmetry into a square symmetry.
This defines a second transition characterized by a well-defined value of the magnetic
field. When penta–hepta defects are present, the square cells clearly nucleate at the
defects.

The geometrical mechanism of the transition in ferrofluids, when there are no
defects in the hexagonal pattern can be demonstrated. An experiment was performed
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(a) (c) (e)

(d) (f)

(b)

Figure 5. A typical defect of the square pattern: (a) a grain boundary which is the junction of two
square patterns with different orientations; (b) power spectrum of the grey level image; the two
pairs of modes involved (c, d) and (e, f) are shown.

Figure 6. Hexagonal pattern without any defects: the transition begins at the lateral walls. Stable
fronts between the coexisting symmetries are observed.

in a hexagonal container where a defect-free hexagonal pattern was established. A
transition first begins along the lateral walls as shown in figure 6, or along the
diagonal of the container. The hexagon–square transition begins as follows: single or
multiple rows of peaks in the container propagate along their orientation axis (Ox1

as shown in figure 7). This propagation locally transforms the triangular symmetry
into a transient rectangular symmetry, which can be regarded as a strained square
symmetry. Upon further increase of the magnetic field, this rectangular symmetry
changes into a square symmetry by expanding in the perpendicular direction Ox4

(as shown in figure 7). After the onset of the transition, stable fronts between the
coexisting symmetries within a certain range of the control parameter are observed.
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O
x1

Type I
front

Rectangular pattern
λhex

λsquare

Hexagonal
pattern

k1

k1

k1

k2 k3

k2 k3

k2 k3

k4

k5

x4

k1

k4

Figure 7. The hexagon–square transition begins when one row of peaks slides with respect to its
neighbours; this locally involves the formation of a transient rectangular symmetry, which relaxes
into a square symmetry on the further increase of the magnetic field. On the right of the figure, the

Fourier modes of the patterns are represented. Note that k4 =
√

3/2 k1 and k4 = k5.

Figure 7 shows a schematic of the transition phenomenology. The translational
motion of the rows of peaks involves the formation of a strained square symmetry.
This strained square symmetry relaxes into the square symmetry by decreasing |k1|
upon further increases of the magnetic field. This transition phenomenology results
in the formation of the so-called type I fronts between hexagons and squares, which
means that the wavevector perpendicular to the front is conserved. This experimental
result confirms the numerical simulations of the generalized Swift–Hohenberg model
equation, where a pinned type I front between the two symmetries is observable for
a full range of the control parameter (Kubstrup et al. 1996). Another type of front
(type II) for which the wavevector parallel to the front is conserved, is shown to be
unstable in this Swift–Hohenberg model. This finding is in good agreement with our
experimental observations.

The transition, occurring at a fixed number of peaks, involves a change in
wavenumber in the system (figure 7). For the hexagonal pattern, the wavenum-
ber is khex = 2π/λ = 4π/

√
3d and for the square pattern it is ksquare = 2π/λ = 2π/d,

where d is the distance between peaks. Near the onset, the two symmetries coexist
with different wavenumbers:

ksquare =
√

3/2 khex.

The significant findings in this experimental result were not taken into account in
the theoretical analysis of Gailitis and in numerical simulations where the patterns
wavenumbers are taken to be equal to the critical one (Gailitis 1977; Herrero et
al. 1994; Kubstrup et al. 1996). Section 5 explains the significance of how these
wavenumbers evolve on the further increase of magnetic field.
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(a) (b)

Figure 8. The hexagon–square transition begins with the penta–hepta defects. The magnetic field
is increased in a quasi-static way. (a) Hcrit < H < Hhs; (b) H = 1.06 Hhs, where Hcrit is the critical
magnetic field and Hhs the hexagon–square transition threshold. Pinned type I fronts are clearly
observable between the two symmetries.

(a)

(b)

Figure 9. (a) the hexagonal pattern with a penta–hepta defect and its three modes obtained from
Fourier filtering the initial image; (b) the square pattern formed from the hexagonal pattern in
(a) by increasing the magnetic field, and its two modes reconstructed from Fourier filtering. The
non-altered mode of the penta–hepta defect is conserved during the transition.

4.2. Role of the penta–hepta defects in the transition

Experimentally, the penta–hepta defects act as nucleation centres which trigger the
transition from the hexagonal to the square pattern as shown in figure 8. On increasing
the magnetic field, the transition clearly begins at the penta–hepta defect. In our
measurements, we find that the hexagon–square transition occurs for a lower magnetic
field when penta–hepta defects are present and in § 5 give quantitative values of the
transition thresholds. In figure 9(a) (left-hand image), the scenario of the transition
starting at a penta–hepta defect can be seen clearly. The Fourier modes are shown
on the right-hand-side images in this figure. The translational motion of the rows of
peaks begins first at the penta–hepta defect and then proceeds along the direction
of the mode which is not altered by a dislocation (horizontal direction shown in (a),
second image). Most importantly, only the peaks near the defect move. On increasing
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Figure 10. Grain boundaries in the square pattern; the magnetic field is increased continuously
from H = 1.1 Hhs to H = 1.6 Hhs 'Msat.

the magnetic field, this motion propagates into the entire row of peaks. The surviving
mode of the hexagonal pattern at the core of the defect then becomes one of the two
modes of the square pattern, as can be seen in figure 9(b).

The characteristics of the square phase are present in the core of the penta–hepta
defect (Ribotta & Joets 1983; Coullet, Emilson & Plaza 1991; Ciliberto et al. 1991).
Based upon a penta–hepta defect, we can predict how the square pattern will develop
at the core of the defect.

On the further increase of the magnetic field, the square pattern slowly invades
the hexagonal pattern. This invasion occurs from different places in the container:
primarily from the penta–hepta defects and then from the lateral walls. This results
in the formation of various square patterns with different orientations, separated by
grain boundaries as shown in figure 10. On increasing the magnetic field, the coales-
cence of peaks at square-pattern grain boundaries is observed with the consequence
that the square-pattern wavenumber decreases. The amount of coalescence increases
with the magnetic field and reaches a saturation value. Indeed, when the ferrofluid
magnetization M reaches a value close to saturation, further increase of the magnetic
field has no effect. Approximately 30% of peaks may disappear by coalescence. When
decreasing the magnetic field, the hexagonal pattern invades and ejects the square
pattern from grain boundaries. The grain boundary is replaced by two type I fronts
with the transition being hysteretic. The following section addresses this point in a
quasi-static way.

5. The wavenumber selection
The wavenumber was selected by varying the magnetic field in a quasi-static way

and also by using jumps in field intensity. The wavenumber selection is thus shown
to depend on the process used. Linear stability analysis predicts that this system
behaves as a semi-infinite and inertial ferrofluid layer, which means that thickness
and viscosity effects can be neglected (Abou et al. 1997). Findings can be presented
in the form of corresponding results:

kcrit = kc = (ρg/γ)1/2,
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Hcrit =

(
2

µ0

(µ0/µ+ 1)

(µ0/µ− 1)2

)1/2

(ρgγ)1/4,

km/kcrit = 1
3
[2(ε+ 1) + (4(ε+ 1)2 − 3)1/2],

where km is the wavenumber of maximum growth rate. The control parameter ε is
a measure of how far the system is from criticality, when H is the applied magnetic
field:

ε = H2/H2
crit − 1

The measured critical magnetic field and wavenumber are respectively Hcrit = 11100±
800 A m−1 and kcrit = 645± 30 m−1. These experimental values are in good agreement
with linear theory predictions of Hcrit = 11750 A m−1 and kcrit = 664 m−1. When the
hexagonal pattern at kcrit is established in the hexagonal container, the number of
peaks in the hexagonal container is about Ncrit = 400.

Unless otherwise stated, the error in the measurement of k/kcrit is of order 2% in
the hexagonal pattern and of order 5% in the square pattern. This error is due to the
presence of grain boundaries in the square pattern, unavoidable due to the hexagonal
shape of the container. Moreover, the error in the applied magnetic field H is of the
order of 3% and corresponds to the systematic error in the field measurement with
the Gaussmeter.

5.1. Using jumps in field intensity

The experimental procedure was as follows: the vigorously agitated container was
rapidly introduced into the magnetic field, which destroys any pattern formed during
this step. The system was then allowed to reach an equilibrium state. For any
H > Hcrit, a hexagonal array of peaks is always favoured. The larger the magnetic
field, the smaller the hexagonal pattern wavenumber, denoted k∗, where k∗ < kcrit.
These reproducible results are shown in figure 11 (represented by the symbol ∗).
The marginal stability curve, deduced by the linear theory analysis for a semi-infinite
and inertial ferrofluid layer, is shown as a dashed curve. The wavenumber selected
decreases down to 0.72kcrit when the maximum value of magnetic field εmax = 3.6
(when H 'Msat). This corresponds to the number of peaks in the container equal to
0.5Ncrit. As the growth rate tends to zero at the onset of instability, the corresponding
equilibrium state is not obtained experimentally. However, extrapolation of our data
suggests that ε→ 0 is compatible with k → kcrit, although with a very steep variation
|∂(k/kcrit)/∂ε| � 1.

The time needed for the structure to reach a stationary hexagonal pattern varies
as a function of the imposed magnetic field. When ε . 1, the hexagonal pattern
forms rapidly in the container, in a time of the order of a few seconds. When ε
increases in value, we first observe a transient structure of coexisting square and
triangular symmetries and the equilibrium structure forms in a few minutes. The
experimental procedure (agitating the container) could influence the wavenumber
selection. Nevertheless, the experimental results turn out to be very convincing. They
are reproducible despite the variable nature of the experimental conditions.

In some experiments, performed in thin layers, the wavenumber of maximum
growth rate km is shown to be selected when using jumps in field intensity (Bacri,
Perzynski & Salin 1988; Valet & Wesfreid 1988). In these experiments, the pattern
forms over a time larger than required to establish the magnetic field.

In our experiments, the wavenumber of maximum growth rate, predicted by linear
theory analysis (and shown in figure 11), is not selected and the wavenumber selection
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Hexagons (increasing e)
Hexagons (decreasing e)

Squares (decreasing e)
Squares (increasing e)
Hexagons (jumps in e)
Curve of marginal stability

km / kcrit

3.2

2.4

1.6

0.8

0

0.7 0.8 0.9 1.0 1.1

Coexistence
No defects

 Defects

Coexistence

ε

k/kcrit

Figure 11. Wavenumber selection by two procedures: jumps in field intensity and quasi-static
variation of magnetic field. The wavenumber of maximum growth rate km and the marginal
stability, deduced from linear theory analysis, are also indicated.

is not linear (Wesfreid & Zaleski 1983). The results on wavelength selection obtained
by this method of descending steps cannot give full information on the nonlinear
domain of stability (Busse balloon of this instability). However, we can expect that
the low-k branch of this domain is accessible in this experiment. In addition to the
non-uniformity in the magnetic field around the cell walls, this change occurs over
very short distances and does not allow the imposition of the wavelength selection
mechanism, which occurs in systems with ramp changes of ε. In addition, where large
deformations of the interface were observed, the theoretical hypotheses of the linear
stability analysis break down.

5.2. Varying the magnetic field in a quasi-static way

The wavenumber selection, when increasing and decreasing ε in a quasi-static way, is
also shown in figure 11. The experiment is performed in the hexagonal container where
a hexagonal pattern with a few isolated penta–hepta defects has been established.
During the experiments, the magnetic field was continuously and slowly increased or
decreased and then sufficient time allowed for the system to reach a steady state. The
time needed for the pattern to reach a steady state was of the order of a few seconds.

Starting from an initially flat interface, the magnetic field was increased con-
tinuously until a hexagonal pattern developed. Its wavenumber corresponds to
kcrit = kc and remains a constant as ε (N) increases, until the pattern disappears
completely, and is replaced by the square pattern. The hexagon–square transition
occurs with εhs = 0.84 ± 0.17 for a hexagonal pattern with penta–hepta defects, or
at εhs = 1.04 ± 0.17 for a hexagonal pattern without any defects, where εhs is the
non-dimensioned transition threshold. As seen previously and as shown in figure 11,
at the onset of transition there is an abrupt change in wavenumber.

Above the onset, the two symmetries, triangular and square, coexist in the range
0.84 6 ε 6 1.25 with different wavenumbers and separated by pinned type I fronts (see
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0
0.6 0.7 0.8 0.9 1.0 1.1

ε

N/Ncrit

Squares

Coexistence

Hexagons

Figure 12. Number of peaks in the container as a function of increasing magnetic field.

§ 4). On increasing ε, the square pattern appears in the container with its wavenumber
decreasing with increasing ε (�) (while the wavenumber of the hexagonal pattern
remains constant and equal to kcrit(N)). The spatial extension of the square pattern
is accompanied by the coalescence of peaks at the grain boundaries. The first peak
coalescence occurs above the onset at ε = 1.04 ± 0.17. The proportion of peak coa-
lescences reaches its maximum value when Hmax ' Msat, where about a third of the
400 peaks have disappeared. Figure 12 shows the dependence of the number of peaks
N/Ncrit on ε, when ε is increased in a quasi-static way.

On decreasing ε from εmax = 3.6, a smooth and hysteretic transition to the hexagonal
pattern is observed. The hexagonal pattern starts to replace the square pattern at
εsh = 2.86 ± 0.21 and has totally replaced it at ε = 1.47 ± 0.18. There is coexistence
of the two symmetries, separated by type I fronts, in the range 1.47 6 ε 6 2.86.
The hexagonal pattern wavenumber is equal to 0.82kcrit in this instance because
the coalescence occurs when increasing ε. On decreasing ε, the wavenumber of the
hexagonal pattern remains constant (O, figure 11) until the creation of new peaks in
the range 0.31 > ε > 0.07 is observed. The resulting hexagonal-pattern wavenumber
increases up to 0.92kcrit, which corresponds to 90% of the initial number of peaks in
the container. The scenario of peak creation is as follows: the new peak always grows
with a penta–hepta defect. By a rearrangement of the neighbouring peaks, the new
peak becomes the centre of the pentagon of a new defect. This process can be seen
as a displacement of the original defect along one of the two altered directions of
the hexagonal pattern, at the original penta–hepta defect (figure 13). The two altered
directions seem equivalent. The new defect is then the nucleation site of another new
peak. The whole process of creation is relatively rapid and results in the expulsion of
the defects from the bulk of the body at the lateral walls.

The cycle shown in figure 11 was performed by increasing the magnetic field until
its maximum value εmax = 3.6. If the value of εmax is changed, the hexagonal-pattern
wavenumber on decreasing ε (and before the creation of new peaks) is different to the
one obtained previously k = 0.82kcrit. Indeed, the coalescence ratio (and consequently
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Figure 13. Creation of a new peak at a penta–hepta defect: the displacement of the penta–hepta
pair along one of the two altered directions can clearly be seen. The images have been filtered and
reconstructed in the direction of propagation of the defect. The position of the defect moves along
the direction of the brighter white line (lower set of figures).

4.0

3.0

2.0

1.0

0
0.6 0.7 0.8 0.9 1.0 1.1

εmax

k /kcrit

Figure 14. Wavenumber of the selected hexagonal pattern on decreasing ε
as a function of εmax.

the number of peaks N in the container) depends on the value of εmax (figure 12).
When decreasing ε, the hexagonal-pattern wavenumber (before the creation of new
peaks) depends on the number of peaks N remaining in the container. We can effect a
selection by choosing different values for εmax at any wavenumber 0.82kcrit 6 k 6 kcrit
for the hexagonal pattern, as shown in figure 14. Figure 15 shows a schematic of
hysteresis loops as a function of εmax and as a function of the number of peaks in the
container.

5.3. Discussion of the experimental results

The experimental results of wavenumber selection are discussed in this section. The
comparison between the results obtained by the two above processes (quasi-static
changes and jumps in magnetic field), indicates that for a magnetic field larger than
the critical one, the most stable state is the hexagonal pattern obtained by using jumps
in field intensity (figure 11). We deduce that above the onset of instability, both the
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εmax

N/Ncrit
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ε1,max

εhs
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2

1

0.2 0.6 1.0

Figure 15. Schematic of the selection of the hexagonal pattern wavenumber on decreasing ε, as a
function of the number of peaks in the container. εhs is the hexagon–square transition threshold.

hexagonal pattern at kcrit and the square pattern, obtained by the quasi-static process,
are metastable states of the system.

Gailitis (1977) studied the relative stability of a hexagonal pattern and a square
pattern, both at kcrit. He predicted that near the onset of instability, the hexagonal
pattern at kcrit is the stable state of the system. For higher values of the magnetic field,
the hexagonal pattern loses stability in favour of the square pattern, which remains at
the kcrit during further increase of the magnetic field. From the calculations of Gailitis,
it is possible to estimate the stability domains of hexagons and squares as a function
of the relative magnetic permeability (µr) of the fluid, in the case where |µr − 1| � 1.
Indeed, Herrero et al. (1994) have matched the parameters of the Swift–Hohenberg
model to the normal field instability. The value of εh is defined as the transition
threshold from the hexagonal bifurcation branch at k = kcrit to the square one, which
takes place on increasing the magnetic field. When decreasing the magnetic field, the
square bifurcation branch at kcrit becomes unstable in favour of the hexagonal branch
at kcrit for a value of ε denoted εs.

The theoretical predictions extrapolated to our ferrofluid, where µr = 2.4, indicate
that εs < εh < 0 is not even in qualitative agreement with our experimental results,
εh = 1.25±0.18 and εs = 1.47±0.18, respectively. Our experimental scenario shows the
existence of hexagonal and square bifurcation branches at k 6= kcrit. In the theoretical
calculations, only hexagonal and square branches at k = kcrit are involved (Gailitis
1977; Herrero et al. 1994; Kubstrup et al. 1996). These assumptions contradict our
experimental results. Hence, we suggest that a more general case should be considered
theoretically, allowing for general values of k in order to reach conclusions to be
compared with experimental results. We stress again the fact that the amplitude of
the surface deformation is large and thus a more nonlinear treatment is probably
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εs

εmax

Figure 16. Stability onset for the two symmetries εs as a function of εmax. We have indicated the
experimental value of εh = 1.25 with a horizontal line. For small values of εmax, the εs value tends
qualitatively to the theoretical prediction of εs 6 εh.

Uniform magnetic field H

Ferrofluid

Hopper

Figure 17. Schematic of the compression experiment: a ferrofluid layer under a normal magnetic
field H , in a hopper; the magnetic field is smaller than for the onset of the hexagon–square transition
and remains constant during the experiment.

unavoidable. Furthermore, the theoretical restriction on µr does not hold in our
experiments.

In order to try to approach the theoretical hypothesis for k, εs measurements for
various rates of peak coalescences were undertaken. The lower the coalescence rate (i.e.
the lower εmax), the more closely the theoretical hypothesis is approached (patterns at
kcrit). The results are shown in figure 16 and we observe that the theoretical result with
εs 6 εh becomes more realistic. From a theoretical point of view, Silber & Knobloch
(1988) discuss the relative stability of patterns for larger values of µ. However, they
could not reach definite conclusions regarding the predicted experimental results.

6. The hexagon–square transition induced directly by compression
6.1. Experimental set-up

Experiments were performed where the transition is induced by isotropic compression
of the hexagonal pattern. The experimental design is sketched in figure 17. A ferrofluid
layer, in a hopper, is subjected to a vertical magnetic field, produced by the Helmholtz
coils described in § 2. The magnetic field is increased continuously from zero to a
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certain field strength, which is smaller than for the onset of the hexagon–square
transition εhs = 0.84 ± 0.17. As a consequence, a hexagonal pattern is established
in the hopper. We check that its wavenumber corresponds to the capillary one kc
(within an experimental error of 3%), as seen in § 5.2. Due to the system geometry
(and in particular due to the boundary conditions in the hopper) the magnetic field is
uniform to within 10% over the ferrofluid surface. In order to compress the hexagonal
pattern, the hopper is opened and the ferrofluid flows out drop-by-drop. This quasi-
static process produced very little hydrodynamic disturbance at the surface. The
magnetic field varied less than 5% during the whole experiment, and this was due to
the variable ferrofluid layer thickness.

A selection from a sequence of photographs taken every 4.5 minutes, during a
typical experiment performed at ε = 0.75 ± 0.19, is shown in figure 18. The upper
diameter is reduced by 2% in each picture, and corresponds to a wavenumber
variation of 2% (when the number of peaks remains a constant). Figure 18 shows
that the hexagonal pattern transforms continuously into a square pattern. At a rate of
compression of 7%, the initial hexagonal pattern clearly exhibits elements of square
symmetry (figure 18, picture 7). The variation in the number of peaks during the
experiment, as a function of the upper diameter reduction, is displayed in figure 19:
the transformation occurs first at fixed number of peaks, until picture 9 in figure 18. In
picture 13, the square pattern is clearly established in the container. When too many
peaks disappear (pictures 17 and 19), the compression rate of the hexagonal pattern
decreases and the square symmetry loses stability in favour of triangular symmetry.

The quantitative results of compression in figure 20 show the onsets of transition
after compressing the hexagonal pattern at kc (�), for different values of ε (< εhs).
Also shown are the transition onsets after compressing the hexagonal pattern down to
about 5% of the original size, for different constant values of ε, and then increasing ε
(�). It transpires that we can induce the transition by two procedures: either directly
by increasing the magnetic field, or by compressing the hexagonal pattern. The
exploration of the stability domain of a given configuration in the hopper is limited for
various reasons. First, the accessible range of the elastic compression is narrow (about
10% of kc), and the measurement precision of the compression rate is low. Secondly,
the accessible range of ε is small as it satisfies ε < εhs. Increasing the magnetic field and
compressing the hexagonal pattern appear to be two equivalent procedures that induce
the transition. They both allow the magnetic coupling between peaks to be increased.

6.2. Discussion of the results of compression

The next consideration is the reason for the appearance of the square pattern.
On varying ε in a quasi-static way, the hexagonal pattern develops at kcrit and its
wavenumber remains constant for increasing values of ε. Moreover, at the transition
the number of peaks remains constant. This observation suggests that the boundary
conditions (such as the existence of a meniscus at the lateral walls) do not allow the
system to reach a stable state by decreasing its wavenumber. Clearly, the boundary
conditions, and presumably the nonlinearities induced by the large amplitude of the
peaks, gives a metastable character to a number of configurations at a fixed field.
This is supported by the hysteretic behaviour discussed earlier with respect to field
variation. Hence, in this picture, the stability is due to the ‘high energetic cost’ of
creation or loss of a new peak. The hopper experiment allows this stability to be
probed by inducing a strain on the pattern of peaks, i.e. changing the wavenumber
at a fixed number of peaks. When the hopper is emptied, the elastic compression first
induces a hexagonal to square transition comparable to the one observed on increasing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

88
2X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200000882X


234 B. Abou, J.-E. Wesfreid and S. Roux

1 3

5 7

9 11

13 15

17 19

Figure 18. When the hexagonal pattern is compressed in the hopper, the transition to the square
pattern is observed. The square symmetry reorganizes into triangular symmetry commencing from
picture 17 through the disappearance of peaks within the pattern and as a consequence, reduces
the compressive stress. These photographs were taken 9 minutes apart.
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Figure 19. Compression of the hexagonal pattern: number of peaks in the container as a function
of the upper diameter variation.
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Figure 20. Transition onset: �, by compressing the hexagonal pattern at kc at constant ε; �, by
compressing down to 5% the hexagonal pattern at kc at constant ε and then increasing ε. The
dotted lines represent the paths taken by the system to equilibrium.

the field. This novel experiment allows us to independently vary k and ε, and then
explore the domain of stability of a given configuration. A further development of
this experiment would be to analyse it in terms of phase dynamics (Brand & Wesfreid
1989; Lauzeral, Metens & Walgraef 1993).

7. Conclusion
We have studied experimentally the hexagon–square transition. Sufficiently far from

the threshold of the primary instability, the hexagonal pattern loses stability in favour
of the square pattern. The transition is triggered by penta–hepta defects, present in the
hexagonal pattern. We show that the square pattern is first formed at the core of the
defect, from the non-altered mode in the hexagonal pattern. In the experiments, the
onset of the morphological transition occurs at εhs = 0.84±0.17 when there are penta–
hepta defects and at εhs = 1.04± 0.17 otherwise. We describe the phenomenology of
the transition. This begins when one row of peaks translates along its orientation
axis. This motion locally transforms the triangular symmetry into a strained square
symmetry. The mechanism of the transition implies a change in wavenumber at the
onset because the number of peaks remains constant, a result which has not been taken
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into account in theoretical calculations. Moreover, we observe stable fronts between
the two symmetries, where the perpendicular wavevector to the front is conserved. We
focus our interest on pattern and wavenumber selection, by varying both the magnetic
field in a quasi-static way and using jumps in field intensity. On varying the magnetic
field in a quasi-static manner, the hexagon–square transition with an hysteresis loop is
observed. These are qualitative and quantitative differences with the theoretical results
for the onsets of the stability domains of the hexagons and squares. These differences
are interpreted as the result of restrictive conditions considered in theoretical models,
such as the assumption that the patterns remain at kcrit on increasing and decreasing
ε, and the assumption that |µr − 1| � 1. These assumptions are not generically valid
in experiments. On using jumps in field intensity from an initially flat interface, the
hexagonal pattern is always favoured. The larger the magnetic field, the smaller the
wavenumber. A comparison between the results for wavenumber selection obtained
by the two processes leads us to conclude that the square pattern is a metastable
state induced by compression of the hexagonal pattern. To confirm this, we have
performed a new experiment, in a hopper, where we induce the transition by directly
compressing the hexagonal pattern at constant magnetic field.

We are grateful to S. Krishnamurthy, J.-B. Manneville and C. Pérez-Garcı̀a for very
fruitful discussions.
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Ciliberto, S., Pampaloni, E., & Pérez-Garcı̀a, C. 1991 The role of defects in the transition between
different symmetries in convective patterns. J. Statist. Phys. 64, 1045.

Coullet, P., Emilson, K. P. & Plaza, F. 1991 Qualitative theory of defects in non-equilibrium
systems. In Instabilities and Nonequilibrium Structures (ed. E. Tirapegui & W. Zeller), vol. III.
Kluwer.

Cowley, M. D. & Rosensweig, R. E. 1967 The interfacial stability of a ferromagnetic fluid. J. Fluid
Mech. 30, 671.

Gailitis, A. 1977 Formation of the hexagonal pattern on the surface of a ferromagnetic fluid in an
applied magnetic field. J. Fluid Mech. 82, 401.

Herrero, H., Pérez-Garcı̀a, C. & Bestehorn, M. 1994 Stability of fronts separating domains with
different symmetries in hydrodynamical instabilities. Chaos 4, 15.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

88
2X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200000882X


Normal field instability in ferrofluids 237
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