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Abstract. An expansion is developed of the two-point correlation function in the
two-time correlation functions up to the expansion terms of third order. This
expansion is necessary for the rigorous derivation of kinetic equations that object-
ively describe physical phenomena in a ‘single’ plasma with Langmuir turbulence.
The correspondence of the expansion terms with various physical processes of the
traditional weak plasma turbulence theory is discussed. Perspectives are outlined
of application of the results to studies in the physics of non-ideal plasmas.

1. Introduction
In Erofeev (2000, 2002a, 2002b) we have highlighted two crucial shortcomings
pertinent to traditional plasma physics. First, we pointed out the senselessness
of the plasma ensemble considerations from the viewpoint of learning the physics
of plasma evolution. Note that plasma theory was constructed from the beginning
as a science oriented on the statistics of probabilistic plasma ensembles. Contrary
to the most elementary common sense, it was accepted, after Gibbs (1902) with
his success in erecting statistical mechanics, that we can always substitute real
plasmas by probabilistic plasma ensembles and formulate conclusions about the
physics of the plasma evolution on a basis of the evolution of the ensemble statistics.
Factually, the idea of the ensemble method had exerted a key influence on the
formulation of the most fundamental of the plasma physical theoretical notions†.
Correspondingly, plasma theorists always freely substituted real plasmas by plasma
ensembles, whether doing deliberately or unintentionally. We have demonstrated
that some of the known plasma ensemble considerations lead to different final
conclusions regarding the physics of plasma evolution. Hence, the ensemble substi-
tution cannot help in gaining an objective picture of plasma physical evolution and
generally obscures it.
The second shortcoming in traditional plasma theory is the absence of an ad-

equate understanding of the essence and significance of the asymptotic character of
convergency of any nonlinear perturbation expansion that we may invent for the
justification of the semi-heuristic ideas of the physical phenomena in a plasma. Let

† Take, for instance, the notion wave. In tradition of physics, it was developed in an
abstraction of a continuous medium. Real media consists of discrete elements: molecules,
atoms, ions etc., and the latter cannot be reduced to the former without ensemble averaging.
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us expand this statement a bit more. For definiteness, we refer to the problems
of plasma kinetics: plasma kinetic theory constitutes the most logical branch of
plasma physical theory.
Undoubtedly, the fullest description of ideal classical plasma is given by simultan-

eous Maxwell and Klimontovich–Dupree equations (Dupree 1963; Klimontovich
1967), but their integration is technically impossible. (Really, it implies a simul-
taneous integration of motion equations for an immensely large total number of
charged plasma particles.) This forces theorists to use more simplified approaches
for the plasma description. None of the simplified approaches gives a picture of
plasma evolution that does not diverge over time from the real plasma macroscopic
evolution. Therefore, we can rely upon simplified descriptions of plasma evolution
only on restricted time scales. With this, any trials to substantiate the recipes of
corresponding descriptions by rigorous perturbation expansions will at best provide
perturbations that first converge up to some optimal order of consideration, but
then inevitably diverge. This gives rise to a problem of a rational choice of the
leading order approximation in the perturbation expansion, since different leading
order approximations result in differing pictures of the plasma evolution, even within the
converging series of the same perturbation technique.Having never paid any attention
to the asymptotical character of the perturbation convergency, the traditional
plasma kinetic and plasma turbulence theories had also never paid proper attention
to a sensible choice of basic objects for the theory to deal with†. Hence, the virtue
of respective perturbation calculations is doubtful and most of the corresponding
results should be reconsidered. In former papers we have shown how to develop
the plasma kinetic description while refraining from the ensemble substitution
and achieving a more adequate plasma description, as is only possible in view
of the asymptotic convergency of the theory (Erofeev 1997, 1998a). Using the
respective recipes, we have visualized substantial changes in the image of Langmuir
turbulence. Namely, we discovered the intense decay of longwavelength Langmuir
quanta that precludes the formation of the Langmuir condensate (see the appendix
in Erofeev (2002a)) and prohibits Langmuir wave collapses (Erofeev 2002b)‡. In
addition, we discovered that traditional results (Tsytovich 1966) undervalued the
scattering of short Langmuir waves by plasma electrons (Erofeev 2000).
In view of the above observations, a problem arises of creating a logical theory

of Langmuir turbulence in a ‘single’ evolving plasma. Developing a corresponding
theory implies heightening the accuracy of the calculations reported in Erofeev
(1997, 1998a). The reason for this is the necessity to derive the correct description
of four-wave processes§, which assumes the calculation of an extra order in the
expansion of the wave kinetic equation in powers of the turbulence energy density.
In this paper we derive the evolution equation for a two-time correlation function

Φijkl(R, t, t′),

Φijkl(R, t, t′) = 〈δFij(r+ R, t)δFkl(r, t′)〉r.

† Recall again the notion of the wave. The logic of Erofeev (1997) dictates the concept
of a plasma wave that comprises the Lorentzian structure of the leading order of the
wave frequency spectrum. Approaches of predecessors assumed a delta-functional frequency
spectrum of the leading order of the wave correlation function.

‡ The idea of longwavelength Langmuir quanta conservation was always rendered as the
most consistent of heuristic ideas of the traditional weak plasma turbulence theory.

§ Recall their role in images of Langmuir turbulence as explained in Erofeev (2002a,
2002b) after studies by Malkin (1982a, 1982b).
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(Here δF̂ describes the microstructure of the electromagnetic field tensor that is
due to the plasma discreteness and the subscript r symbolizes the averaging over
the ‘physically large’ plasma volume.) The corresponding derivation constitutes
the first of two stages of the development of Langmuir wave kinetics. In the second
stage, the evolution equation of the two-time correlation function is used for de-
veloping the final plasma kinetic description in terms of functions depending on
only one time variable. In particular, it is used in the case of weakly turbulent
collisionless plasma for developing equations that describe the evolution of the
wave spectral density nk(t) and the evolution of the electron and ion distribution
functions fe,i(p, t). Note that the reported calculations are important not only for
the problem of wave kinetics.
The final results of forthcoming calculations were formerly reported in Erofeev

(1998b). This paper did not contain any descriptions of the calculations; the inter-
pretations of results given in that paper have become a bit outdated.
This paper is organized as follows. In Sec. 2 we briefly describe the beginning

of our calculation approach. In Sec. 3 we describe the logic of expansion of the
two-point correlation function 〈Nα(r + R, p, t)δFkl(r, t′)〉 in terms of the two-time
correlation function: this expansion constitutes the basis of our title calculation.
(Here Nα symbolizes the Klimontovich–Dupree distribution function.) For brevity
we use a graphic means in the writing of intermediate formulae. We present the final
form of the corresponding expansion in Sec. 4. In Sec. 5 we discuss its correspond-
ence to the traditional conceptions of wave interactions in a turbulent plasma. The
basic results of the study and possibilities of their application to plasma research are
summarized in Sec. 6. Analytical expressions corresponding to the most important
terms in the diagrammatic expansion of the two-point correlation function are left
to the appendix.

2. Brief outline of the logic of kinetic calculations for ‘single’ plasmas
An expanded description of the basic ideas of our approach and the diverse aspects
of the corresponding vision of problems of plasma kinetics can be found in Erofeev
(1997, 1998a, 2000, 2002a, 2002b). In this paper we only highlight the conception
of respective calculation logic, to a degree necessary for a better understanding of
the study intended. The notation that we adopt throughout the paper is the same
as was developed in Erofeev (1997).
The main intention of our calculations is to reduce the full plasma description

to a simplified description of plasma physical evolution, which most adequately
approximates the real plasma evolution. We should stress that the final kinetic
plasma descriptions cannot bear any universality. The means of the plasma de-
scription and the corresponding interpretation of the final equations, depend sub-
stantially on the physical content of the problem under study. We were forced to
substitute the ensemble averaging of the Klimontovich–Dupree distribution by an
appropriate averaging in six-dimensional (6D) phase space of the particle spatial
positions r and momentums p; the design of the respective averaging correlates with
the geometrical and other physical aspects of the problem. In addition, the very
procedure of equation derivation depends on the physical situation: the last stage
of kinetic calculations for turbulent collisionless plasma and that for quit plasma
with Coulomb collisions should have a substantially different content. In this sense,
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our concept of plasma kinetic studies differs radically from traditional approaches
that implied the existence of universal plasma kinetics (recall the common attitude
to kinetics after Bogoliubov (1946), Born and Green (1949), Kirkwood (1946) and
Yvon (1935) that is collectively known as the BBGKY kinetics).
The basic goal of our considerations is to develop an evolution equation for the

well-defined statistic of the distribution function fe,i(r, p, t), the phase space average
of the Klimontovich–Dupree particle distribution†. The function fα is advanced in
time by the two-point correlation function, 〈δF iβ(r + R, t′)Nα(r, p, t)〉r; the two-
point correlation function is advanced in time by the three-point correlation func-
tion, 〈δF iβ(r+R′, t′′)δF jγ(r+R, t′)Nα(r, p, t)〉r; this is advanced by the four-point
correlation function, etc. The corresponding evolution equations constitute some
hierarchy. This equation hierarchy is insufficiently suitable for the constructive
plasma description. Nevertheless, it can sometimes be used for the derivation of
more useful kinetic equations that operate by functions depending on only one
time variable. In particular, this is the case of a weakly turbulent collisionless
plasma (and also the case of a plasma with a moderate level of Coulomb collisions
which we discuss in Sec. 6). In this case, the plasma evolution can be described
by simultaneous equations governing the evolution of the distribution functions
fα and the wave spectral density nk. These equations are obtained as a result of
calculations falling into the two stages that were mentioned above. In the first
stage we derive an approximate evolution equation for the two-point correlation
function. To obtain this equation, we truncate the above equation hierarchy up to
a necessary order and develop a respective perturbation calculations on the basis
of the truncated equation hierarchy.
The two-point correlation function is always integrated in all the final equations.

With an accuracy sufficient for integrations, it can be expressed in terms of a two-
time correlation function.We introduce the two-time correlation function Φ̂(r′, t′, r, t)
as an averaged product of two terms δF̂ that we take at points that are separated
by a fixed spatial vector; the averaging is performed over the ‘spatial projection’ of
the 6D parallelepiped-shaped neighborhood of the current point (r, p),

Φiβjγ(r′, t′, r, t) = 〈δF iβ(r′, t′)δF jγ(r, t)〉. (1)

This function evolves according to the vacuumMaxwell equations when the external
charge currents and densities are associated with the respective integrals of the two-
point correlation functions. The expression of the two-point correlation function
in terms of the two-time correlation function is obtained via the iterating of the
evolution equation of the two-point correlation function. Obtaining this expression
(and, consequently, the evolution equation of the two-time correlation function)
closes the first stage of calculation of the final kinetic equations. It is the completing
of this stage that constitutes the goal of this paper. Note that this stage has a
common content both for a weakly turbulent collisionless plasma and for a quit
plasma with a moderate level of Coulomb collisions.
In this way, we expand the two-point correlation function 〈δNδF̂ 〉 in the two-time

correlation functions Φ̂.

† Note that in this paper we do not specify the manner of phase space averaging. The
final results of the study do not depend on it and only their further application raises the
question of specific features of particular physical situations.
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Figure 1. An asymmetrical vertex.

3. Expansion of the two-point correlation function in the two-time
correlation functions

A straightforward calculation of the expansion of the two-point correlation function
in the two-time correlation functions following the logic of Erofeev (1997) would
have been very tedious. Fortunately, the body of intermediate manipulations can
be substantially shortened due to some results and approaches developed in dia-
grammatic techniques.
Recall the graphic means of formulae writing that were introduced in Erofeev

(1997).
The first of the theory objects is a bare Green function 0Gα(r, p, t, r′, p′, t′), a

solution to the equation[
∂

∂t
+ vβ ∂

∂rβ
+

eα

c
vi

0F
iβ ∂

∂pβ

]
0Gα = δ3(p− p′)δ3(r− r′)δ(t − t′). (2)

We denote this function by a thin solid line. The second object is an operator of
the electromagnetic Green function that can be associated with the well-known
delayed potentials. We define this operator as a kernel for the integral expression
of the EMF tensor in terms of the microdistribution Nα,

Fik(r, t) = 0F ik(r) + δFik(r, t),
(3)

δFik(r, t) =
∑
α

eα

∫ t

−∞
Fik(r, t, r′, v′, t′)Nα(r′, p, t′) d3r′ d3p′ dt′.

(Here v′ is the velocity of the particle (of kind ‘α’) with momentum p′.) We denote
this object by a dashed line. We also use a rectangle for the distribution function
fα and a wavy line for a formal function 〈δNα(r, p, t)δNα′(r′, p′, t′)〉 (here δNα =
Nα −fα). As it is not a statistic in the strict sense of mathematics, it should always
be connected with the dashed line of the electromagnetic Green function to form the
statistically meaningful two-point or two-time correlation function. Nevertheless,
at the intermediate stages of the forthcoming calculations we freely use the wavy
lines that are not connected with dashed lines. We substantiate the appropriateness
of this frivolity at the end of Sec. 4.
The next graphical object is an asymmetrical vertex as shown in Fig. 1. With

this vertex, we associate the time moment t, the momentum p, the space position r
and the coefficient −eα/c. The vertex has one entry (on the left) and two exits. The
vertex entry can be connected to the exit end of the line of the bare Green function,
or to the exit of the line of the renormalized Green function that we define below.
The lower exit of the vertex is associated with differentiation with respect to the

momentum p of the function connected to it. To make the analytical interpretation
of diagrams easier, this exit is marked in black.
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Figure 2. An equation of Dyson type for the renormalized Green function Ĝαα′ .

The upper exit is always connected to the dashed line of F̂. The related ‘EMF-
end’, Fiβ , of the object is multiplied by vi and by the momentum derivative ∂/∂pβ

of the function connected to the lower exit.
The vertex entry is usually influenced by some operator, and when this is the

case, integration over the corresponding variables r, p and t takes place.
Finally, let us also introduce a renormalized Green function Gαα′(r, p, t, r′, p′, t′).

We write it graphically as a thick solid line and define it as a solution to the Dyson-
type equation shown in Fig. 2. Following this equation, the renormalized Green
function can easily be expressed in terms of the operator (F̂Ĝ). This operator is a
solution to the vacuum Maxwell equations when the distributions of charges and
charge currents are associated with the respective integrals of the very renormalized
Green function. We present the corresponding equations at the end of the appendix.
The first stage of calculations consists of obtaining a sufficiently correct equation

of evolution of the two-point correlation function. For this, we develop a formal
perturbation expansion for ‘correlators’ 〈δNα(r, p, t)δNα′(r′, p′, t′)〉. The principles
for implementing such an expansion were first formulated in Erofeev (1996). The
basic equation for developing the necessary perturbation technique is the nonlinear
equation that governs the evolution of δNα(r, p, t). This equation follows from the
Klimontovich–Dupree equation,

ˆ0Gα

−1
δNα(r, p, t) +

eα

c
vi

∂fα

∂pβ

∑
α′

eα′

∫ t

−∞
Fiβ(r, t, r′, v′, t′)δNα′(r′, p′, t′) d3r′ d3p′ dt′

= −eα

c
vi

∂

∂pβ
δNα(r, p, t)

∑
α′

eα′

∫ t

−∞
Fiβ(r, t, r′, v′, t′)δNα′(r′, p′, t′) d3r′ d3p′ dt′.

(4)

Using this equation, we can iteratively develop successive approximations to an
‘evolution equation’ of our formal correlators 〈δNαδNα′ 〉. Conceptually, they gen-
erate a ‘canonical’ redaction of the Wyld diagram technique (Wyld 1961) first
described by Zakharov and L’vov (1975). For our goal it suffices to start with an
approximate relation from Erofeev (1996, Fig. 6). In view of (4), we should associate
the symmetrical vertex of the respective diagram technique with the asymmetrical
vertex from Fig. 1 by means of the relation shown in Fig. 3. With this, the role of the
bare Green function of the auxiliary diagram technique goes to our renormalized
Green function. For this reason we rewrite the equation from Fig. 6 of Erofeev
(1996) in the form of the equation in Fig. 4. In this figure we substituted the thick
lines of our renormalized Green function Gαα′(r, p, t, r′, p′, t′) for the thin lines of
Fig. 6 from Erofeev (1996); the inverse operator of the bare Green function of the
auxiliary diagram technique (i.e. the inverse operator of our renormalized Green
function) is shown by the first two diagrams in the first square brackets in the
figure.
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Figure 3. A symmetrical vertex of an auxiliary diagram technique.

Figure 4. An auxiliary evolution equation for the formal function 〈δNαδNα′ 〉.

We reiterate that the equation in Fig. 4 is a formal one, since the corresponding
‘correlator’ 〈δNαδNα′ 〉 is not a consistent statistic. Still, if we attach the dashed
lines of the electromagnetic Green function F̂ to the right ends of the diagrammatic
expressions on the right-hand and left-hand sides of this equation, we get an actual
evolution equation of a consistent statistic of the two-point correlation function
〈δNαδF̂ 〉. It should be stressed that an absence of statistical sense in the inner lines
of 〈δNαδNα′ 〉 in terms of the respective equation does not lead to an absence of
sense in the equation. The reason for this is that their analytical counterparts are
integrated and under the sign of integration the contribution of these statistically
empty functions is well reducible to integrals based on the consistent statistics
only. (Ultimately, the evolution equation of the two-point correlation function only
depends on the rough characteristics of the plasma macroscopic distributions and
not on the tiny details of the microdistribution.)
Let us write the evolution equation of the two-point correlation function in the

form given in Fig. 5 (compare with Fig. 16 in Erofeev (1997)). The first term on
the right-hand side of the equation gives the lowest order in the expansion of the
two-point correlation function in the two-time correlation functions. To obtain the
second order in the expansion, we substitute the two-point correlation function,
the multiplier in the second term of the right-hand side of the relation in Fig. 5, by
all at the right-hand side. In the third iteration this recipe should be repeated, then
we omit the diagrams that contain more than three wavy lines. As a result, we get
the relation shown in Fig. 6. On the right-hand side of this relation, all the terms
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Figure 5. An expression for the two-point correlation function 〈δNαδF̂ 〉: first iteration.

Figure 6. An expression for the two-point correlation function 〈δNαδF̂ 〉: third iteration.

are retained that are necessary for expanding the two-point correlation function
with a desired accuracy. That is, to obtain the expansion terms of the third order
in powers of the turbulence energy density.
The rest of the calculations should consist of eliminating all of the bare wavy lines,

i.e. formal functions 〈δNαδNα′ 〉, from the diagrams of expansion of Fig. 6. Recall
that in the corresponding analytical expressions the wavy lines are integrated and
by this integral effect each of them can be substituted by an expression composed
of the statistically meaningful functions only. Moreover, even the statistically con-
sistent two-point correlation function (the wavy line with the attached dashed line)
should be substituted in integrals (i.e. in diagrams) by the corresponding expansion
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Figure 7. A substitution for the formal function 〈δNαδNα′ 〉.

in the two-time correlation functions. To complete this stage, it suffices to substitute
the wavy lines in the diagrams of Fig. 6 by sums of the graphic fragments given in
Fig. 7. Note that the corresponding sum was generated according to the relation
between the two-point and two-time correlation functions that is shown in Fig. 6.
(Strictly speaking, in the above permutational fragments, the formal functions
〈δNαδNα′ 〉 should also be eliminated. For this, the wavy lines should again be
substituted by permutational fragments following Fig. 7, but this time it suffices
to only keep the first term in the substitution.)
We have now finished the description of the expansion of the two-point correla-

tion function in the two-time correlation functions. We present the corresponding
final graphic relation in the next section.

4. Final expression for the two-point correlation function
An expansion of the two-point correlation function in the two-time correlation
functions is given in Fig. 8. In this expression, the notation is modified for the sake
of brevity. Namely, the wavy line stands for the two-time correlation function and
a renormalized vertex is introduced following the recursive identity in Fig. 9.
The expression given in Fig. 8 needs some extra comments. All the diagrams are

numbered in the figure. Each of them contains lines of the operator F̂Ĝ (i.e. dashed
line attached to the bold solid line) except for diagrams 1 and 10. These diagrams
should be regarded as collective images for sets of integral expressions. Namely, we
should supplement the given diagrams by all diagrams, with a number of fragments
structured as these on the left in Fig. 10 being substituted by the respective frag-
ments on the right. The only exclusion is the left-most F̂Ĝ-line of diagram 4: the
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Figure 8. An expansion of the two-point correlation function 〈δNαδF̂ 〉 in the two-time
correlation functions 〈δF̂ δF̂ 〉.

Figure 9. A recursive expression for the renormalized vertex Ĥ.

Figure 10. A substitution for the multiplication of diagrams in Fig. 8.

corresponding integral was used to organize the nonlinear renormalization of the
left vertex in diagram 2.
Two of the diagrams, numbered as 3 and 11, are surrounded by dashed rectangles.

We should keep the results of the multiplication of these diagrams with at least one
of the F̂Ĝ-lines in the upper branch of the diagram substituted. Note that the
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integrals corresponding to actually drawn diagrams 3 and 11 should be omitted,
as well as the result of the multiplication of diagram 3 with a substitution for the
lower branch only. In fact, they are enfolded into the integrals corresponding to
diagrams 2 and 10, respectively.
We have completed the presentation of the expansion of the two-point correlation

function in the two-time correlation functions. It only remains to translate the
graphic formulae to the analytical formulae. This will be partially performed in the
appendix.
Now let us discuss the degree of reliability of the results obtained. Consider

the ‘Vlasov plasma’, i.e. an imaginary plasma consisting of electron and ion con-
tinuous fluids that fill the respective phase spaces r, pe,i without gaps. Then the
intermediate function 〈δNα(r, p, t)δNα′(r′, p′, t′)〉 is a well defined statistic, unlike
that in the Klimontovich–Dupree plasma. The evolution equation of this statistic
is obtained by iterations following the principles of Erofeev (1996) and, with a
sufficient accuracy, it is shown by Fig. 4. (Note that this graphic equation coincides
with the corresponding approximation for the equation Ĝ−1N̂ = Φ̂Ĝ+ of the
Wyld diagram technique. Here ‘+’ stands for the Hermitian conjugate.) Starting
from this evolution equation, we should derive the evolution equation for the two-
time correlation function and the logic of the corresponding derivation repeats our
calculation given in Figs 5–7. Due to this, our expansion of the two-point correlation
function is repeated. That is, we have confirmed the above expansion at least for
the Vlasov plasma case. However, there should not be any difference between the
Vlasov and Klimontovich–Dupree plasmas with respect to the kinetics of collective
phenomena, therefore the diagrams drawn represent the collective phenomena in
the Klimontovich–Dupree plasma fairly well as well.
After the above analysis we may conclude that the substitution of the Vlasov

plasma by the Klimontovich–Dupree plasma may lead to relative errors in the
evolution equation that should be of the order of the ratio of the mean interparticle
distance to the characteristic spatial scale of the plasma collective motions. In
reality, our results have nothing to do with this ratio: the errors due to the plasma
discreteness depend only on the volume of 6D parallelepipeds (that we use to define
the distribution functions) and can essentially be lessened by enlarging this volume,
when appropriate.
In the next section we discuss the correspondence of our expansion with the

traditional plasma turbulence theory.

5. Correlation with the existing theory of Langmuir turbulence
In the previous section we presented the graphic image for the expansion of the two-
point correlation function in the two-time correlation functions. We have derived it
with sufficient accuracy for an adequate treating of the Langmuir turbulence. All
the understanding of the Langmuir turbulence that was developed formerly in the
plasma community has some correspondence with our results. In this section, we
analyze the correspondence of our diagrams with the skeleton of the traditional
weak Langmuir turbulence theory.
Let us consider first the diagrams of Fig. 8 as they are written, i.e. without the

diagram multiplication following substitution from Fig. 10. (In this sense, diagrams
3 and 11 fall out of scope.) Then these diagrams represent all the wealth of the
wave interaction in the turbulence. That is, had we substituted the corresponding
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expression to the evolution equation of the two-point correlation function, the latter
equation would have properly accounted for the effects of the wave interaction in
the plasma. To see this, let us recall the ‘canonical’ redaction of the Wyld diagram
technique for turbulent wave fields (Zakharov and L’vov 1975). We should inform
the reader that the Wyld diagram technique constitutes conceptually the most
regular basis for studies of kinetics of the wave interaction in traditional classical
weakly turbulent wave fields (see Zakharov 1974; Erofeev and Malkin 1989; Erofeev
1996).
When Fig. 8 is substituted into the vacuum Maxwell equations, then the piece

in the square brackets in the two top lines in the figure generates the object that
contains the inverse operator of the renormalized Green function of the respective
canonical Wyld diagram technique. Correspondingly, the operator F̂Ĝ of our the-
ory acquires the sense of the bare Green function of the canonical Wyld diagram
technique that is multiplied by the bare Green function of our theory with the sign of
integration of the latter over p. The vertex of the canonicalWyld diagram technique
we should associate with our vertex from Fig. 9, the entry of which is influenced
by the operator in the second square brackets in Fig. 8 and then integrated over
the momentums and summed over the particle kind with the weight 4πeα. After
this, the sum of diagrams 2 and 5–8 correlates with first expansion terms of the
mass operator Σ̂ of the Wyld’s diagram technique and diagrams 10 and 12–16
with the expansion of a ‘compact part of correlation function’ Φ̂ of the latter. (The
diagrams written in the last square brackets in Fig. 8 correlate with the first terms
of expansion of the Hermitian conjugate of the renormalized Green function of the
canonical Wyld diagram technique.)
Following the above, diagrams 2, 10 and 4 in Fig. 8 account for the three-wave

interaction. (The analog of diagram 4 appears in a canonical diagram technique due
to the iteration of the renormalized Green function in the analog of diagram 2.)
That is, all the effects of interaction of the Langmuir waves and the ion sound
waves can be described on the basis of these diagrams, particularly the piece of
four-wave interaction of the Langmuir waves mediated by the ion sound. Note
that this interaction exists even in the case of a strong damping of ion sound, i.e.
in an isothermal plasma (Malkin 1982a). Apart from interaction of the Langmuir
and the ion sound waves, the given diagrams depict the physics of interaction of
the Langmuir waves with the electromagnetic waves (and all the other three-wave
interaction phenomena).
The remaining part of the four-wave interactions can be developed from dia-

grams 5–8 and 14. Diagrams 12, 13, 15 and 16 can be rendered as comprising
the additional renormalization of the ‘three-wave interaction matrix element’. The
necessary counterparts of corresponding renormalization in the diagrams of ‘mass
operator’ are embedded in the same diagrams 5–8†.
From the above analysis only one important distinction is seen between our equa-

tions and those that one can develop constructing the Wyld’s diagram technique
from the dynamic equations of the three-wave interactions (the usual approach
that can be exemplified by calculations in Zakharov and L’vov (1975), Malkin

† An idea of systematic division of the components of these diagrams in terms of the
four-wave collision integral and corrections to the three-wave collision integral due to the
renormalization of the ‘matrix element’ of the three-wave process can be learned from
Zakharov and L’vov (1975) (see also Erofeev and Malkin (1989)). It can be characterized
as a procedure of multiplication of the diagrams which we do not discuss here.
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(1982a, 1982b), Erofeev and Malkin (1989)). The three-wave vertex of the canonical
Wyld diagram technique is organized on the basis of the lowest order terms in
the expression of our vertex from Fig. 9. (They are the first two in the right-
hand side of the relation in the figure.) These terms are operated on by our bare
Green function and then integrated over the momentums and summed over the
particle kind with the weight 4πeα. In our calculations, the analog of this vertex
is a bit more complicated. First, we see that the above lowest order of vertex from
Fig. 9 should be corrected according to the identity that is recursively written
by the figure. Second, its entry is operated on by the nonlinear operator from
second square brackets in Fig. 8 rather then by the single bare Green function. In
this way, additional nonlinear corrections to the vertex have appeared that were
absent in the canonical Wyld diagram technique. These corrections may be of some
importance for the three-wave interactions. We may assume that they comprise the
influence of the turbulence on the plasma dispersive properties that ultimately lead
to modifications in the ‘matrix element’ of the three-wave phenomena. The usual
Wyld diagram technique does not assume the presence of these modifications. We
stress that they should manifest themselves only in the next after leading order of
the turbulence kinetics.
Now let us disengage ourselves from the correspondence of our written diagrams

and diagrams of the canonical Wyld diagram technique. Let us discuss the place
of the Langmuir wave scattering induced by plasma particles within our diagrams.
The leading order of this phenomenon is enfolded in diagram 2 itself and in a result
of its multiplication following substitution from Fig. 10 (see Erofeev (2000)). What
results from the diagram multiplications according to substitution in Fig. 10 is that
they give either extra corrections to the collision integrals of three- and four-wave
interactions or the corrections to the lowest order of kinetics of the wave scattering
induced by plasma particles.
The above presented classification of diagrams and corresponding phenomena in

a turbulent plasma do not have pretensions of the utmost rigorous one. We were
concerned only with a rough scheme of correlation of our perturbation technique
with the traditional weak plasma turbulence theory. Note that the latter itself
does not possess sufficient rigorousness for a completed theory. For instance, the
same term in the wave collision integral is equally attributed both to the three-
wave interactions and to the wave scattering induced by plasma ions. (This term is
imprinted in our diagram 2 from Fig. 8.) Still, we suppose that our diagrammatic
expansion constitutes the most regular basis for studies of the plasma turbulent
phenomena.
An additional idea regarding the rules of translation of our diagrammatic rela-

tions to the analytical writing can be perceived from the appendix.

6. Conclusions
In this paper, we derived an expansion of the two-point correlation function in the
two-time correlation functions that is correct up to third order in powers of the
turbulence energy density. This expansion permits the gained evolution equation
to be written for the two-time correlation function that is necessary for a rigorous
derivation of the kinetics of Langmuir turbulence.
Apart from the problems of Langmuir turbulence studies, our expansion is ap-

plicable to studies of weakly non-ideal (rarefied) plasmas. That is, for developing
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kinetics of single plasmas with finite small inverse numbers of particles in the
Debye sphere. In the traditional paradigm of BBGKY plasma kinetics the given
number is rendered as an expansion parameter. Note that only within the practice
of the plasma ensemble studies the conceptions of BBGKY kinetics possessed some
sense of constructive theory†. In view of the stated uselessness of the plasma
ensemble studies (Erofeev 2000, 2002a, 2002b), inclusion of sequential equations
of the BBGKY equation hierarchy to the plasma description do not result in ap-
proaching the objective picture of the plasma macrophysical evolution. In contrast,
the expansion of the two-point correlation function in the two-time correlation
functions permits the development of the picture of the plasma macrophysical
evolution that is correct up to two first orders in the above inverse number of
particles in the Debye sphere‡.
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Appendix. A truncated expression of the two-point correlation
function in analytical form

Following traditional calculations byMalkin (1982a), the main channel of four-wave
interaction in the weak Langmuir turbulence is the Langmuir wave scattering on
the forced density inhomogeneities (or on intermediate ion sound). This statement
is correct, although the adequate theory of the phenomenon is not yet developed.
For this reason we deliberately skip the contributions of diagrams that correspond
to the ‘pure four-wave interactions’. That is, we omit diagrams 4–8 and 12–16 in
Fig. 8. The remaining terms of our expansion depict the most important processes
in the turbulence dynamics.
In the formulae presented we do not exploit the potentiality of Langmuir oscil-

lations§.

† In particular, without the plasma ensemble averaging the notion of the two-particle
distribution is void of any statistical sense, just like the formal object 〈δNαδNα′ 〉 that we
used in this paper at the intermediate stages of our calculations. The same can be said about
the three-particle and other multiparticle distributions.

‡ This inverse number coincides structurally with the ratio of Langmuir oscillation period,
the typical time of electron flight through a field of charged particle, to a typical time of
Coulomb collisions. Conceptually, the latter is an expansion parameter of the theory. Its
analog in theory of weak plasma turbulence is a ratio of inverse width of turbulence spectrum
in natural frequencies to typical times of the plasma and turbulence evolution.

§ The reason for this is that we would like to have an opportunity to not only
study four-wave interactions in the Langmuir turbulence, but also in a general case of
non-longitudinal turbulent wave fields. Besides, the general formulae writing seems to be
desirable for studies of nonideal plasmas.
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The analytical form of the recursive identity in Fig. 10 is

αHm′β′m′′β′′(ξ, ξ′, ξ′′) = αMm′β′m′′β′′(ξ, ξ′)δ7(ξ − ξ′′)

+ αMm′′β′′m′β′(ξ, ξ′′)δ7(ξ − ξ′),

αMm′β′m′′β′′(ξ, ξ′) =
e2
α

c2
vm′′(p)

∂

∂pβ′′

(
0Gα(ξ, ξ′)vm′(p′)

∂fα(ξ′)
∂p′β′

)

+
e2
α

c2
vm′′(p)

∂

∂pβ′′

∫
0Gα(ξ, ξ1) d7ξ1 vm1(p1)

∂

∂pβ1
1

(0Gα(ξ1, ξ2) d7ξ2

× αHm3β3m′β′(ξ2, ξ3, ξ
′) d7ξ3 Φm1β1m3β3(r1, t1, r3, t3))

− eα

c
vm′′(p)

∂

∂pβ′′

∫
0Gα(ξ, ξ1) d7ξ1

αHm4β4m2β2(ξ1, ξ4, ξ2) d7ξ2 d7ξ4

×
∑
α′

∫
(F̂Ĝ)m4β4

α′ (r4, t4, ξ5) d7ξ5

× α′ Hm3β3m′β′(ξ5, ξ3, ξ
′) d7ξ3 Φm2β2m3β3(r2, t2, r3, t3). (A 1)

In this formula the notation ξi introduces the seven-dimensional ‘vector’ composed
of time ti, position ri and momentum pi; the feature

αHm′β′m′′β′′(ξ, ξ′, ξ′′) is the
renormalized vertex.
Structurally, the expression in Fig. 8 consists of two terms. The first term can be

regarded as a graphical expression connected to the wavy line. Formally, this ex-
pression describes a linear response of the two-point function to a change in the two-
time function. As its analytical counterpart, let us introduce Rαmγ(r, p, t, r1, t1).
The analytical counterpart of the other term in Fig. 8 we denote by Pkl

α (ξ, r′, t′).
Then the expression in Fig. 8 for the two-point correlation function yields the
relation

〈δNα(ξ)δF kl(r′, t′)〉 =
∫

Rαmγ(ξ, r1, t1) d3r1 dt1 Φmγkl(r1, t1, r′, t′) + Pkl
α (ξ, r′, t′).

(A 2)

The expansion of the response R̂ consists of three terms, R̂ = 0R̂ + 3R̂ + 3δ̂R. The
first describes the linear dispersive properties of the given species of the plasma
particles,

0Rαmγ(ξ, r1, t1) = −eα

c

∫
0Gα(ξ, ξ1) d3p1 vm(p1)

∂

∂pγ
1

fα(ξ1). (A 3)

The second term 3R̂ accounts for the three-wave interactions and the effect of
the wave scattering induced by plasma particles,

3Rαmγ(ξ, r1, t1) =
∫

0Gα(ξ, ξ2) d7ξ2
αHm5εm6β(ξ2, ξ5, ξ6) d7ξ5 d7ξ6

×
∑
α′

∫
(F̂Ĝ)m5ε

α′ (r5, t5, ξ3) d7ξ3
α′ Hm4δmγ(ξ3, ξ4, ξ1) d7ξ4
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× d3p1Φ
m6βm4δ(r6, t6, r4, t4) − eα

c

∫
0Gα(ξ, ξ2) d7ξ2 vm2(p2)

× ∂

∂pβ
2

( ∫
0Gα(ξ2, ξ3) d7ξ3

αHm4δmγ(ξ3, ξ4, ξ1)
)

d7ξ4

× d3p1Φ
m2βm4δ(r2, t2, r4, t4). (A 4)

The third term 3R̂ describes corrections that are due to diagram 3 in Fig. 8. Its
expression is

3δ̂R = 31δ̂R + 32δ̂R + 33δ̂R + 34δ̂R, (A 5)

31δRαmγ(ξ, r1, t1) =
∑
α′

eαeα′

2c2

∫
0Gα(ξ, ξ2)vm2(p2) d7ξ2

∂

∂pβ2
2

×
( ∫

0Gα(ξ2, ξ3) d7ξ3
αHm5β5m6β6(ξ3, ξ5, ξ6)

)
d7ξ5 d7ξ6

×
∫

(F̂Ĝ)m2β2
α′ (r2, t2, ξ1) d3p1 vm(p1)

× ∂

∂pγ
1

(∫
0Gα′(ξ1, ξ4) d7ξ4

α′ Hm7β7m8β8(ξ4, ξ7, ξ8)
)

d7ξ7 d7ξ8

× Φm5β5m7β7(r5, t5, r7, t7)Φm6β6m8β8(r6, t6, r8, t8), (A 6)

32δRαmγ(ξ, r1, t1) =
e2
α

2c2

∫
0Gα(ξ, ξ2) d7ξ2 vm2(p2)

∂

∂pβ2
2

×
(∫

0Gα(ξ2, ξ1) d3p1 vm(p1)
∂

∂pγ
1

×
(∫

0Gα(ξ1, ξ4) d7ξ4
αHm7β7m8β8(ξ4, ξ7, ξ8)

))
d7ξ7 d7ξ8

×
∑
α′

∫
(F̂Ĝ)m2β2

α′ (r2, t2, ξ3) d7ξ3
α′ Hm5β5m6β6(ξ3, ξ5, ξ6) d7ξ5 d7ξ6

× Φm5β5m7β7(r5, t5, r7, t7)Φm6β6m8β8(r6, t6, r8, t8), (A 7)

33δRαmγ(ξ, r1, t1) = −eα

2c

∫
0Gα(ξ, ξ2) d7ξ2 vm2(p2)

× ∂

∂pβ2
2

( ∫
0Gα(ξ2, ξ3) d7ξ3

αHm6β6m7β7(ξ3, ξ6, ξ7)
)

d7ξ6 d7ξ7

×
∑
α′

∫
(F̂Ĝ)m2β2

α′ (r2, t2, ξ5) d7ξ5
α′ Hm4β4mγ(ξ5, ξ4, ξ1) d7ξ4 d3p1
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×
∑
α′′

∫
(F̂Ĝ)m4β4

α′′ (r4, t4, ξ8) d7ξ8
α′′ Hm9β9m10β10(ξ8, ξ9, ξ10) d7ξ9 d7ξ10

× Φm6β6m9β9(r6, t6, r9, t9)Φm7β7m10β10(r7, t7, r10, t10),

34δRαmγ(ξ, r1, t1) = −
∑
α′

eα′

2c

∫
0Gα(ξ, ξ2) d7ξ2

αHm4β4m5β5(ξ2, ξ4, ξ5)d7ξ4

× d7ξ5(F̂Ĝ)α′m4β4(r4, t4, ξ1) d3p1 vm(p1)

× ∂

∂pγ
1

( ∫
0Gα′(ξ1, ξ8) d7ξ8

α′ Hm9β9m10β10(ξ8, ξ9, ξ10)
)

d7ξ9 d7ξ10

×
∑
α′′

∫
(F̂Ĝ)α′′m5β5(r5, t5, ξ3) d7ξ3

α′′ Hm6β6m7β7(ξ3, ξ6, ξ7) d7ξ6 d7ξ7

× Φm6β6m9β9(r6, t6, r9, t9)Φm7β7m10β10(r7, t7, r10, t10). (A 8)

The term Pkl
α (ξ, r′, t′) can be presented as follows:

Pkl
α (ξ, r′, t′) =

∑
α′α′′

∫
(0Ĝ + 0δ̂G)αα′(ξ, ξ1) d7ξ1(3Φ̂ + 3δ̂Φ)α′α′′(ξ1, ξ2) d7ξ2

× ((F̂Ĝ) + δ(F̂Ĝ))kl
α′′(r′, t′, ξ2). (A 9)

In this formula, 0δ̂G introduces the correction to the bare Green function that is
due to diagram 9 in Fig. 8,

(0Ĝ + 0δ̂G)αα′(ξ, ξ1) = δαα′

[
0Gα(ξ, ξ1) +

e2
α

c2

∫
0Gα(ξ, ξ2) d7ξ2 vm2(p2)

∂

∂pβ2
2

×
( ∫

0Gα(ξ2, ξ3) d7ξ3 vm3(p3)
∂

∂pβ3
3

0Gα(ξ3, ξ1)
)

Φm2β2m3β3(r2, t2, r3, t3)

]

− eα′

c

∫
0Gα(ξ, ξ2) d7ξ2

αHm3β3m4β4(ξ2, ξ3, ξ4) d7ξ3 d7ξ4

× (F̂Ĝ)m4β4
α′ (r4, t4, ξ5) d7ξ5vm5(p5)

× ∂

∂pβ5
5

0Gα′(ξ5, ξ1)Φm3β3m5β5(r3, t3, r5, t5). (A 10)

The function (3Φ̂ + 3δ̂Φ)αα′(ξ1, ξ2) represents some analog of the ‘compact part
of the correlation function’ of the canonical Wyld’s diagram technique; ‘3’ in this
notation hints on the three-wave interactions. The expression of this function is:

(3Φ̂ + 3δ̂Φ)αα′(ξ1, ξ2) =
1
2

∫
αHm3β3m4β4(ξ1, ξ3, ξ4) d7ξ3 d7ξ4

× α′ Hm5β5m6β6(ξ2, ξ5, ξ6) d7ξ5 d7ξ6 Φm3β3m5β5(r3, t3, r5, t5)

× Φm4β4m6β6(r4, t4, r6, t6)
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− eα

2c
vm1(p1)

∂

∂pβ1
1

(∫
0Gα(ξ1, ξ3) d7ξ3

αHm4β4m5β5(ξ3, ξ4, ξ5)
)

d7ξ4 d7ξ5

× α′ Hm6β6m7β7(ξ2, ξ6, ξ7) d7ξ6 d7ξ7

∑
α′′

∫
(F̂Ĝ)m7β7

α′′ (r7, t7, ξ8) d7ξ8

× α′′ Hm9β9m10β10(ξ8, ξ9, ξ10) d7ξ9 d7ξ10 Φm4β4m9β9(r4, t4, r9, t9)

× Φm5β5m10β10(r5, t5, r10, t10)Φ
m1β1m6β6(r1, t1, r6, t6) − eα′

2c
vm2(p2)

∂

∂pβ2
2

×
(∫

0Gα′(ξ2, ξ8) d7ξ8
α′ Hm9β9m10β10(ξ8, ξ9, ξ10)

)
d7ξ9 d7ξ10

× αHm3β3m4β4(ξ1, ξ3, ξ4) d7ξ3 d7ξ4

∑
α′′

∫
(F̂Ĝ)m3β3

α′′ (r3, t3, ξ5) d7ξ5

× α′′ Hm6β6m7β7(ξ5, ξ6, ξ7) d7ξ6 d7ξ7 Φm6β6m9β9(r6, t6, r9, t9)

× Φm7β7m10β10(r7, t7, r10, t10)Φ
m4β4m2β2(r4, t4, r2, t2)

+
1
2

eαeα′

c2

∫
vm1(p1)

∂

∂pβ1
1

(∫
0Gα(ξ1, ξ3) d7ξ3

αHm5β5m6β6(ξ3, ξ5, ξ6)
)

d7ξ5d
7ξ6

× vm2(p2)
∂

∂pβ2
2

(0Gα′(ξ2, ξ4) d7ξ4
α′ Hm7β7m8β8(ξ4, ξ7, ξ8)) d7ξ7 d7ξ8

× Φm1β1m2β2(r1, t1, r2, t2)Φm5β5m7β7(r5, t5, r7, t7)Φm6β6m8β8(r6, t6, r8, t8). (A 11)

The term ((F̂Ĝ) + δ(F̂Ĝ))kl
α′′(r′, t′, ξ2) introduces the correction to the operator

(F̂Ĝ). We reiterate that the latter operator correlates with the bare Green function
of the canonical Wyld’s diagram technique; the correction δ(F̂Ĝ) introduces the
‘turbulent’ renormalization of this bare Green function. The corresponding formula
is

((F̂Ĝ) + δ(F̂Ĝ))kl
α (r′, t′, ξ2) = (F̂Ĝ)kl

α (r′, t′, ξ2) +
∑
α′α′′

∫
(F̂Ĝ)kl

α′(r′, t′, ξ3) d7ξ3

× α′ Hm4β4m5β5(ξ3, ξ4, ξ5) d7ξ4 d7ξ5 (F̂Ĝ)α′′m4β4(r4, t4, ξ6)d7ξ6

× α′′ Hm7β7m8β8(ξ6, ξ7, ξ8) d7ξ7 d7ξ8 (F̂Ĝ)αm7β7(r7, t7, ξ2)

× Φm5β5m8β8(r5, t5, r8, t8)

−
∑
α′

eα′

c

∫
(F̂Ĝ)kl

α′(r′, t′, ξ3) d7ξ3vm3(p3)

× ∂

∂pβ3
3

( ∫
0Gα′(ξ3, ξ4) d7ξ4

α′ Hm5β5m6β6(ξ4, ξ5, ξ6)
)

d7ξ5 d7ξ6
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× (F̂Ĝ)m6β6
α (r6, t6, ξ2)Φm3β3m5β5(r3, t3, r5, t5)

− eα

c

∑
α′

∫
(F̂Ĝ)kl

α′(r′, t′, ξ3) d7ξ3
α′ Hm4β4m5β5(ξ3, ξ4, ξ5) d7ξ4 d7ξ5

× (F̂Ĝ)m4β4
α (r4, t4, ξ6) d7ξ6vm6(p6)

∂

∂pβ6
6

0Gα(ξ6, ξ2)Φm5β5m6β6(r5, t5, r6, t6)

+
e2
α

c2

∫
(F̂Ĝ)kl

α (r′, t′, ξ3) d7ξ3 vm3(p3)

× ∂

∂pβ3
3

( ∫
0Gα(ξ3, ξ4) d7ξ4vm4(p4)

∂

∂pβ4
4

0Gα(ξ4, ξ2)
)

× Φm3β3m4β4(r3, t3, r4, t4). (A 12)

To complete our presentation, it remains to formulate the recipe for the calcu-
lation of the function (F̂Ĝ)kl

α (r, t, ξ). Conceptually, this function is the solution
to Maxwell equations when the ‘charge density’ is associated with the bare Green
function. The corresponding equations were written in the appendix of Erofeev
(1997) and we repeat them here:

1
c

∂

∂t
(F̂Ĝ)αβγ = − ∂

∂rβ
(F̂Ĝ)αγ0 +

∂

∂rγ
(F̂Ĝ)αβ0, (A 13)

1
c

∂

∂t
(F̂Ĝ)α

β0 = − ∂

∂rγ
(F̂Ĝ)α

βγ − 4π

c

∫
d3r1 dt1σ

βm·
· · γ(r, t, r1, t1)

× (F̂Ĝ) · γ
αm · (r1, t1, r′, p′, t′) − 4π

c
eα

∫
d3p vβ0Gα(r, p, t, r′, p′, t′).

(A 14)

In the last equation, the notation σβm·
· · γ(r, t, r1, t1) is for a conductivity tensor

that is given by ∑
α

eα

∫
d3p vβRm ·

α · γ(r, p, t, r1, t1).

When developing the lowest order kinetic equations for the weak turbulence
in Erofeev (1997, 1998a), the value of σβm·

· · γ(r, t, r1, t1) was calculated neglecting
the time evolution of the plasma parameters, which corresponded to the order of
consideration. In addition, it was appropriate to omit nonlinear corrections in R̂.
Due to this, it was possible to get solution to equations (A 13) and (A 14) using
techniques of the Fourier–Laplace transformation. The non-zero matrix elements
of the Fourier–Laplace transform of the operator (F̂Ĝ) was then

(F̂Ĝ)β0

αkω
(p′) =

1
−iω + 4πσkω

4πeα

∫
d3p

kβkγvγ

k2
0Gαkω(p, p′). (A 15)

For the problems of Langmuir kinetics the neglections mentioned are incorrect
and we should include into the scope the terms with the first-order time derivatives
of the linear part of the response 0R̂ and also corrections to 0R̂ of the first order
in the turbulence energy density. This does not lead to an essential complication in
the calculation of the matrix elements of the (F̂Ĝ)-operator.
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