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When a turbulent flow in a porous medium is determined numerically, the crucial
question is whether turbulence models should account only for turbulent structures
restricted in size to the pore scale or whether the size of turbulent structures could
exceed the pore scale. The latter would mean the existence of macroscopic turbulence
in porous media, when turbulent eddies exceed the pore size. In order to determine
the real size of turbulent structures in a porous medium, we simulated the turbulent
flow by direct numerical simulation (DNS) calculations, thus avoiding turbulence
modelling of any kind. With this study, which for the first time uses DNS calculations,
we provide benchmark data for turbulent flow in porous media. Since perfect DNS
calculations require the resolution of scales down to the Kolmogorov scale, often only
approximate DNS solutions can be obtained, especially for high Reynolds numbers.
This is accounted for by using and comparing two different DNS approaches, a finite
volume method (FVM) with grid refinement towards the wall and a lattice Boltzmann
method (LBM) with equal grid distribution. The solid matrix was simulated by a
large number of rectangular bars arranged periodically. The number of bars in the
solution domain with periodic boundary conditions was reduced systematically until
a minimum size was found that does not suppress any large-scale turbulent structures.
Two-point correlations, integral length scales and energy spectra were determined in
order to answer the question of whether or not macroscopic turbulence can be found
in porous media.

Key words: porous media, turbulence simulation, turbulent convection

1. Introduction
A flow in a porous medium is characterized by length scales of different magnitudes.

Assuming continuous fluid flow, i.e. a sufficiently small Knudsen number, the smallest
relevant geometric scale is the pore scale, which can be estimated by the average
hydraulic diameter of the pores. Next in the hierarchy of scales comes the size of a
representative elementary volume (REV), which is relevant in cases where pores are
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of very different individual sizes. For a homogeneous matrix with pores of the same
size and a flow in the laminar regime the size of an REV is of the order of the pore
size.

These considerations are important when it comes to the question of turbulent flow
in porous media. For high enough pore-scale Reynolds numbers the flow within the
pores will be turbulent since the connected pores can be viewed as microchannels.
Indeed, if the Reynolds number exceeds the critical Reynolds number for such
microchannels, the flow becomes turbulent. This is the same as for macroscopic
flows through conduits (Wibel & Ehrhard 2006, 2009).

The topic of turbulence in porous media was reviewed in recent books by de Lemos
(2012) and Nield & Bejan (2013) and in many review chapters, such as Lage, de
Lemos & Nield (2002), de Lemos (2004, 2005), and Vafai et al. (2006). There are two
distinct views on turbulence in porous media. The first view was originally expressed
in Nield (1991, p. 271) and then further developed in Nield (2001). According to this
view, true macroscopic turbulence, at least in a dense porous medium, is impossible
because of the limitation on the size of turbulent eddies imposed by the pore scale.
This prevents the transfer of energy from large to smaller turbulent eddies. Thus, any
turbulence in porous media is restricted to turbulence within the pores.

Although most published turbulence models attempt to obtain macroscopic
characteristics of flow in porous media, some of them do this by simulating
pore-scale turbulence. According to Nield (2001), the model developed by Nakayama
& Kuwahara (1999), due to the size of the periodic cell and the assumption of
periodicity, in fact simulates turbulence within the pores. The same applies to
Kuwahara et al. (1998).

The second class of models deals primarily with macroscopic turbulence in porous
media. Representative models are those developed by Lee & Howell (1991), Prescott
& Incropera (1995) and Antohe & Lage (1997). Macroscopic turbulence models have
also been used to simulate flow in a porous matrix represented by a periodic array of
square cylinders (Kazerooni & Hannani 2009; Kundu, Kumar & Mishra 2014).

Finally, many turbulence models attempt to simulate both pore-scale turbulence
and large-scale turbulence. Representative models are those developed by de Lemos
and colleagues, see de Lemos & Pedras (2000, 2001), Pedras & de Lemos (2000,
2001a,b,c, 2003), Rocamora & de Lemos (2000), de Lemos & Rocamora (2002),
de Lemos & Braga (2003), de Lemos & Mesquita (2003), Silva & de Lemos (2003)
and de Lemos & Tofaneli (2004).

The crucial question about the presence of macroscopic turbulence in porous media
cannot be addressed by Reynolds-averaged Navier–Stokes (RANS) equations and not
even by large-eddy simulation (LES), since these approaches involve turbulence
modelling which implicitly or explicitly involves presupposition about the size
of turbulent eddies. The only way to answer this question without ambiguity is
to refer to experiments or to direct numerical simulation (DNS) solutions, which
resolve turbulent flow accounting for all scales down to the Kolmogorov scale. Since
measurements within the porous matrix are more than challenging, DNS solutions
appear to be the best alternative.

In this paper we present results of extensive DNS investigations of the flow through
a generic porous matrix (GPM) described and discussed in § 2.

2. The porous matrix
2.1. The REV for turbulent flow

In order to define an REV we need to determine the smallest subvolume of a porous
matrix that shows the same flow behaviour as the flow behaviour that exists in the
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whole matrix. In the introduction it was argued that the REV is of the order of
the pore size when the flow is laminar (a low Reynolds number) and the matrix
is geometrically regular on the pore size. We called this REV-L and in addition
introduced a representative elementary volume REV-T. The REV-T is for a turbulent
flow; it must be larger than the REV-L if macroscopic turbulent eddies exist with
sizes much larger than the pore size.

By carefully selecting the size of REV-T, we avoid possible suppression of
large-scale turbulence caused by the periodicity of our model. This limitation is
discussed in Nield (2001), who pointed out that by simulating flow in a periodic cell
one may a priori rule out global eddies. We avoided this problem by making our
REV-T sufficiently large.

The main questions (assuming a regular porous matrix) are as follows.

(i) What is the size of REV-T?
(ii) Is REV-T much larger than REV-L in size, i.e. are there macroscopic turbulent

eddies in porous media?

2.2. A GPM for a DNS analysis
In order to investigate the size of turbulent eddies in porous media, we designed a
GPM. We used the following three assumptions.

(i) The matrix may have a regular structure since the size of turbulent eddies will
not be affected too much by irregularity of the matrix.

(ii) The matrix may be geometrically two-dimensional. This is because the turbulent
flow will be three-dimensional anyway, irrespective of whether the solid matrix
is two- or three-dimensional.

(iii) The porosity in our model is taken to be relatively high (0.78–0.94), since smaller
porosity will only result in stronger suppression of any possible macroscopic
turbulence. Thus, by selecting a porous matrix with a high porosity we are not
risking the suppression of any macroscopic turbulence that might occur otherwise,
i.e. for low porosity.

Figure 1 shows our GPM built from a large number of rectangular bars that were
arranged periodically to form a porous medium. For this geometry, the porosity ϕ is
defined as

ϕ = 1− 1
2

(
d
s

)2

, (2.1)

where s is the pore size and d is the elementary bar size (see figure 1). The
permeability of the GPM can be evaluated using correlations presented in Dullien
(1992). For our GPM, a larger porosity corresponds to a larger permeability. Since
the permeability can be expressed in terms of geometrical parameters of the porous
matrix, in our analysis we only specify the pore size and porosity.

Within this regular geometric structure a representative volume REV-L is of size
2s while the size of REV-T is yet unknown. A strategy to find the REV-T size was
as follows. We started with an REV-T that included a large number of elementary
bars, calculated the turbulent flow in that domain and then reduced the number of
bars systematically. As long as the results in a smaller domain were the same as the
corresponding results in a larger domain, a further reduction was appropriate.
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FIGURE 1. The GPM with the representative elementary volumes REV-L and REV-T
(REV-T occupies the whole area shown in figure 1). Here, ‘um’ is the mean flow velocity,
‘Nx1 ’ is the size of the REV-T in the ‘x1’ direction (in pore sizes), and ‘Nx2 ’ is the size
of the REV-T in the ‘x2’ direction.

3. Direct numerical simulation calculations in a porous medium
3.1. Preliminary remarks

The only way to completely avoid turbulence modelling in computational fluid
dynamics (CFD) solutions is to directly simulate the fluid flow, accounting for
all relevant length and time scales. This approach is known as DNS; see Moin
& Mahesh (1998) for a general introduction. Due to the enormous computational
resources required (cpu time and storage capacity), only certain benchmark cases (see
Ma, Karamanos & Karniadakis (2000), Parnaudeau et al. (2008) and Afgan et al.
(2011)) or special fundamental problems (Kis 2011; Jin & Herwig 2013, 2014) can
be handled by this method.

3.2. Direct numerical simulation methods
Two different methods which complement and verify each other were applied in this
study to look for possible macroscopic turbulence in porous media. They are

(i) an FVM which directly solves the Navier–Stokes equations;
(ii) an LBM which determines the particle distribution; this method indirectly

corresponds to solving the Navier–Stokes equations.

Both methods have been tested against each other in Jin, Uth & Herwig (2015)
for the problem of a turbulent flow along a rough wall. In Jin et al. (2015) wall
roughness was simulated by positioning two-dimensional bars on an otherwise smooth
wall, creating a geometry that is similar to the porous medium design shown in
figure 1.

3.2.1. The FVM
The governing equations to be solved for an incompressible flow of a Newtonian

fluid with an FVM are the Navier–Stokes equations. We non-dimensionalized these
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equations with d and um and used the Einstein summation convention. In Cartesian
coordinates these equations read (Herwig 2002)

∂ui

∂xi
= 0, (3.1)

∂ui

∂t
+ ∂(uiuj)

∂xj
=− ∂p

∂xi
+ 1

Re
∂2ui

∂x2
j
+ gi. (3.2)

The Reynolds number in (3.2) is defined as

Re= umd
ν
, (3.3)

where um and d are defined in figure 1 and ν is the kinematic viscosity of the fluid.
Equations (3.1)–(3.3) were solved in a three-dimensional computational domain, the

cross-section of which is the REV-T (see figure 1), and which extends in the third
direction by a length L3, see the discussion of this in § 4.3. We used periodic boundary
conditions on all boundaries of our computational domain since REV-T is an arbitrary
cutout with respect to the whole porous matrix. By periodic boundary conditions we
mean that all flow quantities (except the pressure in the flow direction) are equal on
opposing boundaries of the REV-T.

In (3.2) gi is a prescribed pressure gradient which ensures a particular flow rate.
The solution of (3.1)–(3.3) was advanced in time with the second-order implicit
backward Euler method. To compute the derivatives of the velocity, the variables at
the interfaces of the grid cells were obtained with linear interpolation. A second-order
central difference scheme was used for spatial discretization. The pressure at the new
time level was determined by the Poisson equation. The velocity was corrected by
the pressure-implicit scheme with splitting of operators (PISO) pressure–velocity
coupling.

3.2.2. The LBM
This method statistically models the propagation and interaction of particles and

thus simulates the flow. For small Mach numbers, the macroscopic velocities that then
emerge are solutions of the Navier–Stokes equations.

The basic equation for the LBM is a discretized version of the Boltzmann equation
for the particle distribution function f (ξ , x, t), which reads (see Aidun & Clausen
2009)

ξ
∂f
∂x
+ ∂f
∂t
=Θ. (3.4)

Here, f (ξ , x, t) is the probability to find a particle with velocity ξ at a position x at
a time t. The function f can be modified either by the motion of particles or by their
collisions, which are determined by the collision operator Θ in (3.4).

The lattice Boltzmann equation is a discretized form of the Boltzmann equation
that emerges after a discretization of velocity, space and time. For an isotropic fluid
the space can best be discretized by a uniform Cartesian grid. Velocity and time have
to be discretized such that a particle travels from one grid point to a neighbouring
grid point exactly in one time step. Different macroscopic velocities now correspond
to different probability distributions of the particle velocities. A standard grid for
modelling three-dimensional motions of this kind, shown in figure 2, is called a
D3Q19 grid (Succi 2001) (D3: three-dimensional; Q19: 19 discrete velocities).
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FIGURE 2. Grid structure and velocities with the D3Q19 discretization.

A crucial aspect in deriving the lattice Boltzmann equation is how to treat the
collision operator Θ in (3.4). A well-established approximation method is that
by Bhatnagar, Gross and Kook (BGK) (Bhatnagar, Gross & Krook 1954) which
models collisions as a relaxation to an equilibrium distribution function f eq

i . With this
approximation the lattice Boltzmann equation reads

fi(x+ ξi1t, t+1t)− fi(x, t)=−1
τ
( fi(x, t)− f eq

i (x, t)), (3.5)

τ is a relaxation time related to the fluid viscosity. The left-hand side of this
equation represents the propagation of particles while the right-hand side describes
the collisions. With an algorithm that executes these two steps, the collision step can
be calculated after a propagation step on every grid point (Jin et al. 2015).

3.3. Accuracy of DNS methods
Direct numerical simulation solutions need numerical grids that are fine enough to
resolve the smallest scales involved. Quite generally these smallest scales are of the
order of the Kolmogorov scale:

η= ν
3/4

ε1/4
, (3.6)

where ν is the kinematic viscosity of the fluid and ε is the local dissipation rate of the
turbulent kinetic energy. This scale strongly depends on the Reynolds number (roughly
η∼Re−3/4) so that DNS solutions quite generally are restricted to moderate Reynolds
numbers.

According to these considerations a perfect DNS solution would comply with the
condition 1xi/η6 1, where 1xi (i= 1, 2, 3) are the step sizes in the three dimensions
of the solution domain. This, however, can hardly be achieved, especially very close

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.9


82 Y. Jin, M.-F. Uth, A. V. Kuznetsov and H. Herwig

to the solid walls where the local dissipation rate ε is very large. One should also
keep in mind that the Kolmogorov condition is a local statement about the numerical
resolution. When 1xi/η 6 1 cannot be met locally it is hard to say how this affects
the solution further away or in the whole domain.

As an alternative measure of the overall accuracy of our solutions we introduced a
quantity ∆, called the accuracy measure, which we defined as

∆= gp − gs

gp
. (3.7)

This was based on the following considerations. In fully developed flows, such as
that through our GPM, the pressure gradient gi in (3.2) can be determined in two
ways, either by evaluating the pressure in two opposing cross-sections (we denoted
this pressure gradient by gp) or by integrating the dissipation of mechanical energy
between them,

gs = 2
V0 Re

∫
V

sijsijdv, (3.8)

where the non-dimensionalized strain rate is defined by sij= (∂ui/∂xj + ∂uj/∂xi)/2 and
V0 is the volume of the computational domain.

For a perfect DNS solution the accuracy measure ∆ would be zero since in such a
case gp = gs. In real DNS gs will always be smaller than gp since not all scales are
resolved and certain local dissipation effects are missing. For example, the ∆ values
are 0.1 %–1.5 % for the DNS results for a flow in a channel with smooth walls while
they are 7 %–10 % for more complicated turbulent flows such as a flow in a channel
with rough walls (see Jin & Herwig 2013, 2014).

For reasons explained later we start with low-resolution results, testing various
parameter variations in § 4, and then move on to high-resolution results in § 5.
Low and high resolution are determined with respect to the accuracy measure ∆:
low-resolution results are those with ∆ well above 10 % while high-resolution results
have ∆ values well below 10 %.

4. Low-resolution results
Since the main question in our study is whether large-scale turbulence occurs in

porous medium flows, we (as a first step) determine the size of the REV-T with low-
resolution DNS results. These solutions are obtained with numerical grids with step
sizes 1xi, for which 1xi/η is larger than one in an appreciable part of the solution
domain close to the walls and for which ∆, defined by (3.7), is well above 10 %.
The underlying assumption is that the large-scale motion is not critically influenced by
missing small scales. This assumption is supported by the generally small backscatter
(energy transfer from small to large scales) in turbulent flows but nevertheless will be
verified with the final solutions based on high-resolution results.

4.1. Test cases 1–4
Taking into account the requirements with respect to the REV-T as well as the
available computer resources we selected test cases 1–4 with parameter values
according to table 1. We choose the obstacle size d as the length scale and
refer all geometric parameters to d. Thus we do not fix the actual pore size but
determine non-dimensional results. These results can be interpreted as different cases
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FIGURE 3. (Colour online) Flow field details in one REV-L element shown by isosurfaces
Q · d2/u2

m = 10, colour coded with the instantaneous non-dimensional vertical velocity u2.
(a) Test case 1, FVM; (b) test case 4, LBM.

Test case Pore size s Domain size Mesh resolution Accuracy
L1 L2 L3 M1 M2 M3 gp gs ∆ (%)

1 2d 20d 20d 10d 280 280 140 0.197 0.12 39
2 2d 12d 8d 4d 168 112 56 0.192 0.12 38
3 2d 12d 4d 4d 168 56 56 0.194 0.12 38
4 2d 16d 16d 8d 640 640 320 0.197 0.16 21

TABLE 1. Parameters of the test cases 1–4 (1–3: FVM; 4: LBM). Here, d is the size of
the bars, see figure 1, Re= umd/ν = 500, s/d= 2, ϕ = 0.88 for all cases.

by assigning different values to the length d, for example d= 1 mm or d= 0.1 mm.
All values are possible as long as the Navier–Stokes equations (which are solved in
the incompressible limit assuming no slip at the solid boundaries) are an adequate
theoretical model for the flow.

Figure 3 shows a turbulent flow structure in a part of the solution domain. Surfaces
of constant values Q · d2/u2

m = 10 shown in this figure represent the vortex structure.
The quantity Q is the second invariant of the instantaneous velocity gradient tensor,
which is defined by −((∂ui/∂xj)(∂uj/∂xi))/2 for an incompressible flow. Figure 3
shows that for this value of Q no large-scale structures can be identified; this
also holds for larger Q values. Some of the turbulent structures may reach into
neighbouring pores but they never extend far into the porous matrix. It should be
noted that in figure 3 we show the same case (s/d= 2 and Re= 500) solved by the
two DNS methods. Due to the relatively high resolution away from the walls the
LBM results show more details of the small-scale structures compared with the FVM
solution. Further details of the test case solutions are discussed in § 6 below.
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–0.2

0

0.2

0.3

–0.3

FIGURE 4. (Colour online) Two-point correlation R11/u2
m in the computational domain

for test case 1. The correlation point x0 is marked by the cross in the middle.

4.2. Two-point correlations
One way to detect turbulent structures and analyse their scales is to determine two-
point correlations in the flow field. By this technique one looks at two quantities of the
same kind in the flow field which are a certain distance r apart. When these quantities
are subject to fluctuations (as in a turbulent flow), their fluctuations with respect to
the corresponding time mean value 〈· · ·〉 will have positive and negative values alike.

When a is such a quantity, we write a= 〈a〉 + a′ with 〈a′〉 = 0 as a consequence of
the splitting into time mean and fluctuating parts. When two such fluctuating quantities
a1 and a2 are considered, we have 〈a′1〉 = 0 and 〈a′2〉 = 0, but it is an open question
how 〈a′1a′2〉 would behave. When a1 and a2 are totally uncorrelated, the chances for
a′1a′2 to be positive or negative are the same and thus 〈a′1a′2〉 = 0. When, however, a
physical correlation of whatever kind exists, there will be a non-zero value of 〈a′1a′2〉
indicating this correlation.

The two-point correlation between the quantities a′i(x) and a′j(x0 + r) at a certain
time t is called a two-point one-time autocovariance (Pope 2000) and it is defined as

Rij(r, x0)= 〈a′i(x, t)a′j(x0 + r, t)〉. (4.1)

When u′1(x0, t) and u′1(x0 + r, t) are correlated, we have

R11(r, x0)= 〈u′1(x0, t)u′1(x0 + r, t)〉. (4.2)

Figure 4 shows such correlation for test case 1 (see table 1) at x0= (L1/2, L2/2, L3/2),
i.e. in the middle of the computational domain with r covering the whole (x1, x2)
plane. From the colour coding it is evident that there is a strong correlation next
to the point x0. However, there are also non-zero correlations around each obstacle
irrespective of the distance to the correlation point x0. These correlations obviously
appear due to the fact that a locally similar unsteady flow occurs around each of the
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individual obstacles. The appearance of these correlations is not due to the interaction
with turbulent structures at x0. Figure 3 shows that small turbulent structures build up
around each obstacle, being confined to the pore of origin or its immediate vicinity.
Thus, these small structures may affect the neighbouring pores but not those further
away. Correlations in the far field are related to an almost two-dimensional vortex
shedding blurred by turbulence, which occurs at all bars simultaneously. Figure 3(a,b)
shows how such a vortex is formed all along the top bar. A similar kind of two-
dimensional vortex shedding would also be found in laminar flow and, thus, we call
the part of the two-point correlation that is not caused by turbulence a non-turbulent
correlation.

The problem now is to distinguish the non-turbulent correlation from the true
turbulent correlation that we are interested in. For this purpose we introduced a
two-point lateral correlation, which for u′1(x0, t) and u′1(x0 + r, t), for example, is
defined as

R̃11(r3, r, x0)= 〈u′1(x0, t)u′1(x0 + r+ r3e3, t)〉, (4.3)

where e3 is the unit vector in the x3 direction and r is a vector within the (x1, x2) plane.
Since it turned out that the non-turbulent correlation in the regular porous medium of
our test cases is the same on all levels r3, we can subtract R̃11 from R11 and obtain
the turbulent correlation providing that r3 is sufficiently large. ‘Sufficiently large’ here
means that the two correlation planes are sufficiently far apart so that there will be
no correlation due to large-scale turbulent structures between them. Then R̃11(r3, r, x0)

according to (4.3) is the non-turbulent correlation.
Figure 5 shows (R11 − R̃11) distributions for increasing values of r3. Once r3 is

sufficiently large (here for r3 > 1.5d), there is no change in (R11 − R̃11) any more
because then r3 exceeds the length scale of the largest turbulent interactions. What
is left is the turbulent correlation:

R̂11(r, x0)= R11(r, x0)− R̃11(r3 > r3c, r, x0), (4.4)

where r3c is the critical value of r3 up to which there is an influence of large-scale
structures.

In § 6.1 we will show Rij and R̃ij for high-resolution data, demonstrating that their
difference (which is denoted by R̂ij) is non-zero only where turbulent correlations
occur.

Figure 6 shows three points within the flow field which are correlation points, with
the point x0 of figures 4 and 5 being one of them. The (similar) isosurfaces R̂11 around
these points show that the non-zero correlation extension is of the same order of
magnitude (with x0 having the largest area around it occupied by the same non-zero
correlation values). This suggests that the point x0 used thus far can indeed be taken
as a representative correlation point.

4.3. Parameter variations
The low-resolution results obtained thus far were for the pore size s/d = 2 and the
Reynolds number Re= 500. Both parameters should be varied systematically in order
to determine their influence. We did this according to table 2, introducing the case
labelling A–F.

So far case A has been determined in terms of low-resolution results; see table 1
for the four test cases of this category. In table 3 low-resolution solutions are shown
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FIGURE 5. (Colour online) Plots of (R11 − R̃11)/u2
m for different r3 in the computational

domain for test case 1 (Re = 500, s/d = 2). The correlation point x0 is marked by the
cross in the middle. The zoomed contours inside the frame of figure 5(d) are shown in
figure 6. (a) r3 = 0.2d; (b) r3 = 0.5d; (c) r3 = 1.5d; (d) r3 = 5d= L3/2.

for cases B–E, determined by the FVM approach. So far only the accuracy measures
∆ are given. Details of the solutions will be discussed in § 6 below. Case F with the
highest Reynolds number will be calculated only with high resolution after the trends
of parameter influences for the five cases A–E have been determined.

4.4. Size determination for REV-T
As argued at the beginning of § 4, the minimum size of the REV-T can be determined
from the low-resolution results and then used for the high-resolution calculations. On
analysing the solutions obtained so far and especially looking at figure 5 it is evident
that in all three directions only a few pore sizes s are needed in order to define
a solution domain large enough to avoid the suppression of large-scale turbulent
structures. For further clarification, figure 7 shows the two-point correlations R11,
R22 and R33 according to (4.1) of the three velocity fluctuation components u′1, u′2
and u′3 in a plane x1 = L1/2, for test case 1 in table 1. While R11 and R22 show
correlations for velocities perpendicular to the bars of the porous matrix (and thus
show a repeating pattern), R33 is the correlation of a velocity component along
the bars.
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0.025

0.050

0.075

0.1

0

FIGURE 6. (Colour online) Isosurfaces of R̂11/u2
m at three points; decreasing values for

increasing distance from the correlation points, see the colour coding.

Re= 500 s/d= 2 (ϕ = 0.88)
Pore size variation Reynolds number variation

s/d= 2 s/d= 3 s/d= 1.5 Re= 600 Re= 700 Re= 1000
(ϕ = 0.88) (ϕ = 0.94) (ϕ = 0.78)

A B C D E F

TABLE 2. Cases A–F for different pore sizes and Reynolds numbers. The test cases in
table 1 all belong to case A.

Test case Pore size Re Domain size Mesh resolution g gs ∆ (%)
s L1 L2 L3 M1 M2 M3

B 3d 500 30d 30d 10d 420 420 150 0.066 0.047 29
C 1.5d 500 15d 15d 6d 600 600 150 0.890 0.682 23.4
D 2d 600 20d 20d 10d 320 320 150 0.198 0.122 38
E 2d 700 20d 20d 10d 360 360 150 0.199 0.118 41

TABLE 3. Cases B–E, low resolution (FVM).

In all three directions the limited range of the non-zero correlation values is clearly
visible. Since the periodic boundary conditions on the domain boundaries are an
unphysical constraint in the numerical solution process, we choose minimum solution
domain sizes conservatively, to be ‘on the safe side’. Thus, L3/d can be set to a
rather low value (L3/d = 4) for all subsequent calculations, see figure 7(a), where
a 4d spacing is indicated by the two vertical lines. This is in accordance with a
suggestion by Afgan et al. (2011), who also set L3/d = 4 for simulations of a flow
around a single cylinder or around two parallel cylinders. In the other two directions
high-resolution results will be determined with L1/s= 6 and L2/s= 4.
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4d

0 0.2

–0.2 0.36

0.04 0.08 0.12 0.16

0.18

0.0750.0500.0250

0.10.036 –0.01

(a) (b) (c)

FIGURE 7. (Colour online) Two-point correlations in the plane x1 = L1/2 for test case 1,
see table 1: (a) R11/u2

m; (b) R22/u2
m; (c) R33/u2

m.

5. High-resolution results

In table 4 parameters and pressure gradient results of all high-resolution solutions
are given, including the mesh resolution and accuracy measures for the FVM and
LBM approaches respectively.

The domain size for all cases is such that L1/s = 6 and L2/s = 4, so that for all
cases there are 12 bars in the solution domain. Not all cases have been calculated
with both methods; those for higher Reynolds numbers have been determined either
by the FVM or by the LBM approach due to limited computer resources. Here,
36–123 million grid points were used in the FVM cases while 100–384 million grid
points were used in the LBM cases. All calculations were performed at the North
Germany Supercomputing Alliance (HLRN/Norddeutscher Verbund zur Förderung
des Hoch- und Höchstleistungsrechnens) with 480 processors of the Cray XC30. The
CPU time (processor number × computing time) for one test case in table 4 varied
between 25 000 and 58 000 h. More details with respect to the mesh resolution, time
step and other computational details are given in appendix A.

The accuracy measure ∆ shows values <10 %, which has been set as the criterion
for high-resolution results, see the end of § 3.3. The only exception from this rule is
case C/FVM with ∆ = 11.1 %. Since this is the case with the lowest value of s/d,
the solution domain has the highest portion of near-wall areas. This is where DNS
solutions cannot always meet the Kolmogorov condition 1xi/η<1, so that more small-
scale motions are missing in the integration of the local entropy generation (which
leads to gs) than in the other cases in table 4.
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Case Method s/d Re Domain size Mesh resolution Accuracy
L1/d L2/d L3/d M1 M2 M3 gp gs ∆ (%)

A FVM 2 500 12 8 4 720 480 150 0.190 0.180 5.3
LBM 2 500 12 8 4 768 512 256 0.196 0.177 9.7

B FVM 3 500 18 12 4 960 640 150 0.052 0.051 2.9
LBM 3 500 18 12 4 1152 768 256 0.052 0.048 7.7

C FVM 1.5 500 9 6 4 600 400 150 0.900 0.800 11.1
LBM 1.5 500 9 6 4 900 600 400 0.900 0.830 7.8

D FVM 2 600 12 8 4 840 560 180 0.190 0.180 5.3
LBM — — — — — — — — — — —

E FVM 2 700 12 8 4 960 640 200 0.188 0.176 6.4
LBM — — — — — — — — — — —

F FVM — — — — — — — — — — —
LBM 2 1000 12 8 4 1200 800 400 0.185 0.170 5.6

TABLE 4. Cases A–F, high resolution.

Details of the solutions given in table 4 will be used in § 6. As an example, one
snapshot of the instantaneous flow field in a part of the solution domain for case F
with Re = 1000 is shown in figure 8. The vortical structures are identified by the
isosurfaces of Q, now with Q · d2/u2

m = 1. Most of the large vortices have the same
length scale as the pore size s (figure 8). The vortices in one REV-L element may
have a slight influence only on the neighbouring elements.

6. Discussion of the results
All results obtained in this study will now be discussed with respect to the following

two crucial questions.

(i) Is there macroscopic turbulence in porous media?
(ii) Can low-resolution DNS results be used to answer fundamental questions (like

the one above)?

We will give a direct answer to the first question and indirectly address the second
one. Both questions will be addressed by considering three aspects of the turbulent
flow through porous media in the following three subsections.

6.1. Two-point turbulent correlations

Two-point correlations R̂ii = Rii − R̃ii as a generalization of the two-point correlation
R̂11 = R11 − R̃11 (see (4.4)) are characteristic quantities with respect to the range of
impact of turbulent structures referred to a certain point x0 in the flow field. So
far they have been shown by colour coding in figures 5 and 7. A more accurate
presentation will be given from now on in terms of R̂ii distributions along a certain
line in the flow field. According to their definitions (see (4.2) and (4.3) which define
R11 and R̃11 respectively), the two correlations Rii and R̃ii will differ from each
other only when there are turbulent correlations in addition to the non-turbulent
correlations. This means that when turbulent correlations vanish at large distances
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–0.4 –0.2 0 0.2 0.4

0.5–0.5

FIGURE 8. (Colour online) Snapshot of parts of the flow field in two REV-L elements,
case F (Re = 1000, s/d = 2), isosurfaces Q · d2/u2

m = 1, colour coding with the
instantaneous vertical velocity u2.

from the correlation point, Rii and R̃ii become equal. Figure 9 shows three two-point
correlations, R11, R22 and R33, as well as the corresponding two-point non-turbulent
correlations, R̃11, R̃22 and R̃33, in both directions (see figure 9a–c for the streamwise
direction and figure 9d–f for the transverse x2 direction). Outside one pore size Rii

and R̃ii are virtually equal, which in figures 10–13 for R̂ii = Rii − R̃ii leads to zero
values of R̂ii for distances greater than s away from the correlation point.

In figure 10 we show that the typical correlations R̂ii in the streamwise direction
(x1 direction) and in the transverse direction (x2 direction) are very similar, at least
with respect to the range of non-zero values. They all are virtually zero beyond
|(xi − xi0)|/s> 1, i.e. they drop to zero over a length of one pore scale s, indicating
that the largest turbulent structures are of that size. Small non-zero values may occur
when some turbulent structures reach into neighbouring pores.

Figure 11 shows R̂ii for the same parameter values, Re= 500 and s/d= 2, but for
different sizes of the solution domain. They are those of the test cases 1–3, see table 1,
and in addition two cases with even smaller domain sizes (8d × 8d × 4d and 4d ×
4d× 4d). For all five cases the R̂ii distributions are very similar, which confirms our
assumption of being on the safe side with our choice of the domain size for the high-
resolution cases A–F in table 4.

Figure 12 shows the effect of a variation of the pore size (or porosity), while
figure 13 shows the effect of a Reynolds number variation. Variations of either
parameter only marginally influence the R̂ii distributions. With an increasing pore
size s (or porosity ϕ), the distributions of R̂22 and R̂33 in the x1 direction become

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.9


A DNS study of turbulence in porous media 91

–3 –2 –1 0 1 2 3
–0.2

0

0.2

0.4

–2 –1 0 1 2

–3 –2 –1 0 1 2 3 –2 –1 0 1 2

–3 –2 –1 0 1 2 3 –2 –1 0 1 2

–0.2

0

0.2

0.4

–0.1

0

0.1

0.2

0

0.05

0.10

0.15

0.20

0.25

0

0.07

0.14

0

0.06

0.12

(a)

(b)

(c)

(d)

(e)

( f )

FIGURE 9. (Colour online) Two-point and non-turbulent two-point correlations in the
streamwise direction (a–c) and transverse x2 direction (d–f ). The reference point is in
the centre of the solution domain (x10, x20), Re = 500, s/d = 2, high-resolution LBM
results. Here, —— indicates two-point correlations; – – – indicates non-turbulent two-point
correlations.

slightly wider. However, their non-zero values are still only found in the REV-L
domain, which means that |x1 − x10|6 s (see figure 12b,c). Altogether, the two-point
correlations indicate that the scales of the turbulent structures are of the pore size s.

6.2. Integral length scales

Another way to quantify the size of large eddies is to determine their integral length
scales. These length scales are defined as longitudinal, transverse and spanwise lengths
Lii, similar to the definitions in Pope (2000) for homogeneous and isotropic turbulent
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FIGURE 10. (Colour online) Turbulent two-point correlations in the streamwise direction
(a–c) and transverse x2 direction (e–f ). The reference point is in the centre of the solution
domain (x10, x20), the domain size is 6s× 4s× 4d, Re= 500, s/d= 2. Here, —— indicates
high-resolution FVM results, case A, see table 4; – – – indicates low-resolution FVM
results, test case 2, see table 1; – · – · – indicates high-resolution LBM results, case A,
see table 4.

flows:

L11 =
∫ ∞
−∞

R̂11(r1e1, x0)
/

û′21 (x0)dr1, (6.1)

L22 =
∫ ∞
−∞

R̂22(r1e1, x0)
/

û′22 (x0)dr1, (6.2)

L33 =
∫ ∞
−∞

R̂33(r1e1, x0)
/

û′23 (r0)dx1, (6.3)
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FIGURE 11. (Colour online) Turbulent two-point correlations in the streamwise direction
(a–c) and transverse x2 direction (e–f ). The reference point is in the centre of the solution
domain (x10, x20), Re = 500, s/d = 2, low-resolution FVM results. Various line types
indicate different domain size L1 × L2 × L3. Here, —— indicates 20d × 20d × 10d,
– – – indicates 12d × 8d × 4d and - - - - - indicates 12d × 4d × 4d, i.e. test cases 1–3
respectively (table 1); – · – · – indicates 8d× 8d× 4d and — · · — indicates 4d× 4d× 4d.

where û′i(x0) is the root-mean-square (r.m.s.) turbulent velocity component, which can
be calculated as

û′i(x0)= R̂ii(0, x0)
1/2. (6.4)

We use these definitions despite the fact that the flow through porous media is not one
with isotropic and homogeneous turbulence. However, since we are only interested in
the order of magnitude of these length scales (pore or domain size), we assumed that
the Lii length scales obtained from (6.1)–(6.3) are of the same order of magnitude as
the corresponding length scales of the non-isotropic turbulence prevailing in porous
medium flows.
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FIGURE 12. (Colour online) Turbulent two-point correlations in the streamwise
direction (a–c) and transverse x2 direction (e–f ). The reference point is in the centre
of the solution domain (x10, x20), pore size variations, Re = 500, high-resolution
FVM results. Here, —— indicates s/d = 1.5 (ϕ = 0.78, case C/FVM), – – –
indicates s/d = 2 (ϕ = 0.88, case A/FVM) and – · – · – indicates s/d = 3 (ϕ = 0.94,
case B/FVM).

Table 5 gives length scale values for all cases A–F from table 4 (high-resolution
results), non-dimensionalized with the pore scale s. The length scale L11/s is larger
than the other two length scales for all the cases. As the pore size s is increased
from 1.5d to 3d (or the porosity ϕ is increased from 0.78 to 0.94), the values of L22/s
and L33/s increase moderately, but they are still smaller than 1 (see these values for
cases B/FVM and C/FVM in table 5). Altogether, the integral length scale data again
indicate that the scales of the turbulent structures are of the pore size s.
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FIGURE 13. (Colour online) Turbulent two-point correlations in the streamwise direction
(a–c) and transverse x2 direction (e–f ). The reference point is in the centre of the solution
domain (x10, x20), Reynolds number variations, s/d = 2, high-resolution FVM results.
Here, —— indicates Re= 500 (case A/FVM), – – – indicates Re= 600 (case D/FVM) and
– · – · – indicates Re= 700 (case E/FVM).

6.3. Energy spectra and their premultiplied form
For sufficiently high Reynolds numbers energy spectra have been derived by
Kolmogorov (1941) under the assumption of locally homogeneous and isotropic
turbulence being statistically in equilibrium. They are

Êii(x0, k1)= 1
π

∫ ∞
−∞

R̂ii(x1e1, x0) exp(−ik1x1)dx1. (6.5)

Again, as an approximation, we use this definition, although the flow through porous
media is not one with isotropic and homogeneous turbulence. Figure 14 shows these
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Case s/d ϕ Re L11/s L22/s L33/s

A/FVM 2 0.88 500 0.52 0.36 0.21
A/LBM 2 0.88 500 0.50 0.35 0.24
B/FVM 3 0.94 500 0.48 0.35 0.37
C/FVM 1.5 0.78 500 0.46 0.22 0.18
D/FVM 2 0.88 600 0.50 0.31 0.22
E/FVM 2 0.88 700 0.47 0.30 0.20
F/LBM 2 0.88 1000 0.41 0.28 0.17

TABLE 5. Integral length scales assuming isotropic flow, obtained from (6.1)–(6.3).

spectra for the low Reynolds number Re = 500 and s/d = 2 for three solutions. An
indication of a sufficiently high Reynolds number is a distinct inertia range with a
slope of −5/3, shown by the straight lines in figure 14. Figure 15(a–c) shows that this
region becomes more pronounced for larger Reynolds numbers, when Re is increased
from 500 to 1000.

The energy spectra in figure 15(a–c) are multiplied by k1s and plotted on semi-
logarithmic axes in figure 15(d–f ); these are also called premultiplied energy spectra.
For pipe/channel flows, Jimenez (1998) suggests the use of this type of plot to identify
the k−1

1 range, in which k1Ê11 ≈ constant. Guala, Hommema & Adrian (2006) and
Balakumar & Adrian (2007) indicate that two peaks in the k−1

1 range represent the
very-large-scale motions (VLSMs) which have the maximum wavelength and the large-
scale motions (LSM) which have the minimum wavelength.

In our study, a region of k1Ê11≈ constant can also be found (see figure 15d), which
may indicate the range of large-scale turbulent motions. The peak of k1Ê11 with the
maximum wavelength of Λ = 2π/k1 ≈ 2s (the corresponding wavenumber k1 ≈ 3/s),
which is the same as the size of an REV-L element. With increasing Reynolds
number, the energy carried by large-scale motions becomes lower, suggesting that the
large-scale turbulence motions are even less important at larger Re. The maximum
wavelengths corresponding to the peaks for k1Ê22 and k1Ê33 are approximately 1.25s.

The effects of the pore size s (or porosity ϕ) on the energy spectra and the
premultiplied energy spectra are shown in figure 16. Similar inertia ranges can be
observed in all three test cases (see figure 16a–c). As the pore size s is increased from
1.5d to 3d (or porosity ϕ is increased from 0.78 to 0.94), the maximum wavelengths
corresponding to the peaks for k1Ê11, k1Ê22 and k1Ê33 are slightly increased (see
figure 16d–f ), but they never exceed the size of an REV-L element, 2s. Altogether,
the energy spectra data support the previous findings that turbulent structures are of
the pore size scale s.

7. Conclusions

We believe that the results obtained in this study can provide the answer to the
question of whether or not macroscopic turbulence exists in porous media, even
though a special generic matrix was defined and used in all calculations. The
underlying assumption is that there is no fundamental qualitatively different flow
behaviour when the porous matrix is changed from two-dimensional regular to
three-dimensional irregular geometry. As we have shown, the pore size restricts
the size of turbulent structures even in a two-dimensional matrix unrestricted in
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FIGURE 14. (Colour online) Energy spectra of the turbulent motions obtained from
(6.5) for different cases, Re = 500, s/d = 2: ◦ ◦ ◦ ◦ ◦ ◦, high-resolution FVM results,
case A (table 4); ××××××, low-resolution FVM results, case 2 (table 1); ++++++, high-
resolution LBM results, case A (table 4).

the third dimension. We expect that a three-dimensional matrix will not weaken
or even eliminate these restrictions on the size of turbulent structures. Irregularities
in pore sizes and shapes may lead to locally different restrictions but not to their
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FIGURE 15. (Colour online) Energy spectra of the turbulent motions according to
(6.5) for increasing Reynolds numbers; s/d = 2, high-resolution results. (a–c) Energy
spectra; (d–f ) premultiplied energy spectra; ++++++, Re= 500 (case A/LBM); ××××××,
Re= 700 (case E/FVM); ◦◦◦◦◦◦, Re= 1000 (case F/LBM).

disappearance as a whole. Our porous matrix is not very tortuous; its tortuosity is
close to unity. However, we expect that increasing tortuosity will further dampen any
possible macroscopic turbulence.

The analysis of all DNS data obtained in this study shows that the sizes of turbulent
structures do not extend far beyond the pore scale. This agrees with the prediction
made in Nield (1991) and asserted in Nield & Bejan (1992, p. 8). We further found
that certain turbulent structures may have a slight impact on immediately neighbouring
pores. This impact, however, decays further away so that no large-scale structures
prevail. This statement is in accordance with all two-point correlation data (see figures
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FIGURE 16. (Colour online) Energy spectra of the turbulent motions according
to (6.5) for different pore sizes; Re = 500, high-resolution results. (a–c) Energy
spectra; (d–f ) premultiplied energy spectra; ××××××, s/d= 1.5 (ϕ = 0.78, case A/FVM);
++++++, s/d= 2 (ϕ = 0.88, case A/LBM); ◦◦◦◦◦◦, s/d= 3 (ϕ = 0.94, case FVM).

5 and 10–13), all approximate integral length scale data (see table 5) and all energy
spectrum data (see figure 14). This general finding is visualized by the snapshot in
figure 8 showing turbulent structures of various sizes, all of them limited in their
extension to values well beyond the pore scale s.

Our low- and high-resolution DNS results also show that missing the turbulent
fine scales due to an insufficient numerical resolution nevertheless allows conclusions
about the large turbulent scales. Obviously, turbulent backscatter is weak so that, for
example, the two-point correlations for the case A/FVM with the accuracy measure
∆= 5.3 % are similar to those of the test case 2 with ∆= 38 %, as can be seen in
figure 10. Details such as the high-wavenumber energy content, however, are very
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Test case (1x1/d)c (1x1/d)w (1x2/d)c (1x2/d)w 1x3/d

(a) Low-resolution FVM cases (cf. table 3)
A 0.13 0.026 0.13 0.026 0.071
B 0.14 0.028 0.14 0.028 0.067
C 0.10 0.020 0.01 0.020 0.040
D 0.11 0.022 0.11 0.022 0.071
E 0.10 0.020 0.10 0.020 0.071

(b) High-resolution FVM cases (cf. table 4)
A 0.032 0.0064 0.032 0.0032 0.027
B 0.039 0.0078 0.039 0.0078 0.027
C 0.024 0.0048 0.024 0.0048 0.027
D 0.028 0.0056 0.028 0.0056 0.022
E 0.024 0.0048 0.024 0.0048 0.020

TABLE 6. Details of the mesh resolution for the FVM cases: (. . .)w, near the wall;
(. . .)c, near the centre of an REV-L. ‘1x3’ was uniformly distributed.

sensitive to the fine-scale resolution, as can be seen in figure 14 comparing low- and
high-resolution energy spectrum data.

Future studies should address increase of the Reynolds number beyond 1000,
which was the maximum Reynolds number used in our study. The periodicity and
two-dimensionality of the solid matrix used in this research should also be relaxed.
Porous media with larger tortuosity could also be considered.
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Appendix A
The meshes for the FVM cases are body fitted and are concentrated near the wall,

while they are uniformly distributed for the LBM cases. More details, such as the
ratios of the cell size 1xi to the obstacle size d near the wall and near the channel
centre, are given in table 6.

Two kinds of initial conditions have been tested in our study. The first one is the
uniform velocity field plus a sinusoidal perturbation which has the form

ui(xj)= um + A1i sin(ϕ1ixj)+ A2i sin(ϕ2ixj)+ A3i sin(ϕ3ixj)+ A4i sin(ϕ4ixj), (A 1)

where um is the mean velocity shown in figure 1. Here, Aki and ϕki are parameters
of an artificial perturbation. The second type of initial condition is an interpolation of
the initial field from another fully developed turbulent flow. Our numerical simulations
show that the statistical results of the fully developed flow field are not influenced by
the initial field.

The time steps for the LBM cases are 0.000625 non-dimensional time units for
Re= 500 (test cases A–C) and 0.0003 non-dimensional time units for Re= 1000 (test
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case F). Here, the time is normalized by d/um. A larger time step (1t = 0.01) is
used in our FVM cases since an implicit backward Euler method is employed for
time marching. The test cases were computed until the statistical values, such as the
turbulent two-point correlations, did not change with time any more. This process
usually needs the computation of 250 wash-out cycles in one REV-L element, which
is 1000 time units in case A, for example.
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