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This paper deals with the specification problem in classical realizability (such as introduced

by Krivine (2009 Panoramas et synthèses 27)), which is to characterize the universal realizers

of a given formula by their computational behaviour. After recalling the framework of

classical realizability, we present the problem in the general case and illustrate it with some

examples. In the rest of the paper, we focus on Peirce’s law, and present two game-theoretic

characterizations of its universal realizers. First, we consider the particular case where the

language of realizers contains no extra instruction such as ‘quote’ (Krivine 2003 Theoretical

Computer Science 308 259–276). We present a first game G0 and show that the universal

realizers of Peirce’s law can be characterized as the uniform winning strategies for G0, using

the technique of interaction constants. Then we show that in the presence of extra

instructions such as ‘quote’, winning strategies for the game G0 are still adequate but no

more complete. For that, we exhibit an example of a wild realizer of Peirce’s law, that

introduces a purely game-theoretic form of backtrack that is not captured by G0. We finally

propose a more sophisticated game G1, and show that winning strategies for the game G1

are both adequate and complete in the general case, without any further assumption about

the instruction set used by the language of classical realizers.

1. Introduction

The correspondence between proofs and programs – also known as the Curry–Howard

correspondence (Curry and Feys 1958; Girard 1989; Howard 1969) – has brought a deep

renewal in proof theory, by establishing strong connections between the concepts of proof

theory and the concepts of functional programming. For a long time, the computational

interpretation of proofs induced by this correspondence was strictly limited to intuitionistic

logic and to constructive mathematics, and the computational contents of classical

proofs could only be studied indirectly, via clever translations – the so called negative

translations – from classical logic to intuitionistic logic (Friedman 1978) or to linear

logic (Girard 2006).

In Griffin(1990), he discovered that in the programming language scheme (Sperber

et al. 2009), the control operator call/cc (for ‘call with current continuation’) could

be given the type ((A → B) → A) → A corresponding to Peirce’s law through the

formulas-as-types interpretation (Howard 1969). Since, Peirce’s law constructively implies

all the other forms of classical reasoning (excluded middle, double negation elimination,
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reductio ad absurdum, de Morgan laws, etc.), this discovery opened the way to a direct

computational interpretation of all classical proofs, using control operators and their

ability to implement backtrack to interpret classical reasoning principles. Many classical

λ-calculi have been introduced from these ideas, such as Parigot’s λμ-calculus (Parigot

1997), Barbanera and Berardi’s symmetric λ-calculus (Barbanera and Berardi 1996),

Krivine’s λc-calculus (Krivine 2009) or Curien and Herbelin’s λ̄μ-calculus (Curien and

Herbelin 2000).

However, the analysis of the computational behaviour of programs extracted from

classical proofs quickly proved to be difficult. One reason for this was the presence of

control operators, which naturally break the linearity of the execution flow of programs.

But the main reason was the lack of a theory relating the point of view of typing

(which corresponds to deduction in logic) with the point of view of computation. Such

a theory already existed for intuitionistic logic: the theory of realizability, that was

initially introduced by Kleene (1945) to interpret the computational contents of the

proofs of Heyting arithmetic, and later extended to more expressive frameworks, including

intuitionistic set theories (Friedman 1973; McCarty 1984; Myhill 1973). Alas, the theory

of realizability such as designed by Kleene and his successors was not only limited to

intuitionistic logic, but it was also fundamentally incompatible with classical logic†.

1.1. The theory of classical realizability

To address this problem, Krivine introduced in the middle of the nineties the theory

of classical realizability (Krivine 2009), which is a complete reformulation of the very

principles of realizability to make them compatible with classical reasoning. (As noticed

in Miquel (2010) and Oliva and Streicher (2008), classical realizability can be seen

as a reformulation of Kleene’s realizability through Friedman’s A-translation (Friedman

1978).) Although it was initially introduced to interpret the proofs of classical second-order

arithmetic, the theory of classical realizability can be scaled to more expressive theories

such as Zermelo–Fraenkel set theory (Krivine 2001) or the calculus of constructions with

universes (Miquel 2007).

As in intuitionistic realizability, every formula A is interpreted in classical realizability

as a set |A| of programs called the realizers of A, that share a common computational

behaviour dictated by the structure of the formula A. This point of view is related to the

point of view of deduction (and of typing) via the property of adequacy, that expresses

that any program extracted from a proof of A – that is: any program of type A – realizes

the formula A, and thus has the computational behaviour expected from the formula A.

But the difference between intuitionistic and classical realizability is that in the latter,

the set of realizers of A is defined indirectly, that is: from a set ‖A‖ of execution contexts

(represented as argument stacks) that are intended to challenge the truth of A. Intuitively,

† For instance, the formula ∀x (H(x) ∨ ¬H(x)) – where H(x) denotes the halting predicate – is classically

provable, but its negation is intuitionistically realizable (Kleene 1945). The same holds for the formula

∀X (X ∨¬X) expressing the law of excluded middle in second-order logic, whose negation is intuitionistically

realizable.
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the set ‖A‖ – which we shall call the falsity value of A – can be understood as the set of

all possible counter-arguments to the formula A. In this framework, a program realizes

the formula A – i.e. belongs to the truth value |A| – if and only if it is able to defeat all

the attempts to refute A using a stack in ‖A‖. (The definition of the classical notion of a

realizer is also parameterized by a pole representing a particular challenge, that we shall

define and discuss in Section 4.1.1.)

By giving an equal importance to programs – or terms – that ‘defend’ the formula A,

and to execution contexts – or stacks – that ‘attack’ the formula A, the theory of classical

realizability is thus able to describe the interpretation of classical reasoning in terms of

manipulation of whole stacks (as first class citizens) using control operators.

1.2. The λc-calculus

The language of realizers that is traditionally used in classical realizability is Krivine’s

λc-calculus (Krivine 2009), an extension of Church’s λ-calculus (Church 1941) with an

instruction cc (representing the control operator call/cc) together with the machinery for

manipulating continuations constants embedding stacks. Unlike the traditional λ-calculi,

the λc-calculus relies on a particular reduction strategy – the call by name strategy – which

is implemented using Krivine’s abstract machine (KAM). As a consequence, the property

of confluence – which plays a central role in traditional λ-calculi – does not make sense

anymore in this architecture. In the KAM, the property of confluence is replaced by the

property of determinism, which is not only simpler, but which is also closer to the point

of view of real programming languages.

An important feature of the λc-calculus is that it can be freely enriched with extra

instructions that can be used to optimize extracted programs (for instance: instructions

manipulating primitive numerals (Miquel 2010)) or even to realize additional reasoning

principles. The emblematic example is given by the instruction ‘quote’, that computes

the Gödel code of a stack (according to a fixed enumeration of stacks), and that is used

in Krivine (2003) to realize the axiom of dependent choices†. In this paper, we shall also

consider two other extra instructions: the instruction ‘eq’, that tests the syntactic equality

between two (closed) λc-terms, and the non-deterministic choice operator � (‘fork’).

1.3. The specification problem

A fundamental problem of classical realizability is the specification problem, which is

to characterize the (universal) realizers of a given formula A from their computational

behaviour. This problem has received little attention in intuitionistic realizability, mainly

because the specification attached to a formula A can be directly inferred from the defini-

tion of the set of realizers of A. For instance, intuitionistic realizers of the formula ∃NxA(x)

are exactly the programs reducing to a pair whose first component is a witness n ∈ N

† This axiom is crucial to prove the Baire category theorem – to which it is actually equivalent (Goldblatt

1985).
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and whose second component is a realizer of the formula A(n) (Krivine 1993). In

intuitionistic realizability, formulas already constitute specifications.

The situation is much more subtle in classical realizability. This subtlety does not only

come from the particular architecture of classical realizability (that involves notions such

as a falsity value or a pole that are alien to Kleene’s realizability), but it primarily comes

from the fact that the underlying programming language λc contains the control operator

call/cc, so that realizers can embed continuation constants that may issue a backtrack at

any time. Of course, these features are essential to interpret classical reasoning principles

such as excluded middle, but on the other hand we cannot hope anymore that the first

projection of a classical realizer of ∃NxA(x) will give us the desired witness for free. (For

an account of witness extraction techniques in classical realizability, see Miquel (2010) .)

As we shall see in Sections 6.4 and 6.5, the problem becomes even more difficult when

considering extensions of the λc-calculus with instructions such as ‘quote’ or ‘eq’, that are

able to discriminate programs from their syntactic differences, and not only from their

computational behaviour.

1.4. Specifying Peirce’s law

The opposition between λc-terms (seen as defenders) and stacks (seen as attackers)

constitutes the heart of classical realizability, and it naturally suggests that the specification

problem has to be studied in game-theoretic terms.

In this paper, we shall study the specification problem for the (fundamentally classical)

law of Peirce, whose second-order formulation is ∀X ∀Y (((X ⇒ Y ) ⇒ X) ⇒ X) –

namely: the type of call/cc. This problem was given a first and partial solution by the

first author Guillermo (2008), who proposed a game-theoretic characterization G0 of the

universal realizers of Peirce’s law in the particular case, where the underlying calculus of

realizers is deterministic and contains infinitely many interaction constants, a notion we

shall define in Section 5.3. (We shall present here a simplified proof of this first solution

that does not rely on the assumption of determinism.)

However, the presence of interaction constants – which is crucial in the proof of

completeness presented in Guillermo (2008) – is known to be incompatible with the

presence of instructions such as ‘quote’ or ‘eq’, that are able to detect syntactic differences

in λc-terms that would be otherwise considered as computationally equivalent. This first

result thus left open the specification problem for Peirce’s law in the general case, where

the calculus of realizers may rely on an arbitrary set of instructions – including the

instruction ‘quote’ used to realize the axiom of dependent choices (Krivine 2003).

In this paper, we shall see that the first specification G0 remains adequate in the general

case (in the sense that any term which gives a winning strategy in the game G0 is a realizer

of Peirce’s law), but that it is not complete anymore. Indeed, we shall exhibit a closed

λc-term (that can be implemented either from ‘eq’ or from ‘quote’) that constitutes a

wild realizer of Peirce’s law, in the sense that it is not captured by the game G0. We shall

see that this counter-example introduces a new – and purely game theoretic – form of

backtrack that does not come from control operators, but from the fact that realizers can

now test (using syntactic equality) whether a position already appeared before in the play.
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From the point of view of metatheory, we shall also see that this new form of backtrack is

treated in the corresponding proof of adequacy by using the meta-theoretic law of Peirce,

thus making the proof classical. (This contrasts to the traditional proof of adequacy of

the domestic realizer call/cc, which is purely intuitionistic.)

To capture our (counter-)example of a wild realizer, we shall present a second game G1

that takes into account the second form of backtrack. Then, we shall prove that this

second game G1 is both adequate and complete in the general case (i.e. without any

assumption on the instruction set), thus constituting the definitive specification of Peirce’s

law.

2. The language λc

2.1. Terms and stacks

The λc-calculus distinguishes two kinds of syntactic expressions: terms, that represent

programs, and stacks, that represent evaluation contexts. The terms of the λc-calculus are

pure λ-terms (Barendregt 1984; Church 1941) enriched with two kinds of constants:

— Continuation constants kπ , one for every stack π;

— Instructions, such as the control operator call/cc (written here cc), that are taken in

a fixed set C of constants.

The stacks of the λc-calculus are finite lists of closed terms terminated by a stack constant

taken in a fixed set B of stack constants, also known as stack bottoms.

Formally, terms and stacks of the λc-calculus are thus defined from three auxiliary sets

of symbols, that are pairwise disjoint:

— A denumerable set Vλ of λ-variables (notation: x, y, z, etc.).

— A countable set C of instructions, that contains at least an instruction cc ∈ C (‘call/cc’,

for: call with current continuation).

— A non-empty countable set B of stack constants, also called stack bottoms (notation:

α, β, γ, etc.).

Definition 1 (terms and stacks). Terms and stacks of the λc-calculus are defined by mutual

induction from the following formation rules:

1. If x ∈ Vλ is a λ-variable, then x is a term, and FV (x) = {x}.
2. If c ∈ C is an instruction, then c is a term, and FV (c) = �.

3. If π is a stack, then kπ is a term, and FV (kπ) = �.

4. If t and u are terms, then tu is a term, and FV (tu) = FV (t) ∪ FV (u).

5. If x ∈ Vλ is a λ-variable and if t is a term, then λx . t is a term, and FV (λx . t) =

FV (t) \ {x}.
6. If α ∈ B is a stack constant, then α is a stack.

7. If t is a closed term (i.e. FV (t) = �) and if π is a stack, then t · π is a stack.

In this definition, we define every λc-term t together with its set of free variables FV (t),

so that we can restrict the application of rule (7) to closed terms t. Thanks to this

restriction, stacks are always closed objects (i.e. they do not contain free variables) and

continuation constants kπ are really constant.
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In what follows, we adopt the same writing conventions as in the pure λ-calculus, by

considering that application is left-associative and has higher precedence than abstraction.

We also allow several abstractions to be regrouped under a single λ, so that the closed

term λx . λy . λz . ((zx)y) can be more simply written λxyz . zxy.

As usual, terms and stacks are considered up to α-conversion (Barendregt 1984), and we

denote by t{x := u} the term obtained by replacing every free occurrence of the variable x

by the term u in the term t, possibly renaming the bound variables of t to prevent name

clashes. The sets of all closed terms and of all (closed) stacks are respectively denoted

by Λ and Π.

Definition 2 (proof-like terms). We say that a λc-term t is proof like if t contains no

continuation constant kπ .

The above terminology comes from the fact that every realizer coming from the proof

of a theorem of PA2 is of this form (as we shall see in Theorem 17).

Finally, every natural number n ∈ N is represented in the λc-calculus as the closed

proof-like term n defined by

n ≡ sn0 ≡ s(· · · (s︸ ︷︷ ︸
n

0) · · · ),

where 0 ≡ λxf . x and s ≡ λnxf . f(nxf) are Church’s encodings of zero and the successor

function in the pure λ-calculus. Note that this encoding slightly differs from the traditional

encoding of numerals in the λ-calculus, although the term n ≡ sn0 is clearly β-convertible

to Church’s encoding λxf . fnx – and thus computationally equivalent. The reason for

preferring this modified encoding is that it is better suited to the call-by-name discipline

of KAM we shall now present.

2.2. Krivine’s abstract machine

In the λc-calculus, computation occurs through the interaction between a closed term and

a stack within KAM. Formally, we call a process any pair t � π formed by a closed term t

and a stack π. The set of all processes is written Λ �Π (which is just another notation for

the Cartesian product Λ×Π).

Definition 3 (relation of evaluation). We call a relation of one step evaluation any binary

relation �1 over the set Λ � Π of processes that fulfils the following four axioms:

(Push)

(Grab)

(Save)

(Restore)

tu � π �1 t � u · π
(λx . t) � u · π �1 t{x := u} � π

cc � t · π �1 t � kπ · π
kπ � t · π′ �1 t � π

The reflexive-transitive closure of �1 is written �.

One of the specificities of the λc-calculus is that it comes with a binary relation of

(one step) evaluation �1 that is not defined, but axiomatized via the rules (Push), (Grab),

(Save) and (Restore). In practice, the binary relation �1 is simply another parameter of
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the definition of the calculus, just like the sets C and B. Strictly speaking, the λc-calculus

is not a particular extension of the λ-calculus, but a family of extensions of the λ-calculus

parameterized by the sets B, C and the relation of one step evaluation �1. (The set Vλ of

λ-variables – that is interchangeable with any other denumerable set of symbols – does

not really constitute a parameter of the calculus.)

2.3. Adding new instructions

The main interest of keeping open the definition of the sets B, C and of the relation

evaluation �1 (by axiomatizing rather than defining them) is that it makes possible

to enrich the calculus with extra instructions and evaluation rules, simply by putting

additional axioms about C, B and �1. On the other hand, the definitions of classical

realizability (Krivine 2009) as well as its main properties do not depend on the particular

choice of B, C and �1, although the fine structure of the corresponding realizability models

is of course affected by the presence of additional instructions and evaluation rules.

For the needs of the discussion in Section 5, we shall sometimes consider the following

extra instructions in the set C:

— The instruction quote, that comes with the evaluation rule

(Quote) quote � t · π �1 t � nπ · π ,

where π �→ nπ is an injection from Π to N. Intuitively, the instruction quote computes

the ‘code’ nπ of the stack π, and passes it (using the encoding n �→ n described in

Section 2.1) to the term t. This instruction was introduced in Krivine (2003) to realize

the axiom of dependent choices.

— The instruction eq, that comes with the evaluation rule

(Eq) eq � t1 · t2 · u · v · π �1

{
u � π if t1 ≡ t2

v � π if t1 �≡ t2.

Intuitively, the instruction eq tests the syntactic equality of its first two arguments t1
and t2 (up to α-conversion), giving the control to the next argument u if the test

succeeds, and to the second next argument v otherwise. In presence of the quote

instruction, it is possible to implement a closed λc-term eq′ that has the very same

computational behaviour as eq, by letting

eq′ ≡ λx1x2 . quote (λn1 . quote (λn2 . eq nat n1 n2) x2) x1 ,

where eq nat is any closed λ-term that tests the equality between two numerals (using

the encoding n �→ n).

— The instruction � (‘fork’), that comes with the two evaluation rules

(Fork) � � t0 · t1 · π �1 t0 � π and � � t0 · t1 · π �1 t1 � π .

Intuitively, the instruction � behaves as a non-deterministic choice operator, that

indifferently selects its first or its second argument. The main interest of this instruction

is that it makes evaluation non-deterministic, in the following sense:
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Definition 4 (deterministic evaluation). We say that the relation of evaluation �1 is

deterministic when the two conditions p �1 p′ and p �1 p′′ imply p′ ≡ p′′ (syntactic

identity) for all processes p, p′ and p′′. Otherwise, �1 is said to be non-deterministic.

The smallest relation of evaluation, that is defined as the union of the four rules (Push),

(Grab), (Save) and (Restore), is clearly deterministic. The property of determinism

still holds if we enrich the calculus with an instruction eq ( �≡ cc) together with the

aforementioned evaluation rules, or with the instruction quote ( �≡ cc).

On the other hand, the presence of an instruction � with the corresponding evaluation

rules definitely makes the relation of evaluation non-deterministic.

2.4. The thread of a process and its anatomy

Given a process p, we call the thread of p and write th(p) the set of all processes p′ such

that p � p′:

th(p) = {p′ ∈ Λ � Π : p � p′} .
This set has the structure of a finite or infinite (di)graph whose edges are given by

the relation �1 of one step evaluation. In the case where the relation of evaluation is

deterministic, the graph th(p) can be either:

— Finite and cyclic from a certain point, because the evaluation of p loops at some point.

A typical example is the process I�δδ · α (where I ≡ λx . x and δ ≡ λx . xx), that enters

into a 2-cycle after one evaluation step:

I � δδ · α �1 δδ � α �1 δ � δ · α �1 δδ � α �1 · · ·

— Finite and linear, because the evaluation of p reaches a state where no more rule

applies. For example:

II � α �1 I � I · α �1 I � α .

— Infinite and linear, because p has an infinite execution that never reaches twice the

same state. A typical example is given by the process δ′δ′ � α, where δ′ ≡ λx . x x I:

δ′δ′ � α �3 δ′δ′ � I · α �3 δ′δ′ � I · I · α �3 δ′δ′ � I · I · I · α �3 · · ·

2.5. Substituting term and stack constants

In some situations, it is desirable to substitute a closed term u to a particular constant c ∈ C
throughout the structure of a term t or of a stack π. Unlike the traditional form of

substitution t{x := u} (which is only defined for terms), the substitutions t{c := u}
and π{c := u} propagate through the continuation constants kπ as well. Formally, these

substitutions are defined as follows:

x{c := u} ≡ x

(λx . t){c := u} ≡ λx . t{c := u}
(t1t2){c := u} ≡ t1{c := u}t2{c := u}

kπ{c := u} ≡ kπ{c:=u}

c{c := u} ≡ u

c′{c := u} ≡ c′ (if c′ �≡ c)

α{c := u} ≡ α

(t · π){c := u} ≡ t{c := u} · π{c := u}
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Similarly, we also define two operations of substitutions t{α := π0} and π{α := π0} where

a stack constant α ∈ B is replaced by a given stack π0 throughout the structure of a term t

or of a stack π, by letting:

x{α := π0} ≡ x

(λx . t){α := π0} ≡ λx . t{α := π0}
(t1t2){α := π0} ≡ t1{α := π0}t2{α := π0}

kπ{α := π0} ≡ kπ{α:=π0}

c{α := π0} ≡ c

α{α := π0} ≡ π0

α′{α := π0} ≡ α′ (if α′ �≡ α)

(t · π){α := π0} ≡ t{α := π0} · π{α := π0}

This operation is generalized to parallel substitutions {α1 := π1, . . . , αn := πn} in the

obvious way.

3. Classical second-order arithmetic

In Section 2, we have presented the computing facet of the theory of classical realizability.

In this section, we shall now present its logical facet, by introducing the language of

classical second-order logic with the corresponding type system. In Section 3.3, we shall

focus on the particular case of second-order arithmetic, and present its axioms.

3.1. The language of second-order logic

The language of second-order logic distinguishes two kinds of expressions: first-order

expressions†, that represent individuals, and formulas, that represent propositions about

individuals and sets of individuals (represented using second-order variables as we shall

see below).

3.1.1. First-order expressions. First-order expressions are formally defined from the fol-

lowing sets of symbols:

— A first-order signature Σ defining function symbols with their arities, and considering

constant symbols as function symbols of arity 0.

— A denumerable set V1 of first-order variables. For convenience, we shall still use the

lowercase letters x, y, z, etc. to denote first-order variables, but these variables should

not be confused with the λ-variables introduced in Section 2.

Definition 5 (first-order expressions). First-order expressions are inductively defined from

the following two rules:

1. If x ∈ V1 is a first-order variable, then x is a first-order expression.

2. If f ∈ Σ is a function symbol of arity k � 0 and if e1, . . . , ek are first-order expressions,

then f(e1, . . . , ek) is a first-order expression.

The set FV (e) of all (free) variables of a first-order expression e is defined as expected,

as well as the corresponding operation of substitution, that we still write e{x := e′}.

† Here, we prefer the terminology of a first-order expression to the more standard terminology of a first-order

term to avoid a possible confusion with λc-terms.
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3.1.2. Formulas. Formulas of second-order logic are defined from an additional set of

symbols V2 of second-order variables (or predicate variables), using the uppercase letters X,

Y , Z , etc. to represent such variables. We assume that each second-order variable X comes

with an arity k � 0 (that we shall often leave implicit, since it can be easily inferred from

the context), and that for each arity k � 0, the subset of V2 formed by all second-order

variables of arity k is denumerable.

Intuitively, second-order variables of arity 0 represent (unknown) propositions, unary

predicate variables represent predicates over individuals (or sets of individuals) whereas

binary predicate variables represent binary relations (or sets of pairs), etc.

Definition 6 (formulas). Formulas of second-order logic are inductively defined from the

following four rules:

1. If X ∈ V2 is a predicate variable of arity k � 0 and if e1, . . . , ek are first-order

expressions, then X(e1, . . . , ek) is a formula.

2. If A and B are formulas, then A⇒ B is a formula.

3. If x ∈ V1 is a first-order variable and if A is a formula, then ∀xA is a formula.

4. If X ∈ V2 is a second-order variable and if A is a formula, then ∀X A is a formula.

The set of free variables of a formula A is written FV (A). (This set may contain

both first-order and second-order variables.) As usual, formulas are identified up to

α-conversion, neglecting differences in bound variable names. Given a formula A, a first-

order variable x and a first-order expression e, we denote by A{x := e} the formula

obtained by replacing every free occurrence of x by the first-order expression e in the

formula A, possibly renaming some bound variables of A to avoid name clashes.

3.1.3. Predicates and second-order substitution. We call a predicate of arity k any expres-

sion of the form P ≡ λx1 · · · xk . C where x1, . . . , xk are k pairwise distinct first-order

variables and where C is an arbitrary formula. Here, we (ab)use the λ-notation to indicate

which variables x1, . . . , xk are abstracted in the formula C , but this notation should not

be confused with the abstraction of the λc-calculus.

The set of free variables of a k-ary predicate P ≡ λx1 · · · xk . C is defined by FV (P ) ≡
FV (C) \ {x1, . . . , xk}, and the application of the predicate P ≡ λx1 · · · xk . C to a k-tuple of

first-order expressions e1, . . . , ek is defined by letting

P (e1, . . . , ek) ≡ (λx1 · · · xk . C)(e1, . . . , ek) ≡ C{x1 := e1, . . . , xk := ek}

(by analogy with β-reduction). From this definition, it is clear that every predicate

variable X of arity k can be seen as a k-ary predicate as well, namely, as the k-ary

predicate λx1 · · · xk . X(x1, . . . , xk), whose only free variable is X. The reader can easily

check that the meaning of the notation X(e1, . . . , ek) does not depend on whether we read

it as an atomic formula (considering X as a predicate variable) or as the application of the

predicate X ≡ λx1 · · · xk . X(x1, . . . , xk) to the k-tuple of first-order expressions e1, . . . , ek .

https://doi.org/10.1017/S0960129514000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000450


Specifying Peirce’s law in classical realizability 1279

Given a formula A, a k-ary predicate variable X and an actual k-ary predicate P , we

finally define the operation of second-order substitution A{X := P } as follows:

X(e1, . . . , ek){X := P } ≡ P (e1, . . . , ek)

Y (e1, . . . , em){X := P } ≡ Y (e1, . . . , em)

(A⇒ B){X := P } ≡ A{X := P } ⇒ B{X := P }
(∀xA){X := P } ≡ ∀xA{X := P }
(∀X A){X := P } ≡ ∀X A

(∀Y A){X := P } ≡ ∀Y A{X := P }

(Y �≡ X)

(x /∈ FV (P ))

(Y �≡ X, Y /∈ FV (P ))

3.1.4. Second-order encodings. Although the formulas of the language of second-order

logic are constructed from atomic formulas only using implication and first- and second-

order universal quantifications, we can define other logical constructions (negation,

conjunction disjunction, first- and second-order existential quantification as well as Leibniz

equality) using the so called second-order encodings:

⊥ ≡ ∀Z Z

¬A ≡ A⇒ ⊥
A ∧ B ≡ ∀Z ((A⇒ B ⇒ Z)⇒ Z)

A ∨ B ≡ ∀Z ((A⇒ Z)⇒ (B ⇒ Z)⇒ Z)

A⇔ B ≡ (A⇒ B) ∧ (B ⇒ A)

∃xA(x) ≡ ∀Z (∀x (A(x)⇒ Z)⇒ Z)

∃X A(X) ≡ ∀Z (∀X (A(X)⇒ Z)⇒ Z)

e1 = e2 ≡ ∀Z (Z(e1)⇒ Z(e2))

(where Z is a fresh second-order variable).

3.2. A type system for classical second-order logic

Through the formulas-as-types correspondence (Girard 1989; Howard 1969), we can see

any formula A of second-order logic as a type, namely, as the type of its proofs. We shall

thus present the deduction system of classical second-order logic as a type system based

on a typing judgment of the form Γ � t : A, where

— Γ is a typing context of the form Γ ≡ x1 : B1, . . . , xn : Bn, where x1, . . . , xn are pairwise

distinct λ-variables and where B1, . . . , Bn are arbitrary propositions;

— t is a proof-like term, i.e. a λc-term containing no continuation constant kπ;

— A is a formula of second-order logic.

Given a typing context Γ ≡ x1 : B1, . . . , xn : Bn, we write dom(Γ) = {x1, . . . , xn} (this is a

finite set of λ-variables) and FV (Γ) = FV (B1) ∪ · · · ∪ FV (Bn) (this is a finite set of first-

and second-order variables).

The type system of classical second-order logic is then defined from the typing rules

of Figure 1. These typing rules are the usual typing rules of AF2 (Krivine 1993), plus

a specific typing rule for the instruction cc that permits to recover the full strength of

classical logic.

Using the encodings of Section 3.1.4, we can derive from the typing rules of Figure 1 the

usual introduction and elimination rules of absurdity, conjunction, disjunction, (first- and

second-order) existential quantification and Leibniz equality (Krivine 1993). The typing

rule for call/cc (law of Peirce) allows us to construct proof-terms for classical reasoning

principles such as the excluded middle, reductio ad absurdum, de Morgan laws, etc.
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Γ � x : A
(x:A)∈Γ

Γ, x : A � t : B

Γ � λx . t : A⇒ B

Γ � t : A⇒ B Γ � u : A
Γ � tu : B

Γ � t : A
Γ � t : ∀xA

x/∈FV (Γ)
Γ � t : ∀xA

Γ � t : A{x := e}

Γ � t : A
Γ � t : ∀X A

X/∈FV (Γ)
Γ � t : ∀X A

Γ � t : A{X := P }

Γ � cc : ((A⇒ B)⇒ A)⇒ A

Fig. 1. Typing rules of second-order logic.

3.3. Classical second-order arithmetic (PA2)

From now on, we consider the particular case of second-order arithmetic (PA2), where

first-order expressions are intended to represent natural numbers. For that, we assume

that every k-ary function symbol f ∈ Σ comes with an interpretation in the standard

model of arithmetic as a function �f� : Nk → N, so that we can give a denotation �e� ∈ N

to every closed first-order expression e.

For convenience, we assume that the signature Σ contains a constant symbol 0 (‘zero’),

a unary function symbol s (‘successor’) as well as a function symbol f for every primitive

recursive function (including symbols +, ×, etc.), each of them being given its standard

interpretation in N. In this way, every numeral n ∈ N is represented in the world of

first-order expressions as the closed expression sn(0) that we still write n, since �sn(0)� = n.

3.3.1. Induction. Following Dedekind’s construction of natural numbers, we consider the

predicate Nat(x) (Girard 1989; Krivine 1993) defined by

Nat(x) ≡ ∀Z (Z(0)⇒ ∀y (Z(y)⇒ Z(s(y)))⇒ Z(x)) ,

that defines the smallest class of individuals containing zero and closed under the successor

function. One of the main properties of the logical system presented above is that the

axiom of induction, that we can write ∀x Nat(x), is not derivable from the rules of Figure 1.

As proved in Krivine (2009, Theorem 12), this axiom is even not (universally) realizable

in general. To recover the strength of arithmetic reasoning, we need to relativize all first-

order quantifications to the class Nat(x) of Dedekind numerals using the shorthands for

numeric quantifications†

∀NxA(x) ≡ ∀x (Nat(x)⇒ A(x))

∃NxA(x) ≡ ∀Z (∀x(Nat(x)⇒ A(x)⇒ Z)⇒ Z)

† From a computational point of view, the numeric quantifications ∀NxA(x) and ∃NxA(x) play the same role

as the dependent product Πx : Nat . A(x) and the dependent sum Σx : Nat . A(x) in type theory (Martin-Löf

1998), putting aside the subtleties coming from the fact that we work here in a system that is both classical

and impredicative.
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so that the relativized induction axiom becomes provable in second-order logic (Krivine

1993):

∀Z (Z(0)⇒ ∀Nx (Z(x)⇒ Z(s(x)))⇒ ∀NZ(x)) .

3.3.2. The axioms of PA2. Formally, a formula A is a theorem of second-order arithmetic

(PA2) if, considered as a type, it has a term according to Figure 1 under a typing context

of the form x1 : A1, . . . , xn : An, where A1, . . . , An are axioms of PA2.

Here, the axioms of PA2 are the two axioms

— ∀x ∀y (s(x) = s(y)⇒ x = y) (Peano 3rd axiom)

— ∀x¬(s(x) = 0) (Peano 4th axiom)

expressing that the successor function is injective and not surjective, as well as the

definitional equalities attached to the (primitive recursive) function symbols of the

signature:

— ∀x (x + 0 = x), ∀x ∀y (x + s(y) = s(x + y))

— ∀x (x× 0 = 0), ∀x ∀y (x× s(y) = (x× y) + x)

— etc.

Unlike the non-relativized induction axiom – that requires a special treatment in PA2 –

we shall see in Section 4.6 that all these axioms are realized by simple proof-like terms.

4. Classical realizability semantics

4.1. Generalities

Given a particular instance of the λc-calculus (defined from particular sets B, C and from

a particular relation of evaluation �1 as described in Section 2), we shall now build a

classical realizability model in which every closed formula A of the language of PA2 will

be interpreted as a set of closed terms |A| ⊆ Λ, called the truth value of A, and whose

elements will be called the realizers of A.

4.1.1. Poles, truth values and falsity values. Formally, the construction of the realizability

model is parameterized by a pole† ⊥⊥ in the sense of the following definition:

Definition 7 (poles). A pole is any set of processes ⊥⊥ ⊆ Λ � Π which is closed under

anti-evaluation, in the sense that both conditions p � p′ and p′ ∈ ⊥⊥ together imply that

p ∈ ⊥⊥ for all processes p, p′ ∈ Λ � Π.

† In Guillermo (2008) and Krivine (2003;2009), poles are also called models. The reason is that each pole ⊥⊥
defines a theory T⊥⊥, which is formed by all the closed formulas realized by a proof-like term. The theory T⊥⊥
– which is an extension of PA2 by Theorem 17 p. 1287 – is consistent if and only if the formula ⊥ is realized

by no proof-like term, in which case we say that the pole ⊥⊥ is consistent. In this case, the theory T⊥⊥ induced

by ⊥⊥ has (by completeness) at least a model in the sense of Tarski, which is also a particular model of PA2.
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There are mainly two methods to define a pole ⊥⊥ from an arbitrary set of processes P :

— The first method is to define the pole ⊥⊥ as the set of all processes that reach an

element of P after zero, one or several evaluation steps, that is:

⊥⊥ ≡ {p ∈ Λ � Π : ∃p′ ∈ P (p � p′)} .

By definition, the set ⊥⊥ is the smallest pole that contains the set of processes P as a

subset. In what follows, we shall say that this definition is goal-oriented.

— The second method is to define the pole ⊥⊥ as the complement set of the union of all

threads starting from an element of P , that is:

⊥⊥ ≡
(⋃

p∈P
th(p)

)c

≡
⋂
p∈P

(
th(p)

)c
.

Here, the set ⊥⊥ is now the largest pole that does not intersect P . In what follows, we

shall say that this definition is thread oriented.

Let us now consider a fixed pole ⊥⊥. We call a falsity value any set of stacks S ⊆ Π.

Every falsity value S ⊆ Π induces a truth value S⊥⊥ ⊆ Λ that is defined by

S⊥⊥ = {t ∈ Λ : ∀π ∈ S (t � π) ∈ ⊥⊥} .

Intuitively, every falsity value S ⊆ Π represents a particular set of tests, while the

corresponding truth value S⊥⊥ represents the set of all programs that passes all tests in S

(w.r.t. the pole ⊥⊥, that can be seen as the challenge). From the definition of S⊥⊥, it is clear

that the larger the falsity value S , the smaller the corresponding truth value S⊥⊥, and vice

versa.

In classical realizability, the semantics of a closed formula A is primarily given by a

falsity value ‖A‖ ⊆ Π that defines the set of all tests that should be passed by all the

realizers of A. The corresponding truth value |A| ⊆ Λ (i.e. the set of all realizers of A) is

then defined indirectly from the equation |A| = ‖A‖⊥⊥.

4.1.2. Formulas with parameters. In order to interpret second-order variables that occur

in a given formula A, it is convenient to enrich the language of PA2 with a new predicate

symbol Ḟ of arity k for every falsity value function F of arity k, that is, for every

function F : Nk → P(Π) that associates a falsity value F(n1, . . . , nk) ⊆ Π to every k-tuple

(n1, . . . , nk) ∈ Nk . A formula of the language enriched with the predicate symbols Ḟ is then

called a formula with parameters. Formally:

Definition 8 (formulas with parameters). The set of all formulas with parameters is

inductively defined from the rules (1)–(4) of Definition 6 (replacing the expression ‘formula’

by ‘formula with parameters’) plus the following rule:

5. If F : Nk → P(Π) is a falsity value function of arity k � 0 and if e1, . . . , ek are

first-order expressions, then Ḟ(e1, . . . , ek) is a formula with parameters.

The notions of a predicate with parameters and of a typing context with parameters are

defined similarly. The notations FV (A), FV (P ), FV (Γ), dom(Γ), A{x := e}, A{X := P },
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etc. are extended to all formulas A with parameters, to all predicates P with parameters

and to all typing contexts Γ with parameters in the obvious way.

Let us insist on the fact that this extension only affects the language of formulae,

predicates and typing contexts, whose cardinality jumps from the denumerable to the

power of continuum (i.e. the cardinality of the sets P(Π) and Nk → P(Π)). On the other

hand, proof terms and realizers (stacks, and processes) remain unchanged.

In what follows, we shall write � ≡ �̇ the formula associated with the empty falsity

value. (Since �⊥⊥ = Λ, the formula � will represent the type of all λc-terms.)

4.2. Definition of the interpretation function

The interpretation of the closed formulas with parameters is defined as follows:

Definition 9 (interpretation of closed formulas with parameters). The falsity value ‖A‖ ⊆
Π of a closed formula A with parameters is defined by induction on the number of

connectives/quantifiers in A from the equations

‖Ḟ(e1, . . . , ek)‖ = F(�e1�, . . . , �ek�)

‖A⇒ B‖ = |A| · ‖B‖ = {t · π : t ∈ |A|, π ∈ ‖B‖}

‖∀xA‖ =
⋃
n∈N
‖A{x := n}‖

‖∀X A‖ =
⋃

F:Nk→P(Π)

‖A{X := Ḟ}‖ (if X has arity k)

whereas its truth value |A| ⊆ Λ is defined by |A| = ‖A‖⊥⊥.

Since the falsity value ‖A‖ (resp. the truth value |A|) of A actually depends on the

pole ⊥⊥, we shall write it sometimes ‖A‖⊥⊥ (resp. |A|⊥⊥) to recall the dependence. Given a

closed formula A with parameters and a closed term t ∈ Λ, we say that

— t realizes A and write t � A when t ∈ |A|⊥⊥.
(This notion is relative to a particular pole ⊥⊥.)

— t universally realizes A and write t � A when t ∈ |A|⊥⊥ for all poles ⊥⊥.

From these definitions, we clearly have

|∀xA| =
⋂
n∈N
|A{x := n}| and |∀X A| =

⋂
F:Nk→P(Π)

|A{X := Ḟ}| .

On the other hand, the truth value |A⇒ B| of an implication A⇒ B slightly differs from

its traditional interpretation in Kleene’s realizability (Kleene 1945). Writing

|A| → |B| = {t ∈ Λ : for all u ∈ Λ , u ∈ |A| implies tu ∈ |B|} ,

we easily check that:

Lemma 10. For all closed formulas A and B with parameters:

1. |A⇒ B| ⊆ |A| → |B| (adequacy of modus ponens).
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2. The converse inclusion does not hold in general, unless the pole ⊥⊥ is insensitive to

the rule (Push), that is: tu � π ∈ ⊥⊥ iff t � u · π ∈ ⊥⊥ (for all t, u ∈ Λ, π ∈ Π).

3. In all cases, t ∈ (|A| → |B|) implies λx . tx ∈ |A⇒ B| (for all t ∈ Λ).

Proof.

1. Let t ∈ |A ⇒ B| and u ∈ |A|. To prove that tu ∈ |B|, we consider an arbitrary stack

π ∈ ‖B‖. By applying the rule (Push) we get tu � π �1 t � u · π ∈ ⊥⊥, since t ∈ |A⇒ B|
and u · π ∈ ‖A⇒ B‖. Hence, tu � π ∈ ⊥⊥ by anti-evaluation.

2. Let t ∈ |A| → |B|. To prove that t ∈ |A⇒ B|, we consider an arbitrary element of the

falsity value ‖A ⇒ B‖, that is, a stack u · π where u ∈ |A| and π ∈ ‖B‖. We clearly

have tu � π ∈ ⊥⊥, since tu ∈ |B| from our assumption on t. But since ⊥⊥ is insensitive

to the rule (Push), we also have t � u · π ∈ ⊥⊥.

3. Let t ∈ |A| → |B|. To prove that λx . tx ∈ |A ⇒ B|, we consider an arbitrary element

of the falsity value ‖A⇒ B‖, that is, a stack u ·π where u ∈ |A| and π ∈ ‖B‖. We have

λx . tx � u · π �1 tu � π ∈ ⊥⊥ (since tu ∈ |B|), hence λx . tx � u · π ∈ ⊥⊥ by anti-evaluation.

Lemma 11 (law of Peirce). Let A and B be two closed formulas with parameters:

1. If π ∈ ‖A‖, then kπ � A⇒ B.

2. cc � ((A⇒ B)⇒ A)⇒ A.

Proof.

1. Let π ∈ ‖A‖. To prove that kπ ∈ |A ⇒ B|, we need to check that kπ � t · π′ ∈ ⊥⊥ for

all t ∈ |A| and π′ ∈ ‖B‖. By applying the rule (Restore) we get kπ � t · π′ �1 t � π ∈ ⊥⊥
(since t ∈ |A| and π ∈ ‖A‖), hence kπ � t · π′ ∈ ⊥⊥ by anti-evaluation.

2. To prove that cc � ((A⇒ B)⇒ A)⇒ A (for an arbitrary pole ⊥⊥), we need to check

that cc � t · π ∈ ⊥⊥ for all t ∈ |(A⇒ B)⇒ A| and π ∈ ‖A‖. By applying the rule (Save)

we get cc � t · π �1 t � kπ · π. But since kπ ∈ |A⇒ B| (from (1)) and π ∈ ‖A‖, we have

kπ · π ∈ ‖(A⇒ B)⇒ A‖, so that t � kπ · π ∈ ⊥⊥. Hence cc � t · π ∈ ⊥⊥ by anti-evaluation.

4.3. Valuations and substitutions

In order to express the soundness invariants relating the type system of Section 3 with

the classical realizability semantics defined above, we need to introduce some more

terminology.

Definition 12 (valuations). A valuation is a function ρ that associates a natural number

ρ(x) ∈ N to every first-order variable x and a falsity value function ρ(X) : Nk → P(Π) to

every second-order variable X of arity k.

— Given a valuation ρ, a first-order variable x and a natural number n ∈ N, we denote

by (ρ, x← n) the valuation defined by:

(ρ, x← n) = ρ| dom(ρ)\{x} ∪ {x← n} .
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— Given a valuation ρ, a second-order variable X of arity k and a falsity value function

F : Nk → P(Π), we denote by (ρ, x← F) the valuation defined by:

(ρ, x← F) = ρ| dom(ρ)\{X} ∪ {X ← F} .

To every pair (A, ρ) formed by a (possibly open) formula A of PA2 and a valuation ρ,

we associate a closed formula with parameters A[ρ] that is defined by

A[ρ] ≡ A{x1 := ρ(x1), . . . , xn := ρ(xn), X1 := ρ̇(X1), . . . , Xm := ρ̇(Xm)}

where x1, . . . , xn, X1, . . . , Xm are the free variables of A, and writing ρ̇(Xi) the predicate

symbol associated to the falsity value function ρ(Xi). This operation naturally extends to

typing contexts by letting (x1 : A1, . . . , xn : An)[ρ] ≡ x1 : A1[ρ], . . . , xn : An[ρ].

Definition 13 (substitutions). A substitution is a finite function σ from λ-variables to closed

λc-terms. Given a substitution σ, a λ-variable x and a closed λc-term u, we denote by

σ, x := u the substitution defined by (σ, x := u) ≡ σ| dom(σ)\{x} ∪ {x := u}.

Given an open λc-term t and a substitution σ, we denote by t[σ] the term defined by

t[σ] ≡ t{x1 := σ(x1), . . . , xn := σ(xn)}

where dom(σ) = {x1, . . . , xn}. Notice that t[σ] is closed as soon as FV (t) ⊆ dom(σ). We

say that a substitution σ realizes a closed context Γ with parameters and write σ � Γ if:

— dom(σ) = dom(Γ);

— σ(x) � A for every declaration (x : A) ∈ Γ.

4.4. Adequacy

Given a fixed pole ⊥⊥, we say that

— A typing judgment Γ � t : A is adequate (w.r.t. the pole ⊥⊥) if for all valuations ρ and

for all substitutions σ � Γ[ρ] we have t[σ] � A[ρ].

— More generally, we say that an inference rule

J1 · · · Jn
J0

is adequate (w.r.t. the pole ⊥⊥) if the adequacy of all typing judgments J1, . . . , Jn implies

the adequacy of the typing judgment J0.

From the latter definition, it is clear that a typing judgment that is derivable from a set

of adequate inference rules is adequate too. In Section 4.5, we shall extend the notion of

adequacy to new judgments of subtyping and of subtyping equivalence.

Proposition 14 (adequacy). The typing rules of Figure 1 are adequate w.r.t. any pole ⊥⊥,

as well as all the judgments Γ � t : A that are derivable from these rules.

(The proof of this result can be found in Krivine (2009).)

Since the typing rules of Figure 1 involve no continuation constant, every realizer that

comes from a proof of second order logic by Proposition 14 is thus a proof-like term.
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A � A

A � B B � C

A � C

Γ � t : A A � B

Γ � t : B

A � B B � A

A � B
A � B
A � B

A � B
B � A

⊥ � A A � � � � A⇒ �

∀xA � A{x := e} ∀X A � A{X := P }

A � B

A � ∀xB
x/∈FV (A)

A � B

A � ∀X B
X/∈FV (A)

A′ � A B � B′

A⇒ B � A′ ⇒ B′

∀x (A⇒ B) � A⇒ ∀xB
x/∈FV (A)

∀X (A⇒ B) � A⇒ ∀X B
X/∈FV (A)

Fig. 2. Adequate rules of subtyping and of subtyping equivalence.

4.5. Subtyping and subtyping equivalence

In many situations, it is convenient to consider a subtyping judgment A � B as well

as a judgment of subtyping equivalence A � B, where A and B are two formulas with

parameters. Given a pole ⊥⊥, we say that

— The subtyping judgment A � B is adequate (w.r.t. the pole ⊥⊥) if for all valuations ρ

we have ‖B[ρ]‖ ⊆ ‖A[ρ]‖ (so that |A[ρ]| ⊆ |B[ρ]|).
— The subtyping equivalence judgment A � B is adequate (w.r.t. the pole ⊥⊥) if for all

valuations ρ, we have ‖A[ρ]‖ = ‖B[ρ]‖ (so that |A[ρ]| = |B[ρ]|).
The notion of an adequate inference rule (cf Section 4.4) is extended to all the inference

rules involving the new forms of judgments A � B and A � B. As before, it is clear that

a judgment (of typing, subtyping or of subtyping equivalence) that is derivable from a set

of adequate inference rules is adequate too.

Proposition 15. The inference rules of Figure 2 are adequate w.r.t. all poles ⊥⊥.

Proof. Immediately follows from the definitions.

From the inference rules of Figure 2, one can derive well-known equivalences of

(intuitionistic or classical) realizability, such as:

— ∀xA � A and ∀x (A⇒ B) � A⇒ ∀xB (if x /∈ FV (A));

— ∀X A � A and ∀X (A⇒ B) � A⇒ ∀X B (if X /∈ FV (A));

— ∀x ∀y A � ∀y ∀xA, ∀X ∀Y A � ∀Y ∀X A, and ∀x ∀Y A � ∀Y ∀xA;

— A⇒ � � �, etc.

4.6. Realizing the axioms of PA2

Let us recall that in second-order arithmetic, Leibniz equality e1 = e2 is defined by

e1 = e2 ≡ ∀Z (Z(e1)⇒ Z(e2)).
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Proposition 16 (realizing Peano axioms). :

1. λz . z � ∀x ∀y (s(x) = s(y)⇒ x = y),

2. λz . zu � ∀x (s(x) = 0⇒ ⊥) (where u is any term such that FV (u) ⊆ {z}).
3. λz . z � ∀x1 · · · ∀xk (e1(x1, . . . , xn) = e2(x1, . . . , xk)),

for all arithmetic expressions e1(x1, . . . , xn) and e2(x1, . . . , xk) such that

N |= ∀x1 · · · ∀xk (e1(x1, . . . , xn) = e2(x1, . . . , xk)).

(The proof of this proposition can be found in Krivine (2009).)

From this we deduce the main theorem:

Theorem 17 (realizing the theorems of PA2). If A is a theorem of PA2 (in the sense

defined in Section 3.3.2), then there is a closed proof-like term t such that t � A.

Proof. Immediately follows from Propositions 14 and 16.

4.7. The full standard model of PA2 as a degenerate case

It is easy to see that when the pole ⊥⊥ is empty, the classical realizability model defined

above collapses to the full standard model of PA2, that is, to the model (in the sense of

Tarski) where individuals are interpreted by the elements of N and where second-order

variables of arity k are interpreted by all the subsets of Nk . For that, we first notice that

when ⊥⊥ = �, the truth value S⊥⊥ associated to an arbitrary falsity value S ⊆ Π can only

take two different values: S⊥⊥ = Λc when S = �, and S⊥⊥ = � when S �= �. Moreover, we

easily check that the realizability interpretation of implication and universal quantification

mimics the standard truth value interpretation of the corresponding logical construction

in the case where ⊥⊥ = �. Writing M for the full standard model of PA2, we thus easily

show that:

Proposition 18. If ⊥⊥ = �, then for every closed formula A of PA2 we have

|A| =
{

Λ if M |= A

� if M �|= A

Proof. We more generally show that for all formulas A and for all valuations ρ closing A

(in the sense defined in Section 4.3) we have

|A[ρ]| =
{

Λ if M |= A[ρ̃]

� if M �|= A[ρ̃]

where ρ̃ is the valuation in M (in the usual sense) defined by

— ρ̃(x) = ρ(x) for all first-order variables x;

— ρ̃(X) = {(n1, . . . , nk) ∈ Nk : ρ(X)(n1, . . . , nk) = �} for all second-order variables X of

arity k.

(This characterization is proved by a straightforward induction on A.)
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An interesting consequence of the above lemma is the following:

Corollary 19. If a closed formula A has a universal realizer t � A, then A is true in the

full standard model M of PA2.

Proof. If t � A, then t ∈ |A|�. Therefore |A|� = Λ and M |= A.

However, the converse implication is false in general, since the formula ∀xNat(x) (cf

Section 3.3.1) that expresses the induction principle over individuals is obviously true

in M, but it has no universal realizer when evaluation is deterministic (Krivine 2009,

Theorem 12).

5. The specification problem

From now on, we are interested in the specification problem, which is to give a purely

computational characterization of the universal realizers of a given formula A.

As mentioned in the introduction, this problem is much more subtle in classical

realizability than in intuitionistic realizability, which is mainly due to fact that realizers

may perform a backtrack at any time. Another source of difficulty comes from the fact

that the definition of the λc-calculus is open to the introduction of extra instructions

such as the ones we have presented in Section 2.3. We cannot reason anymore as in

the closed world of the pure λ-calculus, where closed programs start either with an

abstraction or with an application. Here, extra instructions can do anything: they can

compute the code of a term or a stack (quote), they can decode a stack or a term from

its code (by introducing a dual instruction unquote), they can introduce non-determinism

in computations (�), and they can even introduce non-recursive computations (which

is the case if we introduce an instruction solving the halting problem for any Turing

machine).

In this section, we shall study the case of very simple formulas for which the specification

problem has a simple solution, that does not even depend on any particular set of

instructions. In the next section, we shall consider the more ambitious case of Peirce’s law,

where control structures play a crucial role.

5.1. The identity type

In the language of second-order logic, the identity type is described by the formula

∀X (X ⇒ X). We say that a closed term t ∈ Λ is identity like if t �u ·π � u�π for all u ∈ Λ

and π ∈ Π. Examples of identity-like terms are of course the identity function I ≡ λx . x,

but also terms such as I I, δ I (where δ ≡ λx . xx), etc.

Proposition 20. For all terms t ∈ Λ, the following assertions are equivalent:

1. t � ∀X (X ⇒ X);

2. t is identity like.

Proof. (2) ⇒ (1). Let t be a closed λc-term that is identity like. To prove that

t � ∀X (X ⇒ X), let us consider an arbitrary pole ⊥⊥ and an arbitrary falsity value S ⊆ Π

https://doi.org/10.1017/S0960129514000450 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000450


Specifying Peirce’s law in classical realizability 1289

to instantiate the variable X. To show that t � Ṡ ⇒ Ṡ , let us consider an arbitrary element

of ‖Ṡ ⇒ Ṡ‖, that is, a stack of the form u · π where u ∈ |Ṡ | = S⊥⊥ and π ∈ ‖Ṡ‖ = S . We

have t � u · π � u � π ∈ ⊥⊥, hence t � u · π ∈ ⊥⊥ by anti-evaluation.

(1)⇒ (2). Given a universal realizer t � ∀X (X ⇒ X), a term u ∈ Λ and a stack π ∈ Π,

let us consider the pole ⊥⊥ = {p : p � u�π} and the falsity value S = {π}. Since u�π ∈ ⊥⊥
(from the definition of ⊥⊥), we get u � Ṡ (from the definition of S). Hence u ·π ∈ ‖Ṡ ⇒ Ṡ‖
and thus t � u · π ∈ ⊥⊥ (since t � Ṡ ⇒ Ṡ), which precisely means that t � u · π � u � π.

We have thus proved that the universal realizers of the formula ∀X (X ⇒ X) are

precisely the identity-like λc-terms, and this, independently of any particular set of

instructions C. However, we should not forget that there are many ways to implement

identity-like terms using call/cc or other instructions, for instance:

— λx . cc (λk . x), λx . cc (λk . k x), λx . cc (λk . k x (δ δ)),

— cc (λk . I), cc (λk . k I), cc (λk . k I δ k), � I (δ δ), etc.

5.1.1. Goal-oriented poles versus thread-oriented poles. It is interesting to notice that in

order to prove that universal realizers of ∀X (X ⇒ X) are identity-like terms, we have

introduced for each pair (u, π) ∈ Λ×Π the pole ⊥⊥u,π = {p : p � u � π} that is generated

from the expected final state u � π, thus using a goal-oriented definition. However, we

could also prove the same implication by using a thread-oriented definition as follows:

Alternative proof of (1) ⇒ (2). Let us assume that t � ∀X (X ⇒ X), and take two

elements u ∈ Λ and π ∈ Π. We now consider the pole

⊥⊥ ≡
(
th(t � u · π)

)c ≡ {p ∈ Λ � π : (t � u · π �� p)}

as well as the falsity value S = {π}. From the definition of ⊥⊥, we have t � u · π /∈ ⊥⊥. But

since t � Ṡ ⇒ Ṡ and π ∈ ‖Ṡ‖, we immediately get u �� Ṡ . Which precisely means that

u � π /∈ ⊥⊥, so that u � π ∈ th(t � u · π).

Let us briefly compare the ingredients used in both proofs of (1)⇒ (2).

— In the first proof of (1) ⇒ (2), we use a goal-oriented definition of the pole ⊥⊥, by

generating ⊥⊥ from the final state u � π we want to reach. Moreover, this proof of

(1)⇒ (2) is purely intuitionistic (from the point of view of meta-theory).

— In the second proof of (1) ⇒ (2), we use a thread-oriented definition of the pole ⊥⊥,

by excluding from ⊥⊥ the process p0 ≡ t � u · π we start from. As a consequence, this

second proof is classical, since it relies on the equality
((

th(p0)
)c)c

= th(p0).

For the simple formulas we are studying in this section, it is possible to use both

constructions indifferently in order to prove that a universal realizer of the considered

formula meets the expected specification. However, this is not always the case, and

the thread-oriented construction (which is slightly less natural than the goal-oriented

construction) proves to be much more powerful in many situations, as illustrated in Krivine

(2003) and Guillermo (2008).
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5.2. The Booleans

Let us now consider the unary predicate Bool(x) defined by

Bool(x) ≡ ∀X (X(0)⇒ X(1)⇒ X(x)) .

We also denote by Bool the formula ∀X (X ⇒ X ⇒ X) of second-order propositional

logic that we get by erasing first-order dependencies in the predicate Bool(x). From the

rules of Figure 2, we can derive that the formula Bool(x) is a subtype of the formula Bool.

We say that a closed term t ∈ Λ is:

— True like if t � u0 · u1 · π � u0 � π for all u0, u1 ∈ Λ and π ∈ Π.

— False like if t � u0 · u1 · π � u1 � π for all u0, u1 ∈ Λ and π ∈ Π.

— Boolean like if for all u0, u1 ∈ Λ and π ∈ Π, we have either

t � u0 · u1 · π � u0 � π or t � u0 · u1 · π � u1 � π.

From these definitions, True-like and False-like terms are particular cases of Boolean-like

terms. We easily check that:

Proposition 21. For all closed terms t ∈ Λ:

1. t � Bool(0) iff t is True like;

2. t � Bool(1) iff t is False like;

3. The formula Bool(n) has no universal realizer as soon as n � 2.

4. t � Bool iff t is Boolean like.

Proof. The proofs of (1), (2) and (4) proceed similarly to the proof of Proposition 20.

(In all cases, we can choose either a goal-oriented or a thread-oriented definition of the

pole to show that the universal realizer t meets the expected specification.) For (3), it

suffices to notice that the formula Bool(n) (where n � 2) is false in the standard model

of PA2, and thus has no universal realizer.

The above proposition shows that in classical realizability, universal realizers of the

formulas Bool(0), Bool(1) and Bool have the same computational behaviour as the

intuitionistic realizers of these formulas in AF2 (Krivine 1993) – mutatis mutandis†. But in

AF2, we can actually prove that the set of (intuitionistic) realizers of Bool is the disjoint

union of the sets of realizers of the formulas Bool(0) and Bool(1). In classical realizability,

the situation is more complex due to the presence of extra instructions, as we shall now see.

5.2.1. Non-deterministic choice operators. We say that a closed λc-term t ∈ Λ is a non-

deterministic choice operator if t is both True like and False like. An example of such an

operator is the instruction � introduced in Section 2.3.

It follows from Proposition 21 that non-deterministic choice operators are exactly the

closed λc-terms t such that t � Bool(0) and t � Bool(1) (simultaneously). In classical

realizability, the sets of universal realizers of the formulas Bool(0) and Bool(1) may thus

† In AF2, formulas are not primarily interpreted as sets of stacks (as in classical realizability), but as sets of

(possibly open) λ-terms closed under β-equivalence, in the spirit of Kleene realizability. Moreover, the notion

of computation of AF2 is ordinary β-reduction rather than weak head-reduction. Up to these differences, the

specification of the formulas Bool(0), Bool(1) and Bool is the same in AF2 as indicated by Proposition 21.
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have a non-empty intersection, depending on the presence of a non-deterministic operator

in the calculus. If the calculus provides the instruction � described in Section 2.3, then

the intersection is nonempty. But if the relation of one step evaluation is deterministic,

then the sets of universal realizers of the formulas Bool(0) and Bool(1) do not intersect.

5.2.2. Versatile Booleans. We call a versatile Boolean any Boolean-like term that is neither

True like nor False like. Intuitively, a versatile Boolean is a Boolean-like term that

sometimes returns its first argument or its second argument, depending on the two

arguments it is applied to, or depending on the rest of the stack.

Versatile Booleans cannot exist in the pure λ-calculus, for obvious reasons. But in

the λc-calculus, it is easy to implement such objects using the instruction quote or the

instruction eq (see Section 2.3), for instance:

— The term D ≡ λxy . quote (λn . even n x y), where even is a pure λ-term that tests

whether the numeral it is applied to is even. Notice that the answer (‘first’ or ‘second’)

given by D does not actually depend on the two arguments it is applied to, since it

only depends on the (code of the) rest of the stack!

— The term E ≡ λxy . eq x I x y. Here the term E returns its first argument if it is

equal to I, and its second argument otherwise.

From Proposition 21, both terms D and E are universal realizers of the formula Bool, but

none of them universally realizes Bool(0) or Bool(1).

5.3. Interaction constants

The two examples of versatile Booleans presented above crucially depend on two extra

instructions quote and eq that have no equivalent in the λ(μ)-calculus. Indeed, these

instructions are able to distinguish syntactically different terms that are computationally

equivalent, such as the terms I and I I for instance†.

To understand better the impact of such extra instructions in the λc-calculus, we need

to introduce the important notion of an interaction constant.

Definition 22 (interaction constants). A constant κ ∈ C is said to be

— inert if for all π ∈ Π, there is no process p such that κ � π �1 p;

— substitutive if for all u ∈ Λ and for all processes p, p′ ∈ Λ � Π,

p �1 p
′ implies p{κ := u} �1 p

′{κ := u};
— non-generative if for all processes p, p′ ∈ Λ�Π such that p �1 p

′, the constant κ cannot

occur in p′ unless it already occurs in p.

A constant κ ∈ C that is inert, substitutive and non-generative is then called an interaction

constant. Similarly, we say that a stack constant α ∈ B is

— substitutive if for all π ∈ Π and for all processes p, p′ ∈ Λ � Π,

p �1 p
′ implies p{α := π} �1 p

′{α := π};

† In particular, it is clear that naively extending the pure λ-calculus with any of these two instructions would

immediately break the property of confluence. In the λc-calculus, the property of determinism is preserved

only because computation proceeds according to a fixed evaluation strategy.
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— non-generative if for all p, p′ ∈ Λ � Π such that p �1 p′, the stack constant α cannot

occur in p′ unless it already occurs in p.

We can first notice that substitutive constants are incompatible with the two instruc-

tions quote and eq:

Proposition 23. If the calculus of realizers contains one of both instructions quote or eq,

then none of the constants κ ∈ C is substitutive.

Proof. Let us assume that the calculus contains an instruction eq with the evaluation

rule (Eq) described in Section 2.3. Given an arbitrary constant κ ∈ C, let us consider the

process p ≡ eq�κ ·I ·δ ·I ·α, where α ∈ B is a fixed stack constant. We notice that p �1 I�α

(since κ �≡ I) whereas p{κ := I} ≡ eq � I · I · δ · I · α �1 δ � α �≡ (I � α){κ := I}, hence the

constant κ is not substitutive. The same argument applies to the instruction quote, since

the instruction eq can be implemented from it.

On the other hand, it is clear that if the relation of evaluation �1 is defined from the

only rules (Grab), (Push), (Save) and (Restore) – and possibly: the rule (Fork) – then

all the remaining constants κ in C (i.e. κ �= cc,�) are interaction constants (and thus

substitutive), whereas all the stack constants in B are substitutive and non-generative.

Substitutive (term and stack) constants are useful to analyse the computational beha-

viour of realizers in a uniform way. For instance, if we know that a closed term t ∈ Λ is

such that

t � κ1 · · · κn · α � p

where κ1, . . . , κn are substitutive constants that do not occur in t, and where α is a

substitutive stack constant that does not occur in t too, then we more generally know that

t � u1 · · · un · π � p{κ1 := u1, . . . , κn := un, α := π}

for all terms u1, . . . , un ∈ Λ and for all stacks π ∈ Π. Intuitively, substitutive constants

play in the λc-calculus the same role as free variables in the pure λ-calculus.

Using the uniformity of computations that is brought by the presence of substitutive

constants, we easily check that:

Proposition 24. If the calculus of realizers has infinitely many substitutive constants and

infinitely many substitutive stack constants, then every Boolean-like term is either True

like or False like. (Which means that there are no versatile Booleans.)

Proof. Let t be a Boolean-like term, and consider two distinct substitutive constants κ0

and κ1 that do not occur in the closed term t as well as a substitutive stack constant α that

does not occur in t. (We can always find such constants outside t, since t only contains a

finite number of them.) We distinguish two cases:

— Either t � κ0 · κ1 · α � κ0 � α. By substitutivity, we have

t � u0 · u1 · π ≡ (t � κ0 · κ1 · α){κ0 := u0, κ1 := u1, α := π}
� (κ0 � α){κ0 := u0, κ1 := u1, α := π} ≡ u0 � π

for all u0, u1 ∈ Λ and π ∈ Π, which means that t is True like.

— Either t � κ0 · κ1 · α � κ1 � α. Symmetrically, we deduce that t is False like.
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6. Specification of Peirce’s law

In this section, we now consider the specification problem for an intrinsically classical

reasoning principle: the law of Peirce. In the literature, Peirce’s law is indifferently stated

as ∀X ∀Y (((X ⇒ Y )⇒ X)⇒ X) or as ∀X ((¬X ⇒ X)⇒ X). Since the judgment

∀X ∀Y (((X ⇒ Y )⇒ X)⇒ X) � ∀X ((¬X ⇒ X)⇒ X)

is derivable from the rules of Figure 2, both formulations of this law have the same

semantics, and thus the same set of (universal) realizers. In what follows, we shall prefer

the simpler formulation ∀X ((¬X ⇒ X)⇒ X) that involves a single parameter X.

The aim of this section is to specify all the universal realizers of Peirce’s law. It is clear

from Lemma 11 that the instruction cc is one of them, but it is now time to see that the

universal realizers of Peirce’s law may have a much richer computational behaviour than

the one of the instruction cc.

6.1. The family of terms (ccn,p)n�p�1

To illustrate the possible computational behaviours of the universal realizers of Peirce’s

law, it is useful to introduce a sequence of closed proof-like terms ccn,p indexed by all

pairs of integers (n, p) such that n � p � 1.

Given a fixed pair (n, p) such that n � p � 1, we define for all i ∈ [1..n] an open

proof-like term Ki
n,p[x0, k, x1, . . . , xi−1] that only depends on the variables x0, k, x1, . . . , xi−1.

This finite sequence of open terms is defined from i = n (down) to i = 1 by the equations:

Kn
n,p[x0, k, x1, . . . , xn−1] ≡ λxn . k xp

Ki
n,p[x0, k, x1, . . . , xi−1] ≡ λxi . k (x0 K

i+1
n,p [x0, k, x1, . . . , xi]) (1 � i < n)

(Notice that we actually have FV (Ki
n,p[x0, k, x1, . . . , xi−1]) = {x0, k} ∪ {xp if p < i}.)

The closed proof-like term ccn,p is then defined by

ccn,p ≡ λx0 . cc (λk . x0 K
1
n,p[x0, k]) .

We easily check that:

Fact 25. For all u0, . . . , un ∈ Λ and π0, . . . , πn ∈ Π, we have:

ccn,k � u0 · π0 � u0 � K1
n,p[u0, kπ0

] · π0

Ki
n,p[u0, kπ0

, u1, . . . , ui−1] � ui · πi � u0 � Ki+1
n,p [u0, kπ0

, u1, . . . , ui] · π0

Kn
n,p[u0, kπ0

, u1, . . . , un−1] � un · πn � up � π0

(1 � i < n)

In the particular case where n = p = 1, we thus have

cc1,1 � u0 · π0 � u0 � (λx1 . kπ0
x1) · π0

(λx1 . kπ0
x1) � u1 · π1 � u1 � π0 ,

(since K1
1,1[u0, kπ0

] ≡ λx1 . kπ0
x1)

which makes clear that cc1,1 has the same computational behaviour as cc – which is not

surprising since cc1,1 ≡ λx0 . cc (λk . x0 (λx1 . k x1)) is nothing but the η-long form of cc.
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It is easy to check that:

Proposition 26. For all n � p � 1 the judgment � ccn,p : ∀X ((¬X ⇒ X)⇒ X) is derivable

from the rules of Figure 1, so that ccn,p is a universal realizer of Peirce’s law.

Proof. It suffices to check for i = n (down) to i = 1 that the judgment

x0 : ¬X ⇒ X, k : ¬X, x1 : X, . . . , xi−1 : X � Ki
n,p[x0, k, x1, . . . , xi−1] : ¬X

is derivable from the rules of Figure 1 (where X is a fixed second-order variable), hence

we have � ccn,p ≡ λx0 . cc (λk . x0 K
1
n,p[x0, k]) : ∀X ((¬X ⇒ X)⇒ X).

In Section 6.3, we shall prove that in the presence of infinitely many interaction constants

and of infinitely many substitutive and non-generative stack constants, every universal

realizer of Peirce’s law behaves as one of the terms ccn,p.

6.2. A first game G0

To understand the computational behaviour of the universal realizers of Peirce’s law, it is

convenient to present computations in the form of a game between two players ∃ (player,

or defender) and ∀ (opponent, or attacker), that we denote by G0.

During the game, the two players ∃ and ∀ exchange arguments for (using closed terms)

and against (using stacks) particular formulas. The aim of player ∃ is then to exhibit

a contradiction from the only arguments raised by the opponent, thus defeating the

opponent’s attack. The game G0 starts with an initialization phase of one round (i = 0),

before entering the main phase, that contains all the subsequent rounds (i = 1, 2, . . .).

The initialization phase (round i = 0) proceeds as follows:

— Player ∃ first plays a closed term t0 to defend the formula (¬X ⇒ X) ⇒ X, where

the parameter X is unknown to ∃. (In what follows, it is convenient to think that this

purely logical parameter is only known to the opponent ∀.)
— To attack the same formula, opponent ∀ plays a pair (u0, π0) ∈ Λ×Π, claiming that u0

proves ¬X ⇒ X whereas π0 refutes X, thus forming the process p0 ≡ t0 � u0 · π0, that

constitutes the next ∃-position.

The rest of the game is then parameterized by the initial opponent’s move (u0, π0), which

we call the handle, since it is used by player ∃ to communicate its moves to opponent ∀.
Each round i � 1 of the main phase of the game then proceeds as follows:

— The possible moves of player ∃ are determined by the thread of the process pi−1 ≡
ti−1�ui−1 ·πi−1 formed in the previous round, which is the current ∃-position. Depending

on the evaluation of this process, the possible moves of player ∃ are the following:

Winning move. If pi−1 � uj � π0, where uj is an argument for X played by opponent ∀
at some round j ∈ [1..i − 1], then player ∃ has a winning move. Intuitively, this

move allows player ∃ to win the play by exhibiting a contradiction between the

opponents, claims that X is true (uj) and false (π0). Note that such a move is only

possible at a round i � 2, since at round i = 1, the opponent has not yet given any

argument in defense of the formula X.
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Continuation move. If pi−1 � u0 � t · π0 for some closed term t, then player ∃ has the

possibility to play the term ti ≡ t in defense of the formula ¬X. This move is

justified by the fact that if the term t is a correct argument for the formula ¬X,

then the stack t ·π0 is a correct refutation of the opponent’s claim that the formula

¬X ⇒ X is true (using u0).

If none of these two kinds of moves is possible, then opponent ∀ wins.

— Once player ∃ has played a term ti in defense of the formula ¬X, opponent ∀ attacks

the formula ¬X with a pair (ui, πi) ∈ Λ × Π, claiming that ui proves X whereas πi
refutes ⊥, and forms the next ∃-position pi ≡ ti � ui · πi. (Of course, by doing this,

opponent ∀ unwillingly provides an argument ui in defense of X that player ∃ can use

to win in a future turn.)

When a play is infinite, we consider that ∀ wins (‘benefit of the doubter’).

In this game-theoretic setting, it is easy to see that each ccn,p (n � p � 1) constitutes

a winning strategy for ∃ (as an initial move) in exactly 2n + 3 moves. Indeed, if player ∃
plays t0 ≡ ccn,p as her first move, the game proceeds as follows:

— ∃ plays t0 ≡ ccn,p.
— ∀ plays any move (u0, π0) (the ‘handle’).

— ∃ plays t1 ≡ K1
n,p[u0, kπ0

] (since ccn,p � u0 · π0 � u0 � t1 · π0).

— ∀ plays any move (u1, π1)

— ∃ plays t2 ≡ K2
n,p[u0, kπ0

, u1] (since t1 � u1 · π1 � u0 � t2 · π0).
...

— ∀ plays any move (un−1, πn−1)

— ∃ plays tn ≡ Kn
n,p[u0, kπ0

, u1, . . . , un−1] (since tn−1 � un−1 · πn−1 � u0 � tn · π0).

— ∀ plays any move (un, πn)

— ∃ wins (since tn � un · πn � up � π0, where 1 � p � n).

Let us now formalize the notion of a winning strategy for the game G0 (from the point

of view of player ∃). We call a G0-state (or simply: a state) any pair 〈p, 
〉 where p is a

process and where 
 is a finite set of closed terms that intuitively represents the former

moves of ∀. Given a fixed handle (u0, π0) ∈ Λ ×Π, we define by (generalized) induction

the set W(u0 ,π0) of winning states from the following two inference rules:

〈p, 
〉 ∈W(u0 ,π0)
(if p � u � π0 for some u ∈ 
)

〈t � u · π, 
 ∪ {u}〉 ∈W(u0 ,π0) for all (u, π) ∈ Λ×Π

〈p, 
〉 ∈W(u0 ,π0)
(if p � u0 � t · π0).

Notice that the second inference rule is an ω-rule that has infinitely many premises, which

correspond to all the possible ∀-moves (u, π) ∈ Λ × Π. A derivation of 〈p, 
〉 ∈ W(u0 ,π0)

is thus, from the generalized inductive definition, an infinitely branching well-founded

tree. Finally, we say that a closed term t0 is a winning strategy for the game G0 if

〈t0 � u0 · π0,�〉 ∈W(u0 ,π0) for all handles (u0, π0) ∈ Λ×Π.

We easily check that:

Fact 27. For all n � p � 1, ccn,p is a winning strategy for the game G0.
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Moreover, the terms ccn,p are uniform strategies, in the sense that all the corresponding

plays have the very same structure; they all have the same length (2n+3 moves) and they

all use the pth opponent’s move (up, πp) to end the game (with up � π0). In the presence

of the quote instruction, it is easy to implement winning strategies for the game G0 that

are not uniform – for instance by dynamically extracting n and/or p from the code of the

handle (u0, π0) or of one of the first opponent’s moves (ui, πi). But in all cases:

Proposition 28 (adequacy of winning strategies for the game G0). If t0 ∈ Λ is a winning

strategy for the game G0, then t0 � ∀X ((¬X ⇒ X)⇒ X).

Proof. Let us assume that t0 ∈ Λ is a winning strategy for the game G0, and take a

pole ⊥⊥, a falsity value S ⊆ Π, a realizer u0 ∈ |¬Ṡ ⇒ Ṡ | as well as a stack π0 ∈ S . We

want to show that t0 � u0 · π0 ∈ ⊥⊥. For that, we more generally prove that

For all states 〈p, 
〉 ∈W(u0 ,π0), if 
 ⊆ S⊥⊥, then p ∈ ⊥⊥.

We proceed by induction on the derivation of 〈p, 
〉 ∈W(u0 ,π0), distinguishing two cases:

1. 〈p, 
〉 ∈W(u0 ,π0) since p � u � π0 for some u ∈ 
.

If we assume that 
 ⊆ S⊥⊥, we thus get u � π0 ∈ ⊥⊥ (since u ∈ S⊥⊥ and π0 ∈ S). We

then conclude by anti-evaluation.

2. 〈p, 
〉 ∈W(u0 ,π0) since p � u0 � t · π0 for some term t ∈ Λ such that

〈t � u · π, 
 ∪ {u}〉 ∈W(u0 ,π0) for all (u, π) ∈ Λ×Π.

Let us assume that 
 ⊆ S⊥⊥. We first want to prove that t � ¬Ṡ . For that, we

take a term u ∈ S⊥⊥ and a stack π ∈ Π. Since 
 ∪ {u} ⊆ S⊥⊥, we get t � u · π ∈ ⊥⊥
from the induction hypothesis. Hence t � ¬Ṡ and thus t · π0 ∈ ‖¬Ṡ ⇒ Ṡ‖, so that

u0 � t · π0 ∈ ⊥⊥. We conclude by anti-evaluation.

By induction, the property holds for all states 〈p, 
〉 ∈ W(u0 ,π0). In particular, we have

t0 � u0 · π0 ∈ ⊥⊥, since 〈t0 � u0 · π0,�〉 ∈W(u0 ,π0) from our assumption on t0.

6.3. Completeness of G0 in the presence of interaction constants

In this section, we prove that in the presence of infinitely many interaction constants and

of infinitely many substitutive stack constants, the converse of Proposition 28 holds, in

the sense that every universal realizer of the law of Peirce is a winning strategy for the

game G0.

This result is a consequence of the following technical lemma:

Lemma 29. Let t0 be a universal realizer of the law of Peirce. If (κi)i∈ω is an infinite

sequence of (pairwise distinct) non-generative constants that do not occur in t0 and if

(αi)i∈ω is an infinite sequence of stack constants, then there exist two indices n and p such

that n � p � 1 as well as a finite sequence t1, . . . , tn of n closed terms such that

t0 � κ0 · α0 � κ0 � t1 · α0

ti � κi · αi � κ0 � ti+1 · α0

tn � κn · αn � κp � α0

(for all 1 � i < n)
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Proof. We consider the sequence of sets of processes (Qi)i∈ω that is defined by

Q0 = th(t0 � κ0 · α0) and Qi+1 =
⋃

t∈Λ s.t.
κ0�t·α0∈Qi

th(t � κi+1 · αi+1) .

From this definition, it is clear that a process q ∈ Qi contains none of the constants

κj for j > i, using the fact that these constants do not occur in t0 and that they are

non-generative.

Let us now write Q∞ =
⋃

i∈ω Qi, and consider the (thread-oriented) pole ⊥⊥ defined

by ⊥⊥ = (Q∞)c as well as the falsity value S = {α0}. From the definition of ⊥⊥, we have

t0 �κ0 ·α0 /∈ ⊥⊥. But since t0 � (¬Ṡ ⇒ Ṡ)⇒ Ṡ and α0 ∈ S , we deduce κ0 �� ¬Ṡ ⇒ Ṡ . Which

means that there is a realizer t � ¬Ṡ such that κ0 � t · α0 /∈ ⊥⊥. From the latter, we deduce

that κ0 � t · α0 ∈ Qp−1 for some p � 1. Hence t � κp · αp ∈ Qp (from the definition of Qp)

and thus t � κp · αp /∈ ⊥⊥. But since t � ¬Ṡ , we have κp �� Ṡ , hence κp � α0 /∈ ⊥⊥ and thus

κp � α0 ∈ Qn for some index n � 0. Using the fact that κp can only occur in the processes

belonging to the sets Qi for i � p, we get n � p (so that n � 1). From the definition of Qn,

we immediately deduce the existence of n terms t1, . . . , tn such that

t0 � κ0 · α0 ∈ Q0 � κ0 � t1 · α0 ∈ Q0

ti � κi · αi ∈ Qi � κ0 � ti+1 · α0 ∈ Qi

tn � κn · αn ∈ Qn � κp � α0 ∈ Qn.

(for all 1 � i < n)

Theorem 30 (specification of Peirce’s law in the presence of interaction constants). If the

calculus of realizers contains infinitely many interaction constants as well as infinitely

many substitutive and non-generative stack constants, then the universal realizers of

Peirce’s law are exactly the uniform winning strategies for the game G0.

Proof. We have already proved (Proposition 28) that the terms t0 that are winning

strategies for the game G0 universally realize Peirce’s law. Conversely, let t0 � ∀X ((¬X ⇒
X)⇒ X), and take an infinite sequence (κi)i∈ω of (pairwise distinct) interaction constants

that do not occur in t0 as well as an infinite sequence (αi)i∈ω of (pairwise distinct) non-

generative and substitutive stack constants that do not occur in t0 too. (It is always

possible to find such term and stack constants outside t0, since t0 only contains a finite

number of them.) From Lemma 29, there exist two indices n and p such that n � p � 1

as well as a finite sequence t1, . . . , tn of n closed terms such that

t0 � κ0 · α0 � κ0 � t1 · α0

ti � κi · αi � κ0 � ti+1 · α0

tn � κn · αn � κp � α0.

(for all 1 � i < n)

Also notice that from our assumptions, each term ti (0 � i � n) may contain the constants

κj/αj for any j < i, but it contains none of them when j � i. To prove the desired result,

we consider the threads th(ti � κi · αi) (1 � i � n) in reverse order.

— i = n. For all u0, . . . , un ∈ Λ and π0, . . . , πn ∈ Π we have

tn{κj := uj}n−1
j=0{αj := πj}n−1

j=0 � un · πn � up � π0
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(by substitutivity), so that

〈tn{κj := uj}n−1
j=0{αj := πj}n−1

j=0 � un · πn, {u1, . . . , un}〉 ∈ W(u0 ,π0)

from the first rule of the inductive definition of W(u0 ,π0).

— 0 � i < n. Let us now assume that

〈ti+1{κj := uj}ij=0{αj := πj}ij=0 � ui+1 · πi+1, {u1, . . . , ui+1}〉 ∈ W(u0 ,π0)

for all u0, . . . , ui+1 ∈ Λ and π0, . . . , πi+1 ∈ Π. From the second rule of the inductive

definition of W(u0 ,π0), we get

〈ti{κj := uj}i−1
j=0{αj := πj}i−1

j=0 � ui · πi, {u1, . . . , ui}〉 ∈ W(u0 ,π0)

for all u0, . . . , ui ∈ Λ and π0, . . . , πi ∈ Π.

In the case where i = 0, we have thus proved that 〈t0 � u0 · π0, �〉 ∈W(u0 ,π0) for all u0 ∈ Λ

and π0 ∈ Λ, which means that t0 is a winning strategy for G0. The fact that this strategy

is uniform is obvious from the construction.

In the presence of infinitely many interaction constants and of infinitely many sub-

stitutive and non-generative stack constants, every universal realizer of Peirce’s law has

thus the same computational behaviour as one of the proof-like terms ccn,p (n � p � 1).

6.4. A wild realizer of Peirce’s law

Theorem 30 gives a specification of Peirce’s law in the particular case where the language

of realizers provides infinitely many interaction constants and infinitely many substitutive

and non-generative stack constants. It is interesting to notice that these assumptions

are compatible with the presence of the non-deterministic instruction �; actually, the

specification expressed in Theorem 30 makes no assumption about the determinism or

the non-determinism of the relation of evaluation �1.

However, the assumptions of Theorem 30 are definitely incompatible with the presence

of instructions such as eq or quote, that break the property of substitutivity (for all

term/stack constants), and it is tempting to extend the result expressed in Theorem 30

to a framework that allows such instructions – provided we drop the requirement of

uniformity, since we know that quote allows to implement non-uniform winning strategy

for the game G0. Alas, such an extension is not possible, since the presence of the

instruction eq (that can be mimicked using quote) allows us to define universal realizers

of Peirce’s law that are not winning strategies for the game G0. In what follows, such

realizers will be called wild realizers of Peirce’s law.

Here is an example of such a wild realizer. Let us consider the terms

K[y, k] ≡ λz . eq z (yy) I (k z)

T1[x] ≡ λy . cc (λk . xK[y, k])

T2[x] ≡ T1[x]T1[x]

cc′ ≡ λx . T2[x].

From these definitions we get:

cc′ � u · π �1 T2[u] � π � u � K[T1[u], kπ] · π
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for all u ∈ Λ and π ∈ Π, whereas

K[T1[u], kπ] � u
′ · π′ �

{
I � π′ if u′ ≡ T2[u]

u′ � π otherwise

for all u, u′ ∈ Λ and π, π′ ∈ Π.

Lemma 31. Let ⊥⊥ be a fixed pole and S ⊆ Π an arbitrary falsity value. For all u ∈ Λ

and π ∈ S such that T2[u] � π /∈ ⊥⊥, we have K[T1[u], kπ] � ¬Ṡ .

Proof. To show that K[T1[u], kπ] � ¬Ṡ , let us consider a stack of the form u′ · π′ where

u′ ∈ S⊥⊥ and π′ ∈ Π. Since π ∈ S , we have u′ � π ∈ ⊥⊥, and thus u′ �≡ T2[u]. Hence

K[T1[u], kπ] � u
′ · π′ � u′ � π ∈ ⊥⊥, so that K[T1[u], kπ] � u

′ · π′ ∈ ⊥⊥ by anti-evaluation.

Proposition 32. cc′ � ∀X ((¬X ⇒ X)⇒ X)

Proof. Let us consider a fixed pole ⊥⊥ as well as a falsity value S ⊆ Π. To show that

cc′ ∈ |(¬Ṡ ⇒ Ṡ)⇒ Ṡ |, let us take u ∈ |¬Ṡ ⇒ Ṡ | and π ∈ S . We distinguish two cases:

— Either T2[u] � π ∈ ⊥⊥. In this case we have cc′ � u · π �1 T2[u] � π ∈ ⊥⊥, from which

we get cc′ � u · π ∈ ⊥⊥ by anti-evaluation.

— Either T2[u] � π /∈ ⊥⊥. In this case we have cc′ � u · π � u � K[T1[u], kπ] · π. Since

K[T1[u], kπ] � ¬Ṡ (from Lemma 31), we get u�K[T1[u], kπ]·π ∈ ⊥⊥, hence cc′�u·π ∈ ⊥⊥
by anti-evaluation.

Notice that the subterm I that appears in the definition of the continuation K[y, k]

never appears in head position in the proofs of Lemma 31 and Proposition 32, so that

we could actually replace it by any closed λc-term. Intuitively, this is due to the fact

that when u′ ≡ T2[u], we are not interested anymore in the behaviour of the process

K[T1[u], kπ] � u′ · π′ since we are able to conclude that cc′ � u · π ∈ ⊥⊥ using other means

(first case of the proof of Proposition 32). Also notice that the case distinction performed

in the proof of Proposition 32 makes the corresponding proof intrinsically classical,

which contrasts with the proof of adequacy for cc (Lemma 11 p. 1284), which is fully

intuitionistic. In some sense, we can think of cc′ as a universal realizer of Peirce’s law

that is twice classical. It is classical from the computational point of view, since it heavily

relies on the machinery of continuations. But it is also classical from the meta-theoretic

point of view, due to the fact that the corresponding proof of adequacy (Proposition 32)

is classical too.

Before giving a game-theoretic interpretation of these strange phenomena, let us first

check that cc′ is not a winning strategy for our first game G0:

Lemma 33. Let us assume that the relation of one step evaluation �1 is only defined

from the rules (Grab), (Push), (Save), (Restore) and (Eq). Then the universal realizer cc′

of Peirce’s law is not a winning strategy for the game G0.

Proof. We start with the initial handle (I, α0), where α0 is a stack constant. We notice

that
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— Player ∃ is forced to play t1 ≡ K[T1[I], kα0
], since t1 is the only term t such that

I � t · α0 ∈ th(cc′ � I · α0).

— Opponent ∀ can play u1 ≡ T2[I] and π1 ≡ α0.

— Then ∃ loses, since the thread th(t1 � u1 · π1) contains no process of the form I � t2 · α0

(to continue to play) or of the form T2[I] � α0 (to win the game).

6.5. A second game G1

Although the wild realizer cc′ of Peirce’s law does not constitute a winning strategy for

the game G0, we can still understand the computational behaviour of cc′ in game-theoretic

terms as follows:

— Player ∃ plays t0 ≡ cc′.

— Opponent ∀ plays a handle (u0, π0).

— Player ∃ plays t1 ≡ K[T1[u0], kπ0
] (since cc′ � u0 · π0 � u0 � K[T1[u0], kπ0

] · π0).

— Then opponent ∀ plays an arbitrary move (u1, π1) ∈ Λ×Π.

— Now comes the crucial point:

1. In the case where u1 �≡ T2[u0], player ∃ wins as expected, since:

t1 � u1 · π1 ≡ K[T1[u0], kπ0
] � u1 · π1 � u1 � π0 .

2. But in the case where u1 ≡ T2[u0], player ∃ realizes that she could have played a

winning move at the previous round, since:

t0 � u0 · π0 ≡ cc′ � u0 · π0 �1 T2[u0] � π0 ≡ u1 � π0 .

(Of course, she could not claim her victory at that time, because she did not know

that u1 is an opponent’s argument for X.) To achieve her ‘retrospective victory’,

player ∃ simply backtracks to her former position cc′ � u0 · π0, from which she

can win using the above indicated move. (Note that this new form of backtrack

is purely game theoretic, with no computational counterpart.) At this point of the

play, the ∃-position K[T1[u0], kπ0
] � u1 · π1 is abandoned, which explains why its

computational behaviour is irrelevant.

This discussion shows that we can still think of the closed term cc′ as a winning strategy

provided we give to player ∃ the possibility to compute its move from any ∃-position that

was previously encountered during the play – and not only from the current ∃-position.

We thus get a new game G1, that relies on the same logical intuitions as before (cf

Section 6.2). The only difference is that now, player ∃ keeps track of the history of all the

preceding ∃-positions encountered during the game, and is allowed to compute its next

move from any position recorded in this history.

Formally, we thus define a G1-state as a pair 〈P , 
〉 where P is a finite set of processes

(intuitively, the history of all the previously encountered ∃-positions, including the current

position) and where 
 is a finite set of closed terms (intuitively, the history of the

first components ui of the previous moves (ui, πi) of the opponent ∀). Given a handle
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(u0, π0) ∈ Λ×Π, the set W ′
(u0 ,π0)

of winning G1-states is inductively defined as follows:

〈P , 
〉 ∈W ′
(u0 ,π0)

(if p � u � π0 for some p ∈ P , u ∈ 
).

〈P ∪ {t � u · π}, 
 ∪ {u}〉 ∈W ′
(u0 ,π0)

for all (u, π)

〈P , 
〉 ∈W ′
(u0 ,π0)

(if p � u0 � t · π0 for some p ∈ P ).

As before, we say that a term t0 is a winning strategy for the game G1 if for all handles

(u0, π0) ∈ Λ×Π, we have 〈{t0 � u0 · π0},�〉 ∈W ′
(u0 ,π0)

. It is a simple exercise to check that:

Fact 34. The closed term cc′ is a winning strategy for the game G1.

Moreover, we easily check that winning strategies for the game G0 are particular cases

of winning strategies for the game G1:

Proposition 35. If a closed λc-term is a winning strategy for the game G0, then it is also a

winning strategy for the game G1.

Proof. It suffices to prove that 〈p, 
〉 ∈W(u0 ,π0) implies 〈{p}, 
〉 ∈W ′
(u0 ,π0)

for all G0-states

〈p, 
〉, by induction on the derivation of 〈p, 
〉 ∈W(u0 ,π0). The second case of the proof relies

on the property of monotonicity expressing that 〈P , 
〉 ∈ W ′
(u0 ,π0)

and P ⊆ P ′ together

imply 〈P ′, 
〉 ∈W ′
(u0 ,π0)

(which is also proved by induction).

Let us now prove that the game G1 is adequate w.r.t. Peirce’s law:

Proposition 36 (adequacy of winning strategies for the game G1). If t0 is a winning strategy

for the game G1, then t0 � ∀X ((¬X ⇒ X)⇒ X).

Proof. Let ⊥⊥ be a fixed pole, and consider a falsity value S ⊆ Π, a realizer u0 � ¬Ṡ ⇒ Ṡ

as well as a stack π0 ∈ S . We want to show that t0�u0 ·π0 ∈ ⊥⊥. For that, we more generally

prove that for all 〈P , 
〉 ∈ W ′
(u0 ,π0)

, 
 ⊆ S⊥⊥ implies P ∩ ⊥⊥ �= �. The proof proceeds by

induction on the derivation on 〈P , 
〉 ∈W ′
(u0 ,π0)

, distinguishing the following cases:

1. 〈P , 
〉 ∈ W ′
(u0 ,π0)

since there exist some p ∈ P and u ∈ 
 such that p � u � π0. If we

assume that 
 ⊆ S⊥⊥, we thus get u � π0 ∈ ⊥⊥, hence p ∈ ⊥⊥ by anti-evaluation.

2. 〈P , 
〉 ∈ W ′
(u0 ,π0)

since there exist some p ∈ P and t ∈ Λ such that p � u0 � t · π0,

and since 〈P ∪ {t � u · π}, 
 ∪ {u}〉 ∈ W ′
(u0 ,π0)

for all u ∈ Λ and π ∈ Π. Let us assume

that 
 ⊆ S⊥⊥. To show that P ∩ ⊥⊥ �= �, let us assume that P ∩ ⊥⊥ = � (using the

meta-theoretic law of Peirce). We first want to show that t � ¬Ṡ . For that, let us

consider u ∈ S⊥⊥ and π ∈ Π. Since 〈P ∪{t � u ·π}, 
∪{u}〉 ∈W ′
(u0 ,π0)

and (
∪{u}) ⊆ S⊥⊥,

we get (P ∪ {t � u · π}) ∩ ⊥⊥ �= � by induction hypothesis. But since P ∩ ⊥⊥ = �, we

deduce that t�u ·π ∈ ⊥⊥, which finishes the proof that t � ¬Ṡ . Therefore, u0 �t ·π0 ∈ ⊥⊥,

and thus p ∈ ⊥⊥ by anti-evaluation.

In particular, we have proved that t0 � u0 · π0 ∈ ⊥⊥, since 〈{t0 � u0 · π0},�〉 ∈W ′
(u0 ,π0)

.

But the converse implication also holds, without any further assumption on the

parameters B, C and �1 that define the underlying calculus of realizers:
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Proposition 37 (completeness of winning strategies for the game G1). If t0 universally

realizes Peirce’s law, then t0 is a winning strategy for the game G1.

Proof. We reason by contradiction by assuming that there is a handle (u0, π0) ∈ Λ×Π

such that 〈{t0 �u0 ·π0},�〉 /∈W ′
(u0 ,π0)

. To reach a contradiction, we shall build an increasing

sequence of G1-states (〈Pi, 
i〉)i∈N such that 〈Pi, 
i〉 /∈ W ′
(u0 ,π0)

for all i ∈ N. For that, we

consider a fixed enumeration φ : N → Λ such that every term t ∈ Λ appears infinitely

many times in the range of φ. The sequence (〈Pi, 
i〉)i∈N is defined as follows:

— P0 = {t0 � u0 · π0} and 
0 = �, so that 〈P0, 
0〉 /∈W ′
(u0 ,π0)

.

— Let us assume that we have built a G1-state 〈Pi, 
i〉 such that 〈Pi, 
i〉 /∈W ′
(u0 ,π0)

. Writing

t ≡ φ(i), we distinguish the following two cases:

1. Either there exists a process p ∈ Pi such that p � u0 � t · π0. In this case, we know

(from the second rule of the inductive definition of W ′
(u0 ,π0)

) that there is a pair

(u, π) ∈ Λ ×Π such that 〈Pi ∪ {t � u · π}, 
i ∪ {u}〉 /∈ W ′
(u0 ,π0)

. We pick such a pair

(u, π) and let Pi+1 = Pi ∪ {t � u · π} and 
i+1 = 
i ∪ {u}, so that by construction we

have 〈Pi+1, 
i+1〉 /∈W ′
(u0 ,π0)

.

2. Either there is no process p ∈ Pi such that p � u0 � t · π0. In this case, we keep the

same G1-state by letting Pi+1 = Pi and 
i+1 = 
i.

It is clear from the above construction that Pi ⊆ Pi+1 and 
i ⊆ 
i+1 for all i ∈ N. We then

put P∞ =
⋃

i∈N Pi, Q =
⋃

p∈P∞ th(p), and we consider the pole ⊥⊥ = Qc as well as the falsity

value S = {π0}. Since t0 � (¬Ṡ ⇒ Ṡ)⇒ Ṡ , π0 ∈ S and t0 � u0 · π0 /∈ ⊥⊥ (from the definition

of ⊥⊥), we get u0 �� ¬Ṡ ⇒ Ṡ . Thus, there is a realizer t � ¬Ṡ such that u0 � t · π0 /∈ ⊥⊥.

Hence u0 � t · π0 ∈ Q, so that there is an index n � 0 and a process p ∈ Pn such that

p � u0 � t · π0. Let us consider an index n′ � n such that φ(n′) ≡ t. Since p ∈ Pn′ (⊇Pn)

and p � u0 � t · π0, there exists (u, π) ∈ Λ × Π such that Pn′+1 = Pn′ ∪ {t � u · π} and


n′+1 = 
n′ ∪ {u} (by construction of 〈Pn′+1, 
n′+1〉). Therefore t � u · π /∈ ⊥⊥, hence u �� Ṡ

(since t � ¬Ṡ and π ∈ ‖⊥‖), so that u � π0 /∈ ⊥⊥. Hence we get u � π0 ∈ Q, so that there is

an index m � 0 and a process p′ ∈ Pm such that p′ � u � π0. Without loss of generality, we

can assume that m � n′ + 1 since the sequence (Pi)i∈N is increasing. We have thus found

an index m � n′ + 1, a process p′ ∈ Pm and a term u ∈ 
m (since u ∈ 
n′+1 ⊆ 
m) such

that p′ � u � π0, which means that 〈Pm, 
m〉 ∈ W ′
(u0 ,π0)

(from the first rule of the inductive

definition of W ′
(u0 ,π0)

) and brings us the desired contradiction.

From Propositions 36 and 37, we thus get the definitive specification of Peirce’s law:

Theorem 38 (specification of Peirce’s law). The universal realizers of Peirce’s law are

exactly the winning strategies for the game G1.
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