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SUMMARY
In this paper, for a special class of the Stewart parallel
mechanism, whose moving platform and base one are
two dissimilar semi-symmetrical hexagons, the position-
singularity of the mechanism for a constant-orientation is
analyzed systematically. The force Jacobian matrix [J]T is
constructed based on the principle of static equilibrium and
the screw theory. After expanding the determinant of the
simplified matrix [D], whose rank is the same as the rank of
the matrix [J]T , a cubic symbolic expression that represents
the 3D position-singularity locus of the mechanism for a
constant-orientation is derived and graphically represented.
Further research shows that the 3D position-singularity
surface is extremely complicated, and the geometric
characteristics of the position-singularity locus lying in a
general oblique plane are very difficult to be identified.
However, the position-singularity locus lying in the series of
characteristic planes, where the moving platform coincides,
are all quadratic curves compromised of infinite many sets of
hyperbolas, four pairs of intersecting lines and a parabola. For
some special orientations, the quadratic curve can degenerate
into two lines or even one line, all of which are parallel to
the ridgeline. Two theorems are presented and proved for the
first time when the geometric characteristics of the position-
singularity curves in the characteristic plane are analyzed.
Moreover, the kinematic property of the position-singularity
curves is obtained using the Grassmann line geometry and
the screw theory. The theoretical results are demonstrated
with several numeric examples.

KEYWORDS: Parallel mechanism; Position-singularity;
Geometric characteristics; Kinematic property.

1. Introduction
Parallel mechanisms (PMs) have attracted scholars’ attention
during the past three decades. The popularity has been
motivated by the fact that parallel mechanisms have higher
stiffness, accuracy, load-carrying capacity, better dynamic
performance, and other advantages over serial mechanisms.
The Stewart Parallel Mechanism (SPM), which was proposed
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as a flight simulator in 1965,1 is one of the best well-known
PMs, and now is widely used in many other applications, such
as docking mechanism of the aircrafts, parallel kinematic
machines, medical micromanipulators, satellite antennas,
and micro- and nano-scale precision position systems.2

One important concern of PMs is the singular
configuration, on which the end-effector gains one or
more unwanted instantaneous degrees of freedom (DOFs)
even if all the actuators are locked. Such situation can
transitorily make the drive force go infinity, and then put
the PM out of control. Many researchers have paid attention
to this phenomenon. Hunt3 first discovered the singular
configuration for the SPM that occurs when all the segments
associated with prismatic actuators intersect a common line.
Fichter4 pointed out that a singular configuration of the 3/6-
SPM occurs when the moving platform parallel to the base
one and rotate around the vertical axis by ±90◦. The 3/6-SPM
has one triangular moving platform and one hexagonal base
platform. Merlet5–7 studied systematically the singularity of
the 3/6-SPM using the Grassmann line geometry, including
types of 3c, 4b, 4d, 5a, and 5b. Gosselin and Angeles8

showed that the singularities of PMs could be classified into
three types based on the determinants of the PMs’ Jacobian
matrices. This classification was refined by Zlatanov et al.9

Ma and Angeles10 researched the architecture singularities of
the PMs. Huang and coworkers11–13 explored the kinematics
principle of PMs, and proposed a new sufficient and
necessary condition to determine the singularity of PMs.
Pendar et al.14 introduced a geometrical method to obtain
the singular configuration based on the famous Ceva plane
geometry theorem. The methods proposed in refs. [11–14]
are very effective to analyze the singularities of the class
of 3/3-SPM and 3/6-SPM, which have triangular moving
platform. Saglia and Dai15 proposed that the singularity of the
parallel mechanism could be eliminated using the redundant
actuators. Zhu et al.16 illustrated the singularity of the fully
symmetrical 5-DOF 3R2T PM based on the screw theory
and the Grassmann line geometry. Ben-Horin and Shoham17

obtained an algebra statement to analyze the singularity of a
class of SPMs using the Grassmann–Cayley algebra.

Owing to Li et al.,18 it is desirable for designers to
obtain the analytical expression and have a graphical
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Fig. 1. (Colour online) Sketch of the special class of SPM.

representation of the singularity locus of a PM. In this
case, it is easy to identify the locations of singularities
within the given workspace and determine whether the
singularity can be avoided. Sefrioui and Gosselin19,20 studied
the singularity loci of the planar and spherical PMs. Then
Wang and Gosselin21 obtained the singularity loci of spatial
4-DOF PMs. For the class of 6-DOF SPMs, the singularity
expression was derived by several researchers. St-Onge and
Gosselin22 pointed out that the singularity locus equation
of the general SPM should be a polynomial expression of
degree three, and also studied the graphical representation
of the singularity locus. For the 3/6-SPM, Huang et al.23

transformed the complicated singularity analysis into a
simpler position analysis of a planar mechanism by proposing
a planar singularity-equivalent mechanism based on the
kinematic principle of singularity introduced in refs. [11–13],
and the polynomial expression of degree three representing
the singularity locus for a constant-orientation was derived.
Huang and Cao24 derived a cubic singularity expression
for a constant-orientation of the 6/6-SPM, whose moving
platform and base one are two semi-symmetrical hexagons.
Bandyopadhyay and Ghosal25 also obtained the singularity
manifold of the 6/6-SPM as a cubic surface in3, and further
showed that the cubic surface in the sections, which is
parallel to the base platform of the mechanism, is a quadratic
curve. Cheng et al.26 gave graphical representations of the
position-singularity loci for different constant-orientations
and the orientation-singularity loci at different positions
based on unit quaternion as orientation parameters, but did
not obtain general expressions of position-singularity and
orientation-singularity. Nawratil27 proposed a set of specific
types of SPMs, which possess non-cubic singularity surface
for orientation.

For a special class of SPMs, whose moving platform and
base one are two dissimilar semi-symmetrical hexagons,
the geometric characteristics and kinematic property of
the singularity loci have not been studied. This paper
focuses on this research area, and its context is briefly as
follows: In Section 2, the geometry of this special class
of SPMs is described. In Section 3, the force Jacobian
matrix is constructed using the principle of static equilibrium
and the screw theory, and the method of determining the
unwanted instantaneous screw motion when the mechanism
is singular is introduced. In Section 4, after expanding the
determinant, the matrix [D], whose rank is the same as the

rank of the force Jacobian matrix [J]T , a cubic symbolic
expression that represents the position-singularity locus of
the mechanism for a constant-orientation is obtained. And
then the 3D position-singularity surfaces of the mechanism
with given geometry parameters for several orientations are
graphically represented. In Section 5, a quadratic symbolic
expression representing the position-singularity curve lying
in the characteristic plane, which coincides with the moving
platform, is derived after setting a new special coordinate
system and using the coordinate transformation. Then the
geometric characteristics of the position-singularity curve
in the characteristic plane are further discussed based on
the theory of analytic plane geometry. In particular, two
theorems are presented and proved for the first time when the
geometric characteristics of the position-singularity curve are
analyzed. Moreover, the kinematic property of the position-
singularity curve is also investigated using the screw theory
and the Grassmann line geometry. Finally, some meaningful
conclusions are reached and the future work is presented.

2. Geometry of the SPM with Two Dissimilar
Semi-Symmetrical Hexagons
The sketch of this special class of SPM is shown in Fig. 1.
The mechanism consists of a moving platform and a base
one connected via six identical SPS or SPU legs (BiCi)(i =
1, 2, . . . , 6). Here, S denotes a spherical joint and U denotes
a Hooke joint which are passive, while P denotes an actuated
prismatic joint. The moving platform and the base one,
whose vertices are Bi and Ci(i = 1, 2, . . . , 6), respectively,
are both semi-symmetrical hexagons but dissimilar with each
other. Aj (j = 1, 3, 5) are the intersection points of the longer
sides of the base platform. P (O), βm(βb), Rm(Rb) are the
geometrical center, the central angle of the side B4B5 (C1C2),
and the circumradius of the moving (base) platform, respect-
ively, where βm �= βb and βm + βb �= 120◦ considering that
the moving platform and the base one are two dissimilar
hexagons. Without loss of generality, the length here is
non-dimensional. Finally, the geometry of the mechanism
is defined by four parameters (Rm, Rb, βm, and βb).

3. The Force Jacobian Matrix and the Unwanted
Instantaneous Screw Motion
The moving reference frame P-X’Y’Z’ and the fixed one
O-XYZ are attached to the moving platform and the base
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platform, respectively. The coordinates of six vertices,
Bi(i = 1, 2, . . . , 6), of the moving platform are denoted
as B′

i(B
′
iX, B ′

iY , B ′
iZ) (i = 1, 2, . . . , 6) with respect to

the moving reference frame and as Bi(BiX, BiY , BiZ)(i =
1, 2, . . . , 6) with respect to the fixed reference frame.
Similarly, C i(CiX, CiY , CiZ)(i = 1, 2, . . . , 6) represents the
coordinates of vertices Ci(i = 1, 2, . . . , 6) with respect
to the fixed reference frame. The coordinates B′

i , C i(i =
1, 2, . . . , 6) are shown in Appendix A. The coordinates
of point P with respect to the fixed reference frame are
designated as P(X, Y, Z). Here the standard Z-Y-Z-Euler
angles (φ, θ, ψ) are used to represent the orientation of
the moving platform. Thus, the ridgeline, which is the
intersecting line of the moving plane X’–P–Y’ and the
fixed plane X-O-Y can be located2 and is described in
Section 5.1.

The relation between Bi and B′
i(i = 1, 2, . . . , 6) satisfies

⎡
⎢⎣

BiX

BiY

BiZ

⎤
⎥⎦ = [R]

⎡
⎢⎣

B ′
iX

B ′
iY

B ′
iZ

⎤
⎥⎦ +

⎡
⎢⎣

X

Y

Z

⎤
⎥⎦, (1)

where the matrix [R] is the rotation matrix of the moving
reference frame to the fixed platform using the standard
Z-Y-Z-Euler angles to represent the orientation of the
moving platform. And then the force Jacobian matrix of the
mechanism can be constructed according to the principle of
static equilibrium and the screw theory11:

[ J]T =
[

S1 S2 S3 S4 S5 S6

S01 S02 S03 S04 S05 S06

]
, (2a)

[ J]T =

⎡
⎢⎢⎢⎣

B1 − C1

|B1 − C1|
B2 − C2

|B2 − C2|
B3 − C3

|B3 − C3|
B4 − C4

|B4 − C4|
B5 − C5

|B5 − C5|
B6 − C6

|B6 − C6|
C1 × B1

|B1 − C1|
C2 × B2

|B2 − C2|
C3 × B3

|B3 − C3|
C4 × B4

|B4 − C4|
C5 × B5

|B5 − C5|
C6 × B6

|B6 − C6|

⎤
⎥⎥⎥⎦, (2b)

where $ r
i = (Si ; S0i) = (Li, Mi, Ni ; Pi, Qi, Ri)(i = 1, 2,

. . . , 6) are the Plücker coordinates of the vertex of the ith
limb.

As |Bi − C i | is the length of the ith limb, and is non-zero,
the force Jacobian matrix [ J]T and the following matrix [D],
written as Eq. (3), have the same rank,

[D] =
[

B − C1 B2 − C2 B3 − C3 B4 − C4 B5 − C5 B6 − C6

C1 × B1 C2 × B2 C3 × B3 C4 × B4 C5 × B5 C6 × B6

]
. (3)

The mechanism is singular when the determinant of the
Jacobian matrix [ J]T is zero. As the matrix [D] and the force
Jacobian matrix [ J]T have the same rank, the determinant
of the matrix [D] can be used as the discriminant of the
singularity. For most of the singularities of the 6/6-SPM,
the rank of the force Jacobian matrix [ J]T is five, then an
unwanted DOF, which is an instantaneous screw motion $ m

with pitch hm, can be derived as follows11:

$ m =

∣∣∣∣∣∣∣∣∣∣∣

∈ i ∈ j ∈ k i j k

L1 M1 N1 P1 Q1 R1

L2 M2 N2 P2 Q2 R2

L3 M3 N3 P3 Q3 R3

L4 M4 N4 P4 Q4 R4

L5 M5 N5 P5 Q5 R5

∣∣∣∣∣∣∣∣∣∣∣
, (4)

where $ m is reciprocal to $ r
i , and can also be expressed

as a dual vector. After expanding, Eq. (4), the unwanted
instantaneous screw motion $ m can be deduced:

(
Sm; Sm

0

) = (Lm, Mm, Nm; P m, Qm, Rm),

where Lm, Mm, Nm, P m, Qm, and Rm are the coefficients of
i, j, k, ∈ i, ∈ j, ∈ k, respectively. The pitch hm of the screw
motion $ m can be calculated using the following equation:

hm = (LmP m + MmQm + NmRm)/(Lm2 + Mm2 + Nm2
).

(5)
4. The 3D Position-Singularity Locus
Based on determinants of the mechanism’s Jacobian
matrices, Gosselin and Angeles8 showed that singularities
of PMs could be classified into three different types:
inverse kinematic singularity, direct kinematic singularity,
and architecture singularity. For the first type of singularity
occurring when different branches of inverse kinematics
problem converge, i.e. the determinant of the Jacobian matrix
[J] of this special class of SPMs being equal to infinity, i.e.
det([ J]) = ∞, where symbol ∞ denotes infinity. It is easy
to deal with it, since it leads to a very simple expression.
Therefore, the inverse kinematic singularity analysis of this

special class of SPMs will not be addressed here. For
more and complete descriptions of the inverse kinematic
singularity analysis of this class of SPMs, we refer the reader
to the detailed explanations given by St-Onge and Gosselin.22

For the third type of singularity, when βm + βb = 120◦,
the moving platform and the base one are two similar

hexagons and the corresponding points are connected, then
the mechanism is architecture singularity. In this case,
whatever is the pose of the GSPM, the mechanism is in
singularity. For the second type of singularity occurring when
different branches of the direct kinematics problem converge,
it is difficult to analyze and has received much attention from
many researchers. This paper will only deal with the direct

https://doi.org/10.1017/S0263574712000148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000148


126 Position-singularity analysis of a special class of Stewart parallel mechanisms

Fig. 2. (Colour online) Position-singularity loci for different orientations: (a) Orientation (60◦, 30◦,−45); (b) orientation (90◦, 30◦, 0); (c)
orientation (90◦, 30◦,−90◦); and (d) orientation (45◦, 60◦,−30◦).

kinematic singularity analysis of this special class of SPMs
that occurs when the determinant of the Jacobian matrix [J]
is equal to zero, i.e. det([ J]) = 0. The Jacobian matrix [J]
here is the transpose of the force Jacobian matrix [ J]T as
presented in Section 3.

Substituting Eq. (1) into Eq. (3), expanding and
rearranging the determinant of the matrix [D], which is
equal to zero when the mechanism is singular, yields a cubic
symbolic expression involving the variables (X, Y, Z). The
expression representing the position-singularity locus for a
constant-orientation (φ, θ, ψ) can be written as the following
equation:

f1Z
3 + f2XZ2 + f3YZ2 + f4X

2Z + f5Y
2Z + f6XYZ

+f7Z
2 + f8XZ + f 9YZ + f10X

2 + f11XY + f12Y
2

+f13Z + f14X + f15Y + f16 = 0,

(6)

where fi(i = 1, 2, . . . , 16) are all functions involving the
geometry parameters Rm, Rb, βm, and βb, and the orientation
parameters (φ, θ, ψ). The graphical representations of the
position-singularity loci for several different orientations are
shown in Fig. 2. The geometry parameters here are given as
Rm = 1, Rb = 2, βm = 75◦, and βb = 105◦.

Figure 2 shows that the graphical representations of the
position-singularity surfaces of the mechanism for different
orientations are all rather complicated and quite variable.

The symbolic expression and surfaces of the position-
singularity developed here are of great importance for the

design and analysis of the mechanism. They allow the
designers to visualize the singularity surface within the
workspace for a given orientation and conclude whether and
how the singularity can be avoided.

5. Analysis of the Position-Singularity Locus in the
Characteristic Plane

5.1. Position-singularity locus in the characteristic plane
The configuration of the mechanism for a constant-
orientation (φ, θ , ψ), where θ �= 0, is briefly shown in Fig. 3.
The moving plane X’-P-Y’ in which the moving platform
lies is called the characteristic plane, and the plane X-O-Y
in which the base platform lies is defined as the base plane.
The intersection angle between the characteristic plane and
the base plane is θ . When θ is non-zero, the characteristic
plane is not parallel to the base plane. Points U, V, and
W are the intersecting points of the ridgeline and the three
sides C5C6, C3C4, and C1C2, respectively. A new moving
reference frame V-xy is set in the characteristic plane. The
coordinates of the point V with respect to the fixed reference
frame O-XYZ is denoted as V (Xv, Yv, 0). Then the position
of the characteristic plane is determined by angle θ and the
coordinates V (Xv, Yv, 0), where Yv can be established as

Yv = 2Rb cos(βb/2) −
√

3Xv. (7)

The equation of line UV in the fixed plane with respect
to the plane-coordinate system O-XY can be written as
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Fig. 3. (Colour online) Configuration of the mechanism for a
constant-orientation.

follows:

Y − 2Rb cos(βb/2) +
√

3Xv = − cot(φ)(X − Xv). (8)

Synthesizing Eq. (8) and the equations of lines C5C6, C3C4,
and C1C2 with respect to the plane-coordinate system
O-XY, the coordinates of points U, V, and W can be obtained.
Besides, the equations of lines C5C6, C3C4, and C1C2 with
respect to the plane-coordinate system O-XY can easily be
deduced according to the geometry of the mechanism.

The meaning of (X, Y, Z) has been defined in Section 3,
and (x, y) denotes the coordinates of point P with respect to
the moving reference frame V-xy. These satisfy Eq. (9):

X = x cos φ cos θ − y sin φ + Xv,

Y = x sin φ cos θ + y cos φ + Yv

Z = −x sin θ.

, (9)

The substitution of Eq. (9) into Eq. (6) with noting Eq. (8)
leads to a symbolic expression, which can be deduced as
Eq. (10) after rearrangements. The symbolic expression
written as Eq. (10) describes the position-singularity locus
of the mechanism in the characteristic plane:

sin3 θ(ax2 + 2bxy + cy2 + 2dx + 2ey + f ) = 0. (10)

Since θ is non-zero, the position-singularity locus in the
characteristic plane becomes

ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0, (11)

where the coefficient c is identically equal to zero, and the
coefficients a, b, d, e, and f are all functions of the geometry
parameters Rm, Rb, βm, and βb, the Euler angles (φ, ψ), and
Xv. Equation (11) is an expression of quadratic curve with
respect to x and y, and irrespective of θ .

It must be pointed out that the aforementioned results
do not consider the special case that the orientation of
the moving platform is (30◦, θ, ψ) or (−150◦, θ, ψ), where
the ridgeline is parallel to the line C3C4, which means that the
ridgeline intersects the line C3C4 at infinite distance. In this
special case, the origin of the coordinate system V-xy can be
set as point W. Then the position-singularity expression in
the characteristic plane can also be derived using the method
that is similar to the aforementioned method. Then it can be
demonstrated that the position-singularity expression in the
characteristic plane expressed as Eq. (11) also holds for the
orientation (30◦, θ, ψ) or (−150◦, θ, ψ).

Therefore, we can conclude that the 3D position-
singularity expression for a constant-orientation of
mechanism is a cubic polynomial. Figure 2 shows that the
3D position-singularity surfaces for different orientations are
very complex and diverse. However, the substitution of Eq (9)
into Eq (6) can obtain a quadratic expression, which repres-
ents a 2D position-singularity curve in a characteristic plane
where the moving platform lies. It can also be shown that
the nature of position-singularity for a constant-orientation
obtained here is the same as illustrated by ref. 23. However, it
should be indicated that as the class of SPMs with two similar
semi- symmetrical hexagons, which was proposed in ref.
[23], can be regarded as a specific geometric configuration
of the types of SPMs with two dissimilar semi-symmetrical
hexagons proposed in this paper, the investigation here has
more generalities than discussed in ref. 23.

The intersecting curve between the position-singularity
locus and a general oblique plane is always an
extremely complicated cubic expression and difficult
to be characterized. For example, when Ra = 2, Rb =
1, βb = 105◦, βm = 75◦, and (φ, θ, ψ) = (60◦, 30◦, −45◦),
the intersecting curve between the position-singularity locus
and the planes, Z = X/3 and Z = X/2 – 3Y/5 + 3/4, are
expressed as Eqs. (12a) and (12b):

376X3 − (1200
√

3 − 2520)X2Y − (1224
√

3
− 2232)XY 2 − (57

√
2 − 1046

√
3 + 1689

− 54
√

6)t1X2 − (828
√

2 − 495
√

6 + 2556
−1479

√
3)t1XY − (585

√
2 − 339

√
6 + 2376

−1212
√

3)X − (1476
√

3 + 837
√

6 − 2592 − 1377
√

2)Y
−(837

√
6 − 6102 + 3510

√
3 − 1377

√
2)t1 = 0

,

(12a)

36000X3 − (44400 + 14000
√

3)X2Y − (6720
−23040

√
3)XY 2 − (7488

√
3 − 9792)Y 3 + (1000

√
6t1

−54000t1 − 15000
√

3 + 35000
√

3t1 + 153000)X2

−(61200 + 58300
√

3t1 − 8100
√

6t1 + 14100
√

2t1

−93900t1 + 51600
√

3)XY + (26760
√

3t1 − 3960
√

6t1

−83520 + 6840
√

2t1 + 67680
√

3 − 45000t1)Y 2

−(8250
√

6t1 − 15750
√

2t1 + 4000
√

6 + 164250t1

−102000 − 99750
√

3t1 − 15000
√

3 − 6000
√

2)X
+(123750t1 + 34650

√
6t1 − 59850

√
2t1 + 19200

√
6

−32400
√

2 + 195300 − 72150
√

3t1 − 142700
√

3)Y
+(375

√
3 + 82125

√
2 − 49125

√
6 − 375)t1 − 39000

√
6

−87750 + 62250
√

3 + 63000
√

2 = 0

,

(12b)
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Fig. 4. Intersecting curves in the two general oblique planes: (a) in the plane Z = X/3; (b) in the plane Z = X/2 − 3Y/5 + 3/4.

where t1 =
√

8 + 2
√

6 − 2
√

2 (the same below). It can be
shown that neither of these two equations can be factorized.
Figure 4 shows the curves that are described by Eqs. (12a)
and (12b).

With the above description, it is difficult to characterize the
position-singularity curve in a general oblique plane, but easy
to do it in the characteristic plane. That is why the moving
plane X’-P-Y’, where the moving platform lies, is called the
characteristic plane.

5.2. Analysis of the geometric characteristics and
kinematic property of the position-singularity locus
The geometric characteristics of the position-singularity
locus in the characteristic plane can be analyzed by two
invariants:

δ =
∣∣∣∣a b

b c

∣∣∣∣ = ac − b2 = −b2, (13a)

� =
∣∣∣∣∣∣
a b d

b c e

d e f

∣∣∣∣∣∣ = −ae2 − b2f + 2bde. (13b)

According to the theory of the analytic plane geometry, the
values of δ and � indicate the geometric characteristics of the
quadratic curve. The characteristics of the quadratic position-
singularity curve in the characteristic plane for any given
geometry parameters and orientation parameters mainly have
the following four cases:

Case 1. δ < 0 and � �= 0, Eq. (11) represents an expression
of a set of hyperbolas.

Case 2. δ < 0 and � = 0, Eq. (11) can be factorized into
product of two polynomial expressions of degree one. Then
Eq. (11) describes a pair of intersecting lines, which are the
degeneration of hyperbolas.

Case 3. δ = 0 and � �= 0, Eq. (11) is an expression of a
parabola.

Case 4. δ = 0 and � = 0, there are two cases: Firstly,
when d2 − af > 0, Eq. (11) designates into two parallel
lines. Secondly, when d2 − af = 0, the two parallel lines
become one line.

Further research shows that the coefficients a, b, and e
of Eq. (11) are all polynomial expressions of degree one
with respect to Xv, and the coefficients d and f are both
quadratic with respect to Xv. In addition, it can be concluded
that the maximum degree of Xv is four in the invariant �.
Thus, equation δ = 0, i.e. b = 0, has one root for Xv, and

equation � = 0 has four roots for Xv. In particular, when φ =
±90◦ and ψ = 0◦, both a and e are identically vanishing, and
when φ = ±90◦ and ψ = ±90◦, both b and e are identically
vanishing.

With above presentations, Eq. (11) generally represents in
infinity many sets of hyperbolas. Other three cases should
be considered as follows: Firstly, four values of Xv satisfy
equation � = 0, so the sets of hyperbolas can degenerate into
four pairs of intersecting lines. Secondly, noting that only
one value of Xv satisfies equation δ = 0, i.e. b = 0, Eq. (11)
consequently describes only one parabola. Further, the fact
that the symmetry axis of the parabola must be parallel to the
y-axis, i.e. the ridgeline is easy to be achieved. Finally, when
(φ, ψ) = (±90◦, ±90◦), since b and e are both identically
vanishing, Eq. (11) becomes two parallel lines, even one line
which is parallel to the y-axis, i.e. the ridgeline.

Theorem 1. If the position-singularity locus of the
mechanism for a constant-orientation in the characteristic
plane is a set of hyperbolas, the equations of two asymptotes,
one of which must be parallel to the ridgeline, i.e. the y-axis
of the coordinate system V-xy, can be written as follows:

x = −e/b, (14a)

abx + 2b2y + 2bd − ae = 0. (14b)

Proof. When a �= 0, translate the origin of the plane-
coordinate system V-xy in the characteristic plane into the
central point of the hyperbola, and then rotate the coordinate
system V’-x’y’ by an angle of α around the central point,
whose coordinates in the coordinate system V-xy are denoted
by (x0, y0):

x0 = be − cd

δ
= − e

b
, y0 = bd − ae

δ
= −bd − ae

b2
.

(15)

The value of α is determined by two equations described as
follows:

sin 2α = 2b√
(2b)2 + (a − c)2

, (16a)

cos 2α = a − c√
(2b)2 + (a − c)2

. (16b)

https://doi.org/10.1017/S0263574712000148 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574712000148


Position-singularity analysis of a special class of Stewart parallel mechanisms 129

Using Eqs. (16a) and (16b) yields

tan α = −a + √
a2 + 4b2

2b
. (17)

The equation of hyperbolas expressed as Eq. (11) can be
transformed into the standard form:

a′x ′2 + c′y ′2 + �

δ
= 0, (18)

where

a′ = a + c +
√

(a − c)2 + 4b2

2
= a + √

a2 + 4b2

2
,

c′ = a + c −
√

(a − c)2 + 4b2

2
= a − √

a2 + 4b2

2
.

The slopes of two asymptotes of hyperbolas in the new
coordinate system V’-x’y’ are

k′
1 = tan β ′

1 =
√

−a′

c′ =
√

−a + √
a2 + 4b2

a − √
a2 + 4b2

= a + √
a2 + 4b2

2b
, (19a)

k′
2 = tan β ′

2 = −
√

−a′

c′ = −
√

−a + √
a2 + 4b2

a − √
a2 + 4b2

= −a + √
a2 + 4b2

2b
. (19b)

Then the slope of one of the two asymptotes of hyperbolas
in the original coordinate system V-xy can be obtained using
the trigonometric formula:

k1 = tan(α + β ′
1) = tan α + tan β ′

1

1 − tan α tan β ′
1

= tan α + tan β ′
1

0
= ∞.

(20a)

The slope of another asymptote is

k2 = tan(α + β ′
2) = tan α + tan β ′

2

1 − tan α tan β ′
2

= − a

2b
. (20b)

This means that the point-slope equations of two asymptotes
of hyperbolas in the original coordinate system V-xy can be
deduced as follows:

x = −e/b, (21a)

y + bd − ae

b2
= − a

2b

(
x + e

b

)
. (21b)

Eq. (21b) can be written in another form after
rearrangement:

abx + 2b2y + 2bd − ae = 0. (22)

When a = 0, Eq. (11) becomes

2bxy + 2dx + 2ey + f = 0. (23)

Eq. (23) is equivalent to the following equation:

(bx + e)

(
y + d

b

)
= 2de − bf

2b
. (24)

It also represents an equation of a set of hyperbolas.
Equations of two asymptotes of hyperbolas described as
Eq. (24) can be written as follows:

x = −e/b, (25a)

y = −d/b. (25b)

Eq. (25a) is equivalent to Eq. (14a). Besides, when a = 0,
Eq. (14b) can be simplified as Eq. (25b). Therefore, Eqs.
(14a) and (14b) can hold for any value of a.

It can be concluded from Theorem 1 that the position-
singularity locus of the mechanism for a constant-orientation
in the characteristic plane is a set of hyperbolas, and one of
the two asymptotes of hyperbolas must be parallel to the
y-axis of the coordinates system V-xy, i.e. the ridgeline.

Theorem 2. If the position-singularity locus of the
mechanism for a constant-orientation in the characteristic
plane is a pair of intersecting lines, one of the two lines must
be parallel to the ridgeline, i.e. the y-axis of the coordinate
system V-xy. The forms of these two intersecting lines and
the forms of two asymptotes of hyperbolas are same.

Proof. Theorem 2 can be proved using the method of
undetermined coefficients. The procedure is demonstrated
as follows:

When δ < 0 and � = 0, Eq. (11) represents a pair of
intersecting lines. Noting c ≡ 0, Eq. (11) can be factorized
into the product of two polynomial expressions with respect
to x and y:

(x + B)(Ax + Cy + D) = 0. (26)

Expanding Eq. (26) leads to

Ax2 + Cxy + (AB + D)x + BCy + BD = 0. (27)

After comparing Eq. (27) with Eq.(11), the following
equations set can be obtained:

A = a

C = 2b

AB + D = 2d

BC = 2e

BD = f

. (28)

Equation (28) can be solved and the solutions can be
deduced: A = a, B = e/b, C = 2b, D = bf/e. Substituting
these solutions into Eq. (26) yields

(
x + e

b

)(
ax + 2by + bf

e

)
= 0. (29)
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Table I. Cases of the first SLCS of hyperbolas.

Xv (x, y) $ m

1 (0.4810565, 1.4875392) (0.4157354, −0.9044200, 0.0958566; 0.4217756, 0.0912636, −0.9681797)
(1.4331802, −3.6995819) (0.0390977, 0.9790733, −0.1997167; 0.3796017, 0.5529974, 2.7852780)
(3.4429472, −2.4797896) (0.8668142, 0.4289855, −0.2541743; 0.3633554, −0.8000619, −0.1111575)

2 (0.0127256, 1.2353741) (0.4157354, −0.9044200, 0.0958566; 0.4217756, 0.0912636, −0.9681797)
(0.6672951, −2.8412510) (0.0390977, 0.9790733, −0.1997167; 0.3796017, 0.5529974, 2.7852780)
(2.0489770, 0.7225780) (0.8668142, 0.4289855, −0.2541743; 0.3633554, −0.8000619, −0.1111575)

It can be expanded to

ax2 + 2bxy +
(

bf

e
+ ae

b

)
x + 2ey + f = 0. (30)

Note � = −b2f − ae2 + 2bde = 0, so

bf

e
+ ae

b
= 2d. (31)

Therefore, when � = 0, Eq. (29) is equivalent to Eq. (11)
and represents a pair of intersecting lines whose equations
can be written as Eqs. (14a) and (14b).

Because of Theorems 1 and 2 and their proof procedures,
when the position-singularity curve in the characteristic
plane is a set of hyperbolas, one of the two asymptotes of
the hyperbolas must be parallel to the ridgeline. When the
position-singularity curve in the characteristic plane is a pair
of intersecting lines, one of the two intersecting lines must
also be parallel to the ridgeline. Moreover, the equations
of the two asymptotes of hyperbolas and the equations of
the four pairs of intersecting lines must have the same
form. Therefore, it can be concluded that the four pairs of
intersecting lines are sure the degeneration of the sets of
hyperbolas.

Some numerical examples are given to demonstrate the
aforementioned results. Without special suffix, the geometry
parameters of the mechanism are given as Rb = 2, Rm =
1, βb = 105◦, βm = 75◦. The moving platform and fixed
one are two dissimilar semi-symmetrical hexagons. In
addition, the orientation of the moving platform is given
as (60◦, θ, −45◦) without special suffix, where θ is non-
zero. The value of θ can be indeterminate because the
geometric characteristics of the position-singularity locus in
the characteristic plane is irrespective of θ . Coefficients a, b,

d, e, and f varying with Xv for the aforementioned geometry
and orientation parameters are expressed in Appendix B.

5.2.1. The cases of sets of hyperbolas. If b �= 0 and
� = 0 for any given Xv, the position-singularity curve
of the mechanism in the characteristic plane must be
a set of hyperbolas. For instances, if Xv = 1, then δ =
−603.43448, � = −34165.75597, and if Xv = 2, then δ =
−443.98057, � = −6854.35262. Figure 5 shows the two
hyperbolas for these given parameters.

The kinematic property of singularity can be analyzed
using the method introduced in Section 3. For example, when
θ = 30◦ and the other orientation and geometry parameters
are given as aforementioned, these two sets of hyperbolas
have particular points where all the segments associated with
six extensible limbs of the mechanism intersect one common
line. These particular singularities are of the type 5b as
proposed by Merlet,5–7 and can also be called the first special-
linear-complex singularity (SLCS).23 For this type of singu-
larity, the unwanted instantaneous screw motions $ m are all
pure rotations around the common intersecting line, and the
pitch of the motion is equal to zero. The points of the first
SLCS and the Plücker coordinates of common intersecting
lines for orientation (60◦, 30◦, –45◦) are given in Table I. The
other points of hyperbolas belong to the type of Merlet 5a,5–7,
i.e. the general-linear-complex singularity (GLCS).23 It can
be shown that the mechanism may gain the same instantan-
eous screw motion on some different singularity points.

When Xv = 2, x = 0.0127256, y = 1.2353741, the con-
figuration of the mechanism for orientation (60◦, 30◦, −45◦)
is shown in Fig. 6. The six line vectors associated
with the six extensible limbs of the mechanism
intersect a common line vector $ m(0.4157354, −0.9044200,

0.0958567; 0.4217756, 0.0912636, −0.9681797), which is
the reciprocal screw motion and can be obtained using

x

y
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−4 −2 0 2 4 6
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6

(a)  Xv = 1                      (b)  Xv = 2

Fig. 5. (Colour online) Hyperbolas and their asymptotes for orientation (60◦, θ,−45◦) with two different Xv.
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Fig. 6. (Colour online) One of the cases when all the segments
intersect one common line.

Eq. (4). The pitch of the instantaneous screw motion $ m,
which can easily be calculated using Eq. (5), is equal
to zero. Besides, Fig. 6 shows that the moving platform
transverses the base one when the mechanism is in this
special configuration, which is impossible in practice. When
the mechanism is in the first SLCS, as shown in Table I,
the all positions of the moving platform for orientation
(60◦, 30◦, −45◦) are graphically described in Fig. 7. When
Xv = 1 and Xv = 2, it can be shown that both of the two
cases have an impossible special configuration in practice as
the moving platform transverses the base one.

5.2.2. The cases of four pairs of interesting lines. When the
four roots of the equation � = 0 with respect to Xv are all real
and unequal to each other, Eq. (11) designates into four pairs
of intersecting lines. Taking the geometry and orientation
parameters as mentioned for example, the equation � = 0
have four different and real roots Xv�j (j = 1, 2, 3, 4) given
in Appendix C. Then the four pairs of intersecting lines for
these four different values of Xv are shown in Fig. 8.

When θ = 30◦, the singularities belonging to the first
SLCS can also be obtained as shown in Table II. Other
singularity points are all the types of Merlet 5a,5–7 i.e. the
GLCS.23

5.2.3. The case of a parabola. Suppose δ = 0, i.e. b = 0,
then the solution of equation b = 0 with respect to Xv

denoted as Xvb is easy to be achieved:

Xvb = (
√

6 +
√

3 +
√

2 + 1)t2/2,

where t2 =
√

8 − 2
√

6 + 2
√

2 (the same below). In this case,
Eq. (11) represents a curve of a parabola as shown in Fig. 9.
The symmetry axis of the parabola must be parallel to the
y-axis, i.e. the ridgeline.

The mechanism is always singular corresponding to
the points lying in the parabola. When the moving
platform locates at the three points for the orientation
(60◦, 30◦, −45◦), as shown in Table III, all the segments
associated with the six limbs of mechanism can intersect
one common line. This type of singularity belongs to
the type of Merlet 5b or the first SLCS. Singularities
of points lying in the parabola except these three
points belong to the type of Merlet 5a, i.e. the
GLCS.

5.2.4. The cases of two parallel lines or one line. As men-
tioned above, when φ = ±90◦ and ψ = ±90◦, coefficients
b and e of Eq. (11) are both identically vanishing. When
(φ, ψ) = (90◦, −90◦), coefficients a, d, and f are deduced as
shown in Appendix B. Substituting a, d, and f into expression
“d2 − af ” gives

d2 − af = 729

256

[
24X2

v + (42
√

3 − 66 + 19
√

6

− 57
√

2)t1Xv + 12
√

3 − 32
√

6 + 48
√

2 + 56
]2

.

(32)

So,

d2 − af ≥ 0.

If Xv satisfies inequalities a �= 0 and d2 − af > 0, Eq. (11)
describes a pair of two lines, both of which are parallel to the
y-axis, i.e. the ridgeline, and the equations of the two parallel
lines can be expressed as

x = x1 = −d +
√

d2 − af

a
, (33a)
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Fig. 7. (Colour online) Positions of the moving platform when the mechanism is in the first SLCS.
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Table II. Cases of the first SLCS of the four pairs of intersecting lines.

Xv Line equation (x, y) $ m

Xv�1 x = −e/b (−e/b,−0.9530940) (0.0390977, 0.9790733, −0.1997167; 0.3796017, 0.5529974,
2.7852780)

(−e/b, 0.6806530) (0.4157354, −0.9044200, 0.0958566; 0.4217756, 0.0912636,
−0.9681797)

(−e/b, 7.7672507) (0.8668142, 0.4289856, −0.2541743; 0.3633554, −0.8000619,
−0.1111575)

abx + 2b2y + 2bd − ae = 0 φ φ

Xv�2 x = −e/b (−e/b, 10.0756856) (0.8668142, 0.4289855, −0.2541743; 0.3633554, −0.8000619,
−0.1111575)

ab x + 2b2 y + 2bd − ae = 0 (−1.5696144, −0.3343702) (0.0390977, 0.9790733, −0.1997167; 0.3796017, 0.5529974,
2.7852780)

(−1.3551217, 0.4988792) (0.4157354, −0.9044200, 0.0958567; 0.4217756, 0.0912636,
−0.9681797)

Xv�3 x = −e/b (−e/b, 2.0487869) (0.4157354, −0.9044200, 0.0958567; 0.4217756, 0.0912636,
−0.9681797)

abx + 2b2y + 2bd − ae = 0 (6.5455278,−9.6073476) (0.8668142, 0.4289855, −0.2541743; 0.3633554, −0.8000619,
−0.1111575)

(3.1378224, −5.6099630) (0.0390977, 0.9790733, −0.1997167; 0.3796017, 0.5529974,
2.7852780)

Xv�4 x = −e/b (−e/b,−2.5233267) (0.0390977, 0.9790733, −0.1997167; 0.3796017, 0.5529974,
2.7852780)

abx + 2b2y + 2bd − ae = 0 (−0.1607498, 1.1419691) (0.4157354, −0.9044200, 0.0958567; 0.4217756, 0.0912636,
−0.9681797)

(1.5326338, 1.9087732) (0.8668142, 0.4289855, −0.2541743; 0.3633554, −0.8000619,
−0.1111575)

Table III. Cases of the first SLCS of parabola.

(x, y) $ m

(−6.3573344, 20.0343964) (0.8668142, 0.4289855, −0.2541743; 0.3633554, −0.8000619, −0.1111575)
(−3.9513612, 2.3348375) (0.0390977, 0.9790733, −0.1997167; 0.3796017, 0.5529974, 2.7852780)
(−2.8115355, −0.2853030) (0.4157354, −0.9044200, 0.0958567; 0.4217756, 0.0912636, −0.9681797)
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Fig. 8. (Colour online) Four pairs of intersecting lines.
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Fig. 9. Case of a parabola.

x = x2 = −d −
√

d2 − af

a
. (33b)

For examples, if Xv = 0 and Xv = 1, d2 − af =
12511.06705 and d2 − af = 36.36808, respectively.
Figure 10 shows the two pairs of parallel lines, which
represent the position-singularity loci lying in the
characteristic plane for special orientation (90◦, θ, −90◦)
when Xv = 0 or Xv = 1.

When θ = 30◦, further study shows that any singularity
points on the lines x = x2 for Xv = 0 and Xv = 1 are all the
types of Merlet 5b, i.e. the first SLCS. Lines x = x1 for both
Xv = 0 and Xv = 1 have one singularity point of the type
of Merlet 5b, i.e. the first SLCS. The results are shown in
Table IV.

The two roots of equation d2 − af = 0, which are denoted
as Xvl1 and Xvl2, respectively, can be solved:

Xvl1 = −19

48

√
6t1 + 19

16

√
2t1 − 7

8

√
3t1 + 11

8
t1

+ 1

24

√
1080 − 498

√
2 + 270

√
6 − 432

√
3, (34a)

Xvl2 = −19

48

√
6t1 + 19

16

√
2t1 − 7

8

√
3t1 + 11

8
t1

− 1

24

√
1080 − 498

√
2 + 270

√
6 − 432

√
3. (34b)

Table IV. Cases of the first SLCS of two parallel lines.

Xv (x, y) $ m

0 (x1, 0) (0, −0.9659258, 0.2588190; 0.8213398, 0, 0)
(x2, 5)∗ (−1, 0, 0; 0, 0.0879103, −1.4344416)

1 (x1, 1) (0, −0.9659258, 0.2588190; 0.8213398, 0, 0)
(x2, 5)∗ (1, 0, 0; 0, −0.1544102, 1.3192603)

∗
Only give one numeric example here to demonstrate the

results, but it should be noticed that any singularity points on
the line x = x2 are the first SLCS.

Table V. Cases of the first SLCS of one line.

Xv (x, y) $ m

Xvl1 (−d/a, 10) (1, 0, 0; 0, 1.0597090, 3.4221765)
Xvl2 (−d/a, 10) (−1, 0, 0; 0, 0.1668163, −1.2977724)

When Xv = Xvl1 or Xv = Xvl2, Eq. (34a) is equivalent to
Eq. (34b), and these two equations represent the same line
x = −d/a as shown in Fig. 11.

When Xv = Xvl1 or Xv = Xvl2, it can be further found that
any singularity point lying in the line, x = −d/a, belongs to
the type of Merlet 5b, i.e. the first SLCS. The unwanted
instantaneous motion $ m can also be deduced using the
method as mentioned in Section 3. Two singularity points
and their corresponding unwanted instantaneous motions are
given here as examples, as shown in Table V.

With above presentation, when θ is non-zero, the
geometric characteristics and kinematic property of
the position-singularity loci of the mechanism in the
characteristic planes for given orientations are analyzed.
In addition, the mechanism may gain the same unwanted
instantaneous screw motion on some different singular
configurations.

5.3. Position-singularity locus when θ = 0
When θ = 0, the moving platform parallel to the base one.
Meanwhile, simplifying each term of the matrix [D] using the
trigonometric formula and then expanding the determinant
of matrix [D] can yield the following equation:

cos(φ + ψ)Z3 = 0. (35)
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(a)  Xv = 0                                (b)  Xv = 1

Fig. 10. Cases of two parallel lines for two different Xv.
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Fig. 11. The cases of one line parallel to the y-axis.

(1) When Z = 0, the moving platform is coincident to the
base one and the mechanism is singular. In this special
configuration, the mechanism has 2-DOF for rotation
and 1-DOF for translation. The Plücker coordinates of
the three unwanted instantaneous motions are (1, 0, 0;
0, 0, 0), (0, 1, 0; 0, 0, 0), and (0, 0, 0; 0, 0, 1). It can be
shown that one of the 2-DOF for rotation is around the
x-axis and another is around the y-axis, and the 1-DOF
for translation is along the z-axis.

(2) When (φ + ψ) = ±90◦, it is the type of singularity
proposed by Fichter4 and belongs to the type of
Merlet 5a, i.e. the GLCS. The unwanted instantaneous
screw motion can also be calculated using the methods
introduced in Section 3.

6. Conclusions
For the special class of Stewart parallel mechanisms with
two dissimilar semi-symmetrical hexagons, the position-
singularity locus of the mechanism for a constant-
orientation is extremely complicated; besides, the geometric
characteristics of the position-singularity locus lying in a
general oblique plane are very difficult to be identified.
However, the position-singularity curves in the characteristic
plane, where the moving platform lies, can easily be
characterized, and then some meaningful results can be
obtained as follows:

(1) When θ is non-zero, the position-singularity locus of
the mechanism for a constant-orientation is stacked
with infinitely many curves of the second order, which
are generally infinitely many sets of hyperbolas, four
pairs of intersecting lines, and a hyperbola. For special
orientations (±90◦, θ, ±90◦), the quadratic curve in an
arbitrary characteristic plane can degenerate into two
parallel lines or even one line, all of which are parallel
to the ridgeline.

(2) In particular, the equations of the asymptotes of
hyperbolas and equations of the four pairs of intersecting
lines have the same forms. Besides, one of the two
asymptotes and one of the two intersecting lines must
be parallel to the ridgeline. Hence, the four pairs of
intersecting lines are the degeneration of hyperbolas.
Two theorems involving these results are proposed and
proved.

(3) All of the position-singularity curves in the
characteristic planes have the singularity points of
the type of Merlet 5b, i.e. the first SLCS, where all
of the lines associated with the six limbs intersect
one common line simultaneously, and the unwanted
instantaneous screw motion is a pure rotation around the
common line. Especially, when the quadratic position-
singularity curves degenerate into two parallel lines and
even one line, which are all parallel to the ridgeline,
any singularity point on one of the lines are the type of
Merlet 5b, i.e. the first SLCS.

(4) When θ is zero, the expression of the position-singularity
locus is simpler than the position-singularity locus with
θ being non-zero. In this case, two main types of
singularities, whose kinematic property can also be
obtained, are known to the researchers.

In this paper, after analyzing the singularity curves in the
series of characteristic planes, the geometric characteristics
and kinematic property of the singularity locus for a constant-
orientation are addressed. This work has great significance
on the design of this special class of mechanisms. According
to the results, the designers determine whether and how the
singularity can be avoided within the workspace for a given
orientation. Our current work is focusing on developing
the algorithms for determining the nonsingular position-
workspace of mechanism for a given orientation based on
research findings.
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Appendix A

B′
1 : (−Rm cos(30◦ + βm/2), −Rm sin(30◦ + βm/2), 0)

B2
′ : (Rm cos(30◦ + βm/2), −Rm sin(30◦ + βm/2), 0)

B′
3 : (Rm cos(30◦ − βm/2), −Rm sin(30◦ − βm/2), 0)

B4
′ : (Rm sin(βm/2), Rm cos(βm/2), 0)

B′
5 : (−Rm sin(βm/2), Rm cos(βm/2), 0)

B′
6 : (−Rm cos(30◦ − βm/2), −Rm sin(30◦ − βm/2), 0)

C1 : (−Rb sin(βb/2), −Rb cos(βb/2), 0)
C2 : (Rb sin(βb/2), −Rb cos(βb/2), 0)
C3 : (Rb cos(30◦ − βb/2), Rb sin(30◦ − βb/2), 0)
C4 : (Rb cos(30◦ + βb/2), Rb sin(30◦ + βb/2), 0)
C5 : (−Rb cos(30◦ + βb/2), Rb sin(30◦ + βb/2), 0)
C6 : (−Rb cos(30◦ − βb/2), Rb sin(30◦ − βb/2), 0)

Appendix B
When (φ, ψ) = (60◦, −45◦), and Rb = 2, Rm = 1, βb =
105◦, and βm = 75◦, coefficients a, b, d, e, and f of Eq. (11)
are all functions of Xv and determined by the following
equations:

a = −27

8

√
2(

√
3 + 1)[(3

√
6 − 5

√
3 − 5

√
2 + 7)t2 + 2Xv],

b = 27

16

√
2(

√
3 − 1)[(

√
6 +

√
3 +

√
2 + 1)t2 − 2Xv],

d = 27

32

√
2(

√
3 − 1)[−20 − 4

√
3 + 8

√
2

+14
√

6 + (8 − 9
√

2 + 3
√

3)t2Xv − 8X2
v],

e = 9

64
t2(−3

√
2 − 2

√
3 + 3

√
6 + 6)[

(
3 − 5

√
3 +

√
6

−3
√

2)t2 + 6Xv],

f = 27

32
t2(−3

√
2 − 2

√
3 +

√
6 + 2)[−6

√
3 + 4

√
2

+2
√

6 + 6 + (4 − 3
√

2 − 3
√

3)t2Xv + 4X2
v].

When (φ, ψ) = (90◦, −90◦), b and e are both constant
zero. Coefficients a, d, and f of Eq. (11) can be deduced as
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follows:

a = −9
√

3

2
[(3

√
3 − 6

√
2 + 2

√
6 − 6)t1 + 6Xv],

d = −81

2
X2

v −
(

459

16

√
6 + 513

8

√
3 − 1377

16

√
2

−729

8

)
t1Xv + 54(

√
6 −

√
2) − 27

4

√
3 − 135

2
,

f = −9t1

64
(2

√
3 +

√
6 −

√
2 − 2)[6Xv + (2

√
6 +

√
3

−3
√

2 − 6)t1][12Xv + (5
√

6 + 14
√

3 − 15
√

2

−18)t1].

Appendix C
When (φ, ψ) = (60◦, −45◦), and Rb = 2, Rm = 1, βb =
105◦, and βm = 75◦, the solutions of equation � = −ae2 −
b2f + 2bde = 0 are denoted as Xv�j (j = 1, 2, 3, 4) and can
be derived as follows:

Xv�1 = 1

2
(
√

6 + 1)t2,

Xv�2 = 2

3
t3 sin

(
−1

3
arctan

t4

t2t5
+ π

6

)

+ 1

12

(
4
√

3 +
√

6 −
√

2 + 2
)
t2,

Xv�3 = −1

3
t3 sin(−1

3
arctan

t4

t2t5
+ π

6
) −

√
3

3
t3

× sin

(
1

3
arctan

t4

t2t5
+ π

3

)
+ 1

12

(
4
√

3 +
√

6

−
√

2 + 2
)
t2,

Xv�4 = −1

3
t3 sin

(
−1

3
arctan

t4

t2t5
+ π

6

)
+

√
3

3
t3

× sin

(
1

3
arctan

t4

t2t5
+ π

3

)
+ 1

12

(
4
√

3 +
√

6

−
√

2 + 2
)
t2,

where

t3 = (9956 + 5040
√

6 + 1274
√

2 − 480
√

3)1/6,

t4 = 6 · (22744 + 1446
√

2 − 576
√

3 + 2352
√

6)1/6,

t5 = 83 − 81
√

2 + 56
√

6 − 103
√

3.
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