
Proceedings of the Royal Society of Edinburgh, 145A, 105–143, 2015

Free and projective Banach lattices

Ben de Pagter
Delft Institute of Applied Mathematics,
Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, PO Box 5031, 2600 GA Delft,
The Netherlands (b.depagter@tudelft.nl)

Anthony W. Wickstead
Pure Mathematics Research Centre, Queen’s University Belfast,
Belfast BT7 1NN, Northern Ireland (a.wickstead@qub.ac.uk)

(MS received 10 October 2012; accepted 17 November 2013)

We define and prove the existence of free Banach lattices in the category of Banach
lattices and contractive lattice homomorphisms, and establish some of their
fundamental properties. We give much more detailed results about their structure in
the case when there are only a finite number of generators, and give several Banach
lattice characterizations of the number of generators being, respectively, one, finite or
countable. We define a Banach lattice P to be projective if, whenever X is a Banach
lattice, J is a closed ideal in X, Q : X → X/J is the quotient map, T : P → X/J is a
linear lattice homomorphism and ε > 0, there exists a linear lattice homomorphism
T̂ : P → X such that T = Q ◦ T̂ and ‖T̂‖ � (1 + ε)‖T‖. We establish the connection
between projective Banach lattices and free Banach lattices, describe several families
of Banach lattices that are projective and prove that some are not.

1. Introduction

Free and projective objects have not played anywhere near as important a role in
analysis as in algebra; nevertheless, there has been some work done on these objects,
mainly with the results that one would expect. For example, the existence of free
and projective Banach spaces is virtually folklore, but is uninteresting as both are
of the form �1(I) for an arbitrary index set I. The existence of free vector lattices
over an arbitrary number of generators is also long established and holds no real
surprises; see [1] or [3] for details. In this paper we investigate free and projective
Banach lattices. Some of our results are rather surprising and although we are able
to answer many questions we are forced to leave several unanswered.

It is almost obvious that, if it exists, the free Banach lattice over a generators
must be the completion of the free vector lattice over a generators for some lattice
norm. That the required norm actually exists is easily proved, but describing it in
concrete and readily identifiable terms is not so easy. Indeed, except in the case
when a = 1, it is not a classical Banach lattice norm at all. In fact it is only in
the case when a is finite that the free Banach lattice over a generators is even
isomorphic to an AM-space.
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We primarily devote § 2 to establishing the notation, while § 3 recapitulates the
existing theory of free vector lattices. We then prove the existence of free Banach
lattices in § 4 and give a representation on a compact Hausdorff space in § 5. We
establish some of the basic properties of free Banach lattices in § 6. The finitely
generated free Banach lattices are by far the easiest ones to understand, and we
investigate their structure in § 7. In § 8 we give some characterizations of free Banach
lattices over, respectively, one, a finite number or a countable number of generators,
amongst all free Banach lattices. In preparation for looking at projective Banach
lattices, in § 9 we investigate when disjoint families in quotient Banach lattices X/J
can be lifted to disjoint families in X, giving a positive result for countable families
and a negative result for larger ones. We prove the connection between free and
projective Banach lattices in § 10, and in § 11 find some classes of Banach lattices
that are, or are not, projective. Finally, § 12 contains some open problems.

Let us emphasize at this point that this paper is set in the category of Banach
lattices and linear lattice homomorphisms. There is a substantial theory of injective
Banach lattices (and indeed we refer to them later) but this is set in the context
of Banach lattices and positive (or regular) operators.1 Thus, there is no reason to
expect any kind of duality between the two notions.

2. Notation

In this short section we establish the notation that we use concerning functions and
function spaces. If A and X are non-empty sets, then, as usual, XA denotes the set
of all maps from A into X. If ∅ �= B ⊆ A, then we let rB : XA → XB denote the
restriction map with rBξ = ξ|B for ξ ∈ XA. Clearly, rB is surjective. On occasion
we will also write ξB in place of rB(ξ).

The space of all real-valued functions on XA, RXA

, is a vector lattice under the
pointwise operations. Again, we consider the setting where B is a non-empty subset
of A and define jB : RXB → RXA

by (jBf)(ξ) = f(ξB) for ξ ∈ XA and f ∈ RXB

.
This makes jB an injective lattice homomorphism. The following description of the
image of jB is easily verified.

Lemma 2.1. If A, B and X are non-empty sets with B ⊆ A and f ∈ RXA

, then
the following are equivalent.

(1) f ∈ jB(RXB

).

(2) If ξ, η ∈ XA with ξB = ηB, then f(ξ) = f(η).
1In fact, although we can find no explicit proof in the literature, there is no non-zero injective

in the category of Banach lattices and linear lattice homomorphisms. Indeed, suppose that F
were a non-zero injective. Let a be strictly greater than the cardinality of F ∗ and let μ be the
product of a many copies of the measure that assigns mass 1

2 to each of 0 and 1 in {0, 1}. This
is a homogenous measure space and each order interval in L1(μ) has the property that the least
cardinality of a dense subset is precisely a; see [19, § 26] for details. In particular, every order
interval has cardinality at least a. As μ is finite, the same is true of L∞(μ). Pick any non-zero
y ∈ F+. As F is alleged to be injective, there is a linear lattice homomorphism T extending the
map that takes the constantly-one function in L1(μ), 1, to y. The adjoint of this maps F ∗ into
L1(μ)∗ = L∞(μ) and is interval preserving; see [13, theorem 1.4.19]. In particular, if f ∈ F ∗

+ with
f(y) > 0, then T ∗f(1) = f(T1) = f(y) > 0, so the image of the order interval [0, f ] will be a
non-zero order interval in L∞(μ) that has cardinality at least a. This contradicts the fact that
[0, f ] has cardinality strictly less than a.
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We now specialize somewhat by assuming that X ⊆ R and that 0 ∈ X. This
means that if ξ ∈ XA, ∅ �= B ⊆ A and χB is the characteristic function of B, then
the pointwise product ξχB ∈ XA.

Lemma 2.2. If ∅ �= B ⊆ A and 0 ∈ X ⊆ R, then the map PB : RXA → jB(RXB

)
defined by

(PBf)(ξ) = f(ξχB) (ξ ∈ XA, f ∈ RXA

)

is a linear lattice homomorphism and a projection onto jB(RXB

). Furthermore,
if B1, B2 ⊆ A are non-empty sets with non-empty intersection, then PB1PB2 =
PB2PB1 = PB1∩B2 .

Proof. It is clear that PB is a well-defined vector lattice homomorphism of XA into
itself. If ξ, η ∈ XA are such that ξB = ηB , then (PBf)(ξ) = f(ξχB) = f(ηχB) =
(PBf)(η), so, by lemma 2.1, PBf ∈ jB(RXB

) for all f ∈ RXA

. If f ∈ RXB

, then for
any ξ ∈ XA we have PB(jBf)(ξ) = (jBf)(ξχB) = (jBf)(ξ), as ξ and ξχB coincide
on B and using lemma 2.1 again. Thus, PB is indeed a projection.

Finally, if f ∈ RXA

and ξ ∈ XA, then

PB1PB2f(ξ) = (PB2)(fχB1)
= f(ξχB1χB2)
= f(ξχB1∩B2)
= (PB1∩B2f)(ξ),

which shows that PB1PB2 = PB1∩B2 . Similarly, PB2PB2 = PB2∩B1 = PB1∩B2 , and
the proof is complete.

In future, we identify RXB

with the vector sublattice jB(RXB

) of RXA

.
If L is any vector lattice and D is a non-empty subset of L, then 〈D〉 denotes

the vector sublattice of L generated by D. All elements of 〈D〉 can be obtained
from those of D by the application of a finite number of multiplications, additions,
suprema and infima. The following simple consequence of this observation may also
be proved directly.

Lemma 2.3. If L and M are vector lattices, T : L → M is a vector lattice homo-
morphism and ∅ �= D ⊆ L, then 〈T (D)〉 = T (〈D〉).

We specialize further now to the case when X = R. On the space RA we can
consider the product topology, which is the topology of pointwise convergence on
A. By definition, this is the weakest topology such that all the functions δa : ξ 	→
ξ(a) are continuous on RA for each a ∈ A. As a consequence, we certainly have
〈{δa : a ∈ A}〉 ⊂ C(RA). In fact, we can do rather better than this. A function
f : RA → R is homogeneous if f(tξ) = tf(ξ) for ξ ∈ RA and t ∈ [0,∞). The
space H(RA) of continuous homogeneous real-valued functions on RA is a vector
sublattice of C(RA) and, clearly, 〈{δa : a ∈ A}〉 ⊂ H(RA).

3. Free vector lattices

In this section we recapitulate much of the theory of free vector lattices, to make
this work as self-contained as possible and in order to both establish our notation
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(which may not coincide with that used in other papers on free vector lattices) and
point out some properties that we will use later.

Definition 3.1. If A is a non-empty set, then a free vector lattice over A is a pair
(F, ι), where F is a vector lattice and ι : A → F is a map with the property that
for any vector lattice E and any map φ : A → E there exists a unique vector lattice
homomorphism T : F → E such that φ = T ◦ ι.

It follows immediately from this definition that the map ι must be injective, as
we can certainly choose E and φ to make φ injective. Many of the results that follow
are almost obvious, but we prefer to make them explicit.

Proposition 3.2. If (F, ι) is a free vector lattice over A, then F is generated, as
a vector lattice, by ι(A).

Proof. Let G be the vector sublattice of F generated by ι(A). Define φ : A →
G by φ(a) = ι(a); it then follows from the definition that there exists a unique
vector lattice homomorphism T : F → G with T (ι(a)) = φ(a) = ι(a) for a ∈ A. If
j : G → F is the inclusion map, then j◦T : F → F is a vector lattice homomorphism
with (j ◦T )(ι(a)) = j(ι(a)) = ι(a) for a ∈ A. The identity on F , IF , is also a vector
lattice homomorphism from F into itself with IF (ι(a)) = ι(a). The uniqueness part
of the definition of a free vector lattice applied to the map a 	→ ι(a), of A into F ,
tells us that these two maps are equal, so j◦T = IF , from which we see that F ⊆ G,
and therefore F = G as claimed.

The definition of a free vector lattice makes the following result easy to prove.

Proposition 3.3. If (F, ι) and (G, κ) are free vector lattices over a non-empty
set A, then there exists a (unique) vector lattice isomorphism T : F → G such that
T (ι(a)) = κ(a) for a ∈ A.

In view of this we will just refer to a free vector lattice (F, ι) over a set A as
the free vector lattice over A (or sometimes as the free vector lattice generated by
A when we identify A with a subset of that free vector lattice). We denote it by
FVL(A). It is clear that if A and B are sets of equal cardinality, then FVL(A) and
FVL(B) are isomorphic vector lattices, so FVL(A) depends only on the cardinality
of the set A. Thus, we also use the notation FVL(a) for FVL(A) when a is the
cardinality of A. This is the notation that can be found elsewhere in the literature.
We retain both versions so that we can handle proper inclusions of FVL(B) into
FVL(A) when B ⊂ A even when A and B have the same cardinality.

If ι : A → FVL(A) is the embedding of A into FVL(A) specified in the definition,
then we often write δa for ι(a) and refer to the set {δa : a ∈ A} as the free generators
of FVL(A).

A slight rewording of the definition of a free vector lattice is sometimes useful,
trading off uniqueness of the lattice homomorphism for specifying that ι(A) is a
generating set. The proof of this follows immediately from results above.

Proposition 3.4. If A is a non-empty set, then the vector lattice F is the free
vector lattice over A if and only if the following hold.
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(1) There exists a subset {δa : a ∈ A} ⊂ F , with δa �= δb if a �= b, that generates
F as a vector lattice.

(2) For every vector lattice E and any family {xa : a ∈ A} ⊂ E there exists a
vector lattice homomorphism T : F → E such that T (δa) = xa for a ∈ A.

We will find the next simple result useful later.

Proposition 3.5. Let A be a non-empty set and let {δa : a ∈ A} be the free gen-
erators of FVL(A). Let B and C be non-empty subsets of A with B ∩ C �= ∅.

(1) The vector sublattice of FVL(A) generated by {δb : b ∈ B} is (isomorphic to)
the free vector lattice FVL(B).

(2) There is a lattice homomorphism projection PB from FVL(A) onto FVL(B).

(3) PCPB = PBPC = PB∩C .

Proof. (1) Let F denote the vector sublattice of FVL(A) generated by {δb : b ∈ B}.
Suppose that E is a vector lattice and π : B → E is any map. There exists a unique
vector lattice homomorphism T : FVL(A) → E with T (δb) = π(b) for b ∈ B and
T (δa) = 0 for a ∈ A \ B. The restriction S of T to F gives us a vector lattice
homomorphism S : F → E with S(δb) = π(b). It follows from proposition 3.4 that
F = FVL(B).

(2) The free property of FVL(A) gives a (unique) lattice homomorphism

PB : FVL(A) → FVL(A)

with PB(δb) = δb if b ∈ B and PB(δa) = 0 if a ∈ A \ B. As PB maps the generators
of FVL(A) into FVL(B), we certainly have PB(FVL(A)) ⊆ FVL(B). Also, PB is
the identity on the generators of FVL(B), and so is the identity linear operator on
FVL(B), so PB is indeed a projection.

(3) If a ∈ B ∩C, then PCPBδa = PBPCδa = PB∩Cδa = δa, while if a /∈ B ∩C, then
PCPBδa = PBPCδa = PB∩Cδa = 0. Thus, the three vector lattice homomorphisms
PBPC , PCPB and PB∩C coincide on a set of generators of FVL(A), and are therefore
equal.

So far all our discussions of free vector lattices have been rather academic, as we
have not shown that they exist. However, it was shown in [1] (see also [3]) that they
do exist. In essence we have the following.

Theorem 3.6. For any non-empty set A, FVL(A) exists and is the vector sublattice
of RRA

generated by δa (a ∈ A) where δa(ξ) = ξ(a) for ξ ∈ RA.

It is reasonable to ask how this representation of FVL(A) interacts with the prop-
erties of free vector lattices noted above. Under the notation of § 2, if ∅ �= B ⊆ A,
then the map jB : RRB → RRA

is a vector lattice embedding of RRB

into RRA

. This
corresponds precisely to the embedding of FVL(B) into FVL(A) as indicated in
proposition 3.5. If we use δa to denote the map ξ 	→ ξ(a) on RA and ηb for the map
ξ 	→ ξ(b) on RB , then we have, for b ∈ B and ξ ∈ RA, that

(jBηb)(ξ) = ηb(ξB) = ξ(b) = δb(ξ),
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so jBηb = δb. We know from § 2 that jB is a vector lattice homomorphism so that
jB(FVL(B)) is the vector sublattice of FVL(A) generated by {δb : b ∈ B}, which is
precisely what was described in proposition 3.5.

Also, if B ⊆ A, then we may consider FVL(B) ⊆ FVL(A) ⊆ RRA

. The projection
map PB : FVL(A) → FVL(B) defined in proposition 3.5(2) is then precisely the
restriction to FVL(A) of the projection PB : RRA → RRB

described in lemma 2.2.
We temporarily denote this projection by P̃B to distinguish it from the abstract
projection. Once we establish equality, that distinction will not be required and
we will omit the tilde. As PB and P̃B are both vector lattice homomorphisms, it
suffices to prove this equality for the generators of FVL(A). If b ∈ B, then

(P̃Bδb)(ξ) = δb(ξχB) = (ξχB)(b) = ξ(b) = δb(ξ)

for ξ ∈ RA, so P̃Bδb = δb = PBδb. If, on the other hand, a ∈ A \ B, then

(P̃Bδa)(ξ) = δa(ξχB) = 0

for ξ ∈ RA, so P̃Bδa = 0 = PBδa.
A few more observations will be of use later.

Proposition 3.7. If A is a non-empty set and F(A) denotes the collection of all
non-empty finite subsets of A, then

FVL(A) =
⋃

B∈F(A)

FVL(B).

Proof. Any element of FVL(A) is in the vector sublattice of FVL(A) generated by a
finite number of generators {δa1 , δa2 , . . . , δan}, and so lies in FVL({a1, a2, . . . , an}).

Proposition 3.8. If A is a finite set, then
∑

a∈A |δa| is a strong order unit for
FVL(A).

Proof. The proof is obvious, as FVL(A) is generated by the set {δa : a ∈ A}.

Lemma 3.9. The real-valued vector lattice homomorphisms on FVL(A) are pre-
cisely the evaluations at points of RA.

Proof. It is clear that if ξ ∈ RA, then the map ωξ : f 	→ f(ξ) is a real-valued vector
lattice homomorphism on RRA

, and therefore on FVL(A). Note, in particular, that
ωξ(δa) = δa(ξ) = ξ(a). Conversely, if ω is a real-valued vector lattice homomorphism
on FVL(A), then we may define ξ ∈ RA by ξ(a) = ω(δa) for a ∈ A. We now see
that, for this ξ, ωξ is a real-valued vector lattice homomorphism on FVL(A) with
ωξ(δa) = ξ(a) = ω(δa). The two maps ω and ωξ coincide on a set of generators of
FVL(A), and so, being vector lattice homomorphisms, are equal.

4. Free Banach lattices

Definition 4.1. If A is a non-empty set, then a free Banach lattice over A is a
pair (X, ι), where X is a Banach lattice and ι : A → X is a bounded map with the
property that for any Banach lattice Y and any bounded map κ : A → Y there
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exists a unique vector lattice homomorphism T : X → Y such that κ = T ◦ ι and
‖T‖ = sup{‖κ(a)‖ : a ∈ A}.

It is clear that the set {ι(a) : a ∈ A} generates X as a Banach lattice (see propo-
sition 3.2).

Remark 4.2. The definition forces each ι(a) to have norm precisely 1. This is
because, if κ(a) = 1 ∈ R for each a ∈ A, the map T that is guaranteed to exist has
norm 1, so 1 = ‖T (ι(a))‖ � ‖ι(a)‖. On the other hand, if we take κ = ι, then T is
the identity operator, with norm 1, so sup{‖ι(a)‖ : a ∈ A} = 1.

Proposition 4.3. If (X, ι) and (Y, κ) are free Banach lattices over a non-empty
set A, then there exists a (unique) isometric order isomorphism T : X → Y such
that T (ι(a)) = κ(a) for a ∈ A.

Proof. As (X, ι) is free, there exists a vector lattice homomorphism T : X → Y
with T (ι(a)) = κ(a) for a ∈ A with ‖T‖ = sup{‖κ(a)‖ : a ∈ A} = 1, by the preced-
ing proposition. There similarly exists a contractive vector lattice homomorphism
S : Y → X with S(κ(a)) = ι(a). By uniqueness, the compositions S ◦ T and T ◦ S
must be the identity operators. This suffices to prove our claim.

In a similar way as for the free vector lattice case, we use the notation FBL(A)
for the free Banach lattice over A if it exists (which we will shortly show is the
case). Since we know that if A and B have the same cardinality, then FBL(A)
and FBL(B) are isometrically order isomorphic, we also use the notation FBL(a)
to denote a free Banach lattice on a set of cardinality a. Again, we also use the
notation δa for ι(a) and refer to {δa : a ∈ A} as the free generators of FBL(A).

Our first task is to show that free Banach lattices do indeed exist.

Definition 4.4. If A is a non-empty set, then we define a mapping from FVL(A)∼

into the extended non-negative reals by

‖φ‖† = sup{|φ|(|δa|) : a ∈ A}.

We also define
FVL(A)† = {φ ∈ FVL(A)∼ : ‖φ‖† < ∞},

which is clearly a vector lattice ideal in the Dedekind complete vector lattice
FVL(A)∼.

Suppose that a positive functional φ vanishes on each |δa|. Each element x of
FVL(A) lies in the sublattice of FVL(A) generated by a finite set of generators
{ak : 1 � k � n}. By proposition 3.8, e =

∑n
k=1 |δak

| is a strong order unit for that
sublattice. Thus, there exists λ ∈ R with |x| � λe such that |φ(x)| � φ(|x|) �
φ(λe) = λ

∑n
k=1φ(|δak

|) = 0, and thus φ = 0. It is now clear that ‖ · ‖† is a lattice
norm on FVL(A)†. Given the embedding of FVL(A) in RRA

given in theorem 3.6, if
ξ ∈ RA, then ωξ ∈ FVL(A)† if and only if the map ξ : A → R is bounded, and then
‖ωξ‖† = supa∈A|ξ(a)|. By lemma 3.9, these maps are lattice homomorphisms. Note
that if A is an infinite set, then there exists an unbounded ξ ∈ RA that induces
ωξ ∈ FVL(A)∼\ FVL(A)†.
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Definition 4.5. For f ∈ FVL(A), where A is a non-empty set, define

‖f‖F = sup{φ(|f |) : φ ∈ FVL(A)†
+, ‖φ‖† � 1}.

Proposition 4.6. For any non-empty set A, ‖ · ‖F is a lattice norm on FVL(A).

Proof. Our first step is to show that ‖·‖F is real valued. By proposition 3.7, any f ∈
FVL(A) actually lies in FVL(B) for some finite subset B ⊆ A. By proposition 3.8,
FVL(B) has a strong order unit

∑
b∈B |δb|, so there exists λ with |f | � λ

∑
b∈B |δb|.

If φ ∈ FVL(A)†
+ with ‖φ‖† � 1, then

φ(|f |) � φ

(
λ

∑
b∈B

|δb|
)

= λ
∑
b∈B

φ(|δb|) � λ
∑
b∈B

1,

so ‖f‖F is certainly finite.
If ‖f‖F = 0, then φ(|f |) = 0 for all φ ∈ FVL(A)†

+. Using the observation above,
f(ξ) = ωξ(f) = 0 for any bounded function ξ : A → R. But there exists a finite set
B ⊂ A such that f ∈ FVL(B), so that f(ξ) = f(ξχB) for all ξ ∈ RA. As each ξχB

is bounded, f(ξ) = 0 for all ξ ∈ RA, and therefore f = 0.
That ‖ ·‖F is sublinear and positively homogeneous is obvious, so ‖ ·‖F is a norm

on FVL(A), which is clearly a lattice norm.

Note, in particular, that we certainly have ‖δa‖F = 1 for all a ∈ A. In fact, this
construction gives us our desired free Banach lattices.

Theorem 4.7. For any non-empty set A, the pair consisting of the completion of
FVL(A), under the norm ‖ · ‖F , and the map ι : a → δa is the free Banach lattice
over A.

Proof. Suppose that Y is any Banach lattice and that κ : A → Y1, the unit ball of Y .
There exists a vector lattice homomorphism T : FVL(A) → Y with T (ι(a)) = κ(a)
for all a ∈ A, as FVL(A) is free. We claim that if f ∈ FVL(A) with ‖f‖F � 1,
then ‖Tf‖ = ‖|Tf |‖ = ‖T (|f |)‖ � 1 in Y , where we have the used that fact that
the norm in Y is a lattice norm and that T is a lattice homomorphism. If this were
not the case, then we could find ψ ∈ Y ∗

1+, a positive linear functional on Y with
norm at most 1, with ψ(T (|f |)) > 1. As ‖T (ι(a))‖ = ‖κ(a)‖ � 1 for all a ∈ A,
we have ‖|T (ι(a))|‖ = ‖T (|ι(a)|)‖ � 1, using again the fact that T is a lattice
homomorphism. Thus, |ψ(T (|ι(a)|))| � 1 for all a ∈ A. Using the functional ψ ◦ T
in the definition of ‖f‖F , we see that ‖f‖F � ψ(T (|f |)) > 1, contradicting our
assumption that ‖f‖F � 1.

The completion of FVL(A) is a Banach lattice, and T extends by continuity to
it while still taking values in Y , as Y is complete.

We will eventually need to know the relationship between different free Banach
lattices, so we record now the following result.

Proposition 4.8. If B is a non-empty subset of A, then FBL(B) is isometrically
order isomorphic to the closed sublattice of FBL(A) generated by {δb : b ∈ B}. Fur-
thermore, there exists a contractive lattice homomorphic projection PB of FBL(A)
onto FBL(B).
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Proof. Recall from proposition 3.5 that FVL(B) is isomorphic to the sublattice of
FVL(A) generated by {δb : b ∈ B}, and that there exists a lattice homomorphism
projection PB of FVL(A) onto FVL(B) with PB(δb) = δb if b ∈ B and PB(δa) = 0 if
a ∈ A\B. As ‖δb‖F = 1 in both FBL(A) and FBL(B), there exist contractive lattice
homomorphisms of FBL(B) into FBL(A) and of FBL(B) onto FBL(A) that act in
the same way on the generators so extend the homomorphisms between FVL(A)
and FVL(B). The conclusion is now clear.

There is also a simple relationship between their duals. This is a consequence
of the following result, which is surely well known but for which we can find no
convenient reference; see [21, IV.12, problem 6] and [7, lemma VI.3.3, pp. xiv, 858]
for similar results.

Proposition 4.9. If P is a contractive lattice homomorphism projection from a
Banach lattice X onto a closed sublattice Y , then P ∗Y ∗ is a weak∗-closed band
in X∗, which is isometrically order isomorphic to Y ∗.

Proof. Write ker(P ) for the kernel of P , which is a lattice ideal in X, and define

Z = {φ ∈ X∗ : φ|ker(P ) ≡ 0},

which is a weak∗-closed band in X∗. It is clear that P ∗X∗ = Z.
Define J : Y ∗ → X∗ by Jφ = φ ◦ P and note that J : Y ∗ → Z with ‖J‖ � ‖P‖.

If φ ∈ Z, then J(φ|Y ) = φ, so J is actually an isometry of Y ∗ onto Z. It is clear
that both J and J−1 are positive. Thus, J : Y ∗ → P ∗X∗ is actually an isometric
order isomorphism.

Corollary 4.10. If B is a non-empty subset of A, then FBL(B)∗ is isometrically
order isomorphic to a weak∗-closed band in FBL(A)∗.

As in the algebraic case, if B and C are two subsets of A with B ∩ C �= ∅ of A,
then PBPC = PCPB = PB∩C .

In particular, the embedding of the finitely generated free closed sublattices are
important.

Proposition 4.11. Let F(A) be the collection of all non-empty finite subsets of A,
ordered by inclusion. The net of projections {PB : B ∈ F(A)} in FBL(A) converges
strongly to the identity in FBL(A).

Proof. If f ∈ FVL(A), then there actually exists B0 ∈ F(A) with PB(f) = f
whenever B0 ⊂ B. Recall that each PB is a contraction. If ε > 0 and f ∈ FBL(A),
choose f ′ ∈ FVL(A) with ‖f − f ′‖F < ε/2, and then B0 ∈ F(A) with PB(f ′) = f ′

for B0 ⊂ B. Then, if B0 ⊂ B,

‖PBf − f‖F � ‖PBf − PBf ′‖ + ‖PBf ′ − f ′‖F + ‖f ′ − f‖F < ε,

which completes the proof.

Before looking at some properties of FBL(A) in detail, we ask about its normed
dual.
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Proposition 4.12. If A is any non-empty set, then the three normed spaces

(FVL(A)†, ‖ · ‖†), (FVL(A), || · ‖F )∗ and FBL(A)∗

are isometrically order isomorphic.

Proof. If φ ∈ FBL(A)∗, then the restriction map φ 	→ φ|FVL(A) is an order isomor-
phism, by continuity, and as ‖δa‖ = 1 we have that |φ|(δa)‖ � ‖φ‖, so ‖φ|FVL(A)‖† �
‖φ‖. On the other hand, as each ‖δa‖ = 1 we see that

‖φ‖ = ‖|φ|‖
= sup{|φ|(f) : ‖f‖F � 1}
� sup{|φ|(|δa|) : a ∈ A}
= ‖φ| FVL(A)|‖†,

so the isometric order isomorphism of the first and third spaces is proved. The
identification of the second and third follows from the density of FVL(A) in FBL(A).

As we noted above, if A is infinite, then FVL(A)† �= FVL(A)∼. On the other
hand, we have the following.

Proposition 4.13. If n ∈ N, then FBL(n)∗ is isometrically order isomorphic to
the whole of FVL(n)∼ under the norm ‖ · ‖†.

Proof. All that remains to establish is that ‖φ‖† is finite for all φ ∈ FVL(n). Given
that ‖φ‖† is, in this case, a finite supremum of real values |φ|(|δa|), this is clear.

5. A smaller representation space

The set ΔA = [−1, 1]A is a compact subset of RA. We call a function f : ΔA → R

homogeneous if f(tξ) = tf(ξ) for ξ ∈ ΔA and t ∈ [0, 1] (this is consistent with the
definition for functions on RA). The space of continuous homogeneous real-valued
functions on ΔA is denoted by H(ΔA). If we equip C(ΔA) with the supremum
norm ‖ · ‖∞, then H(ΔA) is a closed vector sublattice of C(ΔA) (and hence H(ΔA)
is itself a Banach lattice with respect to this norm).

Lemma 5.1. The restriction map R : H(RA) → H(ΔA) is an injective vector lattice
homomorphism.

Proof. The only part of the proof that is not completely trivial is that the map
R is injective. Suppose that f ∈ H(RA) and Rf = 0. If ξ ∈ RA, consider the net
{ξχB : B ∈ F(A)}, where F(A) is the collection of all non-empty finite subsets of A
ordered by inclusion; we then have ξχB →F(A) ξ in RA. For any B ∈ F(A), there
exists t > 0 such that tξχB ∈ [−1, 1]A, so tf(ξχB) = f(tξχB) = 0 by homogeneity.
Hence, f(ξχB) = 0, and thus f(ξ) = 0 by the continuity of f , so f = 0.

It should be noted that the restriction map is not surjective unless A is a finite
set.
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Example 5.2. It suffices to prove the non-surjectiveness in the case when A = N.
Define g ∈ H(ΔN) by g(ξ) =

∑∞
k=1 2−kξ(k) for ξ ∈ ΔN. Suppose that there exists

f ∈ H(RN) with Rf = g. Define η ∈ RN by η(k) = 2k and let ηn = ηχ{1,...,n}, for
n ∈ N, so that ηn → η in RN. But, for each n ∈ N we have

f(ηn) = 2nf(2−nηn) = 2ng(2−nηn) = n.

As f is supposed to be continuous, this is impossible.

Note that this example also shows that the space H(RA), equipped with the
sup-norm over ΔA, is not complete if A is infinite. This is one of the reasons that
we use the space H(ΔA).

In general, FVL(A) may be identified with a vector sublattice of H(RA) (see
theorem 3.6), which in turn, courtesy of lemma 5.1, may be identified with a vec-
tor sublattice of H(ΔA) via the restriction map R. This identification extends to
FBL(A). The proof of this turns out to be slightly more tricky than might have
been anticipated.

For the sake of convenience, we denote by J = JA the restriction to FVL(A) of
the restriction map R : H(RA) → H(ΔA). Since ‖Jδa‖∞ = 1 for all a ∈ A, it is clear
that ‖J‖ = 1, and so ‖Jf‖∞ � ‖f‖F for all f ∈ FVL(A). Since H(ΔA) is a Banach
lattice with respect to ‖ · ‖∞, J extends by continuity to a lattice homomorphism
J : FBL(A) → H(ΔA) with ‖J‖ = 1. Note that, by the universal property of
FBL(A), J is the unique lattice homomorphism from FBL(A) into H(ΔA) satisfying
Jδa = δ|aΔA

, a ∈ A. This implies, in particular, that if B is a non-empty subset
of A, then JB is the restriction of JA to FBL(B) (see proposition 4.8). The problem
is to show that this extension J is injective.

First we consider the situation when A is finite, in which case everything is very
nice indeed.

Proposition 5.3. For any non-empty finite set A, the map J : FBL(A) → H(ΔA)
is a surjective norm and lattice isomorphism.

Proof. We claim that ‖f‖F � n‖Jf‖∞, f ∈ FVL(A), where n is the cardinality
of A. Indeed, if f ∈ FVL(A), then

|Jf | � ‖Jf‖∞
∨
a∈A

|J(δa)|,

so
|f | � ‖Jf‖∞

∨
a∈A

|δa|,

and hence

‖f‖F � ‖Jf‖∞‖
∨
a∈A

|δa|‖F � ‖Jf‖∞
∑
a∈A

‖δa‖F = n‖Jf‖∞.

This proves the claim. Consequently, ‖Jf‖∞ � ‖f‖F � n‖Jf‖∞, f ∈ FVL(A),
which implies that J : FBL(A) → H(ΔA) is a norm and lattice isomorphism.
It remains to be shown that J is surjective. For this purpose, denote by SA the
compact subset of ΔA given by SA = {ξ ∈ ΔA : ‖ξ‖A = 1}. Since A is finite,
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the restriction map r : H(ΔA) → C(SA) is a surjective norm and lattice isomor-
phism. Since the functions {δa|SA

: a ∈ A} separate the points of SA, it follows
via the Stone–Weierstrass theorem that (r ◦ J)(FBL(A)) = C(SA), and hence
J(FBL(A)) = H(ΔA). The proof is complete.

This norm isomorphism is not an isometry unless n = 1. In fact, if a1, . . . , an ∈ A
are distinct, then ‖

∨n
j=1 |δaj

|‖F = n (indeed, consider the lattice homomorphism
T : FBL(A) → �n

1 satisfying T (δaj ) = ej , 1 � j � n, where ej denotes the jth unit
vector in �n

1 ).
Sometimes it is convenient to use the following, slightly weaker, description.

Corollary 5.4. For any non-empty finite set A, FBL(A) is linearly order iso-
morphic to H(RA).

Proof. We need only observe that the restriction map R : H(RA) → H(ΔA) is onto
whenever A is finite.

To show that the lattice homomorphism J : FBL(A) → H(ΔA) is injective in
general, we make use of real-valued linear lattice homomorphisms on FBL(A), which
will later allow us to characterize these in general, something that is worth knowing
anyway!

Theorem 5.5. If A is a non-empty set, then ω : FBL(A) → R is a lattice homo-
morphism if and only if there exists ξ ∈ ΔA and 0 � λ ∈ R such that ω(f) = λJf(ξ)
for all f ∈ FBL(A).

Proof. If ω is a real-valued lattice homomorphism on FBL(A), then it follows from
lemma 3.9 that there exists η ∈ RA such that ω(f) = f(η), f ∈ FVL(A). As
FBL(A) is a Banach lattice, ω is ‖ · ‖F -bounded, and so

sup
a∈A

|η(a)| = sup
a∈A

|ω(δa)| = ‖ω‖ < ∞.

Hence, there exists a λ = ‖ω‖ > 0 such that ξ = λ−1η ∈ ΔA. If f ∈ FVL(A), then

ω(f) = f(η) = λf(λ−1η) = λJf(ξ).

Given f ∈ FBL(A), choose a sequence (gn) in FVL(A) with ‖f − gn‖F → 0, so
that ‖Jf − Jgn‖∞ → 0, and hence Jgn(ξ) → Jf(ξ). Thus,

ω(f) = lim
n→∞

ω(gn) = λ lim
n→∞

Jgn(ξ) = λJf(ξ).

The converse is clear, as, if ξ ∈ ΔA and 0 � λ ∈ R, the formula ω(f) = λJf(ξ),
f ∈ FBL(A), defines a lattice homomorphism on FBL(A).

It is clear already that, for f ∈ FVL(A), f = 0 if and only if Jf = 0, if and only
if ω(f) = 0 for every ‖ · ‖F -bounded real-valued lattice homomorphism on FVL(A).
We need this equivalence for f ∈ FBL(A).

Corollary 5.6. For any non-empty set A and f ∈ FBL(A) the following are
equivalent:

(i) f = 0,
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(ii) ω(f) = 0 for all real-valued lattice homomorphisms on FBL(A),

(iii) Jf = 0.

Proof. Clearly, (i) implies (iii), and that (iii) implies (ii) follows directly from the-
orem 5.5.

Now assume that (ii) holds. Note first that it follows from proposition 5.3 that
for any non-empty finite subset B ⊆ A the restriction of J to FBL(B) is injective.
For such a set B, the map f 	→ (JPBf)(ξ), f ∈ FBL(A), is a real-valued lattice
homomorphism on FBL(A) for each ξ ∈ ΔA, so JPBf = 0. As J is injective on
FBL(B), this shows that PBf = 0. It follows from proposition 4.11 that PBf → f
for ‖ · ‖F , so f = 0. This suffices to complete the proof.

Corollary 5.7. If A is any non-empty set, then the lattice homomorphism

J : FBL(A) → H(ΔA)

is injective, so FBL(A) is linearly order isomorphic to a vector sublattice of H(ΔA).

V. Troitsky (personal communication) pointed out to the authors that there is
no similar embedding of FBL(N) into H(RN). Note also that, although we have no
need of the fact, the image of FBL(A) is actually a lattice ideal in H(ΔA).

In the following, we identify FBL(A) with the vector sublattice J(FBL(A))
of H(ΔA).

As we have seen in proposition 4.8, if B is a non-empty subset of A, then FBL(B)
may be identified isometrically with the closed vector sublattice of FBL(A) gener-
ated by {δb : b ∈ B}, and there exists a canonical contractive lattice homomorphic
projection PB in FBL(A) onto FBL(B). It should be noted that we have the fol-
lowing commutative diagram:

FBL(A)
JA �� H(ΔA)

FBL(B)
JB

��

kB

��

H(ΔB)

jB

��

where jB is the restriction to H(ΔB) of the injective lattice homomorphism jB

introduced in § 2, and kB is the isometric lattice embedding of FBL(B) into FBL(A)
guaranteed by proposition 4.8. Note also that jB is an isometry. The commutativity
of the diagram follows by considering the action of the maps on the free generators
of FBL(B). Consequently, the canonical embedding of FBL(B) into FBL(A) is
compatible with the canonical embedding of H(ΔB) into H(ΔA). It can similarly
be seen that the following diagram also commutes:

FBL(A)
JA ��

PB

��

H(ΔA)

(jB)−1◦PB

��
FBL(B)

JB

�� H(ΔB)
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The next proposition describes this in terms of FBL(A) considered as a vector
sublattice of H(ΔA). We consider RΔB as a subspace of RΔA as explained in § 2.

Recall that if B is a non-empty subset of A, then for any ξ ∈ ΔA we denote by ξB

the restriction of ξ to B, so ξB ∈ ΔB .

Proposition 5.8. Suppose that B is a non-empty subset of A. If we consider
FBL(A) as a vector sublattice of H(ΔA), we have the following.

(i) The canonical projection PB of FBL(A) onto FBL(B) is given by PBf(ξ) =
f(ξχB), ξ ∈ ΔA, for all f ∈ FBL(A).

(ii) If f ∈ FBL(A), then a necessary and sufficient condition for f to belong to
FBL(B) is that f(ξ) = f(η) whenever ξ, η ∈ ΔA with ξB = ηB.

Proof. (i) Let PB be the canonical projection in FBL(A) onto FBL(B) (see propo-
sition 4.8), so that PBδa = δa if a ∈ B and PBδa = 0 if a ∈ A�B. If f ∈ FVL(A),
then it follows from the observations preceding proposition 3.7 that PBf(ξ) =
f(ξχB), ξ ∈ ΔA. Given f ∈ FBL(A), let (fn) be a sequence in FVL(A) such that
‖f − fn‖F → 0, which implies that ‖f − fn‖∞ → 0, and so fn(ξ) → f(ξ), ξ ∈ ΔA.
Furthermore, ‖PBf − PBfn‖F → 0, and hence PBfn(ξ) → PBf(ξ), ξ ∈ ΔA. Since
PBfn(ξ) = fn(ξχB) → f(ξχB), we may conclude that PBf(ξ) = f(ξχB), ξ ∈ ΔA.

(ii) Necessity. If f ∈ FBL(B) and ξ, η ∈ ΔA are such that ξB = ηB , then ξχB =
ηχB , and hence it follows from (i) that

f(ξ) = PBf(ξ) = f(ξχB) = f(ηχB) = PBf(η) = f(η).

Sufficiency. If f ∈ FBL(A) is such that f(ξ) = f(η) whenever ξ, η ∈ ΔA with
ξB = ηB , then PBf(ξ) = f(ξχB) = f(ξ), as (ξχB)B = ξB , for all ξ ∈ ΔA, and
hence f = PBf ∈ FBL(B).

Recall that a sublattice H of a lattice L is said to be regularly embedded if
every subset of H with a supremum (respectively, infimum) in H has the same
supremum (respectively, infimum) in L. If we are dealing with vector lattices, it
suffices to consider the case of a subset of H that is downward directed in H to 0
and check that it also has infimum 0 in L.

Proposition 5.9. If A is any non-empty set and B is a non-empty subset of A,
then FBL(B) is regularly embedded in FBL(A).

Proof. Suppose that (fγ)γ∈Γ is a downward directed net in FBL(B) such that
fγ ↓γ 0 in FBL(B), and suppose that g ∈ FBL(A) satisfies 0 < g � fγ for all
γ ∈ Γ . Let ξ0 ∈ ΔA be such that g(ξ0) > 0. We claim that we may assume that
ξ0χB �= 0. If our chosen ξ0 is such that ξ0χB = 0, i.e. ξ0 = ξ0χA\B , then consider
ξε = ξ0 + εξB . Since ξε → ξ0 in ΔA as ε ↓ 0 and g is continuous, we may choose
ε ∈ (0, 1] with g(ξε) > 0 and then replace ξ0 by this ξε. Given b ∈ B, define
h ∈ H(ΔA) by setting

h(ξ) = g

(
ξχB +

|ξ(b)|
‖ξ0χB‖∞

ξ0χA�B

)
, ξ ∈ ΔA.
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We claim that h ∈ FBL(A). Indeed, define the lattice homomorphism T : H(ΔA) →
H(ΔA) by setting

Tf(ξ) = f

(
ξχB +

|ξ(b)|
‖ξ0χB‖∞

ξ0χA�B

)
, ξ ∈ ΔA,

for all f ∈ H(ΔA). Observing that

Tδa = δaχB(a) +
|δb|

‖ξ0χB‖∞
δa(ξ0)χA�B(a),

it follows that Tδa ∈ FVL(A) for all a ∈ A, and that supa∈A ‖Tδa‖F < ∞. Conse-
quently, there exists a unique lattice homomorphism S : FBL(A) → FBL(A) such
that Sδa = Tδa for all a ∈ A. Evidently, Tf = Sf for all f ∈ FVL(A). Given
f ∈ FBL(A), we may approximate f with a sequence (fn) with respect to ‖ · ‖F .
Since convergence with respect to ‖ · ‖F implies pointwise convergence on ΔA, it
follows that Sf = Tf (see the proof of proposition 5.8). This implies, in particular,
that h = Tg = Sg ∈ FBL(A), which proves our claim.

If ξ, η ∈ ΔA are such that ξB = ηB , then h(ξ) = h(η), and so, by proposition 5.8
and lemma 2.1, it follows that h ∈ FBL(B). If ξ ∈ ΔA, then

ξB =
(

ξχB +
|ξ(b)|

‖ξ0χB‖∞
ξ0χA�B

)
B

(recall that the subscript B indicates taking the restriction to the subset B), and
hence

fγ(ξ) = fγ

(
ξχB +

|ξ(b)|
‖ξ0χB‖∞

ξ0χA�B

)

� g

(
ξχB +

|ξ(b)|
‖ξ0χB‖∞

ξ0χA�B

)

= h(ξ), ξ ∈ ΔA,

that is, fγ � h � 0 for all γ ∈ Γ . We may conclude that h = 0.
It follows, in particular, that

g

(
ξ0χB +

|ξ0(b)|
‖ξ0χB‖∞

ξ0χA�B

)
= 0, b ∈ B.

Applying this to b = bn, where (bn) is a sequence in B satisfying |ξ0(bn)| →
‖ξ0χB‖∞, the continuity of g implies that

g(ξ0) = g(ξ0χB + ξ0χA�B) = 0,

which is a contradiction. The proof is complete.

6. Some properties of free Banach lattices

If X is a non-empty set and f : X → R, then we let Of = {x ∈ X : f(x) �= 0}, and
if W is a non-empty subset of RX , then we define OW =

⋃
{Of : f ∈ W}. Although

probably well known, we know of no convenient reference for the following result.

https://doi.org/10.1017/S0308210512001709 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210512001709


120 B. de Pagter and A. W. Wickstead

Proposition 6.1. If X is a Hausdorff topological space, L is a vector sublattice of
C(X) and the open set OL is connected, then the only projection bands in L are
{0} and L.

Proof. Suppose that B is a projection band in L, so L = B ⊕ Bd. If f ∈ B and
g ∈ Bd, then f ⊥ g; hence Of ∩ Og = ∅, and therefore OB ∩ OBd = ∅. Given
x ∈ OL there exists 0 �= f ∈ L+ with f(x) > 0. We may write f = f1 ⊕ f2
with 0 � f1 ∈ B and 0 � f2 ∈ Bd. Clearly, either f1(x) > 0 or f2(x) > 0. I.e.
x ∈ Of1 ∪ Of2 ⊂ OB ∪ OBd . Hence, OL ⊂ OB∪OBd , and therefore OL = OB ∪ OBd .
The sets OB and OBd are both open and disjoint and OL is, by hypothesis, con-
nected. This is only possible if either OB or OBd is empty, which says that either
L = Bd or L = B.

Corollary 6.2. If |A| � 2, then the only projection bands in FBL(A) are {0} and
FBL(A).

Proof. By corollary 5.7 we are able to identify FBL(A) with a vector sublattice of
H(ΔA) ⊂ C(ΔA). Observe that

OFBL(A) ⊃
⋃
a∈A

Oδa =
⋃
a∈A

{ξ ∈ ΔA : ξ(a) �= 0} = ΔA \ {0}.

Clearly, OFBL(A) ⊂ ΔA \ {0} so that OFBL(A) = ΔA \ {0}, which, provided that
|A| � 2, is (pathwise) connected.

Corollary 6.3. If |A| � 2, then FBL(A) is not Dedekind σ-complete.

Corollary 6.4. If |A| � 2, then FBL(A) has no atoms.

Proof. The linear span of an atom is always a projection band.

Corollary 6.5. If a ∈ A, then |δa| is a weak order unit for FBL(A).

Proof. If f ∈ FBL(A) and f ⊥ |δa|, then Of ⊂ {ξ ∈ ΔA : ξ(a) = 0}, and the latter
set has an empty interior, so Of = ∅, and hence f = 0.

Corollary 6.6. Every disjoint system in FBL(A) is at most countable.

Proof. If {ui : i ∈ I} is a disjoint family of strictly positive elements of FBL(A),
then the corresponding sets Oui are non-empty disjoint open subsets of ΔA. As
ΔA = [−1, 1]A is a product of separable spaces, [18, theorem 2] tells us that ΔA

can contain only countably many disjoint non-empty open sets, so the families of
all Oui and of all ui are indeed countable.

The same result is true for FVL(A), first proved by Weinberg in [24]. It can also
be found, with essentially the current proof, in [1].

Recall that an Archimedean vector lattice is order separable if every subset D ⊂ L
contains an at most countable subset with the same upper bounds in L as D has.
This is equivalent to every order bounded disjoint family of non-zero elements being
at most countable [12, theorem 29.3]. Corollary 6.6 thus actually tells us that the
universal completion of FBL(A) [12, definition 50.4] is always order separable.
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Every Banach lattice is a quotient of a free Banach lattice. We can actually make
this statement quite precise. The following lemma is well known, dating back, in
the case when a = ℵ0, to a result of Banach and Mazur [2]. A more accessible proof,
again in the case when a = ℵ0 (although the modifications needed for the general
case are minor), are given as part of the proof of [6, ch. VII, theorem 5].

Lemma 6.7. Let X be a Banach space and let D be a dense subset of the unit ball
of X. If x ∈ X and ‖x‖ < 1, then there exist sequences (xn) in D and (αn) in R

such that
∑∞

n=1 |αn| < 1 and x =
∑∞

n=1 αnxn.

Proposition 6.8. Let X be a Banach lattice. If D is a dense subset of the unit
ball of X of cardinality a, then there exists a closed ideal J in FBL(a) such that X
is isometrically order isomorphic to FBL(a)/J .

Proof. Let D = {xa : a ∈ a}. By the definition of a free Banach lattice, there exists
a unique contractive lattice homomorphism T : FBL(a) → X with T (δa) = xa for
each a ∈ a. If x ∈ X with ‖x‖ < 1, then lemma 6.7 gives us the sequences (xan) in D
and (αn) in R with

∑∞
n=1 |αn| < 1 and x =

∑∞
n=1 αnxan

. If we define f ∈ FBL(a)
by f =

∑∞
n=1 αnδan , noting that this series converges absolutely, then ‖f‖F < 1

and Tf = x. This shows that T maps the open unit ball in FBL(a) onto the open
unit ball in X. In particular, T is surjective.

Take J to be the kernel of T and let Q : FBL(a) → FBL(a)/J be the quotient
map. Let U : FBL(a)/J → X be defined by U(Qf) = Tf for f ∈ FBL(a), which is
clearly well defined. It is also clear that U is a contractive lattice isomorphism. As
T maps the open unit ball of FBL(a) onto the open unit ball of X, and Q maps
the open unit ball of FBL(a) onto the open unit ball of FBL(a)/J , it follows that
U maps the open unit ball of FBL(a)/J onto the open unit ball of X, so U is an
isometry.

Corollary 6.9. Let X be a Banach lattice. If D is a dense subset of the unit ball
of X of cardinality a, then FBL(a)∗ contains a weak∗-closed band that is isometri-
cally order isomorphic to X∗.

Proof. If T : FBL(a) → X is the quotient map from proposition 6.8, then T ∗ : X∗ →
FBL(a)∗ is an isometry and its range, which is ker(T )⊥, is a weak∗-closed band. As
T is a surjective lattice homomorphism, T ∗ is actually a lattice isomorphism.

In particular note the following.

Corollary 6.10. If a is any cardinal, then there exists a weak∗-closed band in
FBL(a)∗ that is isometrically order isomorphic to �∞(a).

Proof. If a is infinite, then we need merely note that the unit ball of �1(a) has a
dense subset of cardinality a and that �∞(a) may be identified with �1(a)∗.

Suppose that card(A) = a is finite. For a ∈ A we write ξa for that element of
ΔA = [−1, 1]A with ξa(a) = 1 and ξa(b) = 0 if a �= b. If b ∈ A, then |δb|(ξa) =
|δb(ξa)| = 1 if a = b and |δb|(ξa) = |δb(ξa)| = 0 if a �= b. It follows from theorem 5.5
that the functional f 	→ f(ξa) is a lattice homomorphism on FBL(A), and therefore
an atom of FBL(A)∗, of norm 1. Finite sums of such maps also have norm 1. This
embeds a copy of �∞(A) isometrically onto an order ideal in FBL(A)∗, which, as it
is finite dimensional, is certainly a weak∗-closed band.
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Corollary 6.11. If X is a separable Banach lattice, then X is isometrically order
isomorphic to a Banach lattice quotient of FBL(ℵ0) and X∗ is isometrically order
isomorphic to a weak∗-closed band in FBL(ℵ0)∗.

This illustrates quite effectively what rich structure free Banach lattices and their
duals have. For example, if X and Y are separable Banach lattices such that no two
non-zero bands in X∗ and Y ∗ are isometrically isomorphic, then the isometrically
order isomorphic bands in FBL(ℵ0)∗ must be disjoint in the lattice theoretical sense.
So, for example, we have the following.

Corollary 6.12. In FBL(ℵ0)∗ there exist mutually disjoint weak∗-closed bands A
and Bp (p ∈ (1,∞]) with Bp isometrically order isomorphic to Lp([0, 1]) and A
isometrically order isomorphic to �∞.

This gives continuum many disjoint non-zero elements in FBL(ℵ0)∗, which should
be contrasted with corollary 6.6.

7. The structure of finitely generated free Banach lattices

We will see shortly that FBL(n) is not an AM-space unless n = 1, but it does have
a lot of AM-structure provided that n is finite.

If we have only a finite number of generators, n say, then we may identify FBL(n)
with H(Δn), where Δn is now a product of n copies of [−1, 1]. In this setting, it
might be more useful to consider the restriction of these homogeneous functions
to the union of all the proper faces of Δn, which we denote by Fn. An alternative
description of this set is that it is the points in Rn with supremum norm equal
to 1. Each of the generators δk (1 � k � n) takes the value +1 on one maximal
proper face of Fn of dimension n− 1, and the value −1 on the complementary face.
These faces are precisely the maximal proper faces of Δn. The restriction map from
H(Δn) to C(Fn) is a surjective vector lattice isomorphism and an isometry from
the supremum norm over Δn to the supremum norm over Fn. We also know that
these norms are equivalent to the free norm. Thus, when we identify FBL(n) with
C(Fn), even though the norms are not the same, the closed ideals, band, quotients,
etc. remain the same, so we can read off many structural results from those for
C(K) spaces. Whenever we refer to the free norm on C(Fn), we refer to the free
norm generated using the generators that take value ±1 on the maximal proper
faces.

In particular, we may identify the dual of FBL(n) with the space of regular Borel
measures on Fn, M(Fn). We see in theorem 8.1 that unless n = 1 the dual of the
free norm ‖ · ‖† is definitely not the usual norm ‖ · ‖1, under which M(Fn) is an
AL-space. However, there remains a lot of AL-structure in this dual.

Proposition 7.1. If μ ∈ M(Fn) is supported by a maximal proper face of Δn,
then ‖μ‖† = ‖μ‖1.

Proof. Suppose first that μ � 0. Let the free generators be denoted by δ1, δ2, . . . , δn.
If G is the maximal proper face in question, we may suppose that G ⊂ δ−1

1 (1). As
|δk| � 1 on Fn, for 1 � k � n, we have∫

|δk| dμ �
∫

1dμ = ‖μ‖1,
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and on taking the maximum we have ‖μ‖† � ‖μ‖1. On the other hand, |δ1| ≡ 1
on G, so

‖μ‖† �
∫

|δ1| dμ = ‖μ‖1,

and we have equality. Both ‖ · ‖1 and ‖ · ‖† are lattice norms, so in the general case
we have that

‖μ‖† = ‖|μ|‖† = ‖|μ|‖1 = ‖μ‖1,

and the proof is complete.

Corollary 7.2. If f ∈ C(Fn) and there is a maximal proper face G such that f
vanishes off G, then ‖f‖F = ‖f‖∞.

Proof. If μ ∈ M(Fn), then we may write μ = μG+μFn\G, where μA(X) = μ(A∩X),
and note that

∫
f dμ =

∫
f dμG. If ‖μ‖† � 1, then ‖μG‖† = ‖μG‖1 � 1 as |μG| � |μ|.

Thus,

‖f‖F = sup
{ ∫

|f | d|μ| : ‖μ‖† � 1
}

� sup
{ ∫

|f | d|μ| : ‖μ‖1 � 1
}

= ‖f‖∞,

and the embedding of FBL(n) into H(Δn) is a contraction, so ‖f‖F � ‖f‖∞.

This means that certain closed ideals in FBL(n) are actually AM-spaces, namely,
those that may be identified with functions on Fn that vanish on a closed set A
whose complement is contained in a single proper face of Fn. Rather more interest-
ing is an analogous result for quotients.

In general, if J is a closed ideal in a Banach lattice X, then (X/J)∗ may be
identified, both in terms of order and norm, with the ideal J◦ = {f ∈ X∗ : f |J ≡ 0}.
We know that if A is a closed subset of a compact Hausdorff space K and JA

denotes the closed ideal JA = {f ∈ C(K) : f |A ≡ 0}, then when C(K) is given the
supremum norm the normed quotient C(K)/JA is isometrically order isomorphic
to C(A) under its supremum norm, and its dual is isometrically order isomorphic
to the space of measures on K that are supported by A. In the particular case
when K = Fn, we may still identify quotients algebraically in the same way, but
the description of the quotient norm has to be modified slightly. That means that
the quotient norm may be described in a similar manner to our original description
of the free norm, as follows.

Proposition 7.3. If A is a closed subset of Fn and C(Fn) is normed by its canon-
ical free norm, then C(Fn)/JA is isometrically order isomorphic to C(A), where
C(A) is normed by

‖f‖A = sup
{ ∫

|f | d|μA| : ‖μ‖† � 1
}

.

In this supremum we may restrict to measures μ supported by A.
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In particular, we have the following, using proposition 7.1.

Corollary 7.4. If A is a closed subset of a proper face of Fn and C(Fn) is normed
by its canonical free norm, then C(Fn)/JA is isometrically order isomorphic to
C(A) under its supremum norm.

The free vector lattices over a finite number of generators exhibit a lot of symme-
try. For example, it is not difficult to see that FVL(n) is invariant under rotations.
In studying symmetry of FBL(n) it makes things clearer to identify FBL(n) with
the space C(Sn−1) rather than with C(Fn), where Sn−1 is the Euclidean unit sphere
in Rn, even though the description of the free norm is made slightly more difficult.
In the case n = 2, we are looking at continuous functions on the unit circle, and
the dual free norm is given by

‖μ‖† =
∫

S1
|sin(t)| d|μ|(t) ∨

∫
S1

|cos(t)| d|μ|(t).

In particular, if ηx denotes the unit measure concentrated at x, then

‖ηx‖† = |sin(x)| ∨ |cos(x)|,

which is certainly not rotation invariant. Note also that

‖ηx + ηx+π/2‖† = (|sin(x)| + |sin(x + π/2)|) ∨ (|cos(x)| + |cos(x + π/2)|).

In fact, only rotations through multiples of π/2 are isometries on C(S1) for the free
norm. Of course, all rotations of FBL(n) will be isomorphisms.

There is an obvious procedure for obtaining a rotation invariant norm from the
free norm, namely, to take the average, with respect to Haar measure on the group
of rotations, of the free norms of rotations of a given element. Although this will
certainly not be the free norm, given that it is derived in a canonical manner from
the free norm we might expect that either it is a familiar norm or else it is of some
independent interest. It turns out to not be familiar. This is again easiest to see in
the dual.

If we denote this symmetric free norm by ‖ · ‖S and its dual norm by ‖ · ‖S , then
we have

‖ηx‖S = ‖ηx+π/2‖S =
1
2π

∫ 2π

0
|sin(t)| ∨ |cos(t)| dt =

2
√

2
π

and

‖ηx + ηx+π/2‖S =
1
2π

∫ 2π

0
(|sin(x)| + |sin(x + π/2)|) ∨ (|cos(x)| + |cos(xπ/2)|) dt

=
4
π

,

so the symmetric free norm is not an AL-norm, which is the natural symmetric norm
on C(S1)∗, nor an AM-norm. In fact, ‖ηx +ηx+t‖S can take any value between 4/π
and 4

√
2/π, so the symmetric free norm cannot be any Lp norm either, implausible

though that would be anyway.
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8. Characterizing the number of generators

Apart from wanting to understand how the number of generators affects the Banach
lattice structure of FBL(A), we would like to know when FBL(A) is a classical
Banach lattice or has various properties generally considered desirable. The answer
to this is ‘not very often’ ! It turns out that such properties can be used to charac-
terize the number of generators, at least in a rather coarse manner.

In fact several properties that are normally considered ‘good’ are only possessed
by a free Banach lattice if it has only one generator. We gather several of these into
our first result. We know that, in the finitely generated case, both FBL(n) and its
dual have a certain amount of AM-structure. There is another area of Banach lattice
theory where the same is true, namely, for injective Banach lattices in the category
of Banach lattices and contractive positive operators (see [10]). As injective Banach
lattices are certainly Dedekind complete, we cannot have FBL(n) injective if n > 1.
It might be thought possible that FBL(A)∗ is injective, but that also turns out to
be false unless |A| = 1.

Theorem 8.1. If A is a non-empty set, then the following are equivalent.

(1) |A| = 1.

(2) FBL(A) is isometrically an AM-space.

(3) FBL(A) is isomorphic to an AL-space.

(4) Every bounded linear functional on FBL(A) is order continuous.

(5) There is a non-zero order continuous linear functional on FBL(A).

(6) FBL(A)∗ is an injective Banach lattice.

Proof. If A is a singleton, then ΔA = [−1, 1] and FBL(A) may be identified
with H(ΔA), which in turn may be identified with R2. The generator is the pair
g = (−1, 1). The positive linear functionals φ such that φ(|g|) � 1 are those de-
scribed by pairs of reals (φ1, φ2) with |φ1| + |φ2| � 1. The free norm that they
induce on R2 is precisely the supremum norm.

If |A| > 1, then, by corollary 6.10, FBL(A)∗ contains an order isometric copy
of �∞(A), so is not an AL-space, and therefore FBL(A) is not an AM-space. This
establishes that (1) ⇔ (2).

It is clear that (1) ⇒ (3), although even in this case it is clear that FBL(1) is not
isometrically an AL-space. FBL(2), on the other hand, is isomorphic to continuous
functions on a square, so is certainly not isomorphic to an AL-space. In view of
proposition 4.8 and the fact that every closed sublattice of an AL-space is itself an
AL-space, we see that (3) ⇒ (1).

It is clear that (1) ⇒ (4) ⇒ (5). To show that (5) ⇒ (1), suppose that |A| > 1 and
that φ is a non-zero order continuous linear functional on FBL(A). By continuity
of φ and density of FVL(A) in FBL(A), φ|FVL(A) �= 0. Similarly, as

FVL(A) =
⋃

{FVL(F ) : F ⊆ A, |F | < ∞},
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we may choose a finite subset F ⊆ A with φ|FVL(F ) �= 0, so certainly φ|FBL(F ) �= 0.
Without loss of generality, as long as |A| > 1 we may assume that |F | > 1. As
FBL(F ) is regularly embedded in FBL(A), by proposition 5.9, φ|FBL(F ) is order
continuous. As a vector lattice, we may identify FBL(F ) with C(SF ), where SF is
the �∞ unit sphere in ΔF . Certainly, SF is a dense in itself metrizable (and hence
separable) compact Hausdorff space, so it follows from [19, proposition 19.9.4] that
φ|FBL(F ) = 0, contradicting our original claim.

Certainly, FBL(1)∗, being an AL-space, is injective (see [11, proposition 3.2]).
We know from corollary 4.10 that if |A| > 1, then FBL(2)∗ is isometrically order
isomorphic to a (projection) band in FBL(A)∗. If FBL(A)∗ were injective, then
certainly FBL(2)∗ would also be injective. Recall that [10, proposition 3G] tells us
that an injective Banach lattice either contains a sublattice isometric to �∞, or else
is isometrically isomorphic to a finite AM-direct sum of AL-spaces. We know that
FBL(2) is order and norm isomorphic to continuous functions on the square F2,
so FBL(2)∗ is norm and order isomorphic to the space of measures on F2, and
thus certainly has an order continuous norm. Thus it does not contain even an
isomorphic copy of �∞ by [13, corollary 2.4.3], so it certainly suffices to show that
FBL(2)∗ cannot be decomposed into a non-trivial finite AM-direct sum of bands of
any nature.

The dual of FBL(2) can be identified, as a vector lattice, with the regular Borel
measures on F2. The dual free norm amounts to

‖μ‖ = max
{ ∫

|δ1| d|μ|,
∫

|δ2| d|μ|
}

,

where δi is the projection onto the ith coordinate. It is clear that
∫

|δ1| d|μ| = 0 if
and only if μ is supported by S1 = {〈0,−1〉, 〈0, 1〉}, while

∫
|δ2| d|μ| = 0 if and only

if μ is supported by S2 = {〈−1, 0〉, 〈1, 0〉}. If any non-trivial AM-decomposition
of FBL(2)∗ were possible, into J ⊕ K, say, then we can choose 0 �= μ ∈ J+ and
0 �= ν ∈ K+. We may assume that ‖μ‖ = ‖ν‖ = 1, and therefore ‖μ + ν‖ = 1. The
fact that ‖μ‖ = ‖ν‖ = 1 means that∫

|δ1| dμ ∨
∫

|δ2| dμ =
∫

|δ1| dν ∨
∫

|δ2| dν = 1.

Suppose that
∫

|δ1| dμ =
∫

|δ1| dν = 1; we then have

1 = ‖μ + ν‖ �
∫

|δ1| d(μ + ν) =
∫

|δ1| dμ +
∫

|δ1| dν = 2,

which is impossible. Similarly, we cannot have
∫

|δ2| dμ =
∫

|δ2| dν = 1. If
∫

|δ1| dμ =∫
|δ2| dν = 1, then the fact that 1 = ‖μ + ν‖ �

∫
|δ1| d(μ + ν) tells us that∫

|δ1| dν = 0, so ν is supported by S1. Similarly, we see that
∫

|δ2| dμ = 0, so μ
is supported by S2. This implies that FBL(2)∗ is supported by S1 ∪ S2, which is
impossible. A similar contradiction arises if

∫
|δ2| dμ =

∫
|δ1| dν = 1.

It is already clear that free Banach lattices on more than one generator are not
going to be amongst the classical Banach lattices. Isomorphism with AM-spaces is
still possible and turns out to determine whether or not the number of generators
is finite.
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Theorem 8.2. If A is any non-empty set, then the following are equivalent.

(1) A is finite.

(2) FBL(A) is isomorphic to H(ΔA) under the supremum norm.

(3) FBL(A) has a strong order unit.

(4) FBL(A) is isomorphic to an AM-space.

(5) FBL(A)∗ has an order continuous norm.

Proof. We have already seen that (1) ⇒ (2) ⇒ (3). It is well known and simple to
prove that (3) ⇒ (4). That (4) ⇒ (5) is because the dual of an AM-space is an
AL-space that has an order continuous norm, and order continuity of the norm is
preserved under (not necessarily isometric) isomorphisms. In order to complete the
proof we need only prove that (5) ⇒ (1).

If A is infinite, then FBL(A)∗ contains a weak∗-closed band that is isometrically
order isomorphic to �∞, by corollary 6.10. By [13, theorem 2.4.14], this is equivalent
to FBL(a)∗ not having an order continuous norm (and to many other conditions
as well).

In a similar vein, we can characterize, amongst free Banach lattices, those with a
countable number of generators. Before doing so, though, we note that once there
are infinitely many generators then there is an immediate connection between the
number of generators and the cardinality of dense subsets. Perhaps not entirely
unexpectedly, given corollary 6.6, the same result holds for order intervals. Recall
that the density character of a topological space is the least cardinal of a dense
subset.

Theorem 8.3. If a is an infinite cardinal, then the following conditions on a set A
are equivalent.

• card(A) = a.

• FBL(A) has density character a.

• The smallest cardinal b such that every order interval in FBL(A) has density
character at most b is a.

Proof. Let a = card(A), let b be the density character of FBL(A) and let c be the
smallest cardinal that is at least as large as the density character of every order
interval in FBL(A). We need to show that a = b = c.

The free vector lattice over Q with a many generators has cardinality precisely a,
given that a is infinite. It is dense in FVL(A), and hence in FBL(A), for the free
norm, so b � a. Clearly, c � b. Let K be a compact Hausdorff space such that
the smallest cardinality of a dense subset of C(K), and hence of the unit ball
in C(K), is a. For example, we could take K = [0, 1]a. There exists a bounded
lattice homomorphism T : FBL(A) → C(K) that maps the generators of A onto
a dense subset of the unit ball of C(K). The proof of proposition 6.8 shows that
T is onto. Let 1K denote the constantly-one function on K. The order interval
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[−T−11K , T−11K ] has a dense subset of cardinality at most c. As T is a surjective
lattice homomorphism, T ([−T−11K , T−11K ]) = [−1K ,1K ], and this will have a
dense subset of cardinality at most c. Hence, a � c. This establishes that a = b = c.

For the statement of the next result, which characterizes a free Banach lattice
having countably many generators, we need to recall some definitions. A topological
order unit e of a Banach lattice E is an element of the positive cone such that
the closed order ideal generated by e is the whole of E. These are also referred to
as quasi-interior points. Separable Banach lattices always possess topological order
units. The centre of E, Z(E), is the space of all linear operators on E lying between
two real multiples of the identity. The centre is termed topologically full if, whenever
x, y ∈ E with 0 � x � y, there exists a sequence (Tn) in Z(E) with Tny → x in
norm. If E has a topological order unit, then its centre is topologically full. At the
other extreme there are AM-spaces in which the centre is trivial, i.e. it consists only
of multiples of the identity.

Theorem 8.4. If A is a non-empty set, then the following are equivalent.

(1) A is finite or countably infinite.

(2) FBL(A) is separable.

(3) Every order interval in FBL(A) is separable.

(4) FBL(A) has a topological order unit.

(5) Z(FBL(A)) is topologically full.

(6) Z(FBL(A)) is non-trivial.

Proof. If A is finite, then it follows from the isomorphism seen in theorem 8.2 that
FBL(A), and hence its order intervals, is separable. Combining this observation
with the preceding theorem shows that (1), (2) and (3) are equivalent.

We noted earlier that separable Banach lattices always have a topological order
unit. The fact that Banach lattices with a topological order unit have a topologically
full centre is also widely known, but finding a complete proof in the literature is not
easy. The earliest is in [15, example 1]2, but that proof is more complicated than it
need be. A simpler version is in [27, proposition 1.1]; see also [16, lemma 1].

Even if a = 1, FBL(a) is not one dimensional, so if the centre is topologically
full, it cannot be trivial.

We know from proposition 5.7 that we may identify FBL(A) with a sublattice
of H(ΔA). It is clear, as it contains the coordinate projections, that it separates
points of ΔA. If |A| is uncountable, then {0} is not a Gδ subset of ΔA. It follows
from [25, theorem 3.1] that the centre of this sublattice, and therefore of FBL(a),
is then trivial.

Corollary 8.5. If A is an uncountable set, then FBL(A) has trivial centre.
2This preprint should not be confused with a paper with the same title by the same author in

Positivity.
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Note that this would seem to be the first ‘natural’ example of a Banach lattice
with a trivial centre. If a > 1, then FVL(A) always has trivial centre. The details
are left to the interested reader.

9. Lifting disjoint families in quotient Banach lattices

In [23], Weinberg asked what are the projective objects in the category of abelian
�-groups, pointing out, for example, that a summand of a free �-group is projective.
Topping studied projective vector lattices in [22], but the reader should be warned
that theorem 8, claiming that countable positive disjoint families in quotients L/J
of vector lattices L lift to positive disjoint families in L, is false. In fact, that is only
possible for an Archimedean Riesz space if the space is a direct sum of copies of
the reals (see [5] and [14]).

Later in this paper we study projective Banach lattices, which are intimately con-
nected with quotient spaces. We need to know when disjoint families in a quotient
Banach lattice X/J can be lifted to disjoint families in X. As this is a question of
considerable interest in its own right, and also because the results that we need do
not seem to be in the literature already, we present them in a separate section here.

It is well known, although we know of no explicit reference, that any finite disjoint
family (yk)n

k=1 in a quotient Riesz space X/J can be lifted to a disjoint family
(xk)n

k=1 in X with Qxk = yk, where Q : X → X/J is the quotient map.

Proposition 9.1. If X is a vector lattice, J is a vector lattice ideal in X, Q : X →
X/J is the quotient map and (yk)n

k=1 is a disjoint family in X/J , then there exists
a disjoint family (xk)n

k=1 in X with Qxk = yk for 1 � k � n.

Proof. It suffices to consider the case when each yk � 0. The proof is by induction,
the case n = 1 being trivial. Assume that the result is true for n = m and we
verify it for n = m + 1. If (yk)m+1

k=1 is a disjoint non-negative family in X/J , we
may find (x̃k)m+1

k=1 in X with Qx̃k = yk (1 � k � m + 1) and x̃j ⊥ x̃k for j �= k and
1 � j, k � m. Let xk = x̃k = x̃k ∧ x̃m+1, for 1 � k � m, and let xm+1 = x̃m+1. For
i � k � m we then have

Qxk = Qx̃k − Qx̃k ∧ Q(x̃m+1) = yk − yk ∧ ym+1 = yk.

Clearly, if 1 � k � m, then xk ⊥ xm+1, while if j �= k and 1 � j, k � m, then
0 � xj ∧ xk � x̃j x̃k = 0. This establishes the result for n = m + 1.

If we restrict our attention to norm closed ideals in Banach lattices, then, unlike
the vector lattice case, we can handle countably infinite disjoint liftings, but not
larger ones. This does not contradict the vector lattice result cited above, as there
are many non-closed ideals in a Banach lattice.

Theorem 9.2. If X is a Banach lattice, J is a closed ideal in X, Q : X → X/J
is the quotient map and (yk)∞

k=1 is a disjoint sequence in X/J , then there exists a
disjoint sequence (xk) in X with Qxk = yk for all k ∈ N.

Proof. It suffices to consider the case when each yn � 0 and ‖
∑∞

k=1 ‖yk‖ < ∞.
Define zn =

∑∞
k=n+1 yk ∈ X/J and note that zn is disjoint from y1, . . . , yn. The

sequence (xn) will be constructed inductively.
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For n = 1 we start by choosing x1, u1 ∈ X with x1 ⊥ u1, Qx1 = y1 and Qu1 = z1
using proposition 9.1.

Now, suppose that we have constructed a disjoint system {x1, . . . , xn, un} with
Qxj = yj (1 � j � n) and Qun = zn. As 0 � yn+1 ⊥ zn+1, there exist disjoint
x̃n+1, ũn+1 ∈ X+ with Qx̃n+1 = yn+1 and qũn+1 = zn+1. Let xn+1 = x̃n+1 ∧ un and
un+1 = ũn+1 ∧ un, so that, for example,

Qxn+1 = Qx̃n+1 ∧ Qun = yn+1 ∧ zn = yn+1.

Obviously, xn+1 ⊥ un+1, while if 1 � k � n, we have, for example, that

0 � xk ∧ un+1 � xk ∧ un = 0.

Even in Banach lattices, theorem 9.2 is as far as we can go.

Example 9.3. Given any uncountable disjoint family in a Banach lattice X, we
know from proposition 6.8 that there exist a free Banach lattice FBL(a) and a closed
ideal J in FBL(a) such that X is isometrically order isomorphic to FBL(a)/J . As a
disjoint family in a free Banach lattice has to be countable (see corollary 6.6), the
disjoint family cannot possibly be lifted to FBL(a).

A slightly more concrete example may be found using [9, problem 6S] where it is
shown that βN \ N contains continuum many disjoint non-empty open and closed
subsets. I.e. �∞/c0 contains continuum many non-zero disjoint positive elements.
As �∞ contains only countably many disjoint elements, we cannot possibly lift each
of this continuum of disjoint elements in �∞/c0 to disjoint elements in �∞. The same
is true of any uncountable subset of these disjoint positive elements of �∞/c0, so
this shows that lifting of disjoint positive families of cardinality ℵ1 is not possible.

An apparently simpler problem is to start with two subsets A and B in X/J with
A ⊥ B and seek subsets A′, B′ of X with A′ ⊥ B′, Q(A′) = A and Q(B′) = B.
Again, countability is vital to the success of this attempt; in fact it allows us to do
much more.

Proposition 9.4. If X is a Banach lattice, J is a closed ideal in X, Q : X → X/J
is the quotient map and (An)∞

n=1 is a sequence of countable subsets of X/J with
Am ⊥ An if m �= n, then there exist subsets (Bn) of X, with Bm ⊥ Bn if m �= n
and Q(Bn) = An for each n ∈ N.

Proof. As above, there is no loss of generality in assuming that each An ⊂ (X/J)+.
Enumerate each set as An = {an

k : k ∈ N} (there is no difference, apart from
notation, if one or both of the sets are finite). Let vn =

∑∞
k=1 an

k/(2k‖ak‖), so
vm ⊥ vn if m �= n and 0 � an

k � 2k‖ak‖vn for k, n ∈ N. We know from theorem 9.2
that there exists a disjoint sequence (un) in X+ with Q(un) = vn. For any an

k ∈ An

we can find cn
k ∈ X+ with Q(cn

k ) = an
k . Now set bn

k = cn
k ∧ (2k‖ak‖un) so that we

still have that

Q(bn
k ) = Q(cn

k ) ∧ (2k‖ak‖Q(un)) = an
k ∧ (2k‖ak‖vn) = an

k .

Also, each bn
k ∈ u⊥⊥

n , so if m �= n, then for any choice of j and k we see that bm
j ⊥ bn

k

as um ⊥ un. Now, defining Bn = {bn
k : k ∈ N} gives the required sets.
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Considering the case of singleton sets, the example above shows that we cannot
allow an uncountable number of disjoint families. Nor can we allow even one of the
families to be uncountable.

In the case when X = C(K), for K a compact Hausdorff space, a closed ideal J
is of the form F = {f ∈ C(K) : f |A ≡ 0} for some closed subset A ⊂ K, and the
quotient X/J may be identified with C(A) in the obvious manner. For two elements
f, g ∈ C(K), f ⊥ g if and only if the two sets f−1(R \ {0}) and g−1(R \ {0}) are
disjoint.

Example 9.5. The Tychonoff plank K is the topological space [0, ω] × [0, ω1] \
{(ω, ω1)}, where ω is the first infinite ordinal and ω1 the first uncountable ordi-
nal. This is renowned as an example of a non-normal Hausdorff space. The sets
U = [0, ω) × {ω1} and V = {ω} × [0, ω1) are disjoint closed subsets that cannot be
separated by disjoint open sets. See, for example, [9, § 8.20]. If we add back in the
removed corner point, and define A = U ∪ V ∪ {(ω, ω1)}, then U and V become
open subsets of A.

Each point of U is isolated, so their characteristic functions lie in C(A) giving
a (countable) family F with U =

⋃
{f−1(R \ {0}) : f ∈ F}. Let G be a family of

functions in C(A) such that V =
⋃

{g−1(R \ {0}) : g ∈ G}, which is certainly pos-
sible using Urysohn’s lemma. If these could be lifted to disjoint families L and M
in C(K), then

⋃
{f−1(R \ {0}) : f ∈ L} and

⋃
{f−1(R \ {0}) : f ∈ M} would be dis-

joint open subsets of K that intersected A in the disjoint open sets U and V .
But, any disjoint open subsets of the whole product space that intersected A in

U and V , respectively, would, with the corner point removed if necessary, separate
the closed sets U and V in the plank. This contradiction shows that the lifting is
not possible.

10. Projective Banach lattices

Definition 10.1. A Banach lattice P is projective if, whenever X is a Banach
lattice, J is a closed ideal in X and Q : X → X/J is the quotient map, for every
linear lattice homomorphism T : P → X/J and ε > 0 there exists a linear lattice
homomorphism T̂ : P → X such that

(1) T = Q ◦ T̂ ,

(2) ‖T̂‖ � (1 + ε)‖T‖.

Even if we take P = R, which is easily seen to be projective given this definition,
it is clear that we cannot replace 1 + ε by 1, as the quotient norm is an infimum
that need not be attained. There are projective Banach lattices, as shown in the
following.

Proposition 10.2. A free Banach lattice is projective.

Proof. Let (δa)a∈a be the generators of the free Banach lattice F . Suppose that X
is a Banach lattice, J is a closed ideal in X, Q : X → X/J is the quotient map,
T : F → X/J is a lattice homomorphism and ε > 0. For each α ∈ a, there exists
xa ∈ X with Qxa = Tδa and ‖xa‖ � (1+ε)‖Tδa‖ � (1+ε)‖T‖, using the definition
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of the quotient norm. As F is free, there exists a linear lattice homomorphism
T̂ : F → X with T̂ δa = xa for all a ∈ a and

‖T̂‖ � sup{‖xa‖ : a ∈ a} � (1 + ε)‖T‖.

As (Q ◦ T̂ )δa = Tδa for all a ∈ a and both Q ◦ T̂ and T are linear lattice homo-
morphisms, they must coincide on the vector lattice generated by the δa and, by
continuity, on F .

We can characterize projective Banach lattices in a reasonably familiar manner.

Theorem 10.3. The following conditions on a Banach lattice P are equivalent.

(1) P is projective.

(2) For all ε > 0 there exist

(a) a free Banach lattice F ,

(b) a closed sublattice H of F and a lattice isomorphism I : H → P with
‖I‖, ‖I−1‖ � 1 + ε,

(c) a lattice homomorphism projection R : F → H with ‖R‖ � 1 + ε.

(3) For all ε > 0 there exist

(a) a projective Banach lattice F ,

(b) a closed sublattice H of F and a lattice isomorphism I : H → P with
‖I‖, ‖I−1‖ � 1 + ε,

(c) a lattice homomorphism projection R : F → H with ‖R‖ � 1 + ε.

Proof. To see that (1) ⇒ (2), suppose that P is projective, let F be a free Banach
lattice and let J be a closed ideal in F such that P is isometrically order iso-
morphic to the quotient F/J via the linear lattice isomorphism I : P → F/J ,
which is always possible using proposition 6.8. Let Q : F → F/J be the quotient
map. As P is projective, for any ε > 0 there exists a linear lattice homomorphism
Î : P → F with Q ◦ Î = I and ‖Î‖ � (1 + ε)‖I‖ = 1 + ε. As Q ◦ Î is injective, Î is
also injective and ÎP is a closed sublattice of F as ‖Îp‖ � ‖Q(Îp)‖ = ‖Ip‖ = ‖p‖.
The map Î ◦ I−1 ◦ Q is a lattice homomorphism that projects F onto Î(P ) and
‖Î ◦ I−1 ◦ Q‖ � ‖Î‖ � 1 + ε, so (2)(b) holds. We know that ‖Î‖ � 1 + ε and Î−1 =
I−1 ◦ Q, so ‖Î−1‖ = 1, and (2)(c) holds.

In view of proposition 10.2, clearly (2) ⇒ (3).
Suppose that (3) holds, and, in particular, that (a), (b) and (c) hold for the

real number η. Suppose that X is any Banach lattice, J is a closed ideal in X,
Q : X → X/J is the quotient map, η > 0 and that T : P → X/J is a linear lattice
homomorphism. The map T ◦ I ◦ R : F → X/J is also a linear lattice homomor-
phism with ‖T ◦ I ◦ R‖ � ‖T‖‖I‖‖R‖ � (1 + η)2‖T‖. As F is projective, there
exists a linear lattice homomorphism S : F → X with Q ◦ S = T ◦ I ◦ R and
‖S‖ � (1 + η)‖T ◦ I ◦ R‖ � (1 + η)3‖T‖. Now let T̂ = S ◦ I−1 : P → X, which is
also a linear lattice homomorphism, so ‖T̂‖ � ‖S‖‖I−1‖ � (1 + η)4‖T‖ and

Q ◦ T̂ = Q ◦ (S ◦ I−1) = (Q ◦ S) ◦ I−1 = (T ◦ I ◦ R) ◦ I−1 = T.

https://doi.org/10.1017/S0308210512001709 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210512001709


Free and projective Banach lattices 133

By choosing η small enough we can ensure that (1+η)4 � 1+ε, and we have shown
that P is projective.

In particular, in light of corollary 6.11, all the separable projective Banach lattices
that we produce later will (almost) embed in FBL(ℵ0) reinforcing the richness of
its structure.

Combining theorem 10.3 with corollary 5.6 we have the following.

Corollary 10.4. The real-valued lattice homomorphisms on a projective Banach
lattice separate points.

In particular, this tells us that, for finite p, the Banach lattice Lp([0, 1]) is not
projective.

Similarly, from corollary 6.6 and theorem 10.3, using the lattice homomorphism
projection from a free Banach lattice onto a projective, we see the following.

Corollary 10.5. Every disjoint system in a projective Banach lattice is at most
countable.

Although, in a sense, theorem 10.3 gives a complete description of projective
Banach lattices, given that we know little about free Banach lattices it actually
tells us very little. One immediate consequence, given that FBL(1) may be identified
with �∞(2), is the following.

Corollary 10.6. The one-dimensional Banach lattice R is projective.

Of course, this is easy to verify directly, but it does show that there are projective
Banach lattices that are not free.

We also note one rather simple consequence of the characterization of projectives
in theorem 10.3.

Corollary 10.7. If X is a projective Banach lattice, H is a closed sublattice of X
for which there exists a contractive lattice homomorphism projecting X onto H,
then H is a projective Banach lattice.

11. Which Banach lattices are projective?

We now approach matters from the other end. We try to find out as much as we can
about projective Banach lattices and deduce information about the structure of free
Banach lattices. We start by identifying some ‘small’ Banach lattices, apart from
free ones, that are projective. We then show that certain AL-sums of projectives
are again projective.

Our first positive result may be slightly surprising, given that when dealing with
Banach spaces the free and projective objects are precisely the spaces �1(I) (see [19,
theorem 27.4.2]).

Theorem 11.1. Every finite-dimensional Banach lattice is projective.

Proof. Let P be a finite-dimensional Banach lattice, let X be an arbitrary Banach
lattice, let J be a closed ideal in X, let Q : X → X/J be the quotient map,
let T : P → X/J be a lattice homomorphism and let 1 � ε > 0. We identify

https://doi.org/10.1017/S0308210512001709 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210512001709


134 B. de Pagter and A. W. Wickstead

P with Rn with the pointwise order and normed by some lattice norm ‖ · ‖P .
Without loss of generality we may assume that the standard basic vectors in Rn,
ek, all have ‖ek‖P = 1. Let {pk : 1 � k � m} be an ε-net for the compact set
{p ∈ Rn

+ : ‖p‖P = 1}. We write pk = (p1
k, p2

k, . . . , pn
k ).

As T is a lattice homomorphism, the family (Tek)n
k=1 is a disjoint family in

(X/J)+, so by proposition 9.1 there exists a disjoint family (sk)n
k=1 in X+ with

Qsk = Tek for 1 � k � n. By the definition of the quotient norm, for each k
there exists tk ∈ X with Qtk = Tek and ‖tk‖ � ‖Tek‖ + ε � ‖T‖ + ε. Now, let
xk = sk ∧ t+k , so the family (xk) remains disjoint. As Q is a lattice homomorphism,

Qxk = Qsk ∧ Qt+k = (Tek) ∧ (Tek)+ = Tek.

Also, we now have ‖xk‖ � ‖t+k ‖ � ‖tk‖ � ‖T‖ + ε.
Also, for each i ∈ {1, 2, . . . , m} there exists qi ∈ X+ with Qqi = Tpi and

‖qi‖ � ‖Tpi‖ + ε � ‖T‖ + ε.
Define zk = xk ∧

∧′m
i=1(p

k
i )−1qi where the prime indicates that terms where

pk
i = 0 are omitted. As the family (xk) is disjoint, the same is true for the family

(zk). If pk
i > 0, then (pk

i )−1pi � ek, so (pk
i )−1Qqi = (pk

i )−1Tpi � Tek, and thus
Qzk = Qxk = Tek.

Define Sek = zk and extend S linearly to a lattice homomorphism (because (zk)
is a disjoint sequence) of Rn → X. Clearly, Q◦Sk = T . As Rn is finite dimensional,
there exists a constant K ∈ R+ such that ‖x‖1 � K‖x‖P for all x ∈ Rn. It follows
that ∥∥∥∥S

( n∑
k=1

λkek

)∥∥∥∥ �
n∑

k=1

|λk|‖Sek‖

=
n∑

k=1

|λk|‖zk‖

�
n∑

k=1

|λk|‖xk‖

�
∥∥∥∥

n∑
k=1

λkek

∥∥∥∥(‖T‖ + 1)

� K(‖T‖ + 1)
∥∥∥∥

n∑
k=1

λkek

∥∥∥∥
P

,

so ‖S‖ � K(‖T‖ + 1). Note that this estimate is independent of the choice of ε.
In order to better estimate the norm of S, we write pi =

∑n
k=1 pk

i ek and see that

Spi =
n∑

k=1

S(pk
i ek)

=
n∑

k=1

pk
i Sek

=
n∑

k=1

pk
i zk.
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Also, if pk
i = 0, then certainly pk

i zk � qi, while if pk
i > 0, then

pk
i zk � pk

i (pk
i )−1qi = qi.

As pj
izj ⊥ pk

i zk if j �= k, we see that
∑n

k=1 pk
i zk � qi, so

Spi � qi and ‖Spi‖ � ‖qi‖ � ‖T‖ + ε.

If we now take an arbitrary p ∈ {P+ : ‖p‖ = 1}, then we can choose i with
‖p − pi‖P < ε, so

‖Sp‖ � ‖Spi‖ + ‖S‖‖p − pi‖P

� ‖T‖ + ε + K(‖T‖ + 1)ε,

which can be made as close to ‖T‖ as we desire.

The spaces C(K), for K a compact Hausdorff space, play a distinguished role in
the general theory of Banach lattices, so it is worth knowing which C(K) spaces are
projective. We give a partial answer here, which is already of substantial interest.
We refer the reader to [4] for basic concepts about retracts, but include the basic
definitions here for the convenience of the reader.

Definition 11.2. If X is a topological space and K a subset of X, then the fol-
lowing hold.

(1) K is a retract of X if there exists a continuous function π : X → K with
π(k) = k for all k ∈ K.

(2) K is a neighbourhood retract of X if there exists a neighbourhood U of K
in X and a continuous function σ : U → K with σ(k) = k for all k ∈ K.

Definition 11.3. In a category C of topological spaces, the following hold.

(1) A space K is an absolute retract if K is a retract of X whenever K ⊆ X ∈ C.

(2) A space K is an absolute neighbourhood retract if K is a neighbourhood retract
of X whenever K ⊆ X ∈ C.

Theorem 11.4. If K is a compact subset of Rn for some n ∈ N, then the following
are equivalent.

(1) C(K) is a projective Banach lattice under some norm.

(2) C(K) is projective under the supremum norm.

(3) K is a neighbourhood retract of Rn.

Proof. Without loss of generality we may suppose that K is a subset of the unit
ball in Rn for the supremum norm. We write pk for the restriction to K of the
kth coordinate projection in Rn and p0 for the constantly-one function on K. The
vector sublattice generated by the {pk : 0 � k � n} is certainly dense in C(K)
by the Stone–Weierstrass theorem. As FBL(n + 1) is free, there exists a bounded
vector lattice homomorphism T : FBL(n + 1) → C(K) with T (δk) = pk−1. We
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know that, algebraically, we may identify FBL(n + 1) with C(Fn+1), and that the
constantly-one function on Fn+1 is precisely

∨n+1
k=1 |δk|. As

∨n
k=0 |pk| = p0, because

K is a subset of the supremum norm unit ball, we may regard T as a unital lattice
homomorphism from C(Fn+1) to C(K). Such maps are of the form f 	→ f ◦φ where
φ : K → Fn+1 is continuous. The image of C(Fn+1) is dense in C(K) and it is well
known that the image of such composition maps is closed so that T is onto. This
is equivalent to φ being injective. I.e. we have a topological embedding of K into
Fn+1, and we may regard T as simply being the restriction map from C(Fn+1) to
C(K). So far we have not used the assumption that C(K) is projective.

If J is the kernel of T , then C(Fn+1)/J is isomorphic to C(K). If C(K) is
projective (even in a purely algebraic sense), then there exists a vector lattice
homomorphism U : C(K) → C(Fn+1) with Uf |K = f for all f ∈ C(K). But, U is
of the form

Uf(p) =

{
w(p)f(πp) (p ∈ U),
0 (p /∈ U),

where w is a non-negative continuous real-valued function on Fn+1 and π : Fn+1 \
w−1(0) → K, so we must have w(p) = 1 and πp = p for p ∈ K. Thus, Fn+1 \
w−1(0) is open and contains K, so π is a neighbourhood retract of Fn+1 onto K.
If we remove any single point from Fn+1 that is not in K, then what remains is
homeomorphic to Rn, so we have a neighbourhood retraction from Rn onto K. This
only fails to be possible if K = Fn+1, and that is not homeomorphic to a subset
of Rn by the Borsuk–Ulam theorem; see, for example, [20, theorem 5.8.9]. Thus,
(1) implies (3).

Clearly, (2) implies (1), so we need only prove that (3) implies (2). The blan-
ket assumption on K tells us that it is homeomorphic to a subset of one face G
of Fn+1. By scaling it if necessary, we may assume that it is a neighbourhood retract
of G, and therefore of the whole of Fn+1. That allows us to construct a continuous
w : Fn+1 → [0, 1] with U = {p ∈ Fn+1 : w(p) > 0} ⊂ G, K ⊂ w−1(1) and a continu-
ous retract π : U → K. The vector lattice homomorphism U : C(Fn+1) → C(Fn+1)
defined by

Uf(p) =

{
w(p)f(πp) (p ∈ U),
0 (p /∈ U)

is certainly a projection. For any p ∈ Fn+1 we have, writing

JK = {f ∈ C(Fn+1) : f |K ≡ 0},

that

‖Uf‖F = ‖Uf‖∞ (corollary 7.2)
= sup{|w(p)f(πp)| : p ∈ U}
� sup{|f(πp)| : p ∈ U}
� sup{|f(k)| : k ∈ K} = ‖f |K‖∞

= ‖f + JK‖ (corollary 7.4)
� ‖f‖F ,

so U is a contraction.
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We also claim that the image UC(Fn+1) is isometrically order isomorphic to
C(K) under its supremum norm. To prove this, it suffices to prove that Uf 	→ F |K
is an isometry for the free norm on Uf , which is equal to its supremum norm, and
the supremum norm on f |K . The calculation above shows that ‖Uf‖∞ � ‖f |K‖∞.
We also have, for p ∈ U , that |Uf(p)| = |w(p)||f(πp)| � ‖f |K‖∞ as |w(p)| � 1 and
πp ∈ K. Thus, ‖Uf‖∞ � ‖f |K‖∞ and we have our desired isometry.

In view of theorem 10.3, this shows that C(K) is projective.

The reader will note that the first implication would actually work for an iso-
morphic version of projectivity. We allude to this further in § 12.

Corollary 11.5. Under the usual supremum norm, C([0, 1]) is a projective Ban-
ach lattice.

Note that some C(K)-spaces can be projective for different (necessarily equiva-
lent) Banach lattice norms. For example, C(Fn) will be projective under both the
free and supremum norms.

Recall that, as closed bounded convex subsets of Rn are absolute retracts in the
category of compact Hausdorff spaces, any compact neighbourhood retract of Rn

will necessarily be an absolute neighbourhood retract in the category of compact
Hausdorff spaces, and therefore certainly in the category of compact metric spaces.

Descriptions of absolute neighbourhood retracts in the category of compact met-
ric spaces may be found in [4, ch. V]. We note two particular properties that they
have. Firstly, absolute neighbourhood retracts have only finitely many components
(see [4, V.2.7]), and if K is an absolute neighbourhood retract subset of Rn, then
Rn \ K has only finitely many components (see [4, V.2.20]).

In particular, we have the following.

Corollary 11.6. The sequence space c is not projective.

Proof. We can identify c with C(K0), where K0 = {1/n : n ∈ N} ∪ {0}. As K0 ⊂ R

and K0 has infinitely many components, it is not an absolute neighbourhood retract.

There seems little hope of removing the assumption of finite dimensionality from
K in theorem 11.4. We can rescue one implication.

Proposition 11.7. If C(K) is a projective Banach lattice under the supremum (or
an equivalent) norm, then K is an absolute neighbourhood retract in the category
of compact Hausdorff spaces.

Proof. Suppose that K is a closed subset of a compact Hausdorff space X. We need
to show that there exists a continuous retraction π of U onto K, where U is an
open subset of X with K ⊂ U .

The restriction map R : C(X) → C(K) may be identified with the canonical quo-
tient map of C(X) onto C(X)/J , where J is the closed ideal {f ∈ X(K) : f |K ≡ 0}.
If C(K) is projective, then the identity on C(K) lifts to a lattice homomorphism
T : C(K) → C(X) with R ◦ T − IC(K). There exist a continuous function w from
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X into R+ and a continuous map π : U = {x ∈ X : w(x) > 0} → K such that

Tf(x) =

{
w(x)f(πx) [w(x) > 0],
0 [w(x) = 0].

If k ∈ K, then Tf(k) = f(k), so πk = k and w(k) = 1 showing that K ⊂ U and
that π is a retraction of the open set U onto K.

Without knowledge of the properties of absolute neighbourhood retracts in the
category of compact Hausdorff spaces, this does not tell us a lot. There seems to
be very little material in the literature on absolute neighbourhood retracts in this
setting, so we make our own modest contribution here.

Lemma 11.8. If C is a compact convex subset of a locally convex space, K is a
closed subset of C and U is an open subset of C with K ⊆ U ⊂ C, then there exists
an open set V with K ⊆ V ⊆ U ⊆ C such that V has finitely many components.

Proof. As U is open, if k ∈ K, there is a convex (and therefore connected) open
set Wk with k ∈ Wk ⊆ U , using local convexity. The open sets Wk, for k ∈ K,
cover the compact set K, so there exists a finite subcover W1, W2, . . . , Wn. Take
V =

⋃n
k=1 Wk.

Proposition 11.9. If K is an absolute neighbourhood retract in the category of
compact Hausdorff spaces, then K has only finitely many components.

Proof. Let C = P (K), the space of probability measures on K, with the weak∗

topology induced by C(K), which is a locally convex topology under which C is
compact as well as certainly being convex. The mapping that takes k to the point
mass at k is a homeomorphism of K onto the set of extreme points of C. If K is an
absolute neighbourhood retract, then there exists a retraction π : U → K, where U
is an open subset of C with K ⊆ U . By the preceding lemma, there exists an open
set V , with finitely many components, such that K ⊆ V ⊆ U . The image of each
component of V under π is connected and their union is K, so K has only finitely
many components.

Thus, if C(K) is a projective Banach lattice under any norm, then K has only
finitely many components. In particular, we have the following.

Corollary 11.10. The sequence space �∞ is not a projective Banach lattice.

In [1] Baker characterized projective vector lattices with n generators as being
quotients of FVL(n) by a principal ideal. If we embed K0 into one of the faces of F2,
then we know that c is isometrically order isomorphic to FBL(2)/JK0 . It is clear
that JK0 is a principal closed ideal of FBL(2) and that c has two generators as a
Banach lattice, so the natural analogue of Baker’s result fails in the Banach lattice
setting.

The obvious candidate for a projective Banach lattice, as in the Banach space
case, is �1(I) for an arbitrary index set I; however, corollary 10.5 tells us that if I is
an uncountable index set, then �1(I) is definitely not a projective Banach lattice.
Similarly �p(I) (1 � p < ∞) and c0(I) are not projective if I is uncountable.
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Given that we can lift disjoint sequences, it is not difficult to show that �1 is
projective. In fact we can show much more.

Theorem 11.11. If, for each n ∈ N, Pn is a projective Banach lattice with a topo-
logical order unit, then the countable sum �1(Pn), under the coordinate-wise order
and normed by ‖(pn)‖1 =

∑∞
n=1 ‖pn‖, is a projective Banach lattice.

Proof. Let en be a topological order unit for Pn. We identify Pn with the subspace of
�1(Pn) in which all entries apart from the nth are 0, and en with the corresponding
member of that subspace so that the en are all disjoint. If X is a Banach lattice,
J is a closed ideal in X, Q : X → X/J is the quotient map, T : ⊕1 (Pn) → X/J
is a lattice homomorphism and ε > 0, then we start by noting that the Ten are
disjoint, so by theorem 9.2 we can find disjoint un in X+ with Qun = Ten. If we
write Xn for the closed ideal in X generated by un, then the family (Xn) is disjoint
in X.

Note that the natural embedding of Xn/(J ∩ Xn) into X/J is an isometry onto
an ideal, and that T (Pn) ⊂ Xn/(J ∩Xn) as en is a topological order unit for Pn and
T is a lattice homomorphism. The projectivity of Pn allows us to lift Tn to a lattice
homomorphism T̂n : Pn → Xn with ‖T̂n‖ � ‖Tn‖ + ε � ‖T‖ + ε with Q ◦ T̂n = Tn.
Piecing together this sequence of operators in the obvious way gives us the desired
lifting of T .

Recall that if a is finite or countably infinite, then FBL(a) has a topological
order unit, as do finite-dimensional Banach lattices and C(K)-spaces. This gives us
a source of building blocks to create other projectives.

We already have some examples of Banach lattices that are not projective. It is
interesting to note that the free Banach lattices on uncountably many generators
seem to be, in some sense at least, maximal projectives.

Example 11.12. If a is uncountable, then there is no non-zero Banach lattice X
for which X ⊕ FBL(a) is projective under any norm.

Proof. Suppose that, under some norm, FBL(a) ⊕ X is projective, where X is a
Banach lattice and a is uncountable.

Consider C(K), where K = [0, ω]×[0, ω1], and (with the notation of example 9.5)
J = {f ∈ C(K) : f |A ≡ 0} so that C(K)/J is isometrically order isomorphic
to C(A).

For each v ∈ V there exists fv ∈ C(A) with 0 � fv(a) � 1 for all a ∈ V , fv(v) = 1
and fv identically 0 on A\V . As V has cardinality ℵ1, there exists a map of the set
of generators {δa : a ∈ a} of FBL(a) onto {fv : v ∈ V }, which extends to a lattice
homomorphism of FBL(a) into C(A). The image of every generator vanishes on U ,
hence the same is true for elements of T (FVL(a)) and, by continuity, for elements
of T (FBL(a)). Note that

⋃
f∈FBL(a){a ∈ A : f(a) �= 0} = V .

As U is an Fσ, there exists g ∈ C(A) with g(u) > 0 for all u ∈ U and with
g identically 0 on A \ U . If X ⊕ FBL(a) were projective and x0 ∈ X+ \ {0}, there
would exist a real-valued lattice homomorphism on X ⊕ FBL(a) with φ(x0) > 0
(and necessarily φ|FBL(a) ≡ 0). Define Sx = φ(x)g for x ∈ X so that S is a
lattice homomorphism of X into C(A). The disjointness of the images of S(X) and
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T (FBL(a)) shows that the direct sum operator

S ⊕ T : X ⊕ FBL(a) → C(A) = C(K)/J

is also a lattice homomorphism. If X ⊕ FBL(a) were projective, we could find a
lattice homomorphism Ŝ ⊕ T̂ : X ⊕ FBL(a) → C(K) with Q ◦ (Ŝ ⊕ T̂ ) = S ⊕ T .
The images of X ⊕ {0} and {0} ⊕ FBL(a) will be disjoint in C(K), and their open
supports will give disjoint open sets with traces on A equal to U and V , respectively,
which we know is impossible.

The family of projective Banach lattices seems to possess very few stability prop-
erties beyond those that we have already noted. In particular, closed sublattices
of projectives need not be projective, as the non-projective c may be isometrically
embedded as a closed sublattice of the projective Banach lattice C([0, 1]), by map-
ping the sequence (an) to the function that is linear on each interval [1/(n+1), 1/n]
and takes the value an at 1/n. Similarly, we may realize c as the quotient of C([0, 1])
by the closed ideal {f ∈ C([0, 1]) : f(1/n) = 0 ∀n ∈ N}, showing that the class of
projective Banach lattices is not closed under quotients.

12. Some open problems

We start with a few questions on free Banach lattices.

Question 12.1. Must the norm on a free Banach lattice be Fatou, or even Nakano?
See [26] for the definition of a Nakano norm. We are not sure of the answer even
when there are only finitely many generators.

The following question is rather a long shot as we have very little evidence for it
beyond the case of a finite number of generators (see below).

Question 12.2. If the free Banach lattice FBL(a) is embedded as a closed ideal in
a Banach lattice, must it be a projection band?

The reason that this holds in the case of a finite number of generators is because
this (isomorphic) property of Banach lattices is possessed by Banach lattices with
a strong order unit. The following is undoubtedly well known, but we know of no
convenient reference for it.

Proposition 12.3. Let Y be a Banach lattice with the property that every upward
directed norm bounded subset of Y+ is bounded above. If Y is embedded as a closed
ideal in a Banach lattice X, then it must be a projection band.

Proof. It suffices to prove that if x ∈ X+, then the set B = {y ∈ Y : 0 � y � x}
has a supremum in Y . As B is upward directed and norm bounded, it has an upper
bound u ∈ Y+. As u ∧ x ∈ Y+, since Y is an ideal, u ∧ x is an upper bound for B
in Y . As we also have 0 � u ∧ x � x, u ∧ x ∈ B, so it is actually the maximum
element of B.

We have seen that, unless |A| = 1, FBL(A)∗ is not an injective Banach lattice.
However, in the case of finite A, FBL(A)∗ is isomorphic to an AL-space, and there-
fore to an injective Banach lattice. We suspect that the following question might
lead to another characterization of finitely generated free Banach lattices.
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Question 12.4. When is FBL(a)∗ isomorphic to an injective Banach lattice?

In theorem 8.3 we showed that the density character of FBL(A) was equal to
the cardinality of A and related this to the density character of order intervals in
FBL(A). This is of importance in the study of regular operators between Banach
lattices, so the answer to the following question has implications in that field.

Question 12.5. Does every order interval in FBL(A) have the same density char-
acter?

In the light of theorem 8.3, that density character would have to be the cardinality
of A.

Question 12.6. What is the structure of the symmetric free norm on FBL(n)?

Question 12.7. Can the construction of a free Banach lattice be generalized to
give a free Banach lattice over a metric space? Here, a metric space S embeds in
a ‘free’ Banach lattice in some sense, and any isometry of the generators into a
Banach lattice extends to a lattice homomorphism with some restriction on the
norm. See [17] for the Banach space case.

We have seen in corollary 6.10 that FBL(a)∗ contains a disjoint family of car-
dinality a, which contrasts strongly with the fact that disjoint families in FBL(A)
itself can only be at most countably infinite.

Question 12.8. How large can disjoint families of non-zero elements in FBL(a)∗

be?

At present we have no feel at all for what kinds of Banach lattice are likely to
be projective. Clearly, there are a lot of ‘small’ ones, where small means either
separable or having a topological order unit. A major and obvious question to pose
is the following.

Question 12.9. What is the structure of the class of projective Banach lattices?

In particular, we ask the following three questions.

Question 12.10. Are separable atomic Banach lattices with an order continuous
norm projective?

Question 12.11. Is c0, under the supremum norm, a projective Banach lattice?

Question 12.12. For what compact Hausdorff spaces K is C(K) projective under
the supremum norm?

We know the answer to the preceding question for compact subsets of Rn by
theorem 11.4.

The following two questions were posed by Buskes. An apparently simple question
to answer is the following.

Question 12.13. If Pk (1 � k � n) are projective Banach lattices with topological
order units, then is their �∞ sum also projective?
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It is not difficult to lift a lattice homomorphism T :
⊕

k=1 nPk → Y/J to a lattice
homomorphism T̂ :

⊕n
k=1 Pk → Y by lifting the images of the topological order

units first. The problem seems to be the norm condition on T̂ .
It is clear that the Fremlin tensor product (see [8]) of two projective Banach

lattices need not be projective in general. Example 11.12 shows that this cannot
be true for the product of �1 and FBL(a) when a is uncountable. There seems to
be no good structural reason to expect a positive result to the next question, but
a counter-example has eluded us so far.

Question 12.14. If X and Y are projective Banach lattices with topological order
units, is their Fremlin tensor product projective?

The building blocks that we can use in theorem 11.11 to build new projectives
include finite-dimensional spaces, FBL(a) for a either finite or countably infinite and
certain C(K)-spaces. Any of these, and the space that is produced by that theorem,
will be separable, and hence will have a topological order unit. The following are
some (possibly rather rash) conjectures that we might make.

Conjecture 12.15. If a projective Banach lattice has a topological order unit, then
it is separable.

Conjecture 12.16. A projective Banach lattice that does not have a topological
order unit must be free.

Even if this conjecture were to fail, we can look for an improvement of exam-
ple 11.12 by asking the following question.

Conjecture 12.17. If a is uncountable and a projective Banach lattice X contains
a closed ideal isomorphic to FBL(a), do we actually have that X = FBL(a)?

Question 12.18. The �1 sum of a sequence of finite-dimensional Banach lattices
is a Dedekind complete projective. Are these the only Dedekind (σ-)complete pro-
jectives?

Conjecture 12.19. All order continuous functionals on a projective Banach lat-
tice are determined by its atoms.

Question 12.20. Assuming a positive answer to question 12.10, is there a result
similar to theorem 11.11 for �p sums (1 < p < ∞) or for c0 sums?

The whole of this paper has been written in an isometric setting. All of our results
may be re-proved in an isomorphic setting, where we replace an (almost) isometric
condition on operators with mere norm boundedness. It is not difficult to see that
there will automatically be uniform bounds to the norms of operators, and that
isometrically free (respectively, projective) Banach lattices will be isomorphically
free (respectively, projective). Isomorphically free Banach lattices will certainly be
isomorphic to isometrically free Banach lattices. At present it does not seem worth
recording such a theory, unless there is a negative answer to the following question.

Question 12.21. Is every isomorphically projective Banach lattice isomorphic to
an isometrically projective Banach lattice?
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