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Abstract

Background. Little is known about the neural substrates of suicide risk in mood disorders.
Improving the identification of biomarkers of suicide risk, as indicated by a history of sui-
cide-related behavior (SB), could lead to more targeted treatments to reduce risk.
Methods. Participants were 18 young adults with a mood disorder with a history of SB (as
indicated by endorsing a past suicide attempt), 60 with a mood disorder with a history of sui-
cidal ideation (SI) but not SB, 52 with a mood disorder with no history of SI or SB (MD), and
82 healthy comparison participants (HC). Resting-state functional connectivity within and
between intrinsic neural networks, including cognitive control network (CCN), salience
and emotion network (SEN), and default mode network (DMN), was compared between
groups.
Results. Several fronto-parietal regions (k > 57, p < 0.005) were identified in which individuals
with SB demonstrated distinct patterns of connectivity within (in the CCN) and across net-
works (CCN-SEN and CCN-DMN). Connectivity with some of these same regions also dis-
tinguished the SB group when participants were re-scanned after 1–4 months. Extracted data
defined SB group membership with good accuracy, sensitivity, and specificity (79–88%).
Conclusions. These results suggest that individuals with a history of SB in the context of
mood disorders may show reliably distinct patterns of intrinsic network connectivity, even
when compared to those with mood disorders without SB. Resting-state fMRI is a promising
tool for identifying subtypes of patients with mood disorders who may be at risk for suicidal
behavior.

Introduction

Suicide is the second leading cause of death among young adults in the USA and most often
occurs within the context of mood disorders (Nock et al., 2010). However, existing predictive
models have had only modest success in estimating suicide risk (Franklin et al., 2017; Chang
et al., 2016; May and Klonsky, 2016; Rudd, 2006; Panagioti et al., 2009). One of the strongest
risk factors for suicide is having a previous suicide attempt (Valtonen et al., 2006; Lewinsohn
et al., 1994; Brown et al., 2000). There is an urgent need for a more precise understanding of
risk factors, including those based in neurobiology, to develop better predictive models and
targeted treatments to reduce the collective burden of suicide.

Empirical research over the past few decades has identified numerous psychological factors
associated with suicide risk (Hawton et al., 2005, 2013). These have included cognitive risk
factors such as negative cognitive styles, ruminative brooding, self-criticism, impulsivity, and
hopelessness (Stange et al., 2014, 2015; Kleiman et al., 2014; Miranda et al., 2013; Klonsky
and May, 2010; Oquendo et al., 2004), neuropsychological impairments within cognitive con-
trol, cognitive inflexibility and problem-solving (Miranda et al., 2012; Keilp et al., 2001, 2008,
2013, 2014a,b; Malhi et al., 2013; van Heeringen et al., 2011), interpersonal factors such as
thwarted belongingness and perceived burdensomeness (Van Orden et al., 2010), and difficul-
ties with emotion regulation (Anestis and Joiner, 2011; Pisani et al., 2013; Bekh Bradley et al.,
2011). Researchers have also pursued neurobiological factors that might improve these predict-
ive models via brain-based correlates of suicide risk using fMRI (Chang et al., 2016; Drysdale
et al., 2017; van Heeringen et al., 2014; Serafini et al., 2016; Lippard et al., 2014).

The emergence of fMRI to probe neural networks has led to the development of tools that
might be used to better understand the heterogeneity within mood disorders, by identifying
intermediate phenotypes (Drysdale et al., 2017; Hasler and Northoff, 2011; Insel et al.,
2010; Insel and Cuthbert, 2015), including biomarkers representing suicide risk via past sui-
cide attempt (van Heeringen et al., 2014; Serafini et al., 2016). One fMRI tool that holds
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promise for identifying mood disorder subtypes is resting-state
functional connectivity (rs-fMRI) (e.g. Drysdale et al., 2017).
Three major intrinsic connectivity networks have been identified
(Menon, 2011; Seeley et al., 2007) that may be particularly rele-
vant for understanding regions associated with individual differ-
ences in suicide risk. These include the cognitive control
network (CCN), a system involving fronto-parietal and dorsal
attention networks that is critical for problem-solving and execu-
tive functioning; the salience and emotional network (SEN),
which is active in response to stimuli relevant to current goals,
including emotional stimuli, and involves limbic and ventral
attention networks; and the default mode network (DMN),
which is active during self-focused thought and when not engaged
with external stimuli (Buckner et al., 2008). Recently, researchers
have called for rs-fMRI studies to identify features in these intrin-
sic connectivity networks among individuals at risk for suicide, as
few such studies currently exist (Serafini et al., 2016).

A few recent studies of rs-fMRI have provided evidence that
these intrinsic networks may help to differentiate individuals
with suicide risk. Individuals with a suicide attempt history had
less connectivity within CCN (Cao et al., 2015) and DMN regions
(Zhang et al., 2016), and elevated connectivity within the SEN
(Kang et al., 2017; Kim et al., 2017). Suicidal ideation (SI) also
has been associated with attenuated connectivity within the left
CCN (Ordaz et al., 2018), elevated connectivity within the SEN
(Kang et al., 2017; Kim et al., 2017; Du et al., 2017), and decreased
connectivity between SEN and DMN regions (Du et al., 2017;
Chase et al., 2017). Other studies that did not specifically report
on suicide outcomes have linked differences in intrinsic connect-
ivity networks to behavioral characteristics associated with sui-
cidal behavior in depression, including rumination in
association with the DMN and CCN (Rogers and Joiner, 2017;
Kaiser et al., 2015; Hamilton et al., 2011; Jacobs et al., 2014,
2016; Stange et al., 2017; Marchetti et al., 2012), self-focused
thought and the DMN (Hamilton et al., 2011; Marchetti et al.,
2012), poor inhibitory control and attenuated connectivity within
the CCN (Stange et al., 2017), abnormal association of the self
with negative emotions (SEN and DMN; Hamilton et al., 2011;
Jacobs et al., 2016), and emotion dysregulation (SEN and CCN;
Serafini et al., 2016; Jacobs et al., 2014).

Convergent evidence from task-based fMRI has suggested that
these intrinsic networks are relevant to cognitive and affective
processes involved in suicide risk (van Heeringen et al., 2014;
Lippard et al., 2014). These studies have indicated reduced activa-
tion in the dorsolateral prefrontal cortex (dlPFC) and orbitofron-
tal cortex in individuals with a history of SB during
decision-making tasks (Jollant et al., 2011; Zhang et al., 2014).
A recent meta-analysis of six studies found two regions in the
right dorsal and rostral ACC in which individuals with a history
of SB showed greater activation than matched psychiatric controls
while viewing/making decisions about angry faces and during
response inhibition in a go/no-go task; and a right posterior cin-
gulate cortex (PCC) cluster in which SB history showed greater
activation than psychiatric controls while viewing happy faces
(Jollant et al., 2011). The authors concluded that these findings
support the putative role of disturbed emotion processing in sui-
cide risk, as the rostral ACC is involved in managing emotional
states and emotional interference during such tasks. Although
these results provide promising insights into emotional dyscontrol
in individuals having experienced or at risk for SB, task-based
fMRI is inherently limited by the specific nature of the task
demands during fMRI acquisition (Serafini et al., 2016). In

contrast, examining intrinsic networks during rest may have mul-
tiple complementary benefits. For example, it provides a measure
of the overall integrity of the network with some degree of gener-
alizability to a variety of contexts (Menon, 2011; Smith et al.,
2009; although see Spreng, 2012). Resting-state scans also are
more easily administered and analyzed than task-based designs
and thus may be more readily translated to clinical practice for
detection and possible intervention (Fischer et al., 2016).
Furthermore, few studies have taken an explicitly network-based
approach with rs-fMRI in individuals with a history of SB,
which holds promise for identifying markers of suicide risk as
well as network targets for treatment (Drysdale et al., 2017; Ge
et al., 2017).

We examined rs-fMRI within three intrinsic connectivity net-
works (CCN, SEN, and DMN) among individuals with mood dis-
orders who either had a history of SB, a history of SI but not SB,
or no history of SB or SI (MD), as well as healthy comparison par-
ticipants (HC). All SB, SI, and MD participants were in remission,
to reduce the influence of current symptom profile on subtype
delineation. Given the lack of rs-fMRI studies among individuals
with SBs, our hypotheses were based on behavioral studies of SBs
as well as prior findings comparing individuals with mood disor-
ders to HCs. Prior work has indicated that individuals with a his-
tory of SB exhibit greater behavioral deficits in cognitive control
than depressed individuals without a history of SB and HCs
(Miranda et al., 2012; Keilp et al., 2001, 2008, 2013, 2014a,b;
Malhi et al., 2013; van Heeringen et al., 2011). Furthermore,
hypoconnectivity within the CCN has been documented in active
and remitted depression and in association with poorer course of
depression (Kaiser et al., 2015; Stange et al., 2017; Sacchet et al.,
2016). Thus, we anticipated that individuals with SB would
exhibit attenuated connectivity within the CCN relative to SI,
MD, and HC groups. Given the dearth of previous literature on
rs-fMRI in other intrinsic connectivity networks in relation to
SB, analyses involving connectivity within the SEN and DMN
were exploratory.

Method

Participants and procedures

Participants were recruited using flyers and internet postings from
the University of Michigan (UM) and the University of Illinois at
Chicago (UIC). The research was approved by the IRB at each
site, and all participants provided written informed consent.
Participants were recruited based on having either no prior his-
tory of psychopathology, or having a mood disorder in the remit-
ted state. The SB group comprised 18 individuals (three UM, 15
UIC) with a history of suicide-related behavior (SB), determined
with the Diagnostic Interview for Genetics Studies (DIGS;
Nurnberger et al., 1994) or the SCID (Shankman et al., 2018);
all individuals in the SB group also had a mood disorder (all
n = 17 remitted MDD; n = 1 bipolar II). Individuals were consid-
ered in the SB group if they endorsed a question on the diagnostic
interview indicating that they had ever tried to kill themselves
(see Table 1). The SI group comprised 60 individuals (10 UM,
50 UIC) with a history of SI but no SB, and who had a history
of major depressive disorder (n = 56) or bipolar disorder (n = 3
bipolar I; n = 1 bipolar II). SI was determined by individuals
endorsing thoughts about death, wishing one were dead, or think-
ing about taking one’s own life, during a lifetime depressive epi-
sode on the DIGS. The MD group comprised 52 individuals
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(6 UM, 46 UIC) with a history of major depressive disorder (n =
50) or bipolar disorder (n = 1 bipolar I; n = 1 bipolar II). All indi-
viduals with a mood disorder (SB, SI, and MD groups) were in full
remission at the time of the study, as defined by DSM-IV-TR cri-
teria. The HC group comprised 82 individuals (19 UM, 63 UIC)
who did not meet current or past criteria for any Axis I psychi-
atric disorder (see Table 2). Participants were recruited from
within two studies of remitted mood disorders. Participants
were between 18 and 29 years of age (67% Female), so as to min-
imize cumulative effects of illness and effects of age. Nine partici-
pants were taking psychotropic medications at the time of
scanning (n = 7 MD; n = 2 SB1). All participants completed a bat-
tery of cognitive and diagnostic measures, followed by an MRI
scan.

Symptom measures

The 17-item Hamilton Depression Rating Scale (HAM-D;
Hamilton, 1960) and 14-item Hamilton Anxiety Rating Scale
(HAM-A; Hamilton, 1959), are widely-used interview-based
measures of depression and anxiety symptom severity, respect-
ively, and were administered by trained evaluators to assess
symptoms.

fMRI acquisition and functional connectivity MRI preprocessing

Eyes-open, resting scans were collected over eight minutes on a
3.0 T GE scanners (Signa scanner at UM, and Discovery scanner
at UIC). Both sites used TRs of 2000 ms and a total of 240 TRs for
the resting scans. Several steps were taken to reduce the potential
impact of sources of noise and artifact. Slice timing was com-
pleted with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/doc/) and
motion correction algorithms were applied using FSL (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/). Coregistration of structural images to
functional images was followed with spatial normalization of
the coregistered T1-spgr to the Montreal Neurological Institute
(MNI) 152 brain template. The resulting normalization matrix
then was applied to the slice-time-corrected time-series data.
These normalized T2* time-series data were spatially smoothed
with a 5 mm Gaussian kernel resulting in T2* images with iso-
tropic voxels, 2 mm on each side. Time-series data were
de-trended and mean-centered. Motion parameters were
regressed out (Jo et al., 2013). The movement also was addressed
in connectivity analyses by regressing out the top 5 PCA compo-
nents of the masked white matter and CSF signals, as recom-
mended in the recent literature (Jo et al., 2013; Power et al.,
2012, 2014, 2017; Behzadi et al., 2007). Finally, time-series were
band-pass filtered over 0.01–0.10 Hz. Correlation coefficients
were calculated between mean time course for seed regions and
all other voxels of the brain, resulting in a three-dimensional cor-
relation coefficient image (r image). These r images were trans-
formed to z scores using a Fisher transformation.

See online Supplementary Method for additional details on the
acquisition and preprocessing of fMRI data.

Defining the CCN, SEN, and DMN

In line with the triple-network model of Menon (2011), to test
hypotheses related to the CCN, SEN, and DMN, masks were cre-
ated of these three networks based on Yeo et al. (2011). The CCN
was created by combining the dorsal attention and fronto-parietal
network masks. The SEN was created by combining ventral atten-
tion and limbic networks, along with bilateral amygdala, ventral
striatum, and subgenual anterior cingulate (which were added
to the network masks using the WFU pickatlas), as subcortical
areas were not included in Yeo et al.’s (2011) analysis. The
DMN was the same mask as from Yeo et al. (2011), with the add-
ition of bilateral anterior hippocampus (HPF). The triple-network
model is presented here for simplicity; our definition of networks
was consistent with prior work (Menon, 2011; Seeley et al., 2007).

In addition to the three network masks, a separate second-level
model was created from seeds within each of the three networks
(Menon, 2011; Yeo et al., 2011) to identify regions of suprathres-
hold connectivity. Each of these three models contained two bilat-
eral seeds2 within a given network. Based on Yeo et al. (2011), the
CCN model contained dlPFC and inferior parietal lobule (IPL)
seeds; the SEN model contained amygdala and inferior ventral
striatum seeds; and the DMN model contained PCC and HPF
seeds. Each of the three network masks was used with each of
the three network seed models to examine within- and between-
network connectivity [e.g. for the CCN seed model, we examined
the averaged connectivity between the four seeds (bilateral dlPFC
and IPL) and each of the three network masks (CCN, SEN, and
DMN)]. For any regions identified as differing between groups
within a given network seed model (e.g. the CCN seed model),
we then examined how groups differed in connectivity between
the region and each of the other two sets of network seeds (e.g.
with the SEN and DMN seed models). Covariates in each SPM
model included site, sex, and head movement.

Table 1. Descriptive information about intent and lethality of most serious
suicide attempt (n = 18) from the Diagnostic Interview for Genetic Studies
(Nurnberger et al., 1994)

Description n (%)

Intent3

1 (minimal intent, manipulative gesture) 3 (18%)

2 (definite but ambivalent) 6 (35%)

3 (serious intent, expected to die) 8 (47%)

Lethality

1 (no danger) 4 (24%)

2 (minimal) 2 (12%)

3 (mild) 4 (24%)

4 (moderate) 7 (41%)

Quantitative information is unavailable for one individual whose suicide attempt was
evaluated using the SCID (Shankman et al., 2018), which uses a different rating system.

1Both of the n = 2 individuals in the SB group who were taking psychiatric medication
were taking an antidepressant (trazodone or sertraline). Individuals in the MD group
were taking antidepressants (buproprion, trazodone, fluoxetine, sertraline, escitalopram,
venlafaxine), mood stabilizers (lamotrigine, valproate, lithium, oxcarbazepine), antipsy-
chotics (risperidone), and benzodiazepines (alprazolam).

2Seeds were spherical: In the CCN, dlPFC (PFClp; Coordinates: –45, 29, 32; 45, 29,
32), IPL (PGa; Coordinates: –52, –50, 49; 52, –50, 49); in the SEN, amygdala (–23, –5,
–19; 23, –5, –19), VSi (–9, 9, –8; 9, 9, –8); in the DMN, PCC (–5, –49, –25; 5, –49, –
25), HPF (–30, –12, –18; 30, –12, –18); each seed contained 19 voxels.

3Post-hoc analyses examined extracted fMRI data separately among individuals with
serious intent (see online Supplementary Results and Supplementary Fig. S2).
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Statistical analyses

The three network models described above were evaluated in
SPM8. The threshold of significance reported for the fMRI ana-
lyses was p < 0.005 and k = 57 (3dClustsim with the whole brain
corrected p value of 0.01 per analysis). Analyses used the relevant
network mask for interpreting regions of activation. The main
effect (ANCOVA F test) of group contrasts were used to examine
regions of connectivity in which groups differed from one another
within each of the three network models, which were, in turn,
masked by each of the three network masks and a gray matter
mask. Using MarsBaR (Brett et al., 2002), average beta weights
were extracted from each of these regions of group difference,
to examine connectivity between these regions and each of the
three network seed models. Extracted data then were compared
between the three groups using ANOVAs; significant ANOVAs
were followed up with Tukey’s corrected t tests for pairwise com-
parisons. Exploratory post-hoc nonparametric correlations exam-
ined how data extracted from clusters above were associated with
illness characteristics (age of onset, number of prior depressive
episodes, and current symptoms of depression and anxiety; see
online Supplementary Material). A subset of participants (n =
38 HC; n = 20 MD; n = 25 SI; n = 11 SB) also completed a second
resting-state fMRI scan one to four months later, allowing us to
examine the stability of group differences in connectivity identi-
fied at the first scan. Data were extracted from regions that dif-
fered between groups at the first scan, and were extracted from
the same regions at the second scan, and were compared using
pairwise t tests.

For descriptive purposes, we conducted a post-hoc classifica-
tion analysis to examine the accuracy, sensitivity, and specificity
of using data extracted from clusters identified by the models to
classify individuals according to group membership. We

considered an approach to the construction of classifiers from
imbalanced group datasets, in which the minority class (SB,
with the smallest sample size) is over-sampled by creating ‘syn-
thetic’ examples (SMOTE; Chawla et al., 2002). We generated
synthetic examples by varying the percentages of samples added
to the data set and applied a 10-fold cross-validated Logistic clas-
sifier. The classification algorithms were run for five comparisons
(SB v. SI; SB v. MD; SB v. HC; SB v. SI +MD; and SB v. SI +MD
+HC), using data extracted from clusters identified at the Time 1
scan and from these same regions at Time 2.

Results

The SB, SI, and MD groups had higher levels of residual symp-
toms of depression and anxiety than the HC group, but groups
did not differ in any other illness characteristics or demographics
(Table 2).

Cognitive control network seeds model

In the CCN seeds model, the main effect of group contrast yielded
one cluster within the CCN mask that differed by group, and no
clusters within either the SEN or DMN masks (Table 3; Fig. 1).
This region was in the right middle frontal gyrus (MFG).
Individuals with a history of SB had significantly less connectivity
between this right MFG region and the CCN seeds than did either
the MD group ( p < 0.01) or the HC group ( p = 0.001); the SB
group had descriptively, but not significantly, less connectivity
than the SI group (d = 0.56, p = 0.17; online Supplementary
Table S1). The main effect of group contrast did not identify
any regions within either the SEN or DMN masks in which
groups differed in degree of connectivity to the CCN seeds.

Table 2. Demographic comparisons between groups

HC (n = 82) MD (n = 52) SI (n = 60) SB (n = 18)

M (SD)/N (%) M (SD)/N (%) M (SD)/N (%) M (SD)/N (%)

Female 49 (60%) 35 (67%) 41 (68%) 16 (89%)

Age 21.34 (2.45) 22.53 (3.21) 22.18 (2.70) 21.44 (1.50)

Site UIC 63 (77%) 46 (88%) 50 (83%) 15 (83%)

Race

White/Caucasian 51 (62%) 33 (63%) 33 (55%) 9 (50%)

Asian/Indian 25 (30%) 6 (12%) 16 (27%) 3 (17%)

Black or African American 2 (2%) 9 (17%) 6 (10%) 4 (22%)

More than one/other 1 (1%) 3 (6%) 2 (4%) 2 (11%)

Latino(a) 3 (4%) 1 (2%) 2 (4%) 0 (0%)

Middle Eastern 0 (0%) 0 (0%) 1 (2%) 0 (0%)

Hamilton Depression Rating Scale* 0.45 (0.90) 4.45 (6.46) 2.83 (4.19) 5.47 (4.52)

Hamilton Anxiety Rating Scale* 0.88 (1.41) 4.95 (5.17) 3.35 (4.43) 5.57 (4.35)

Age at onset n/a 15.74 (4.29) 15.72 (3.85) 14.71 (2.82)

Number of depressive episodes n/a 2.24 (1.13) 2.15 (1.23) 2.47 (1.12)

Education 14.67 (1.53) 14.50 (1.75) 14.90 (1.62) 14.06 (1.16)

Estimated verbal IQ 106.65 (8.86) 107.58 (7.63) 107.95 (10.24) 104.94 (9.04)

HC, Healthy comparison participants; MD, mood disorder with no suicide-related behavior; SI, history of suicidal ideation; SB, history of suicide-related behavior.
*p < 0.05 (SB > HC; SI > HC; MD > HC; SB = SI = MD).
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We then evaluated cross-network connectivity by examining
how groups differed in connectivity between these above two
CCN clusters and each of the other two networks. Connectivity
with the right MFG cluster did not differ between groups for
the SEN seeds [F(3, 208) = 1.91, p = 0.13] or the DMN seeds
[F(3, 208) = 1.99, p = 0.12].

Salience and emotional network seeds model

In the SEN seeds model, the main effect of group contrast identified
three clusters in the CCN mask, and no clusters within either the
SEN or the DMN masks (Table 3). The first region was in the
right precuneus; individuals with SI had significantly less connectiv-
ity between this region and the SEN seeds than did the SB ( p <
0.01), MD ( p = 0.04), or HC ( p < 0.001) groups; no other pairwise
comparisons were significant ( ps > 0.51). The second region was in
the right middle/superior frontal gyrus (MFG/SFG); similarly, indi-
viduals with SI had significantly less connectivity between this
region and the SEN seeds than did the SB ( p = 0.04), MD ( p =
0.01), or HC ( p < 0.001) groups; no other pairwise comparisons
were significant ( ps > 0.69). The third region was in the right mid-
dle/inferior frontal gyrus (MFG/IFG); again, individuals with SI had
significantly less connectivity between this region and the SEN seeds
than did the SB ( p = 0.03), MD ( p = 0.001), or HC ( p = 0.02)
groups; no other pairwise comparisons were significant ( ps > 0.49).

We then examined how groups differed in connectivity between
these three regions and each of the other two networks.
Connectivity with the CCN seeds did not differ between groups
for the right precuneus cluster [F(2, 209) = 2.56, p = 0.06] or the
right MFG/IFG cluster [F(2, 209) = 1.27, p = 0.29]. The right MFG/
IFG cluster differed by group at a trend level [F(2, 209) = 2.21,
p = 0.09], with the SB group demonstrating descriptively, but not

significantly, less connectivity than each of the other groups from
the right MFG/IFG to the CCN, consistent with a medium-to-large
effect size (ds = 0.59–0.68; ps = 0.06–0.27). Connectivity with the
DMN seeds differed for the right MFG/IFG cluster [F(2, 209) = 3.27,
p = 0.02], such that individuals with a history of SI had significantly
less connectivity with the DMN seeds than did the MD group ( p =
0.02); no other pairwise comparisons were significant ( ps > 0.08).
Connectivity with the DMN seeds did not differ between groups
for the right precuneus cluster [F(2, 209) = 1.36, p = 0.26] or the right
MFG/SFG cluster [F(2, 209) = 0.89, p = 0.45].

Default mode network seeds model

In the DMN seeds model, the main effect of group contrast yielded
one cluster within the CCN mask (right MFG/IFG) that differed by
group (Table 3; Fig. 1), and no clusters within either the SEN or the
DMN masks (Table 3). Individuals with SB had less connectivity
between this right MFG/IFG region and the DMN seeds than did
the MD group ( p = 0.04) and HCs ( p < 0.005), and had descrip-
tively, but not significantly, less connectivity than the SI group con-
sistent with a medium effect size (d = 0.43, p = 0.43). The SI group
also had less connectivity than did the HC group ( p = 0.01). Other
pairwise comparisons were not significant ( ps > 0.32).

We then examined how groups differed in connectivity
between the right MFG/IFG region and each of the other two
sets of network seeds. Connectivity between the right MFG/IFG
and the CCN seed model differed significantly between groups
[F(2, 209) = 3.41, p = 0.02]; individuals with SB exhibited signifi-
cantly less connectivity than did the MD group ( p = 0.04) and
HCs ( p = 0.02), and also had descriptively, but not significantly,
less connectivity than the SI group consistent with a medium
effect size (d = 0.45, p = 0.27).

Table 3. Regions of significant connectivity within three network models from main effect of group contrast comparing individuals with history of suicide-related
behavior (SB), individuals with history of suicidal ideation only (SI), individuals with a mood disorder with no history of SI or SB (MD), and healthy comparison
participants (HC), and masks for each of three networks

MNI Coordinates

Model/Mask Lobe Gyrus BA x y z Peak Z Cluster voxels

Cognitive Control Network (CCN) Seed Model

CCN Mask Frontal Middle 9 44 12 42 3.88 89

SEN Mask n/a

DMN Mask n/a

Salience and Emotional Network (SEN) Seed Model

CCN Mask Occipital (Precuneus) 7 16 −72 38 3.32 129

Frontal Middle/Superior 10,46 46 48 12 3.49 79

Frontal Middle/Inferior 8 26 14 48 3.74 89

SEN Mask n/a

DMN Mask n/a

Default Mode Network (DMN) Seed Model

CCN Mask Frontal Middle/Inferior 9 44 12 42 3.88 89

SEN Mask n/a

DMN Mask n/a

BA, Brodmann area. x, y, z = MNI (Montreal Neurological Institute) coordinates of significant peak effects.
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Connectivity between this right MFG/IFG region and the SEN
seed model did not differ significantly between groups [F(2, 209) =
1.91, p = 0.13].

Stability of group differences

Extracted data from the four regions in connectivity with the three
network masks at Time 1 (12 variables) did not differ significantly
at the second scan (ts < 1.64, ps > 0.10), providing evidence that
network connectivity with these regions relevant to SB are stable

over time (see online Supplementary Fig. S1). In addition, effect
sizes of group differences (particularly those between SB relative
to the other two groups) were similar at Time 2 relative to
Time 1 (see online Supplementary Table S1).

Sensitivity and specificity of classification, and supplemental
analyses

At a post-hoc level, prediction of group membership (using the
seed-node connectivity values that differed between groups) was

Fig. 1. Spatial maps of significant main effect con-
trasts, and extracted values within each contrast
cluster plotted by group and by network seed
model (error bars represent standard errors from
the mean of each group within each contrast; col-
ored boxes represent the model that was used to
identify the cluster).
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achieved with good accuracy (79–86%), sensitivity (80–87%), and
sensitivity (78–88%) (Table 4). Prospective data were available for
a subset of participants in the subsequent year (n = 7 SB, n = 97
MD; see online Supplementary Material); a greater proportion
of individuals in the SB group (43%) had engaged in future SB
or required a higher level of care than outpatient treatment (e.g.
inpatient care), relative to individuals in the MD Group (5%).
Additional analyses of site effects (which did not affect the pre-
dictive model) are included in online Supplementary Material.

As prior studies have suggested that most individuals with
mood disorders experience SI during depressive episodes (Nock
et al., 2010), a set of alternate models collapsed the MD and SI
groups into one group, and thus compared SB, MD (with or with-
out SI), and HC groups (see online Supplementary Results).

Discussion

The aim of the present study was to use rs-fMRI to identify pos-
sible neural mechanisms underlying suicide risk in mood disor-
ders, as defined by past SB (Valtonen et al., 2006; Lewinsohn
et al., 1994; Brown et al., 2000). We identified intrinsic network
connectivity with several right-lateralized brain regions that dis-
tinguished amongst individuals with past SB, individuals with a
mood disorder with no past SB (some of whom had experienced
SI), and healthy individuals. Intrinsic network connectivity effects
were stable over time and identified group membership with good
accuracy, sensitivity, and specificity. In addition, group differences
in connectivity demonstrated some specificity to SB rather than to
SI in general with moderate effect sizes, although larger sample
sizes are needed in future studies to evaluate their significance.
These results suggest that individuals with a mood disorder
who have a history of an SB may have distinct, trait-like patterns
of connectivity within and between intrinsic networks that facili-
tate cognitive control and self-focused thought. They also suggest
that rs-fMRI might be a promising tool for identifying neural
underpinnings of suicide risk in the context of a mood disorder.

We hypothesized that individuals with SB would show attenu-
ated connectivity within the CCN relative to MD and HC groups.
Consistent with this hypothesis, individuals with SB demonstrated
less connectivity between the CCN seeds and the right MFG, a key
region of the CCN, relative to individuals with a history of SI (a
medium effect size), and relative to MD and HC groups (consist-
ent with large effect sizes). This finding complements prior work
showing attenuated connectivity within the CCN among indivi-
duals with active and remitted MDD (Kaiser et al., 2015; Stange
et al., 2017), in individuals at risk for depression (Clasen et al.,
2014), and among those with SI (Ordaz et al., 2018), and extends
these results to individuals with past SB. These results also are
consistent with one previous analysis of individuals with SB out-
side of the context of a mood disorder, which found attenuated
regional homogeneity in bilateral MFG relative to individuals
without a history of SB (Cao et al., 2015). Attenuated connectivity
between the CCN and the right MFG at rest may be indicative of
disruptions in the neural circuitry supporting adaptive cognitive
control (Stange et al., 2017). These impairments might interfere
with the ability to divert attentional resources and prevent oneself
from acting on impulsive or suicidal thoughts, hence conferring
vulnerability to SBs.

Within the DMN seed model, a second CCN region within the
right MFG was identified as differing between groups. In this ana-
lysis, individuals with an SB history showed less connectivity
between this key cognitive control region and the DMN seeds,

relative to the other groups (with effect sizes ranging from
medium to large). Although speculative, one plausible explanation
is that individuals with less MFG-to-DMN connectivity might be
less able to engage CCN resources to flexibly disengage from
negative self-focused thought. Given that the DMN is active dur-
ing rest and during self-reflection such as rumination, and that
the CCN facilitates cognitive control functions, individuals who
have difficulty stopping themselves from ruminating while at
rest might show less functional synchronization of these net-
works. As rumination is associated with risk for SI and suicide
behavior (Rogers and Joiner, 2017; Surrence et al., 2009; Burke
et al., 2016; Stange et al., 2015), future work might investigate
whether disruptions in connectivity between these regions
might lead to future suicidal behavior, with rumination as one
candidate behavioral mechanism (Hamilton et al., 2011).
Indeed, in our data, individuals with SI and SB both demonstrated
attenuated right MFG to DMN connectivity relative to HCs,
although only SB differed from MD, suggesting that less connect-
ivity between these regions is associated with greater likelihood of
suicidal behavior (see Fig. 1).

In contrast, three CCN regions (right precuneus, MFG/IFG,
and MFG/SFG) were identified in which individuals with a his-
tory of SI exhibited more negative connectivity with the SEN
seeds, relative to each of the other three groups. It is not entirely
clear why these differences would characterize individuals with SI,
but not those with SB or those with a mood disorder without SI. It
may be that individuals who only present with SI, but who do not
progress to SB, have a different phenotype of mood disorder. The
dorsal right IFG plays a prominent role in facilitating inhibitory
control and ventral IFG is critical for reorienting attention to sali-
ent stimuli (Levy and Wagner, 2011; Sebastian et al., 2016), and
both subregions are involved with the successful regulation of dis-
tracting emotions (Dolcos et al., 2006). Prior work also has linked
attenuated resting-state connectivity between the IFG and sgACC
with higher levels of rumination in MDD (Connolly et al., 2013).
Thus, a lack of connectivity between the clusters in the right IFG
and SFG and the SEN might represent a tendency to be distracted
by salient emotional stimuli in the internal or external environ-
ment, perhaps resulting in difficulty with flexibly adapting atten-
tional control toward meeting long-term goals. For individuals
with a mood disorder, deficits in the neural circuitry of inhibition
and regulation such as these might also lead to thoughts about
ways to escape distress, which could manifest as SI (Serafini
et al., 2016; Malhi et al., 2013). Longitudinal studies are needed
to examine these hypotheses. An alternative is that some indivi-
duals in the sample who have attempted suicide in the past
might have developed protective or compensatory strategies that
make them less likely to engage with thoughts of suicide, which
potentially could lead to more normalized patterns of connectiv-
ity between these network regions. It is worth noting, however,
that group differences between these CCN regions and the SEN
seeds were attenuated at the second scan, as the SB group looked
more similar to the SI group (online Supplementary Fig. S1,
online Supplementary Table S1). Thus, this speculative interpret-
ation of these group differences requires replication before further
comment can be made.

It is promising that these analyses identified three clusters in
which the SB group differed from the other two groups in connect-
ivity within and across networks. However, these results highlight
that more work needs to be done in identifying suicide risk
above and beyond depression history and previous attempts. This
is particularly true given that the sensitivity of the clusters
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identified for distinguishing between SB and SI groups was some-
what attenuated when participants were re-scanned at Time 2. This
future work could include further refining our understanding of
the neurobiology of suicide, but also should include examining
interactions between biological factors and environmental contexts
that may precipitate SI and suicide attempt (Kleiman and Nock,
2018; Stange et al. 2019). In addition to examining the interactive
influence with the environment, future studies could examine and
replicate these specific connectivity patterns a priori, to validate the
role of these regions in suicide risk.

Although there were numerous strengths of this study, such as
the use of a remitted sample with individuals early in the course
of illness, and being one of few studies to examine rs-fMRI among
individuals with a history of SB, several limitations must be noted.
First, the size of the SB group was small given that this was a sec-
ondary analysis of a study sample collected for other purposes
(intended to assess individuals with remitted mood disorders),
and not all individuals had full intent to die when they engaged
in SBs; nevertheless, results appeared consistent in the subset of
SB participants with intent to die (see online Supplementary
Fig. S2). Future studies in this area may benefit from a more
focused investigation on specific regions identified by studies
such as the present one, which might reduce the likelihood of
experiment-wise type I error. Independent replication and
meta-analysis remain the most formidable tools to reduce type I
errors, yet type II errors remain a concern. Moreover, future stud-
ies could specifically recruit SI–/SB–, SI+/SB–, and SI+/SB+ sam-
ples of equal size to better delineate neural features associated
with prior report of SI v. SB. It is possible that some instances
of lifetime SI were missed within the MD group, if individuals
only experienced SI outside of the context of a depressive episode
(as measured with the DIGS depression module). We only were
able to prospectively evaluate future SI or SBs in a subset of
those who were initially studied, and SB could have led to a
greater degree of dropout. Future work should examine these spe-
cific patterns of network connectivity as possible vulnerability fac-
tors for SI and suicide behavior prospectively, in larger samples.
Prospective studies of individuals who may be at risk but who
do not have past SB are also called for, to better distinguish
between ‘risk’ and ‘scarring’ effects of past attempts (Just et al.,
2001).

Furthermore, we compared individuals during the remitted
state of illness to evaluate potentially trait-like risk markers;
although this represents a strength in that it minimizes the poten-
tially confounding influence of current mood state, it is possible
that different brain regions would distinguish between the groups
when individuals are in an acute depressive episode (e.g. Brady
et al., 2017; Rey et al., 2016). Studying individuals who are in
remission may have decreased the overall sensitivity of these ana-
lyses, as individuals with remitted mood disorders have relatively
low profiles of current symptoms and suicidal thinking. Our aim
was to study individuals early in the course of illness of mood dis-
orders to reduce the effects of cumulative mood episodes, increas-
ing age, and additional suicidal behavior (e.g. medical
complications); however, the focus on adults under age 30 may
limit the generalizability to older adult populations who poten-
tially could show different patterns of connectivity. Although
data from the network regions classified the SB group with
good accuracy, sensitivity, and specificity, it is important to
note that we did not use an independent sample to validate
these regions and to account for possible biases in predictor selec-
tion. Thus, these results are viewed in the context of clarifying the
degree and effect of predictors while accounting for potential
shared variance, but should not be viewed as independent or cor-
roborative (Bzdok and Yeo, 2017; Kriegeskorte et al., 2009).
Finally, recent data have demonstrated that the use of 12-min
resting-state scans can ascertain more reliable connectivity values
(Birn et al., 2013).

The present study represents an initial step toward using
rs-fMRI to identify neurobiologically-derived subgroups of indivi-
duals with mood disorders who may be at risk for suicide. By
improving predictive models of suicide risk, this work – in com-
bination with improved clinical assessment – may help us to bet-
ter understand the mechanisms underlying suicide risk (Desmyter
et al., 2013; Fischer et al., 2016), and to better identify those at
highest risk.
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