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We study the centrifugal instability of non-axisymmetric vortices in the presence of
an axial flow (w) and a background rotation (Ωz) using the local stability approach.
Analytically solving the local stability equations for an axisymmetric vortex with w
and Ωz, growth rates for wave vectors that are periodic upon evolution around a closed
streamline are calculated. The resulting sufficient criterion for centrifugal instability
in an axisymmetric vortex is then heuristically extended to non-axisymmetric vortices
and written in terms of integral quantities and their derivatives with respect to the
streamfunction on a streamline. The new criterion for non-axisymmetric vortices,
which converges to the exact criterion of Bayly (Phys. Fluids, vol. 31, 1988,
pp. 56–64) in the absence of background rotation and axial flow, is validated by
comparisons with numerically calculated growth rates for two different anticyclonic
vortices: the Stuart vortex (specified by the concentration parameter ρ, 0 < ρ 6 1)
and the Taylor–Green vortex (specified by the aspect ratio E, 0 < E 6 1). With no
axial velocity and finite background rotation, the criterion predicts a lower and an
upper threshold of |Ωz| between which centrifugal instability is present. We further
demonstrate that the criterion represents an improvement over the criterion of Sipp
& Jacquin (Phys. Fluids, vol. 12, 2000, pp. 1740–1748). Finally, in the presence of
both axial velocity and background rotation, the criterion is shown to be accurate for
large enough ρ and E.

Key words: vortex flows, vortex instability

1. Introduction
Vortical flows are ubiquitous in nature, often occurring in the form of large-scale

structures like tornadoes, cyclones, vortex streets on the leeward side of islands and
mountains; vortices are observed in several industrial shear flows too. Questions
regarding the conditions under which a given vortex becomes unstable have therefore
received considerable attention. In this paper, we derive an analytical criterion for
centrifugal instability in an axisymmetric vortex with axial flow and background
rotation, and then heuristically extend the criterion to non-axisymmetric vortices.

Early studies on the prediction of instability in an inviscid, axisymmetric vortex
(with no axial flow and background rotation) subject to axisymmetric perturbations
were carried out by Rayleigh (1917), who derived a necessary and sufficient condition
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for centrifugal instability based on physical arguments. Billant & Gallaire (2005)
have extended Rayleigh’s criterion to non-axisymmetric disturbances of any azimuthal
wavenumber using large-axial-wavenumber asymptotics. For the more general scenario
of a two-component, two-dimensional (2C2D), inviscid base flow, i.e. a base flow
described by a velocity field (u(x, y), v(x, y)) in the Cartesian (x, y)-plane, with no
background rotation, Bayly (1988) concluded that (i) the streamlines being convex
closed curves in some region of the flow and (ii) the magnitude of the circulation
decreasing outward are sufficient conditions for centrifugal instability.

Motivated by the velocity profiles in a trailing line vortex far downstream of a
wing tip and in the region upstream of a vortex breakdown in experiments, Leibovich
& Stewartson (1983) studied axisymmetric vortices with an axial flow (and no
background rotation) to derive a centrifugal instability criterion using an asymptotic
analysis for large-azimuthal-wavenumber perturbations. Billant & Gallaire (2013) have
further extended the study of Leibovich & Stewartson (1983) to the case of large total
wavenumber. Gallaire & Chomaz (2003a), using asymptotic expansions, have shown
that centrifugal instability is active for all azimuthal wavenumbers in the axisymmetric
screened Rankine vortex with a plug axial flow. Centrifugal instability has also been
shown to be an important mechanism in the selection of the double-helix structure
in realistic axisymmetric swirling jet flows (Gallaire & Chomaz 2003b). Recently,
Mathur et al. (2014) investigated the effects of an axial flow on the centrifugal
instability of Stuart vortices, a class of non-axisymmetric vortices that model mixing
layer vortices. Solving the local stability equations numerically and also heuristically,
deriving a criterion for centrifugal instability in non-axisymmetric vortices with no
background rotation, Mathur et al. (2014) estimated a threshold value of the axial
velocity gradient above which streamlines of the Stuart vortices become centrifugally
unstable.

To model geophysical flows, Kloosterziel & van Heijst (1991) performed laboratory
experiments and inferred, as a rule of thumb, that in a rotating fluid, only very
weak anticyclonic, barotropic vortices are centrifugally stable, and only very strong
cyclonic, barotropic vortices are centrifugally unstable. Three-dimensional direct
numerical simulations (Potylitsin & Peltier 2003) have further shown the centrifugal
destabilization of columnar anticyclonic vortices subjected to weak rotation. An
analytical centrifugal instability criterion for axisymmetric vortices (with no axial
flow) with background rotation was derived by Mutabazi, Normand & Wesfreid
(1992). Three-dimensional linear stability analysis, using both the normal mode
and the local stability approaches, of the non-axisymmetric Stuart vortices with
background rotation have shown centrifugal instability to be a potential reason for
instability in anticyclonic vortices (Leblanc & Cambon 1998; Potylitsin & Peltier
1999; Godeferd, Cambon & Leblanc 2001). In the Taylor–Green vortices of a specific
aspect ratio with background rotation and no axial flow, Sipp, Lauga & Jacquin (1999)
have shown the anticyclones to be centrifugally unstable if the Rossby number is
larger than a threshold value. For the general case of any 2C2D flow in the presence
of background rotation, Sipp & Jacquin (2000) used the local stability approach to
derive a sufficient condition for centrifugal instability, which accurately captures most
of the centrifugally unstable streamlines only in highly concentrated Stuart vortices.

To the best of our knowledge, no existing centrifugal instability criterion accounts
for the combined effects of axial flow and background rotation. The current paper
addresses this gap, and is organized as follows. Adopting the local stability approach
(Lifschitz & Hameiri 1991), we derive an analytical centrifugal instability criterion
for axisymmetric vortices, and then extend it to non-axisymmetric vortices in § 2.
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28 D. Nagarathinam, A. Sameen and M. Mathur

The validity of our criterion in describing centrifugal instability in Stuart vortices
and Taylor–Green vortices is investigated in § 3, followed by our discussion and
conclusions in § 4.

2. Theory
We start by analytically solving the local stability equations for an inviscid,

incompressible, steady, axisymmetric vortex (in the xy-plane) with an axial velocity,
wez, and a background rotation, ΩB = Ωzez, where ez is the unit vector along
the z direction. The base flow is described by a streamfunction ψ(r), with the
velocity components along er , eθ and ez in cylindrical polar coordinates given by
ur =−(1/r)(∂ψ/∂θ)= 0, uθ = ψ ′ and uz = w(r), respectively; the prime denotes the
derivative with respect to r =√x2 + y2. The velocity field of the base flow is thus
UB =ψ ′(r)eθ +w(r)ez.

2.1. Local stability equations
Linearized equations governing the velocity and pressure perturbations in an inviscid,
incompressible flow are

∇ · u= 0, (2.1)
∂u
∂t
+ (UB · ∇)u+ (u · ∇)UB + 2(ΩB × u)+∇P= 0, (2.2)

where u and p are the perturbations in velocity and pressure, respectively, P= p/ρ0
and ρ0 is the constant density. We consider short-wavelength perturbations (Godeferd
et al. 2001) in the limit of the WKBJ approximation:

(u, p)= exp
(

i
φ(x, t)
ε

)
[(a(x, t),π(x, t))+ ε(aε(x, t),πε(x, t))+ · · ·], (2.3)

where φ is a real scalar function of position vector x and time t, ε a small parameter
and k=∇φ the wave vector. Leading-order complex amplitudes of the velocity and
pressure perturbations are a and π, respectively. Equations governing the evolution of
a and k are given by Godeferd et al. (2001):

dk
dt
= [(∇×UB)× k− (k · ∇)UB], (2.4)

da
dt
=−∇UB · a+ 2

|k|2 [(∇UB · a) · k]k− 2ΩB × a+ 2
|k|2 [(ΩB × a) · k]k, (2.5)

with π = 0 and k · a = 0. The operator d/dt = ∂/∂t + UB · ∇ is the material time
derivative in the base flow UB, i.e. derivative along fluid trajectories in the base flow.

2.2. Growth rate for axisymmetric vortices
We solve (2.5) for those wave vectors k that are periodic upon integrating equation
(2.4) along one period of a three-dimensional streamline whose projection on the xy-
plane is periodic. For a wave vector k = α(t)ψ ′eθ + β(t)ψ ′er + γ ez, where α and β
evolve along the fluid trajectory in general, and dγ /dt= 0 for 3C2D base flows, the
periodicity criterion for an axisymmetric base flow is (Mathur et al. 2014)

α = −γw′

ψ ′(ψ ′′ −ψ ′/r) , (2.6)
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which is invariant along a streamline. It was further shown by Mathur et al. (2014)
that dβ/dt reduces to zero for an axisymmetric flow if (2.6) is satisfied. Therefore,
α, β and γ are all invariant along a streamline for periodic wave vectors in an
axisymmetric base flow. Since (2.4)–(2.5) are linear in k, it suffices to consider unit
periodic wave vectors, for which the procedure described in §4.1 in Mathur et al.
(2014) allows us to write (2.5) as [dar/dt daθ/dt daz/dt] = C[ar aθ az], where C is
a time-invariant 3 × 3 matrix. Eigenvalues of the coefficient matrix C are then the
growth rates of the velocity perturbations. One of the three eigenvalues is zero, while
the other two are given by

σ 2
C{1,2} = (1− β2ψ ′2)

[
4w′2(rΩz +ψ ′)2

(rψ ′′ −ψ ′)2 + r2w′2
− 2
(
ψ ′

r
+Ωz

)(
ψ ′′ + ψ

′

r
+ 2Ωz

)]
, (2.7)

where the subscripts 1 and 2 correspond to the positive and negative roots of (2.7),
respectively. We note that k being of unit magnitude imposes the constraint β2ψ ′2 6 1.

2.3. Instability criterion for axisymmetric vortices
A streamline in an axisymmetric vortex is unstable if the eigenvalues in (2.7) satisfy
σ 2

C{1,2} > 0. Since 0 6 β2ψ ′2 6 1, the criterion for instability reduces to

(σ ∗C{1,2})
2 =
[

4w′2(rΩz +ψ ′)2
(rψ ′′ −ψ ′)2 + r2w′2

− 2
(
ψ ′

r
+Ωz

)(
ψ ′′ + ψ

′

r
+ 2Ωz

)]
> 0, (2.8)

where σ ∗C{1,2} are the values of σC{1,2} evaluated at β = 0. For unstable streamlines,
σ ∗C{1} represents the maximum growth rate, with the corresponding most unstable wave
vector given by β = 0. It is noteworthy that β = 0 corresponds to the periodic wave
vector with the smallest angle θ = θmin made with the z-axis (Mathur et al. 2014).
In the rest of this paper, we replace σ ∗C{1} by σ ∗C . The criterion in (2.8) can also be
obtained by replacing ψ by ψ + Ωzr2/2 in the centrifugal instability criterion for
axisymmetric vortices with an axial velocity and no background rotation (Leibovich
& Stewartson 1983; Eckhoff 1984; Mathur et al. 2014).

In the absence of axial flow and background rotation, i.e. dw/dψ = 0 and Ωz = 0,
the criterion (2.8) reduces to the criterion for centrifugal instability of an axisymmetric
flow subjected to axisymmetric perturbations:

(
ψ ′/r

)(
ψ ′′ + ψ ′/r) < 0, derived by

Rayleigh (1917) based on the displaced-particle argument in a system whose angular
momentum is conserved. Without background rotation (Ωz = 0), the criterion (2.8)
reduces to the centrifugal instability criterion derived using the normal mode approach
(Leibovich & Stewartson 1983) and the local stability approach (Mathur et al. 2014).
In the absence of axial flow (dw/dψ = 0), the criterion (2.8) reduces to the criterion
for centrifugal instability of an axisymmetric vortex with a background rotation:(
ψ ′/r+Ωz

)(
ψ ′′+ψ ′/r+ 2Ωz

)
< 0, derived using both the displaced-particle argument

(Mutabazi et al. 1992) and the local stability approach (Sipp & Jacquin 2000).

2.4. Extension to non-axisymmetric vortices
Based on the heuristic approach of Mathur et al. (2014), we now extend the analytical
criterion (2.8) to the case of a non-axisymmetric vortex and numerically evaluate its
validity for the specific cases of Stuart vortices and Taylor–Green vortices. Replacing
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d/dr by ψ ′d/dψ in (2.8), we get

(σ ∗C{1,2})
2 =
[

4(dw/dψ)2(Ωz +ψ ′/r)2
r2(d(ψ ′/r)/dψ)2 + (dw/dψ)2

− 2
(
ψ ′

r
+Ωz

)(
ψ ′

r
d(rψ ′)

dψ
+ 2Ωz

)]
> 0.

(2.9)
We now choose to write the criterion in (2.9) in terms of Γ = 2πrψ ′ and T = 2πr/ψ ′,
where the integral quantities Γ and T are the circulation and the time period of the
streamline, respectively. Specifically, replacing ψ ′ by (Γ/T)1/2 and r by (Γ T)1/2/2π,
the criterion (2.9) reduces to

(σ ∗C{1,2})
2= 4(dw/dψ)2(Ωz + 2π/T)2

(Γ/T3)(dT/dψ)2 + (dw/dψ)2
− 2
(

2π

T
+Ωz

)(
1
T

dΓ
dψ
+ 2Ωz

)
> 0, (2.10)

an expression that can be evaluated for any non-axisymmetric vortex. The base
flow quantities that appear in criterion (2.10) are dependent only on ψ , i.e. every
streamline (specified by a unique value of ψ) has a corresponding unique value
of T , Γ , dT/dψ , dΓ/dψ and dw/dψ , rendering the criterion easy to evaluate in
comparison to criteria that require the velocity field at every point on the streamline.
To the best of our knowledge, criterion (2.10) represents the first effort to derive a
criterion for centrifugal instability in non-axisymmetric vortices with an axial flow
and a background rotation.

The heuristic approach to express criterion (2.8) in terms of Γ and T is motivated
by their significant roles in the centrifugal instability of non-axisymmetric vortices
without axial flow and background rotation (Bayly 1988) and the periodicity condition
for wave vectors (Mathur et al. 2014), respectively. While the criterion in (2.10)
remains exactly valid for axisymmetric vortices, its validity for non-axisymmetric
vortices is to be investigated. Furthermore, though the expression of (2.8) in terms
of Γ , T and their derivatives with respect to ψ is not uniquely defined, our choice
ensures that the criterion in (2.10) converges to the exact criterion of Bayly (1988)
in the limit of dw/dψ = 0 and Ωz = 0. Finally, the coupling between dw/dψ and
Ωz in criterion (2.10) means one cannot look at their effects in isolation to derive a
criterion for a flow with non-zero dw/dψ and Ωz.

3. Results
In this paper, we investigate the validity of criterion (2.10) in describing the

centrifugal instability in two specific vortex models: (i) Stuart vortices (Stuart 1967)
and (ii) steady, flattened Taylor–Green vortices (Taylor & Green 1937), in the presence
of axial flow and background rotation. The validations are carried out via comparisons
with the numerical solutions of (2.4)–(2.5).

The streamfunction describing Stuart vortices centred at the origin in the xy-plane
is given by Godeferd et al. (2001)

ψ(x, y)= log(cosh y− ρ cos x), (3.1)

where ρ (0 < ρ 6 1) is the concentration parameter. As ρ decreases from 1 to
smaller values, the vorticity distribution goes from highly concentrated around
the origin to more widely spread away from the origin. Streamlines for four
different values of ρ are plotted in figure 5 of Godeferd et al. (2001). Defining
ψ̃ = (ψ −ψmin)/(ψmax −ψmin), where ψmax = log(1 + ρ) and ψmin = log(1 − ρ), we
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Centrifugal instability in non-axisymmetric vortices 31

consider only those streamlines that lie in the range 0 < ψ̃ < 1, thus restricting our
studies to closed streamlines. We note, however, that the open streamlines in Stuart
vortices may be susceptible to centrifugal instability too.

An isolated, steady, flattened Taylor–Green vortex with anticlockwise fluid motion,
centred at the origin is described by the following streamfunction (Sipp & Jacquin
1998; Sipp et al. 1999):

ψ(x, y)= sin(x−π/2)sin(Ey+π/2), (3.2)

where E (0 < E 6 1) is the aspect ratio of the vortex. Denoting the x-coordinate of
the intersection between a streamline and the positive x-axis by x0, we consider only
those streamlines that lie inside the vortex centred at the origin, i.e. 0< x0<π/2. This
anticlockwise vortex corresponds to the upper right quadrant of figure 1 in Sipp et al.
(1999).

As discussed in § 2.4, the criterion in (2.10) is exact for axisymmetric vortices
whereas the extent of its validity to describe centrifugal instability in non-axisymmetric
vortices has to be numerically established. We therefore start by quantifying the extent
of non-axisymmetry of the streamlines in the two vortex models we consider in this
paper. Specifically, we define the extent of non-axisymmetry for any streamline as
(Mathur et al. 2014)

S= rσ (x0)

r̄(x0)
, (3.3)

where rσ and r̄ are the standard deviation and mean, respectively of r(i) =√
x(i)2 + y(i)2, with (x(i), y(i)) being the ith point on the streamline which intersects

the positive x-axis at (x0, 0). For the calculation of S, we represent every streamline
by 1000 points that are equispaced in terms of the distance measured along the
streamline. The smaller the value of S, the closer the streamline is to a circular
shape.

Figures 1(a) and 1(b) show the contour lines of S as a function of the streamline
and the corresponding vortex model parameter for Stuart vortices and Taylor–Green
vortices, respectively. In the Stuart vortices (figure 1a), for a fixed ψ̃ , S is larger for
smaller ρ, implying that streamlines become more strongly non-axisymmetric as ρ
decreases. For a fixed value of ρ, S increases with ψ̃ , i.e. streamlines away from the
origin are more strongly non-axisymmetric than the ones close to the origin. At ρ= 1,
S increases from 0 for the innermost streamlines to around 0.177 for streamlines at
the edge of the vortex.

In the Taylor–Green vortices (figure 1b), streamlines become more non-axisymmetric
when the aspect ratio E moves away from unity. For a fixed x0, as seen in figure 1(b),
S is smaller for larger E. For a fixed small enough value of E (0< E . 0.5), all the
streamlines correspond to almost the same value of S, whereas for larger E, there
is a sudden increase in S as we approach the outer edge of the vortex. At E = 1, S
increases from 0 for the innermost streamlines to around 0.092 for streamlines at the
edge of the vortex.

To evaluate the validity of criterion (2.10), we also compute the actual growth
rate σN by numerically solving (2.4)–(2.5) for periodic wave vectors with θ = θmin.
As shown in § 2.3, since the most unstable wave vector for centrifugal instability
corresponds to β = 0, it suffices to consider only the wave vector with β = 0, i.e.
θ = θmin. To compute σN we use the numerical algorithm described in Mathur et al.
(2014). Owing to the presence of very small numerical errors that result from the
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FIGURE 1. The non-axisymmetry parameter S, defined in (3.3), as a function of the
streamline and the vortex model parameter for (a) Stuart vortices and (b) Taylor–Green
vortices. Both plots show the contour lines corresponding to the same set of nine different
values of S equispaced between 0.06 and 0.54.

machine accuracy and the numerical schemes used, which in turn would wrongly
pick up stable regimes as unstable, we assign any value of Re[σN] smaller than 10−14

to zero. Here, Re denotes the real part.
On a given streamline inside a two-dimensional vortex centred at the origin, the

influence of the axial flow on its stability is completely described by the parameter τ
(Mathur et al. 2014):

τ = (dw/dψ)v(x0, 0)
ω

, (3.4)

where the streamline intersects the positive x-axis at (x0, 0) and ω = ∇2ψ is the
constant vorticity along ez associated with the streamline. We now proceed to
investigate various regimes in the parameter space of ρ (or E depending on the vortex
model), Ωz and τ , concluding with the combined effects of axial flow and background
rotation on the centrifugal instability in Stuart vortices and Taylor–Green vortices.
Our validation studies in this paper are restricted to anticyclonic vortices, i.e. Ωz < 0,
which previous studies have shown to be more susceptible to instability than cyclonic
vortices when there is no axial flow (Hopfinger & van Heijst 1993). Furthermore,
Sipp et al. (1999) have shown that centrifugal instability in Taylor–Green vortices
with no axial flow is activated by anticyclonic rotation but not cyclonic rotation.

3.1. No axial flow (dw/dψ = 0), no background rotation (Ωz = 0)
The centrifugal instability criterion in (2.10) reduces to dΓ/dψ < 0 for flows with
no axial velocity and background rotation, i.e. 2C2D flows with Ωz = 0. Based on
this limiting criterion, which is consistent with the results of Bayly (1988), the Stuart
vortices and the Taylor–Green vortices are both centrifugally stable for dw/dψ = 0
and Ωz = 0, i.e. the two base flows described by (3.1) and (3.2) satisfy dΓ/dψ > 0
for all the streamlines inside the respective vortices.

3.2. Axial flow with no background rotation
In the limit of Ωz= 0, the analytical criterion (2.10) reduces to the criterion of Mathur
et al. (2014) for centrifugal instability in non-axisymmetric vortices with an axial flow
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FIGURE 2. A plot of Re[σN], σ ∗C as a function of x0 for Taylor–Green vortices with (a)
E = 1 and Ωz = 0, (b) E = 0.75 and Ωz = 0 and (c) E = 0.5 and Ωz = 0. Values of
Re[σ ∗C ]6 0 are not shown. All the plots correspond to τ = 2.

and no background rotation. Mathur et al. (2014) have shown that there is always a
threshold value of τ above which a given streamline in the Stuart vortices becomes
centrifugally unstable; their criterion accurately predicts the threshold value of τ even
for small values of ρ, for which the base flow is strongly non-axisymmetric.

An interesting result from Mathur et al. (2014) is that, in the limit of a strong axial
flow with no background rotation, the criterion in (2.10) seems to be quantitatively
accurate in describing centrifugal instability in Stuart vortices for all the streamlines
with S . 0.2. To test the robustness of this conclusion of Mathur et al. (2014), we
perform a quantitative comparison between σN and σ ∗C for Taylor–Green vortices with
no background rotation and a strong axial flow.

Figure 2 shows the variations of σN and σ ∗C as a function of x0 for E= 1, 0.75 and
0.5 with Ωz = 0 and τ = 2. We see that σ ∗C is in close agreement with σN for E= 1
(figure 2a), for which the extent of non-axisymmetry S increases from 0 to 0.09 as
x0 increases from 0 to π/2. The agreement between σ ∗C and σN is reasonably good
for E= 0.75 (figure 2b) too, a scenario where S varies from 0.1 to 0.135 across the
streamlines in the vortex. For E= 0.5 (figure 2c), however, the prediction based on σ ∗C
is poor and is attributed to S > 0.23 for all the streamlines (as seen in figure 1b). In
summary, the criterion of S . 0.2 for σ ∗C to accurately describe centrifugal instability
with no background rotation and large axial flow is reasonably valid for Taylor–Green
vortices too. Furthermore, since the Taylor–Green vortices are centrifugally stable at
Ωz = 0 and τ = 0, finite growth rates for all three values of E at Ωz = 0 and τ = 2
show that centrifugal instability emerges beyond a threshold magnitude of axial flow.

3.3. Background rotation with no axial flow
We now consider the effect of background rotation in the absence of axial flow.
Substituting dw/dψ = 0 reduces criterion (2.10) to

−(σ ∗C{1,2})2 = 2
(

2π

T
+Ωz

)(
1
T

dΓ
dψ
+ 2Ωz

)
< 0. (3.5)

Sipp & Jacquin (2000) have previously proposed an alternative criterion for instability
of two-dimensional flows (without an axial velocity) subject to background rotation.
Their sufficient criterion for instability on a streamline with streamfunction ψ is

−σ 2
S&J(ψ)=1S&J(ψ)=max

[
2
(

V
R
+Ωz

)(
W + 2Ωz

)]
< 0, (3.6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

94
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.94


34 D. Nagarathinam, A. Sameen and M. Mathur

V being the local norm of the velocity, R the local radius of curvature on the
streamline and W the vorticity associated with the streamline. The criterion (3.6),
referred to as S&J’s criterion in the rest of this paper, is not very accurate for highly
non-axisymmetric Stuart vortices (Sipp & Jacquin 2000).

3.3.1. Stuart vortices
Using the criterion in (2.10), we classify the base flow with a specific set of values

for (ρ, Ωz) as unstable if there exists at least one streamline in the range 0< ψ̃ < 1
for which Re[σ ∗C ]> 0. The identification of instability based on S&J’s criterion in (3.6)
and the numerical solution use σS&J and σN , respectively. The calculation of σ ∗C , σS&J

and σN is performed for 0.01 6 x0 6 3, thus skipping the streamlines in the range
3< x0 6π. We note here that Re[σN] may sometimes be greater than zero due to the
presence of non-centrifugal (elliptic, hyperbolic) instabilities.

Plotted in figure 3 are the curves that delineate the stable and unstable regions based
on the Re[σ ∗C ]> 0 (solid line) and Re[σS&J]> 0 (dashed line) criteria. The background
grey colour corresponds to regions with Re[σN] > 0. Both our criterion (3.5) and
S&J’s criterion (3.6) predict that the flow is centrifugally stable at Ωz= 0 for every ρ.
Owing to the presence of elliptic and/or hyperbolic instabilities that occur for Ωz= 0
(Godeferd et al. 2001), Re[σN] is greater than zero and hence the background colour
at and around Ωz = 0 is grey. Based on criterion (3.5), for all ρ, as the magnitude
of background rotation increases from Ωz = 0, there exists a threshold value |Ωz|1,C
(which is a function of ρ) above which the flow becomes centrifugally unstable (the
C in the subscript refers to predictions based on σ ∗C in criterion (3.5)). For 0.5.ρ < 1,
there is a good agreement in this threshold value of |Ωz| between criterion (3.5) and
S&J’s criterion. For smaller values of ρ, i.e. ρ < 0.43, corresponding to strongly non-
axisymmetric vortices, S&J’s criterion predicts the flow to be stable for all values of
Ωz whereas our criterion continues to predict a threshold value of |Ωz| above which
the flow becomes centrifugally unstable.

For ρ 6 0.67, as we increase the |Ωz| beyond the first threshold |Ωz|1,C , the
numerical growth rate σN predicts that there is a threshold |Ωz|2,N (which is a
function of ρ) above which the flow becomes stable (the N in the subscript refers
to predictions based on the numerical growth rate σN). This is indicated by the
background colour changing from grey to white beyond |Ωz|2,N for ρ 6 0.67. The
corresponding threshold |Ωz|2,C based on σ ∗C is in remarkable agreement with the
numerics for the prediction of |Ωz|2,N . S&J’s criterion, however, underpredicts |Ωz|2,N
for 0.43 6 ρ < 0.74 and fails to predict any instability for ρ < 0.43. In summary, the
criterion based on σ ∗C is very accurate in identifying the centrifugally unstable domain
in the ρ–Ωz plane. We now proceed to evaluate the validity of the σ ∗C criterion for
individual trajectories.

In figure 4, we plot σN , σ ∗C and σS&J as a function of ψ̃ for three different
pairs of (ρ, Ωz), indicated by the three points marked by a star in figure 3. For
ρ = 0.77, Ωz = −2.318, shown in figure 4(a), there is almost an exact agreement
between the numerics (circles) and the σ ∗C criterion (dashed line) for the range of
centrifugally unstable streamlines (0.12 6 ψ̃ 6 0.24) and the corresponding growth
rates. The S&J criterion (solid line) identifies only a part of the unstable streamlines
(0.12 6 ψ̃ 6 0.18), with the maximum growth rate underpredicted by 54 %. For
ρ = 0.57, Ωz = −0.894, the case presented in figure 4(b), σ ∗C identifies the range
0.27 6 ψ̃ 6 0.48 as centrifugally unstable while the corresponding range based on σN

and σS&J are 0.276 ψ̃ 6 0.53 and 0.276 ψ̃ 6 0.3, respectively. Here σ ∗C underpredicts
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FIGURE 3. Contours delineating the stable and unstable flow regimes of Stuart vortices
without an axial flow (τ = 0). The solid and dashed lines are obtained based on
σ ∗C (criterion (3.5)) and σS&J (criterion (3.6)), respectively. The background grey colour
indicates regions with Re[σN] > 0 obtained numerically. Stars indicate the specific cases
shown in figure 4. Vertical lines at ρ= 0.602 and 0.745 correspond to the cases presented
in figure 5.
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FIGURE 4. A plot of Re[σN], σ ∗C , σS&J as a function of ψ̃ for Stuart vortices with (a)
(ρ, Ωz)= (0.77,−2.318), (b) (ρ, Ωz)= (0.57,−0.894) and (c) (ρ, Ωz)= (0.11,−0.409).
The three cases correspond to the stars on the ρ–Ωz plane in figure 3. Values of
Re[σ ∗C , σS&J]6 0 are not shown. All the plots correspond to τ = 0.

the maximum growth rate by only 18.6 % whereas σS&J is an order of magnitude
smaller than σN . Finally, for ρ = 0.11, Ωz = −0.409, the strongly elliptic scenario
presented in figure 4(c), σ ∗C correctly predicts the centrifugally unstable streamlines in
the range 0. ψ̃ . 0.95 but with the growth rates around half of σN for the streamlines
close to the origin; σS&J does not predict any streamline in the range 0 < ψ̃ < 1 to
be unstable.

To evaluate the validity of our criterion and S&J’s criterion over the entire range
of Ωz for a given ρ, we plot a colourmap of σN , σ ∗C and σS&J as a function of ψ̃
and Ωz for ρ = 0.745 and ρ = 0.602 in figure 5. For both ρ = 0.745 and ρ = 0.602,
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FIGURE 5. (Colour online) (a,d) σN , (b,e) σ ∗C and (c,f ) σS&J plotted as a function of ψ̃
and Ωz for Stuart vortices with (a–c) ρ = 0.745 and (d–f ) ρ = 0.602. White regions in
the plots correspond to Re[σN, σ

∗
C , σS&J]6 0. All the plots correspond to τ = 0. The two

solid black curves in each of (a) and (d), described by (4.2) and (4.3), correspond to the
boundaries of the unstable domain in (b) and (e), respectively.

σN displays two dominant sub-domains of instability, with the sub-domain occurring
for smaller |Ωz| likely to be a non-centrifugal-type instability, as was discussed to
explain the grey background around Ωz= 0 in figure 3. The sub-domain of instability,
captured by σN , occurring for larger |Ωz| is quantitatively similar to the sub-domain
of centrifugal instability identified by σ ∗C . For ρ = 0.745, σS&J identifies a relatively
smaller sub-domain of instability with the maximum growth rate being 26.6 % smaller
than σN . For ρ = 0.602, σS&J fails to identify a significant portion of the centrifugally
unstable sub-domain, while σ ∗C continues to be accurate in capturing the range of
unstable streamlines.

In the centrifugal instability sub-domains of instability identified in the σN plots
in figure 5(a,d), each streamline corresponds to a lower threshold |Ωz|L,N and an
upper threshold |Ωz|U,N between which it is centrifugally unstable. The corresponding
thresholds based on σ ∗C , referred to as |Ωz|L,C and |Ωz|U,C , are indicated by the black
curves in figure 5(a,d). We observe that σ ∗C predicts the centrifugally unstable domain
on the ψ̃–Ωz plane accurately for both ρ = 0.745 and ρ = 0.602.

For smaller values of ρ (the results of which are not shown in the figures),
corresponding to strongly non-axisymmetric vortices, the sub-domain of centrifugal
instability in the ψ̃–Ωz plane is observed to be smaller than that for larger ρ. The
criterion based on σ ∗C is reasonably accurate even for ρ = 0.235, whereas σS&J fails
to predict any unstable streamlines for ρ 6 0.43.

3.3.2. Taylor–Green vortices
Similar to the analysis in § 3.3.1, a given (E, Ωz) pair is termed unstable based

on three different criteria, i.e. the sign of Re[σN], Re[σ ∗C ] or Re[σS&J] being positive
for at least one streamline in the range 0 < x0 < π/2. The calculation of σ ∗C , σS&J
and σN is performed for 0.01 6 x0 6 1.55, thus skipping the streamlines in the range
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FIGURE 6. Contours delineating the stable and unstable flow regimes of Taylor–Green
vortices without an axial flow (τ = 0). The domain bound within the solid lines marked as
|Ωz|1,C and |Ωz|2,C is the unstable (E, Ωz) parameter space based on σ ∗C . The background
grey color indicates unstable regions with Re[σN]> 0. Note that σS&J (criterion (3.6)) does
not predict instability over the entire E–Ωz plane considered. Stars indicate the specific
cases shown in figure 7. Vertical lines at E= 0.5, E= 0.75 and E= 1 correspond to the
cases presented in figure 8.

1.55 < x0 6 π/2. The unstable domain, in the two-dimensional parameter space of
(E, Ωz), evaluated based on σ ∗C is bound within the solid lines marked as |Ωz|1,C and
|Ωz|2,C in figure 6. The corresponding unstable domain based on σN is shown with a
grey background. The criterion based on σS&J predicts every streamline to be stable
over the entire (E, Ωz) domain considered in figure 6.

For Ωz = 0, the Taylor–Green vortices are centrifugally stable owing to the
positive sign of dΓ/dψ ; σN , however, suggests that the vortex is susceptible to
a non-centrifugal-type instability, as indicated by the grey background at Ωz = 0 in
figure 6. For each value of E, σ ∗C predicts a small threshold of |Ωz| = |Ωz|1,C (of
the order of 0.01) above which the vortex becomes centrifugally unstable. |Ωz|1,C , as
to be discussed in § 4, would be zero if the outermost streamline corresponding to
x0 = π/2 is included in the calculations. Upon increasing |Ωz| further, σ ∗C identifies
another threshold |Ωz| = |Ωz|2,C , above which the Taylor–Green vortex becomes
centrifugally stable. The functional dependence of |Ωz|2,C on E is in reasonably good
quantitative agreement with the predictions based on σN , i.e. the lower solid curve
captures the lower boundary of the grey domain in figure 6 reasonably well.

We now define the Rossby number for a fixed E and Ωz as (Sipp et al. 1999)

Ro= ωmax

2|Ωz| , (3.7)

where ωmax is the maximum vorticity among all the streamlines in the range 0< x0 <
π/2. One can now write |Ωz|2,C as an equivalent Rossby number below which the
vortex is centrifugally stable at a given E. For E = 0.5, we find that σ ∗C predicts the
flow to be centrifugally stable for Ro< 1.003. This result is in close agreement with
the result of Sipp et al. (1999) that for Taylor–Green cells with an aspect ratio E =
2, anticyclones undergo centrifugal instability if the Rossby number satisfies Ro> 1.
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FIGURE 7. A plot of Re[σN] and σ ∗C as a function of x0 for Taylor–Green vortices with
(a) (E, Ωz) = (0.9, −0.75), (b) (E, Ωz) = (0.9, −0.5) and (c) (E, Ωz) = (0.6, −0.5). The
three cases correspond to the stars on the E–Ωz plane in figure 6. Values of Re[σ ∗C ]6 0
are not shown. All the plots correspond to τ = 0.

We note here that E= 0.5 and E= 2 correspond to equivalent vortices that share the
same shape for all the streamlines. Writing |Ωz|2,C as an equivalent Rossby number
for all values of E, we further find that Ro at the lower solid black curve in figure 6
is in the range 1–1.005, thus leading to the conclusion that the criterion Ro< 1 for
centrifugal stability in Taylor–Green vortices is valid for all values of E when there
is no axial flow. Performing a similar calculation for Stuart vortices with τ = 0, we
find that |Ωz|2,C shown in figure 3 corresponds to Ro≈ 1 too for all values of ρ.

In figure 7, we plot σ ∗C and σN as a function of x0 for three different pairs of values
of (E, Ωz), corresponding to the three stars in figure 6. For E = 0.9, Ωz = −0.75
(figure 7a), σN identifies unstable streamlines to be in the range 0.6 < x0 < 0.85,
with a maximum growth rate of 0.109. Correspondingly, σ ∗C predicts the centrifugally
unstable streamlines to be in the range 0.59< x0 < 0.82, with 0.098 as the maximum
growth rate. For E = 0.9, Ωz = −0.5, σ ∗C underpredicts the maximum growth rate
by around 20 %, whereas the range of unstable streamlines is captured somewhat
accurately (figure 7b). In figure 7(c), which corresponds to E = 0.6, Ωz = −0.5,
σ ∗C further underpredicts both the maximum growth rate and the range of unstable
streamlines. In summary, while the criterion based on σ ∗C accurately captures the
overall unstable domain in the E–Ωz plane, the predictions on the range of unstable
streamlines and the corresponding growth rates deviate from those based on σN for
some individual pairs of (E, Ωz). We now proceed to investigate the accuracy of σ ∗C
over a finite range of Ωz.

Colourmaps of the growth rate as a function of x0 and Ωz for Taylor–Green
vortices with E = 1, 0.75 and 0.5 and τ = 0 are shown in figure 8. For E = 1, as
shown by the σN distribution in figure 8(a), an instability emerges near the outermost
streamline (x0 = π/2) as |Ωz| is increased from zero. The instability moves towards
smaller values of x0 as |Ωz| increases before disappearing below a threshold of around
Ωz=−1. Similar to the case of Stuart vortices, at each x0 in figure 8(a), there exists
a lower and an upper threshold |Ωz| = |Ωz|L,N and |Ωz| = |Ωz|U,N between which the
corresponding streamline is centrifugally unstable; |Ωz|L,N decreases as x0 increases
whereas |Ωz|U,N − |Ωz|L,N is larger for the outer streamlines close to x0 = π/2 in
comparison to those close to x0= 0. For each E, the maximum |Ωz|U,N among all the
streamlines is equal to the |Ωz|2,N defined earlier in the discussion of figure 6. The
σ ∗C distribution, shown in figure 8(d), captures all the qualitative features present in
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FIGURE 8. (Colour online) (a–c) σN and (d–f ) σ ∗C plotted as a function of x0 and Ωz for
Taylor–Green vortices with (a,d) E= 1, (b,e) E= 0.75 and (c,f ) E= 0.5. White regions in
the plots correspond to Re[σN, σ

∗
C ]6 0. All the plots correspond to τ = 0. The two solid

black curves in each of (a), (b) and (c), described by (4.2) and (4.3), correspond to the
boundaries of the unstable domain in (d), (e) and (f ), respectively.

the σN distribution in 8(a) with reasonable quantitative agreement in the domain of
instability and growth rates.

For E = 0.75, which corresponds to more strongly non-axisymmetric streamlines
in comparison to E = 1, two domains of instability are seen in the σN distribution
(figure 8b). The instability domain that extends from around x0 = 0, Ωz = −0.5 is
probably a non-centrifugal instability as it is continuously connected to the instability
present at Ωz = 0. We recall, based on the discussion in § 3.1, that the Taylor–Green
vortices are centrifugally stable at Ωz=0 if there is no axial flow. The other instability
domain, associated with the centrifugal instability, is similar to the unstable domain
captured by σ ∗C in figure 8(e). For E=0.5, corresponding to strongly non-axisymmetric
streamlines, the non-centrifugal instability domain in the σN distribution (figure 8c) is
larger than that for E = 0.75, with the corresponding centrifugal instability domain
being smaller. The criterion based on σ ∗C (figure 8f ) captures the centrifugal instability
domain reasonably well, albeit with an extra feature near x0 ≈ 0, Ωz ≈ −0.5 that is
not present in the σN distribution.

3.4. Axial flow and background rotation
In this section, we consider axial flows quantified by τ = 0.3 and τ = 1.0 for both the
Stuart vortices and the Taylor–Green vortices.

3.4.1. Stuart vortices
There exists at least one unstable streamline for almost the entire plane of 0<ρ < 1

and −2.5 < Ωz <0 for Stuart vortices with τ = 0.3 and τ = 1. We therefore refrain
from showing a contour plot like figure 3 as it would indicate instability almost over
the entire ρ–Ωz plane.

Colour plots of σN and σ ∗C on the ψ̃–Ωz plane for ρ = 0.9, 0.745 and 0.337 at
τ = 0.3 are shown in figure 9. For all three values of ρ, there exist streamlines that
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FIGURE 9. (Colour online) Colour plot of (a–c) σN and (d–f ) σ ∗C as a function of ψ̃
and Ωz for Stuart vortices with (a,d) ρ = 0.9, (b,e) ρ = 0.745 and (c,f ) ρ = 0.337. White
regions in the plots correspond to Re[σN, σ

∗
C ]6 0. All the plots correspond to τ = 0.3. The

solid black curves in (a–c) show the −|Ωz|L,C versus ψ̃ and −|Ωz|U,C versus ψ̃ variations,
as described by (4.2) and (4.3).

display a threshold of |Ωz| = |Ωz|L,N above which they become unstable and a higher
threshold of |Ωz| = |Ωz|U,N above which they become stable (figure 9a–c). For ρ= 0.9
and 0.745, the streamlines in the immediate neighbourhood around the origin (ψ̃ 6
0.05) are unstable for all Ωz > −2.5; this set of unstable streamlines is absent for
τ = 0. The colour plots of σ ∗C are in remarkable qualitative and quantitative agreement
with those of σN for ρ = 0.9, 0.745 (figure 9d,e), but compare poorly with σN for the
strongly elliptic scenario of ρ = 0.337 (figure 9f ).

For τ = 1, which corresponds to a stronger axial flow than τ = 0.3, the colourmaps
of σN and σ ∗C are shown in figure 10. The results are qualitatively similar to those of
τ = 0.3, with the existence of two thresholds |Ωz|L,N and |Ωz|U,N , between which the
streamlines away from the origin are unstable for ρ = 0.9, 0.745 (figure 10a,b). Also,
as shown in figure 10(a,b), τ = 1 corresponds to a larger (compared to τ = 0.3) range
of streamlines around the origin that are unstable for all Ωz >−2.5. The colourmaps
based on σ ∗C continue to be in good qualitative and quantitative agreement with σN
for ρ = 0.9, 0.745, whereas the agreement is poor for ρ = 0.337.

The threshold values |Ωz|L,N and |Ωz|U,N are, in general, functions of both ρ

and ψ̃ . |Ωz|L,N , the threshold above which a given streamline becomes centrifugally
unstable, decreases with an increase in τ , consistent with the observations of Mathur
et al. (2014) that an increase in τ increases the likelihood of centrifugal instability.
However, the larger threshold value |Ωz|U,N , above which a given streamline becomes
centrifugally stable, is invariant with τ . As a consequence, for large enough |Ωz|,
streamlines far from the origin remain centrifugally stable even for large values of
τ , thus suggesting that the results of Mathur et al. (2014) for Ωz = 0 cannot be
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FIGURE 10. (Colour online) Colour plot of (a–c) σN and (d–f ) σ ∗C as a function of ψ̃
and Ωz for Stuart vortices with (a,d) ρ = 0.9, (b,e) ρ = 0.745 and (c,f ) ρ = 0.337. White
regions in the plots correspond to Re[σN, σ

∗
C ]6 0. All the plots correspond to τ = 1.0. The

solid black curves in (a–c) show the −|Ωz|L,C versus ψ̃ and −|Ωz|U,C versus ψ̃ variations,
as described by (4.2) and (4.3).

extended to the case of Ωz 6= 0. Similarly, owing to a new set of streamlines around
the origin becoming centrifugally unstable for τ > 0, the τ = 0 results cannot be
simply extended to the case of τ > 0. The relevance of the solid black curves in
figures 9(a–c) and 10(a–c) is discussed in § 4.

3.4.2. Taylor–Green vortices
We consider axial velocity strengths of τ = 0.3 and τ = 1.0 in this subsection too.

Figure 11 shows the variations of σ ∗C and σN as a function of x0 and Ωz for three
different values of E at τ = 0.3. For E= 1, as shown in figure 11(a,d), the variation
in σ ∗C is in close agreement with σN over the entire x0–Ωz plane, with some differences
in the growth rate magnitudes for the streamlines close to the edge of the vortex
(x0 .π/2).

For E = 0.75, a new smaller domain of instability emerges close to Ωz = 0 in the
σN distribution (figure 11b), whereas σ ∗C does not pick up this new instability domain
(figure 11e). While σ ∗C captures the centrifugal instability for x0 & 0.51, it does not
predict the instability present in the region x0 . 0.51, Ωz >−0.7 and wrongly predicts
instability for x0 6 0.39,Ωz 6−0.707. The comparison between σN and σ ∗C for E= 0.5
is qualitatively similar to that of E = 0.75, albeit with a larger domain for which
σ ∗C wrongly predicts instability. Upon increasing the axial velocity parameter τ to
1.0 (figure 12), we observe an improvement in the agreement between σ ∗C and σN .
Specifically, the existence of two separate bands of unstable streamlines for a fixed
Ωz is predicted by σ ∗C for E= 1 and E= 0.75.
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FIGURE 11. (Colour online) Colour plot of (a–c) σN and (d–f ) σ ∗C as a function of x0 and
Ωz for Taylor–Green vortices with (a,d) E = 1, (b,e) E = 0.75 and (c,f ) E = 0.5. White
regions in the plots correspond to Re[σN, σ

∗
C ]6 0. All the plots correspond to τ = 0.3. The

solid black curves in (a–c) show the −|Ωz|L,C versus x0 and −|Ωz|U,C versus x0 variations,
as described by (4.2) and (4.3).
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FIGURE 12. (Colour online) Colour plot of (a–c) σN and (d–f ) σ ∗C as a function of x0 and
Ωz for Taylor–Green vortices with (a,d) E = 1, (b,e) E = 0.75 and (c,f ) E = 0.5. White
regions in the plots correspond to Re[σN, σ

∗
C ]6 0. All the plots correspond to τ = 1.0. The

solid black curves in (a–c) show the −|Ωz|L,C versus x0 and −|Ωz|U,C versus x0 variations,
as described by (4.2) and (4.3).

Similar to the thresholds introduced in the discussion of figure 8 for τ = 0, we
define corresponding |Ωz|L,N and |Ωz|U,N for the centrifugal instability domains for
each x0 in figures 11(a–c) and 12(a–c). The lower threshold |Ωz|L,N for streamlines
with x0 6 0.55 is zero for τ = 0.3 and E= 1 (figure 11a). The corresponding range of
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streamlines for which |Ωz|L,N = 0 at τ = 0.3 are x0 6 0.5 and x0 6 0.46 for E = 0.75
and E= 0.5, respectively. With a further increase in τ to 1, the range of streamlines
with |Ωz|L,N = 0 spreads to larger values of x0. For a small range of streamlines close
to the edge of the vortex, |Ωz|L,N is invariant with τ for τ 6 1.

For each of E = 1, 0.75 and 0.5, the variation of |Ωz|U,N as a function of x0 is
independent of τ . Recalling that the threshold |Ωz|2,N corresponds to Ro = 1 for
all E in figure 6, we conclude that the criterion Ro < 1 for centrifugal stability
in anticyclonic Taylor–Green vortices is independent of E and τ for τ 6 1. The
significance of the solid black curves in figures 11(a–c) and 12(a–c), which capture
the upper threshold |Ωz|U,N well, is discussed in § 4.

4. Discussion and conclusions

In this paper, we derived a criterion for centrifugal instability in an axisymmetric
vortex with axial flow and background rotation. The criterion was then heuristically
extended to non-axisymmetric vortices. The resulting non-axisymmetric criterion
(2.10), which converges to the criterion of Bayly (1988) in the absence of background
rotation and axial flow, was then evaluated for two different vortex models: the Stuart
vortices and the Taylor–Green vortices. For Taylor–Green vortices with no background
rotation and large axial flow, σ ∗C is shown to be reasonably accurate for streamlines
satisfying S . 0.2, with S being the extent of non-axisymmetry. An investigation
of how the threshold axial flow, beyond which centrifugal instability emerges in
Taylor–Green vortices with no background rotation, varies as a function of x0 and E
would be worthwhile.

For Stuart and Taylor–Green vortices without an axial flow, the criterion (2.10)
based on σ ∗C performs remarkably well in delineating the stable and unstable regions
in the ρ–Ωz and E–Ωz planes, respectively. This criterion is also shown to perform
qualitatively and quantitatively better than the sufficient criterion proposed by Sipp
& Jacquin (2000). In the presence of both axial flow and background rotation, our
criterion accurately predicts the range of centrifugally unstable streamlines and their
growth rates for sufficiently large values of ρ and E.

We now explain some of the numerical results in § 3 using the criterion in (2.10).
In the absence of an axial flow, the criterion for instability in (2.10) reduces to

−(σ ∗C{1,2})2 =
(

4π

T
+ 2Ωz

)(
1
T

dΓ
dψ
+ 2Ωz

)
< 0, (4.1)

as already shown in (3.5). Restricting our analysis to streamlines in vortices for which
T and dΓ/dψ are both positive, we consider the variation of (σ ∗C{1,2})

2 with Ωz. At
Ωz = 0, the criterion in (4.1) is not satisfied, and the corresponding streamline is
centrifugally stable. As Ωz is decreased from zero, (σ ∗C{1,2})

2 becomes positive first at
Ωz= (−1/2T)min(4π, dΓ/dψ). For every streamline in figures 5(b,e) and 8(d–f ), the
threshold |Ωz|L,C is therefore given by

|Ωz|L,C = (1/2T)min(4π, dΓ/dψ), (4.2)

with the C in the subscript referring to the criterion in (4.1). The above threshold is
an estimate of the threshold |Ωz|L,N found in the corresponding σN distributions. The
outermost streamline in both Stuart (x0 = π) and Taylor–Green (x0 = π/2) vortices
corresponds to T→∞, thus resulting in |Ωz|L,C = 0 based on (4.2).
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Upon increasing |Ωz| further beyond |Ωz|L,C for a given streamline, (σ ∗C{1,2})
2

becomes negative again at

|Ωz|U,C = (1/2T)max(4π, dΓ/dψ), (4.3)

which is an estimate of the threshold |Ωz|U,N above which the streamline becomes
centrifugally stable based on σN .

In Stuart vortices with no axial flow (τ = 0), |Ωz|L,C and |Ωz|U,C accurately capture
the centrifugally unstable domain on the ψ̃–Ωz plane for both ρ = 0.745 (solid black
curves in figure 5a) and ρ= 0.602 (solid black curves in figure 5d). We recall that the
maximum of |Ωz|U,C among all the streamlines for a given ρ represents the threshold
|Ωz|2,C plotted in figure 3.

In the presence of an axial flow, the upper threshold estimate |Ωz|U,C in (4.3)
remains remarkably accurate in predicting the maximum magnitude of rotation
above which streamlines in the Stuart vortices with ρ = 0.9 and ρ = 0.745 become
centrifugally stable (the bottom solid black curves in figures 9a,b and 10a,b). The
lower threshold |Ωz|L,C , however, does not capture the centrifugal instability induced
by the axial flow effects in the streamlines around the origin.

In Taylor–Green vortices, |Ωz|L,C is accurate in describing the lower threshold for
τ = 0 (figure 8a–c) whereas |Ωz|U,C remains accurate even in the presence of axial
flow (figures 8a–c, 11a–c and 12a–c). In summary, |Ωz|U,C represents a reasonably
accurate estimate of |Ωz|U,N for both Stuart and Taylor–Green vortices with τ 6 1, and
hence its maximum among all streamlines represents an estimate of |Ωz|2,N beyond
which the vortex with a specific value of ρ or E is centrifugally stable.

An interesting observation based on figures 9(f ), 10(f ), 11(e,f ) and 12(e,f ) is that
σ ∗C fails to predict the instability for |Ωz| < |Ωz|L,C , and wrongly predicts instability
well above |Ωz| = |Ωz|L,C for a range of streamlines around the origin. This range of
streamlines, for which σ ∗C fails, coincides with the region to the left of the point of
intersection between the |Ωz|L,C and |Ωz|U,C curves plotted in the corresponding σN
figures. The point of intersection between |Ωz|L,C and |Ωz|U,C occurs at dΓ/dψ = 4π,
and the criterion based on σ ∗C (2.10) is therefore observed to fail on streamlines with
dΓ/dψ > 4π in the presence of background rotation and/or axial flow.

In the case of cyclonic rotation, i.e. Ωz > 0, the criterion in (4.1) is not satisfied
for all Ωz if T > 0 and dΓ/dψ > 0. Therefore, a centrifugally stable vortex (with
no axial flow and background rotation) remains centrifugally stable with the addition
of cyclonic rotation, a result consistent with the results of Sipp et al. (1999). It
would furthermore be worthwhile to investigate the validity of (2.10) in describing
centrifugal instability in vortices that are centrifugally unstable even without axial
flow and background rotation.

The heuristic transformation from the axisymmetric to non-axisymmetric criterion
presented in § 2 is not unique, and other ways of expressing criterion (2.8) in terms
of Γ and T could be explored. For example, the denominator of the first term in
criterion (2.8) could also be rewritten to give

(σ ∗C{1,2})
2 =

[
4(dw/dψ)2(Ωz +ψ ′/r)2

(1/r2)(d(rψ ′)/dψ − 2)2 + (dw/dψ)2

− 2
(
ψ ′

r
+Ωz

)(
ψ ′

r
d(rψ ′)

dψ
+ 2Ωz

)]
> 0, (4.4)

which would then not involve dT/dψ when ψ ′ and r are written in terms of Γ and T .
It would be interesting to evaluate the accuracy of the resulting criterion, which would
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still converge to the exact criterion of Bayly (1988) for Ωz=0 and τ =0, in describing
centrifugal instability in non-axisymmetric vortices. An exact analytical criterion to
describe centrifugal instability in arbitrarily non-axisymmetric vortices remains elusive.
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