J. Appl. Prob. 53, 1111-1124 (2016)
doi:10.1017/jpr.2016.68
© Applied Probability Trust 2016

UNIVERSALITY OF LOAD BALANCING
SCHEMES ON THE DIFFUSION SCALE

DEBANKUR MUKHERIJEE,* ** Eindhoven University of Technology

SEM C. BORST,* Eindhoven University of Technology and Nokia Bell Labs
JOHAN S. H. VAN LEEUWAARDEN,* Eindhoven University of Technology
PHILIP A. WHITING,*** Macquarie University

Abstract

We consider a system of N parallel queues with identical exponential service rates and
a single dispatcher where tasks arrive as a Poisson process. When a task arrives, the
dispatcher always assigns it to an idle server, if there is any, and to a server with the
shortest queue among d randomly selected servers otherwise (1 < d < N). This load
balancing scheme subsumes the so-called join-the-idle queue policy (d = 1) and the
celebrated join-the-shortest queue policy (d = N) as two crucial special cases. We
develop a stochastic coupling construction to obtain the diffusion limit of the queue
process in the Halfin—Whitt heavy-traffic regime, and establish that it does not depend
on the value of d, implying that assigning tasks to idle servers is sufficient for diffusion
level optimality.

Keywords: Join-the-idle-queue policy; join-the-shortest-queue policy; load balancing;
power of two; routeing; sample path comparison; stochastic coupling; supermarket model
2010 Mathematics Subject Classification: Primary 60K25; 68M20

Secondary 60K30; 90B18; 90B36

1. Introduction

In this paper we establish a universality property for a broad class of load balancing schemes
in a many-server heavy-traffic regime. While the specific features of load balancing policies
may considerably differ, the principal purpose is to distribute service requests or tasks among
servers or geographically distributed nodes in parallel-processing systems. Well-designed load
balancing schemes provide an effective mechanism for improving relevant performance metrics
experienced by users while achieving high resource utilization levels. The analysis and design
of load balancing policies has attracted strong renewed interest in the last several years, mainly
motivated by significant challenges involved in assigning tasks (e.g. file transfers, compute
jobs, data base look-ups) to servers in large-scale data centers.

Load balancing schemes can be broadly categorized as static (open loop), dynamic (closed
loop), or some intermediate blend, depending on the amount of real-time feedback or state
information (e.g. queue lengths or load measurements) that is used in assigning tasks. Within
the category of dynamic policies, we can further distinguish between push-based and pull-based
approaches, depending on whether the initiative resides with a dispatcher actively collecting
feedback from the servers, or with the servers advertizing their availability or load status.

Received 15 October 2015; revision received 29 February 2016.

* Postal address: Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands.
** Email address: d.mukherjee @tue.nl

*** Postal address: Department of Engineering, Macquarie University, North Ryde, NSW 2109, Australia.

1111

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:d.mukherjee@tue.nl?subject=J. Appl. Prob.%20paper%2016000
https://doi.org/10.1017/jpr.2016.68

1112 D. MUKHERIJEE ET AL.

The use of state information naturally allows dynamic policies to achieve better performance
and greater resource pooling gains, but also involves higher implementation complexity and
potentially substantial communication overhead. The latter issue is particularly pertinent in
large-scale data centers, which deploy thousands of servers and handle massive demands, with
service requests coming in at huge rates.

In the present paper we focus on a basic scenario of N parallel queues with identical servers,
exponentially distributed service requirements, and a service discipline at each individual
server that is oblivious to the actual service requirements (e.g. first-come—first-served). In
this canonical case, the so-called join-the-shortest-queue (JSQ) policy has several strong op-
timality properties, and, in particular, minimizes the overall mean delay among the class of
nonanticipating load balancing policies that do not have any advance knowledge of the service
requirements [3], [16], [18]. (Relaxing any of the three abovementioned assumptions tends
to break the optimality properties of the JSQ policy, and renders the delay-minimizing policy
quite complex or even counterintuitive; see, for instance, [5], [7], and [17].)

In order to implement the JSQ policy, a dispatcher requires instantaneous knowledge of the
queue lengths at all the servers, which may give rise to a substantial communication burden, and
may not be scalable in scenarios with large numbers of servers. The latter issue has motivated
consideration of so-called JSQ(d) policies, where the dispatcher assigns an incoming task to
a server with the shortest queue among d servers selected uniformly at random. Mean-field
limit theorems in [9] and [15] indicate that even a value as small as d = 2 yields significant
performance improvements in a many-server regime, in the sense that the tail of the queue
length distribution at each individual server falls off much more rapidly compared to a strictly
random assignment policy (d = 1). This is commonly referred to as the ‘power-of-two’ effect.
While these results were originally proved for exponential service requirement distributions,
they have recently been extended to general service requirement distributions in [2].

In this paper we consider a related but different family of load balancing schemes termed
JIQ(d), where the dispatcher always assigns an incoming task to an idle server, if there is
any, and to a server with the shortest queue among d uniformly at random selected servers
otherwise. Observe that the JIQ(N) scheme coincides with the ordinary JSQ policy, while the
JIQ(1) scheme corresponds to the so-called join-the-idle-queue (JIQ) policy considered in [1],
[8], and [12]. The latter policy offers particularly attractive properties, both from a scalability
perspective and from a performance viewpoint. Since only knowledge of the empty queues
is required, it suffices for servers to send an ‘invite’ notice to the dispatcher whenever they
become idle. This generates at most one message per task and ensures low communication
overhead even in large-scale systems with many servers. At the same time, fluid-limit theorems
in [12] indicate that, for any fixed subcritical load per server, the equilibrium probability of a
task experiencing a wait because no idle server is available, asymptotically vanishes in a regime
where the number of servers grows large.

We consider a regime where the number of servers N grows large, but additionally assume
that the capacity slack per server diminishes as 8/+/N, i.e. the load per server approaches unity
as 1 — B/+/N, with B > 0 some positive coefficient. In terms of the aggregate traffic load
and total service capacity, this scaling corresponds to the so-called Halfin—-Whitt heavy-traffic
regime which was introduced in the seminal paper [6] and has been extensively studied since.
The setup in [6], as well as the numerous model extensions in the literature, predominantly
concerned a setting with a single centralized queue and server pool, rather than a scenario
with parallel queues. To the best of our knowledge, the only exception is a recent study of
Eschenfeldt and Gamarnik [4], who considered a parallel-server system with the ordinary JSQ

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

Universality of load balancing schemes 1113

policy, and showed that in the Halfin—Whitt regime the diffusion-scaled system occupancy state
weakly converges to a two-dimensional reflected Ornstein—Uhlenbeck process.

We exploit a stochastic coupling construction to extend the latter result to the entire class
of JIQ(d) policies. We specifically establish that the diffusion limit, rather surprisingly, does
not depend on the value of d at all, so that in particular the JIQ and JSQ policies yield the
same diffusion limit. The latter property implies that in a many-server heavy-traffic regime,
ensuring that tasks are assigned to idle servers whenever possible, e.g. using a low-overhead
invite mechanism, suffices to achieve optimality at the diffusion level, and not just at the fluid
level as proved by Stolyar [12] for the under-loaded scenario. It further suggests that using
any additional queue length information beyond the knowledge of empty queues yields only
limited performance gains in large-scale systems in the Halfin—Whitt heavy-traffic regime.

The remainder of the paper is organized as follows. In Section 2 we present a detailed
model description and formulate the main result. In Section 3 we develop a stochastic coupling
construction to compare the system occupancy state under various task assignment policies. We
then combine in Section 4 the stochastic comparison results with some of the derivations in [4]
to obtain the common diffusion limit and finally make a few concluding remarks in Section 5.

2. Model description

Consider a system with N parallel queues with independent and identical servers having unit-
exponential service rates and a single dispatcher. Tasks arrive at the dispatcher as a Poisson
process of rate Ay, and are instantaneously forwarded to one of the servers. Tasks can be
queued at the various servers, possibly subject to a buffer capacity limit as further described
below, but cannot be queued at the dispatcher. The dispatcher always assigns an incoming task
to an idle server, if there is any, and to a server with the shortest queue among d uniformly
at random selected servers otherwise (1 < d < N), ties being broken arbitrarily. The buffer
capacity at each of the servers is b > 2 (possibly infinite), and when a task is assigned to a
server with b pending tasks, it is instantly discarded.

As mentioned earlier, the above-described scheme coincides with the ordinary JSQ policy
when d = N, and corresponds to the JIQ policy considered in [1], [8], and [12] when d = 1.

Under the JSQ policy, the dispatcher always assigns an incoming task to the server with
the minimum queue length. As stated in the introduction, the JSQ policy has several strong
optimality properties in the symmetric Markovian scenario under consideration. In order to
implement the JSQ policy however, a dispatcher requires instantaneous knowledge of the queue
lengths at all the servers, which may give rise to a substantial communication burden, and may
not be scalable in scenarios with large numbers of servers. In a recent study Eschenfeldt and
Gamarnik [4] characterized the diffusion limit of the system occupancy state in the Halfin—Whitt
heavy-traffic regime.

Under the JIQ policy, the dispatcher assigns an incoming task to an idle server, if there is
any, or to a uniformly at random selected server otherwise. This scheme is of particular interest
because of its low communication overhead, and can be implemented as follows. When a server
becomes idle, it sends an invite message to the dispatcher declaring that it is vacant. Whenever
a task arrives, the dispatcher looks at its list of invite messages. If there are any messages in the
list then it selects one arbitrarily, assigns the task to the corresponding server, and discards the
selected invite message. Otherwise, the dispatcher assigns the task uniformly at random to one
of the servers. In this way the number of messages exchanged per task is at most 1, reducing
the communication overhead and ensuring scalability. Stolyar [12] recently proved that the
probability that there are invite messages approaches 1, and, hence, the fraction of tasks that

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

1114 D. MUKHERIJEE ET AL.

incur a nonzero wait tends to 0, in a fluid regime where the number of servers and total arrival
rate grow large in proportion with Ay /N — A < 1l as N — oo.

In the present paper we consider the Halfin—Whitt heavy-traffic regime where the arrival rate
increases with the number of servers as Ay = N — B+/N for some 8 > 0. We denote the class
of above-described policies by TIV)(d), where the superscript N indicates that the diversity
parameter d is allowed to depend on the number of servers. For any policy IT € IT"")(d) and
buffer size b, let Q™ = (Q1, le, R Qll;[), where an is the number of servers with a queue
length greater than or equal toi = 1, ..., b, including the possible task in service. Also, let
XU = (X n x 2“, X };I) be a properly centered and scaled version of the vector Q”, with
XM= (- N)/v/N and XI' = QI1/\/N fori = 2,...,b. The reason why Q! is centered
around N while an, i =2,...,b, are not is because the fraction of servers with exactly one
task tends to 1 as N grows large, as we will see. In the case of a finite buffer size b < co, when
a task is discarded, we call it an overflow event, and we denote by L“(t) the total number of
overflow events under policy IT up to time ¢.

The next theorem states our main result. In the rest of the paper let D be the set of all
right-continuous functions from [0, co) to R having left limits, and let 2 denote convergence
in distribution.

Theorem 1. For any policy T1 € TI™N)(d), if. fori = 1,2, ...,XIH(O) 2 X;(0) in R as
N — oo with X;(0) = 0 fori > 3, then the processes {Xin) }r>0 2 {Xi(®)}t=0 in D, where
Xi(t) =0fori > 3and (X1(t), X>2(t)) are unique solutions in D x D of the stochastic integral
equations

t
X1(1) = X1(0) + vV2W () — Bt +/ (=X1(s) + X2(s)) ds — Ur (1),
0
' (D
Xo(r) = X2(0) + U1 (1) +/0 (=X2(s)) ds,

where W is a standard Brownian motion and U is the unique nondecreasing nonnegative
process in D satisfying fooo 1[X () < 0]1dU;(¢) = 0.

The above result is proved in [4] for the ordinary JSQ policy. Our contribution is to develop a
stochastic ordering construction and establish that, somewhat remarkably, the diffusion limit is
the same for any policy in IT™")(d). In particular, the JIQ and JSQ policies yield the same
diffusion limit. The latter property implies that in the Halfin—Whitt heavy-traffic regime,
assigning tasks to idle servers, e.g. through a lightweight invite mechanism, suffices to achieve
optimality at the diffusion level. It further suggests that using any additional queue length
information beyond the knowledge of empty queues yields only limited performance gains in
large-scale systems in the Halfin—-Whitt heavy-traffic regime.

Remark 1. Note that, as in [4], we assume the convergence of the initial state, which implies
that the process has to start from a state in which the number of vacant servers as well as the
number of servers with two tasks scale with +/ N, and the number of servers with three or more

tasks is 0(+/N).

3. Coupling and stochastic ordering

In this section we prove several stochastic comparison results for the system occupancy state
under various load balancing schemes for a fixed number of queues N (and, hence, we shall

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

Universality of load balancing schemes 1115

often omit the superscript NV in this section). These stochastic ordering results will be leveraged
in the next section to prove the main result stated in Theorem 1.

In order to bring out the full strength of the stochastic comparison results, we will in fact
consider a broader class of load balancing schemes oW .= {li(dp,d;,...,dp—1):dy = N,
1<di <N,1<i<b-—1,b > 2}, and show that Theorem 1 actually holds for this entire
class. In the scheme I1(dy, dy, . . ., dp—1), the dispatcher assigns an incoming task to the server
with the minimum queue length among dy, (possibly a function of N) servers selected uniformly
at random when the minimum queue length across the systemis k, k = 0,1,...,b — 1. As
before, b represents the buffer size, and when a task is assigned to a server with b outstanding
tasks, it is instantly discarded.

3.1. Stack formation and deterministic ordering

Let us consider the servers arranged in nondecreasing order of their queue lengths. Each
server along with its queue can be thought of as a stack of items. The ensemble of stacks then
represent the empirical cumulative distribution function (CDF) of the queue length distribution,
and the ith horizontal bar corresponds to an (for the concerned policy IT). The items are
added to and removed from the various stacks according to some rule. Before proceeding to the
coupling argument, we first state and prove a deterministic comparison result under the above
setting.

Consider two ensembles A and B with the same total number of stacks. The stacks in ensem-
ble A have a maximum capacity of b items and those in ensemble B have a maximum capacity
of b’ items with b < »’. For two such ensembles, a step is said to follow Rule(k, [, 14, Ip) if
either addition or removal of an item in both ensembles is done in that step as follows.

(i) Removal.

Anitem is removed (if any) from the kth stack from both ensembles or an item is removed
from some stack in ensemble A but no removal is done in ensemble B.

(ii) Addition.

(ii.a) System A. If the minimum stack height is less than b — 1 then the item is added to
the /th stack. Otherwise, the item is added to the [4th stack. If the item lands on a
stack with height b then it is dropped.

(ii.b) System B. If the minimum stack height is less than » — 1 then the item is added to
the /th stack. Otherwise, if the minimum stack height is precisely equal to b — 1,
the item is added to the /pth stack. When the minimum stack height in the system
is at least b the item can be sent to any stack. If the item lands on a stack with
height 4’ then it is dropped.

Then we have the following result.

Proposition 1. Consider two ensembles A and B as described above with the total number
of stacks being N, stack capacities respectively being b and b',b < b', and with Q4 < QF
componentwise, i.e. Ql’.“ < QlB for alli > 1. The componentwise ordering is preserved if at
any step Rule(k, [, 14, p) is followed with 15 > lp and eitherl = 1 orl > Ip.

Before diving deeper into the proof of this proposition, let us discuss the high-level intuition
behind it. First observe that if Q4 < @2, and an item is added (removed) to (from) the stack
with the same index in both ensembles, then the componentwise ordering will be preserved.

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

1116 D. MUKHERIJEE ET AL.

Hence, the preservation of ordering at the time of removal, and at the time of addition when, in
both ensembles, the minimum stack height is less than b — 1, is fairly straightforward.

Now, in other cases of addition, since in ensemble A the stack capacity is b (< b’), if the
minimum stack height in ensemble B is at least b, the ordering is preserved trivially. This leaves
us with only the case when the minimum stack height in ensemble B is precisely equal to b — 1.
In this case, when the minimum stack height in ensemble A is also precisely equal to b — 1, the
preservation of the ordering follows from the assumption that /4 > [p, which ensures that if in
ensemble A the item is added to some stack with b — 1 items (and, hence, increases Q?), then
the same will be done in ensemble B whenever Q;;‘ =0 f . Otherwise, if the minimum stack
height in ensemble A is less than b, then assuming that either [= 1 (i.e. the item will be sent
to the minimum queue) or [> [p (i.e. an increase in Qg‘ implies an increase in Qf) ensures
the preservation of ordering.

Proof of Proposition 1. Suppose that after following Rule(k, [, [4,) the updated lengths
of the horizontal bars of ensemble IT are denoted by (Qll_[an ..., I1 = A, B. We need to
show that 0 < QP foralli > 1.

Forensemble IT, let us define Ity (c) := max{i: an >N—c+1},c=1,...,N,II = A, B.
Define Iti(c) to be O if QF is (and, hence, all the an values are) less than N — ¢ 4+ 1. Note
that 74(c) < Ip(c) forallc = 1,2, ..., N because of the initial ordering.

Now if the rule produces a removal of an item then the updated ensemble will have the values

o — oM —1 fori=Ink),
! an otherwise,

if In(k) > 1; otherwise, all the an values remain unchanged. For example, in Figure 1,
b =5, N = 10, and at the time of removal k = 7. For this configuration, It;(7) = 4 since
QE =5>10—-74+1=4, but an = 2 < 4. Hence, QE is reduced and all the other values
remain unchanged. Note that the specific label of the servers does not matter here. So after the
removal/addition of an item we consider the configuration as a whole by rearranging it again
in nondecreasing order of the queue lengths.

Since in both A and B the values of Q; remain unchanged except for i = I4(k) and Ip(k),
it suffices to prove the preservation of the ordering for these two specific values of i. Now, for
i =1Ia(k),

of=0f-1=0f -1=0F

If Ip(k) = I4(k) then we are done by the previous step. If Ip(k) > I4(k) then, from the
definition of 7, (k), observe that Ig(k) ¢ {i: Q# > N —k + 1} and, hence, 0 < N —k +1

0Os o Os

_. o : (N

0; s

o))

0, 0,
123456@8910 1 2 3 45 6 7 8 910

FIGURE 1: Removal of an item from the ensemble.

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

Universality of load balancing schemes 1117

Q5 QS
0, 0,
B 0 0,
Q2 Q2
Q1 Ql
1@345678910 1 23 45 6 7 8 910

FIGURE 2: Addition of an item to the ensemble.

for i = Ig(k). Therefore, fori = Ip(k),
0} <N-k=<0Ff —1=0F

On the other hand, if the rule produces the addition of an item to stack / then the values will be
updated as

o — oM +1 fori=1In()+1,
r an otherwise,

if Im(l) < by, with by the stack capacity of the corresponding system; otherwise, the values
remain unchanged. In Figure 2 we have / = 2 and, for that particular configuration, /7 (2) = 2.
Hence, Q3H is incremented by one and the other variables remain fixed.

It is therefore enough to consider the ith horizontal bars for i = (I4(I) + 1), (Ip() + 1)
when /4 (/) < b. According to the addition rule there are several cases which we now consider
one by one.

e First we consider the case when in both ensembles the minimum stack height is less than
b —1. Then, by part (ii) of the rule, both incoming items are added to the /th stack. When
considering ensemble B, we may neglect the case in which I5(I) > b since then the
value at Ig (/) + 1 does not matter. Thus, assume that Ig(/) <b—1andseti = Ig(l)+1
so that

0f =0 +1=0f +1= 0}

If I4(I) = Ig(l) then we are done by the previous case. If I4(I) + 1 < Ip(l) then it
follows from the definition that 04 < N —I+1and Q8 > N —1+1fori = I,() + 1.
Hence,

O =0 +1=<N—-I+1=0f <0F

e If the minimum stack height in A is less than b — 1 and that in B is precisely b — 1,
then according to the rule, the incoming item is added to the /th stack in A and the
Ipth stack in B. We show here that the componentwise ordering will be preserved if
either / = 1 or [> [p. Observe that if / = 1 then I4() < b — 1, which implies that
I4(I) +1 < b — 1. But, since the minimum stack heightin Bisb — 1 foralli <b — 1
and, in particular, for i = I4(l) + 1, QlB =N> QIA Now we consider the case when
| > lp. Also, observe that the fact that the minimum stack height in B is b — 1 implies
that Ip(Ig) > b—1 > I4(I4) (sinceif 14 (/) = b then nothing will be changed and so we
do not need to consider this case). Then againif /4 (I) = Ip(Ip), we are done. Therefore,
suppose that 74 (I) < Ip(Ip), which implies that /4(I) + 1 < Ip(/p). By definition, for

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

1118 D. MUKHERIJEE ET AL.

i =I1s()+1,wehave Q! < N—I+1land Q¥ > N—Ig+1> N —I+1. Combining
these two inequalities yields

0f =00 +1<N-1+1<0F =0F

o If the minimum stack height in both ensembles is b — 1 then recall that the incoming item
is added to the [4th stack in A and to the /pth stack in B with /4 > [p. Arguing similarly
as in the previous case, we can conclude that the inequality is preserved.

e Finally, if the minimum stack height in B is larger than or equal to b, then the preservation
of the inequality is trivial.

Hence, the proof of the proposition is complete.]

3.2. The coupling construction

We now construct a coupling between two systems A and B following any two schemes, say,
Mg =1y, L1, ..., Ip—1)and g = T1(dp, d1, ...,dy_1) in nw, respectively, and combine
it with Proposition 1 to get the desired stochastic ordering results.

For the arrival process, we couple the two systems as follows. First we synchronize the
arrival epochs of the two systems. Now assume that in systems A and B the minimum queue
lengths are k and m, respectively, k < b — 1 and m < b’ — 1. Therefore, when a task arrives,
the dispatchers in A and B have to select /; and d,, servers, respectively, and then have to
send the task to the one having the minimum queue length among the respectively selected
servers. Since the servers are being selected uniformly at random, we can assume, without loss
of generality, as in the stack construction, that the servers are arranged in nondecreasing order
of their queue lengths and are indexed in increasing order. Hence, observe that, when a few
server indices are selected, the server having the minimum of those indices will be the server
with the minimum queue length among these. Hence, in this case the dispatchers in A and B
select I} and d,, random numbers (without replacement) from {1, 2, ..., N} and then send the
incoming task to the servers having indices to be the minimum of those selected numbers. To
couple the decisions of the two systems, at each arrival epoch a single random permutation of
{1,2, ..., N}isdrawn, denoted by >WN .= (01,09, ...,0x). Define o() :=minj<; o;. Then
observe that system A sends the task to the server with the index o,y and system B sends the
task to the server with the index o(g4,,). Since at each arrival epoch both systems use a common
random permutation, they take decisions in a coupled manner.

For the potential departure process, couple the service completion times of the kth queue in
both scenarios, k = 1,2, ..., N. More precisely, for the potential departure process, assume
that we have a single synchronized exp(V) clock independent of arrival epochs for both systems.
Now, when this clock rings, a number & is uniformly selected from {1, 2, ..., N} and a potential
departure occurs from the kth queue in both systems. If at a potential departure epoch an empty
queue is selected then we do nothing. In this way the two schemes, considered independently,
still evolve according to their appropriate statistical laws.

Loosely speaking, our next result is based upon the following intuition. Suppose that we
have two systems A and B with two different schemes IT,4 and ITp having buffer sizes b and b’
(b < b'), respectively. Also suppose that, for these two system, initially, QI.A < QlB for all
i =1,...,b. Below we develop some intuition as to under what conditions the initial ordering
of the Q;-values will be preserved after one arrival or departure.

For the departure process, if we ensure that departures will occur from the kth largest queue
in both systems for some k € {1, 2, ..., N} (ties are broken in any way), then observe that the
ordering will be preserved after one departure.

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

Universality of load balancing schemes 1119

In the case of the arrival process, assume that, when the minimum queue length in both
systems is less than b — 1, the incoming task is sent to the server with the same index. In that
case it can be seen that the Q;-values in A and B will preserve their ordering after the arrival
as well. Next consider the case when the minimum queue length in both systems is precisely
b — 1. Now, in A, an incoming task can either be rejected (and will not change the Q-values at
all) or be accepted (and QEA will increase by 1). Here we ensure that if the incoming task is
accepted in A then it is accepted in B as well unless QZIA < QEB , in which case it is clear that
the initial ordering will be preserved after the arrival. Finally, if the minimum queue length in
A is less than b — 1 and that in B is precisely b — 1, then the way to ensure the inequality is
either by making the scheme IT4 send the incoming task to the server with minimum queue
length (and, hence, it will only increase the value of Q,H" for some i < b, leaving other values
unchanged) or by letting the selected server in IT4 have a smaller queue length than the selected
server in I1p. The former case corresponds to the condition d = N and the latter corresponds
to the condition d < dj_1, either of which has to be satisfied, in order to ensure the preservation
of the ordering. This whole idea is formalized below.

Proposition 2. For two schemes 114 = (g, 11, ...,lp—1) and Tlg = T(dy, dy, ..., dy_1)
withb < b, assume thatly = --- =1lp_o =dy = --- =dp_» = d,lp_1 < dp_1, and either
d=Nord <dy_1. Then

() {0 (D}i>0 <« (0] (Diz0 fori =1,2,....,b,
Gi) {20, @M () + LM (1)}=0 =g X0, O (1) + L5 (1)},
(i) {A(®)}i>0 > {Zf/:bJr] Q?B (t)}r>0 almost surely under the coupling defined above,

for any fixed N € N, where A(t) := L"A(t) — L8 (¢), provided that at time t = 0 the above
ordering holds.

Proof. To prove the stochastic ordering, we use the coupling of the schemes as described
above and show that the ordering holds for the entire sample path. That is, the two processes
arising from the above pair of schemes will be defined on a common probability space and it
will then be shown that the ordering is maintained almost surely over all time.

Note that we shall consider only the event times 0 = #y < #; < ---, i.e. the time epochs
when arrivals or potential service completions occur and apply forward induction to show that
the ordering is preserved. By assumption, the orderings hold at time 7y = 0.

(1) The main idea of the proof is to use the coupling and show that at each event time the
joint process of the two schemes follows a rule Rule(k, /, /4, /p) described in Subsection 3.1,
with some random k, [, [4, and Ip such that [4 > Ip and either [l = 1 or [> [p, and apply
Proposition 1. We now identify the rule at event time #; and verify that the conditions of
Proposition 1 hold. If the event time #; is a potential departure epoch then, according to the
coupling similarly as in the stack formation, a random k € {1, 2, ..., N} will be chosen in
both systems for a potential departure. Now assume that #; is an arrival epoch. In that case if
the minimum queue length in both systems is less than b — 1 then both schemes T4 and I1p
will send the arriving task to the o4 th queue. If the minimum queue length in scheme Iy is
b — 1 then the incoming task is sent to the o(,_,)th queue, and if in scheme ITg the minimum
queue length is b — 1 then the incoming task is sent to the o(y,_,)th queue, where we recall that
(01,092, ...,0p) is a random permutation of {1, 2, ..., N}. Therefore, observe that at each
step Rule(o), k, 0, _,), 0(4,_,)) 1s followed.

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

1120 D. MUKHERIJEE ET AL.

Now to check the conditions, first observe that

o = min o0; > min o0; = 0
(p—1) i<l i = i<dp i (dp-1)»

where the second inequality is due to the assumption that [, < dp_1. In addition, we have
assumed that either d = N ord < dp—1. If d = N then the dispatcher sends the incoming
task to the server with the minimum queue length, which is the same as sending to stack 1 as
in Proposition 1. On the other hand, d < dj_ implies that

Od) = mino; = jon Oi = Otdpy)-
Therefore, assertion (i) follows from Proposition 1.

(ii) We again apply forward induction. Assume that the ordering holds at time #(. If the next
event time is an arrival epoch then observe that both sides of the inequality in (ii) will increase,
since if the incoming task is accepted then the Q-values will increase and if it is rejected then
the L-value will increase.

On the other hand, if the next event time is a potential departure epoch then it suffices to
show that if the left-hand side decreases then the right-hand side decreases as well. Indeed,
from assertion (i) we know that Qll_IA < anB and, hence, we can see that if there is a departure
from IT4 (i.e. the kth queue of IT,4 is nonempty) then there will be a departure from Il (i.e.
the kth queue of I1p will be nonempty) as well.

(iii) Assertion (iii) follows directly from (i) and (ii). O

3.3. Discussion

It is worth emphasizing that Proposition 2(i) is fundamentally different from the stochastic
majorization results for the ordinary JSQ policy, and below we contrast our methodology with
some existing literature. As noted earlier, the ensemble of stacks, arranged in nondecreasing
order, represents the empirical CDF of the queue length distribution at the various servers.
Specifically, if we randomly select one of the servers then the probability that the queue length
at that server is greater than or equal to i at time ¢ under policy IT equals (1/N)E an (#). Thus,
assertion (i) of Proposition 2 implies that if we select one of the servers at random then its queue
length is stochastically larger under policy I1p than under policy I14.

The latter property does generally not hold when we compare the ordinary JSQ policy with
an alternative load balancing policy. Indeed, the class of load balancing schemes M) (for the
Nth system say) considered in [14] consists of all the schemes that have instantaneous queue
length information for all the servers and that have to send an incoming task to some server if
there is at least some place available anywhere in the whole system. This means that a scheme
can only discard an incoming task if the system is completely full. Observe that only the JSQ
policy lies both in the class [T™Y) (defined in Section 3) and the class TT™™), because any scheme
in TT™) other than JSQ may reject an incoming task in some situations, where there might
be some place available in the system. In this setup Towsley et al. [14] showed that, for any
scheme T € TI™) and all ¢ >0,

k k
Y va%n = Y YJ@ fork=1.2.....N, 2)
i=1

i=1

{L"SQ(1)}20 <st (L™ (0)}i>0,

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

Universality of load balancing schemes 1121

where Y(I?) (1) is the ith largest queue length at time ¢ in the system following scheme ITand L™ (7)
is the total number of overflow events under policy IT up to time ¢, as defined in Section 2.
Observe that Y, (1;[) can be visualized as the ith largest vertical bar (or stack) as described in
Subsection 3.1. Thus, (2) says that the sum of the lengths of the k largest vertical stacks in a
system following any scheme IT € TT™) is stochastically larger than or equal to that following
the scheme JSQ for any k = 1, 2, ..., N. Mathematically, this ordering can be written as

b b
Y minfk, 0°%0)} = Y minfk, O (1)}

i=1 i=1

forallk =1, ..., N. Incontrast, Proposition 2 shows that the length of the i th largest horizontal
bar in the system following some scheme I14 is stochastically smaller than that following some
other scheme ITp if some conditions are satisfied. Also, observe that the ordering between
each of the horizontal bars (i.e. the Q;) implies the ordering between the sums of the k largest
vertical stacks, but not the other way around. Furthermore, it should be stressed that, in crude
terms, JSQ in our class IT™"), plays the role of upper bound, whereas what (2) implies is almost
the opposite in nature to the conditions we require.

While in [14] no policies with admission control (where the dispatcher can discard an
incoming task even if the system is not full) were considered, in a later paper [11] and also in
[13] the class was extended to a class 1™ consisting of all the policies that have information
about instantaneous queue lengths available, and that can either send an incoming task to some
server with available space or can reject an incoming task even if the system is not full. We
can see that [T™) contains both TT™) and IT™) as subclasses. But then for such a class with
admission control, Sparaggis et al. [11] noted that a stochastic ordering result like (2) cannot
possibly hold. Instead, what was shown in [13] is that, for all # > O,

k k
Y YU + L5 <o Y v @ + L@ forallk € {1,2,.... N}, 3)
i=l1

i=1

Note that the ordering in (3) is the same in spirit as the ordering in Proposition 2(ii) and the
inequalities in (3) are in the language of [13, Definition 14.4], weak submajorization by p, where
p = L™(t) — L’SQ(z). But in this case also our inequalities in Proposition 2(i) imply something
completely orthogonal to what is implied by (3). In other words, the stochastic ordering results
in Proposition 2 provide both upper and lower bounds for the occupancy state of one scheme
with respect to another and are stronger than the stochastic majorization properties for the JSQ
policy existing in the literature. Hence, we also needed to exploit a different proof methodology
than the majorization framework developed in [11], [13], and [14].

4. Convergence on the diffusion scale

In this section we leverage the stochastic ordering established in Proposition 2 to prove the
main result stated in Theorem 1. All the inequalities below are stated as almost-sure statements
with respect to the common probability space constructed under the associated coupling. We
shall use this joint probability space to make the probability statements about the marginals.

Proof of Theorem 1. LetI1 = I1(N,dy, ..., dp—1) be aload balancing scheme in the class
™). Denote by IT; the scheme IT(N, d;) with buffer size b = 2, and let IT, denote the JIQ
policy IT(N, 1) with buffer size b = 2.

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

1122 D. MUKHERIJEE ET AL.

Observe that from Proposition 2 we have, under the coupling defined in Subsection 3.2,

10/ = 0PI = 10]') — " I +10;" (1) — 02 (1)
< ILT@) = LU+ L™ @) - LT @)
<2L™@) “
foralli > 1 and ¢ > 0 with the understanding that Q ;(z) = O for all j > b for a scheme with
buffer . The third inequality above is due to Proposition 2(iii), which in particular says that

(L™ (1)}50 = {L™()};50 = {L™(t)}:>0 almost surely under the coupling. Now we have the
following lemma which we will prove below.

Lemma 1. For all t > 0, under the assumption of Theorem 1, {L™2 ®)}n>1 forms a tight
sequence.

Since L2 (1) is nondecreasing in ¢, the above lemma in particular implies that

L™2)
sup
rei0,71 N

For any scheme IT € ™, from (4) we know that

(02(1) = 2L™2(1)}150 < {QM ())i=0 < (0] (1) + 2L™2 (1)}

Combining (4) and (5) shows that if the weak limits under the VN scaling exist with respect
to the Skorokhod J;-topology, they must be the same for all the schemes in the class TTV),
Also, from Theorem 2 of [4] we know that the weak limit for IT(/N, N) exists and the common
weak limit for the first two components can be described by the unique solution in D x D of
the stochastic differential equations in (1). Hence, the proof of Theorem 1 is complete. t

Lo (5)

Proof of Lemma 1. First we consider the evolution of L™2(¢) as the following unit-jump
counting process. A task arrival occurs at rate Ay at the dispatcher, and if Qll_[' = N then it
sends it to a server chosen uniformly at random. If the chosen server has queue length 2 then
L™ is increased by 1. It is easy to observe that this evolution can be equivalently described as
follows. If Qll_[2 (1) = N then each of the servers having queue length 2 starts increasing L2
by 1 atrate Ay /N. From this description we have

S
L) = A(/ WNQZHZ(S)I[Q?Z(S) = N] ds)
0
with A(-) the unit-rate Poisson process. Now, using Proposition 2, it follows that l[Qll_[2 (s) =

N1 <1[Q]®(s) = Nland 05 (s) < 05°(s), where I3 = T1(N, N). Therefore, it is enough
to prove the stochastic boundedness [10, Definition 5.4] of the sequence

t
M) = A</ %’VQ2“3(S)1[Q?3 (s) = N] ds>.
0

To prove this, we shall use the martingale techniques described, for instance, in [10]. Define
the filtration ¥ = {¥; : t > 0}, where, fort > 0,

t
Fi = a(Q“3(0>, A(/O %Q?S(s)l[Qf“ (s) = N]ds), 01 (5), 037 (): 0 < s < r>.

Then, using a random time change of a unit-rate Poisson process [10, Lemma 3.2] and similar
arguments to those in [10, Lemma 3.4], we have the next lemma.

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

Universality of load balancing schemes 1123
Lemma 2. With respect to the filtration ¥,

t t
MM () = A(/ %NQZH3(S)1[Q?3(S) = N] ds) - / %Q?%s)l[Q?%s) = N]ds
0 0

is a square-integrable martingale with ¥ -compensator

Y
1(1) = f WNQ§3(S)1[Q?3(S)=N]ds.
0

Moreover; the predictable quadratic variation process is given by (M™N))(t) = 1 (1).

Now we apply Lemma 5.8 of [10] which gives a stochastic boundedness criterion for square-
integrable martingales.

Lemma 3. ([10, Lemma 5.8].) Suppose that, for each N > 1, M™) = (MM (1): t > 0}
is a square-integrable martingale (with respect to a specified filtration) with predictable
quadratic variation process (M™N)) = ((M™M)(1): t > 0}. Ifthe sequence of random variables
(MNY(T): N > 1} is stochastically bounded in R for each T > 0, then the sequence of
stochastic processes (M) : N > 1} is stochastically bounded in D.

Therefore, it only remains to show the stochastic boundedness of {(M MY (T): N > 1)} for
each T > 0. Fixa T > 0, and observe that

aw [T 006
(N) _ N 2 I3 _
(M ><T)——N/0 10" () = N1ds

<|: sup ng(S)}/T 1 1[01"(s) = N1y ds. (6)
~ Lieto.r1 VN 0o /N !

From [4] we know that sup, ¢ 7 03 (1)/+/N and fOT(l /NVNQ1P(s) = N1dA(hys) are
both tight. Moreover, since OT(I /N)l[Qll_[3 (s) = N]Ap ds is the intensity function of the
stochastic integral fOT(l /N)l[erl3(s) = N]dA(Xys), which is a tight sequence, we have
the following lemma.

Lemma 4. For all fixed T > 0, fOT(l/«/ﬁ)l[Qll_[3 (s) = N]Ay ds is tight as a sequence in N.

Hence, both terms on the right-hand side of (6) are stochastically bounded and the resulting
stochastic bound on (M ™)) (T') completes the proof of Lemma 1. O

5. Conclusion

In the present paper we have considered a system with symmetric Markovian parallel queues
and a single dispatcher. We established the diffusion limit of the queue process in the Halfin—
Whitt regime for a wide class of load balancing schemes which always assign an incoming task
to an idle server, if there is any. The results imply that assigning tasks to idle servers whenever
possible is sufficient to achieve diffusion level optimality. Thus, using more fine-grained queue
state information will increase the communication burden and potentially impact the scalability
in large-scale deployments without significantly improving the performance.

In ongoing work we are aiming to extend the analysis to the stationary distribution of the
queue process, and, in particular, to quantify the performance deviation from a system with

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

1124 D. MUKHERIJEE ET AL.

a single centralized queue. It would also be interesting to generalize the results to scenarios
where the individual nodes have general state-dependent service rates rather than constant
service rates.

Acknowledgements

This research was financially supported by an ERC Starting Grant and by The Netherlands
Organization for Scientific Research (NWO) through the TOP-GO grant 613.001.012 and
Gravitation Networks grant 024.002.003. Dr. Whiting was supported in part by the Australian
Research grant DP-1592400 and in part by a Macquarie University Vice-Chancellor Innovation
Fellowship.

References

[1] BADONNEL, R. AND BURGESS, M. (2008). Dynamic pull-based load balancing for autonomic servers. In Network
Operations and Management Symposium, NOMS 2008, pp. 751-754.
[2] BRAMSON, M., LU, Y. AND PRABHAKAR, B. (2012). Asymptotic independence of queues under randomized load
balancing. Queueing Systems 71, 247-292.
[3] EPHREMIDES, A., VARAIYA, P. AND WALRAND, J. (1980). A simple dynamic routing problem. /IEEE Trans.
Automatic Control 25, 690-693.
[4] EsCHENFELDT, P. AND GAMARNIK, D. (2015). Join the shortest queue with many servers. The heavy traffic
asymptotics. Preprint. Available at https://arxiv.org/abs/1502.00999v2.
[5] Guprta, V., HARCHOL-BALTER, M., SIGMAN, K. AND WHITT, W. (2007). Analysis of join-the-shortest-queue
routing for web server farms. Performance Evaluation 64, 1062—-1081.
[6] HALFIN, S. AND WHITT, W. (1981). Heavy-traffic limits for queues with many exponential servers. Operat. Res.
29, 567-588.
[7] JONCKHEERE, M. (2006). Insensitive versus efficient dynamic load balancing in networks without blocking.
Queueing Systems 54, 193-202.
[8] Lu, Y. etal. (2011). Join-idle-queue: a novel load balancing algorithm for dynamically scalable web services.
Performance Evaluation 68, 1056-1071.
[9] MITZENMACHER, M. (2001). The power of two choices in randomized load balancing. IEEE Trans. Parallel
Distributed Systems 12, 1094—1104.
[10] PANG, G., TALREJA, R. AND WHITT, W. (2007). Martingale proofs of many-server heavy-traffic limits for
Markovian queues. Prob. Surveys 4, 193-267.
[11] Sparacais, P. D., TOWSLEY, D. AND CASSANDRAS, C. G. (1994). Sample path criteria for weak majorization.
Adv. Appl. Prob. 26, 155-171.
[12] STOLYAR, A. L. (2015). Pull-based load distribution in large-scale heterogeneous service systems. Queueing
Systems 80, 341-361.
[13] TowsLEY, D. (1995). Application of majorization to control problems in queueing systems. In Scheduling Theory
and Its Applications, eds P. Chrétienne et al., John Wiley, Chichester.
[14] TowsLEY, D., SPARAGGIS, P. D. AND CASSANDRAS, C. G. (1992). Optimal routing and buffer allocation for a
class of finite capacity queueing systems. IEEE Trans. Automatic Control 37, 1446-1451.
[15] VVEDENSKAYA, N. D., DOBRUSHIN, R. L. AND KARPELEVICH, F. 1. (1996). Queueing system with selection of
the shortest of two queues: an asymptotic approach. Prob. Peredachi Inf. 32, 20-34.
[16] WEBER, R. R. (1978). On the optimal assignment of customers to parallel servers. J. Appl. Prob. 15, 406-413.
[17] WHITT, W. (1986). Deciding which queue to join: some counterexamples. Operat. Res. 34, 55-62.
[18] WINsTON, W. (1977). Optimality of the shortest line discipline. J. Appl. Prob. 14, 181-189.

https://doi.org/10.1017/jpr.2016.68 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.68

	1 Introduction
	2 Model description
	3 Coupling and stochastic ordering
	3.1 Stack formation and deterministic ordering
	3.2 The coupling construction
	3.3 Discussion

	4 Convergence on the diffusion scale
	5 Conclusion
	Acknowledgements
	References

