Econometric Theoryl7, 2001 327-356 Printed in the United States of America

STATISTICAL INFERENCE IN
COINTEGRATED VECTOR
AUTOREGRESSIVE MODELS WITH
NONLINEAR TIME TRENDS IN
COINTEGRATING RELATIONS

PENTTI SAIKKONEN
University of Helsinki

This paper continues the work of Saikkon@001, Econometric Theor{7, 296—

326) and develops an asymptotic theory of statistical inference in cointegrated vec-
tor autoregressive models with nonlinear time trends in cointegrating relations and
general nonlinear parameter restrictioimerence on parameters in cointegrating
relations and short-run dynamics is studied separaltely shown that Gaussian
maximum likelihood estimators of parameters in cointegrating relations have mixed
normal limiting distributions and that related Waldagrange multiplierand like-
lihood ratio tests for general nonlinear hypotheses have usual asymptotic chi-
square distributiong hese results are shown to hold even if parameters in the short-
run dynamics are not identifieth that case suitable estimators of the information
matrix have to be used to justify the application of Wald and Lagrange multiplier
tests whereas the likelihood ratio test is free of this difficul8imilar results are

also obtained when inference on parameters in the short-run dynamics is studied
although then Gaussian maximum likelihood estimators have usual normal limit-
ing distributions All results of the paper are proved without assuming existence
of second partial derivatives of the likelihood functj@nd in some cases even
differentiability with respect to nuisance parameters is not required

1. INTRODUCTION

This paper is a sequel to Saikkon@®01), which proved the existence and con-
sistency of a Gaussian maximum likelihoOBIL ) estimator in a cointegrated
vector autoregressivie/AR) model with nonlinear time trends in cointegrating
relations The practical motivation of the model was also discussed in the pre-
vious paper and more thoroughly in Ripatti and Saikko2001, see also
Heinesen1997). The treatment of Saikkoneg2001) was very general and al-
lowed for nonlinear parameter restrictions in both the cointegrating relations and
The first version of this paper was completed while the author worked at the Research Department of the Bank
of Finland whose hospitality is gratefully acknowledgéekthe paper has benefited from comments of two anon-

ymous referees and the co-editor Bruce Hangatdress correspondence: tBentti SaikkonenDepartment of
Statistics PO. Box 54 (Unioninkatu 37, SF-00014 University of HelsinkiFinland

© 2001 Cambridge University Press  0266-4866 $950 327

https://doi.org/10.1017/50266466601172038 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466601172038

328 PENTTI SAIKKONEN

short-run dynamics-urther generality was achieved by proving consistency re-
sults without assuming identifiability of all underlying structural parametéie
object of this sequel is to complete the previous work by developing a corre-
sponding asymptotic theory of statistical inferentiee test procedures to be con-
sidered include the three classical likelihood based,teataely the Wald score
or Lagrange multiplieLM ), and likelihood ratio(LR) tests

In the same way as Saikkoné2001), this paper also proves asymptotic re-
sults without assuming identifiability of all nuisance parametétsgs relates
our work to the recent literature on partially identified modedee Phillips
1989 Choi and Phillips 1992. In particular limiting distributions of ML esti-
mators of parameters in cointegrating vectors and related tests will be derived
even if parameters in the short-run dynamics are not identified and vice. versa
To some extentidentifiability of the trend parameters can also be dispensed
with although as a result of the assumed nonlinearity of the trehe situation
here is more difficult than in the case of other parameters

It will be shown in the paper thatvhen the parameters of interest are iden-
tified, their ML estimators have mixed normal limiting distributions that re-
duce to usual normal limiting distributions in the case of short-run parameter
estimators A consequence of this is that the conventional asymptotic chi-
square criterion applies to related WaldM, and LR testsProofs of these re-
sults are more complicated than usulbwevey because identifiability of
nuisance parameters is not assunidds particularly holds for proving the lim-
iting distributions of the LR tests of the papé@mn advantage of the LR test
over corresponding Wald and LM tests f@wever that choosing an estimator
of the information matrix is not require@his choice is not quite obvious when
identifiability of nuisance parameters is not assunadithough reasonable choices
can be givenA further theoretical feature of the paper is that commonly used
assumptions of the existence of second partial derivatives of the likelihood func-
tion are not needed and in some cases even differentiability with respect to
nuisance parameters can be dispensed. with

The paper is organized as followSection 2 briefly presents the model and
required assumptiongor a more thorough treatment and motivating discus-
sions refer to Section 2 of Saikkoné2001). Limiting distributions of ML es-
timators are derived in Section 3 and those of WadlWl, and LR tests in
Section 4 Section 5 concludedroofs are given in the Appendikinally, the
employed notation is fairly standard and is discussed at the end of Section 1 of
Saikkonen(2001).

2. MODEL AND ASSUMPTIONS

Consider thes-dimensional time serieg, t = 1,..., T, which is integrated of
order one(l (1)) and cointegrated with cointegrating ranKO < r < s). Fol-
lowing Saikkonen(2001) we assume that the underlying data generation pro-
cess is a Gaussian VAR process of ordewhen written in the error correction

https://doi.org/10.1017/50266466601172038 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466601172038

COINTEGRATED VECTOR AUTOREGRESSIVE MODELS 329

form the coefficient matrices of this VAR process can be general nonlinear func-
tions of underlying structural parametgasid a nonlinear time trend depending
on a parameter vector is allowed in the cointegrating relatipscifically the

error correction form of the considered model is

p—1
Ay, = a()[B(@) Vi1 — G(w]l+ 2 BAyj+e, t=1..T (2.1)
j=1

whereB(¢) = [I, —A($)]’ (s X r) is the matrix of normalized cointegrating
vectors a () (s X r) andBj(y) (s X s) are matrices of short-run parameters
with « (i) of rankr, andg,(u«) (r X 1) is a deterministic time trend~urther-
morg the initial valuesy_p.4,..., Yo are observableand e, is Gaussian white
noise that is &, ~ NID(0, Q) with Q > 0. Conditions that guarantee th@1)
really defines an (1) process with3(¢)'y,—, stationary cointegrating relations
are well known and can be found in Johan&§E995 Theorem 4£) and Saikkonen
(2001 Assumption 1. Here these conditions are always assunaed the acro-
nymsl (1) model and (1) process are used to indicate tHBecause we are not
interested in inference on the cointegrating rankve shall assume that the value
of this parameter is known

Thus we assume that the cointegrating vectors are defined by the matrix
function A(¢) (r X (s — r)) and the parameter vectaf (k X 1) whereas
the short-run dynamics are determined by the matrix functiefg) and
Bi(¢) (j =1,...,p — 1) and the parameter vectgr(¢ X 1). Conditions needed
to prove the consistency of the ML estimators of these parameters are given
in Assumptions 2 and 3 of Saikkoné®001). These conditions include conti-
nuity of the previously mentioned functions and appropriate identification con-
ditions that are not stated explicitly here becaumsethe results of the previous
paper needed consistency results will be assumadtead we will only give
conditions required for asymptotic inference and start with the following
assumption

Assumption 1 The true parameter valug, is an interior point of the param-
eter spaceb C R* and in some neighborhood ¢, the functionA(¢) is con-
tinuously differentiable with the matrixvecA(¢do)/d¢’ of full column rank

Assumption 1 is standard in the theory of asymptotic infereatthough we
do not need the existence of second partial derivative(@f, which is often
assumedIt may be noted that Assumption 1 is not very far from implying As-
sumption 2 of Saikkoneri2001). To see thisnotice that the differentiability
assumption entails that the mattixecA(¢)/d¢’ is of full column rank in some
neighborhood ofp,. This implies that the functiod\(¢) has a continuous in-
verse in a compact set containidge¢,) but not necessarily a neighborhood of
A(¢p) (see Bartle1964 p. 252). Thus the identification condition of Assump-
tion 2(b) of Saikkonen(2001), and hence Assumption 2 as a whdields if we
further assume that the inverse Af¢) is defined in some neighborhood of
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A(po) andA(¢y) is an interior point in the relative topology @f(¢), the clo-
sure of A(®).
The next assumption is concerned with the short-run parameters of the.model

We denoteB(i) = [By(4)...Bp-a(¢h) a ()]

Assumption 2 The true parameter valuf is an interior point of the param-
eter spacel C R, and in some neighborhood ¢f, the functionB() is con-
tinuously differentiable with the matrisvecB (iq)/dys’ of full column rank

Assumption 2 is entirely similar to Assumption 1 and therefore standard in
the theory of asymptotic inferench is related to Assumption 3 of Saikkonen
(2002 in the same way as Assumption 1 is related to Assumption 2 of that
paper

Now consider the trend terigy( «). In the same way as in Saikkon€2001)
we partition the parameter vectprasu = [»’ ']’ and for theoretical rea-
sons make the additional structural assumption

g(w) = d(v)fi(y), (2.2)

whered (v) (r X ry) is a time invariant matrix function of the parameter vector
v (n X 1), whereasf;(y) (r; X 1) is a time dependent vector function of the
parameter vectoy (q X 1). The sequencé&(y) is specified by assuming that
fi(y) = f(t/T;y) wheref(-;vy) is a suitable function defined on the interval
[0,1]. Of course the sequenceg,(w) is then defined by the functiog(-; ) =
d(v)f(-;y) so thatg,(u) = g(t/T; ). The dependence of the trend teramd
hence the procesg(t = 1,...,T), on the sample siz& is not made explicit
because this feature has no essential effect on asymptotic derivdtibns
Saikkonen 2001, particularly Sect2.3).

Now we can give conditions required for the trend modtek convenient to
formulate some of them by using the functigfix; x) without being explicit
about the structural assumpti¢22). In the following assumption we refer to
Condition 1 of Saikkoneii2001), which is not repeated her8imple sufficient
conditions for it will be discussed shortly

Assumption 3 Let f(x;y) be a function fron{0,1] X T to R" whereT is a
compact subset &% Letu =[v' ']’ € M = N X T whereN C R" and let
fi(y) = f(t/T,y) andgi(w) = d(»)f(t/T;y), t =1,...,T. Assume that the fol-
lowing conditions hold

(a) The true parameter valyg, is an interior point oM, and in some neighborhood
of o the functiong(x; ) = d(»)f(x;vy) is continuously differentiable with re-
spect tow.

(b) The function formed fronf (x;y) anddf (x;y)/dy; (i = 1,...,q) satisfies Condi-
tion 1 of Saikkoner(2001) when the value ofy belongs to a compact neighbor-
hood ofyg.

(c) The matrixfol[ag(x;Mo)’/au][ag(x;uo)/ap,’]dxis of full rank
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Unlike with other parameter spacase have found it convenient to retain
the compactness assumption imposed’an Saikkonen(2001). The differen-
tiability condition in Assumption &) is standardalthough even here we can
do without assuming the existence of second partial derivatiVks condi-
tions in Assumption &) were also used in Saikkon€B001) to obtain orders
of consistencyThey imply that sample moments that appear in the derivation
of limiting distributions converge in an appropriate wAgsumption 3c) is a
variant of a conventional rank condition that guarantees that estimators have
nonsingular limiting distributionsNote that hergand also in other similar sit-
uations we use the notatioAg(X; ue)'/dpn = (9g(X; mo)/du’)" (cf. Litkepohl
1996 p. 173).

Assumption 3 is related to Assumptions 4 and 5 of Saikko(®901). In
particular because Assumptiongd@ and(c) imply that the matrixd vecd (v)/

dv’ is of full column rank in some neighborhood of the true parameter vajue

a reasoning similar to that following Assumption 1 shows that Assumption 4 of
Saikkonen(2001) nearly holds However except for the compactness of the
parameter spack, the conditions in Assumption 5 of Saikkoné2001) are
much stronger than required in the present Assumptidde8ause consistency

of ML estimators will here be assumed we only need local assumptions on the
likelihood function instead of corresponding global assumptions needed in the
consistency proofs of Saikkon€R001). The nonlinearity of the sequen&éy)

in both the time index and the parametey makes the global assumptions
necessarily much stronger

As already mentionedve will not give details of Condition 1 of Saikkonen
(200)). A simple sufficient condition for Assumption(B) to hold is that the
vector function of(x,vy) formed fromf (x;y) andof (x;y)/dy; (i =1,...,q) is
continuously differentiableln the case of conventional dummy variables the
functionf(x;+y) is discontinuousbut because it is known and hence indepen-
dent of y these cases can also be includ&tie most important case that is
excluded is that of structural breaks with unknown break dates or dummy vari-
ables with dates of jump depending on unknown parameters

3. LIMITING DISTRIBUTIONS OF ML ESTIMATORS

Consider mode(2.1) with g;(u) as in(2.2). Conditioning on the initial values
Y_p+1,--+» Yo Minus two times the logarithm of the likelihood function can be
written as

.
¢; = Tlogdet(Q) + tr {Ql > sts{}, (3.1)
t=1

whereg; is as in(2.1) and is interpreted as a function of the unknown param-
eters thereinWhen ML estimators exist they minimize the functién over
permissible values of the parametdrsthe same way as in Saikkon€¢2001)
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we consider a minimization problem and referftoas the likelihood function
It is obvious from(2.1) and(2.2) that the likelihood function only depends on
the structural parametets ¢, andv through the corresponding reduced form
parameter&\(¢), B(y), andd (v). It will occasionally be convenient to express
the likelihood function in terms of some of the reduced form parameaec
when this is dongappropriate arguments will be added#p and ;. On the
other handwe will usually drop the argument from the reduced form param-
etersA(¢), B(y), andd (v) when their dependence on the underlying structural
parameters is irrelevamh similar notational convention applies to estimators
Theorem 3L and Corollary 3L(c) of Saikkonen(2001) show thatunder ap-
propriate regularity conditiondL estimators of the parametefs B, d, andvy
exist with probability approaching one and are consist&€hen a consistent
ML estimator of the error covariance matiixalso exists and is defined by

.
Or =T &8 (3.2)
t=1

Here &, denotese, evaluated af\r, By, d, and$+, ML estimators of the pa-
rametersA, B, d, andy, respectivelyAfter having established the consistency
of these ML estimators Saikkong2001) deduced the consistency of the re-
lated structural parameter estimatars, /v, and i by using suitable identifi-
cation conditionsHowever these identification conditions were not needed to
prove the consistency of the estimatdts, By, d+, and . Some of the sub-
sequent results can also be proved without assuming identifiability of all struc-
tural parameters

Now define the parameter vectat = [¢' v’ y' ¢'] (k + n +
g+ €) X1 and set, =[¢' w'] whereuw =[v’ '] as beforeWe shall
first derive the limiting distribution of the ML estimator af;. For this result
we only need the consistency of the reduced form parameter estiator
whereas consistent estimation of the corresponding structural paragnéter
not requiredIn asymptotic analyses it is therefore relevant to consider the like-
lihood function as a function of the parametéks B, and( and use the nota-
tion €1 = €1(94,B,Q) and g, = (94, B). Note thatB € B(¥) and that we
explicitly have

p—1
g(91,B) = Ay, — e[y -1~ Al@)Yo 1 — G(w)] — > B Ay, (3.3)
=1

wherey, = [y;; V5]’ is partitioned intor X 1 and(s —r) X 1 subvectorsWe

also need further notatiom.et Wy(x) be a Brownian motion with covariance
matrix Qy and defineWs(x) = €5 AWy (X) wheree, = [0 I, ] and A signi-

fies the true value of the parameter mattix= 8, [a/ (I, — E]P;lll“j)ﬁl]_lai.

Note thatA is the moving average impact matrix that appears in Johansen'’s
(1995 p. 49) version of Granger’s representation theorem and its counterpart
given in Saikkoner{2001, Sect 2.3). If we finally define
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FL(x 97 = — (0 vecA(d)/dd) (Wa(x) @ 1)
R ag(x; u)'/op

we can state the following theorerdnless otherwise statedll limits in this
paper assume thdt— oo.

THEOREM 31. Lety,..., yr be generated by the(1) process(2.1) where
g:(w) is as in(2.2). Let Assumptiond and 3 hold and suppose that ML esti-
mators of the parameter$, n, B, and Q exist with probability approaching
one and are consistent. Then

T(br — o) 1 -1
[Tl/Z(;T _ ;0)1 = (fo Fl(X?1910)“6961010&()(;1910)'(1/\/)

1
X f Fi(x; 910) a6 Qo dWH(X).
0

Remark 31. Sufficient conditions for the existence and consistency of the
ML estimators of the parameted#s «, B, andQ are given in Theorem.B and
Corollary 31(a) and (c) of Saikkonen(2001). These conditions are explicitly
stated in Assumptions, 2(a) and(b), 3(a), 4(a) and(b), and 5a)—(d) of that
paper

An interesting feature in Theorem13is that it only assumes that the ML
estimator of the reduced form paramelBer B(y) is consistent but consistent
estimation of the corresponding structural paramétes not assumedn fact,
the sufficient conditions mentioned in Remark ®nly include continuity of
the functionB(y), but identifiability of the structural parametér is not as-
sumed and neither is differentiability of the functidB(y/). Thus we have ob-
tained the limiting distribution of the ML estimatois; and At even if the
short-run parametep is not identified andtherefore cannot be consistently
estimated An intuitive explanation behind this result is that the information
matrix between the parametes andy is block diagonal so that these param-
eters can be estimated independently of each otfmrefore difficulties with
the estimation of do not interfere with the estimation af,. On the other
hand in the case of the parametepsand u the block diagonality of the infor-
mation matrix does not ho)aéo that it is difficult to weaken the identification
conditions implicitly assumed in Theoreml3and for example derive the lim-
iting distribution ofr when consistency of the estimatar; fails. It is easy to
check that the Brownian motion&,(x) anda, Qo W,(x) are uncorrelated and
therefore independenthis implies the independence of the proce$s€g; J40)
anda Q5T W, (X) so that the limiting distribution in Theorem3is mixed nor-
mal. As is well known this fact has useful implications on hypothesis testing

We shall next obtain the limiting distribution of the short-run parameter es-
timator . In this context consistent estimation of the structural parameters
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andv is not requiredso that it is relevant to replace them by the correspond-
ing reduced form parametefs€ A(®) andd € d(N) in the definition of the
likelihood function Thus we use the notatioliy (94,4, Q) andeg; = &(94,¢)
where for simplicity, 91, = (A, d,vy). An explicit expression of(J4,¥) is
given by

p—1
g(U1,¢) = Ay, — a(P)u_1(3;) — 2:1 B () Ay, (3.4)
i=

where Ui—1(d1) = Y111 — AYz-1 — dfi(y). We also definez(d,) =
[AY{_1...AY{_pi1U—1(P)']" and writez; = (1) With 9, the true value
of ¥,. Now we can state the following theorem

THEOREM 32. Lety,..., Yyr be generated by the(1l) process(2.1) where
g:(w) is as in(2.2). Let Assumption® and 3(a) and (b) hold and suppose
that ML estimators of the parameteys A, 4, y, and Q exist with probability
approaching one and are consistent witg = Ay + Op(T™ 1), dr = do +
Op(TY2), and §1 = yo + O,(TY2). Then

T2y — o) = N(O, 2, (0, Qp)),

where

T -1
3,,0) = <a vecB(y)'/oys <p|imT Tz Q® Q‘1>avecB(¢)/a¢z’>
t=1

and the weak limit is independent of the weak limit in Theo8n

Remark 32. Sufficient conditions for the existence of the ML estimators of
the parameterg, A, 4, vy, andQ and also for all the consistency results as-
sumed in Theorem.3 are given in Theorem.B, Corollary 31(b) and(c), and
Proposition R of Saikkonen(2001). These conditions are explicitly stated in
Assumptions 12(a), 3(a) and(b), 4(a), 5(a)—(d), and 6 of that papefhe prob-
ability limit in the definition of the matrixz,, (4, Q) exists by Lemma Al(a) of
Saikkonen(2007).

Thus Theorem 3 only assumes that the ML estimators of the reduced form
parameteré\ = A(¢) andd = 4 (v) are consistepntut consistency of the cor-
responding structural parameter estimaib¢sand 7 is not assumedrhe suf-
ficient conditions given in Remark 3 only include continuity of the functions
A(¢) and d(v), but identifiability of the structural parametegsand v is not
assumed and neither is differentiability of the functigki®) and d(v). Thus
the result of Theorem.3 holds even if the structural parametersand v are
not identified andtherefore cannot be consistently estimateflso, because
the consistency of the estimatds does not require differentiability of the func-
tion 4 (v) the differentiability requirement of Assumption& could actually
be weakened in Theorem23to concern the functiof(x;y) only. For ease of
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exposition we have ignored this generalizatiéis a whole the treatment of
nuisance parameters in Theorer Bequires stronger assumptions than needed
in Theorem 31, and any relaxations seem difficult to achievéne fact that
there is no finite dimensional reduced form counterpart of the parameter vector
v may explain why doing without any identification condition is more difficult
in the case of this parameter than in the case of other paramiiaties how-
ever that in the special case where the sequef@e is known the limiting
distribution in Theorem 2 applies without any identification conditions on
nuisance parametershis particularly holds in the standard model where the
components of;(y) consist of a constant and conventional seasonal dummies
It may also be noted that if identifiability of all structural parameters is as-
sumed the proof of TheoremZcan be simplified and the orders of consis-
tency assumed of the nuisance parameter estimators can then be obtained from
Theorem 3L

When all structural parameters are identified the estimators in Theorem 3
and 32 are asymptotically independent of each othieis straightforward to
show that then they are also asymptotically independent of the error covariance
matrix estimator{);, which has the same limiting distribution as in the case
where the values of the other parameters are a priori known and not estimated
Moreover it can be shown that the likelihood ratio of our model belongs to the
locally asymptotically mixed normalLAMN ) family so that ML estimators
are asymptotically efficientsee e.g., Basawa and Scqtl983 Phillips, 1991
Jeganathanl995.

We close this section by noting that it is straightforward to extend the results
of Theorems 3 and 32 to allow for smooth parameter constraints to be con-
sidered in the next sectio®pecifically consider restrictions of the form

h(9) = [h,(¢)" h, ()" h,(y)" h, ()] =0, (3.5)

whereh() is a continuously differentiable vector function of dimensipre

k+ n+ g+ €. Thus we assume that each componentjofs restricted sepa-
rately. Although more general restrictions might be considered we shall restrict
ourselves to this special case because potential generalizations are likely to be
of minor practical interestVhen the restrictions if8.5) are assumed all of our
previous results are easily seen to hald demonstrate thjsnote first that in

the consistency results of Saikkon@®01) no particular assumptions were made

of the parameter spacds N, and¥, so that we can simply assume that they
are defined in such a way that the restrictions implied(&%) hold. The pa-
rameter spac& was assumed compadiut this causes no problems because
we only need to consider the redefined parameter spacgh, (y) = 0}, which

is compactThus it follows that with appropriate interpretations of the param-
eter spaces all the consistency results proved in Saikk®@d1) and used in
Theorems 3 and 32 still hold. This implies that the limiting distributions of
these ML estimators can be derived by using a standard Lagrange multiplier
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method and arguments similar to those in the proofs of Theoreinargl 32
(cf., eqg., Kohn, 1978.

4. HYPOTHESIS TESTING

We consider testing general nonlinear restrictions on the paramgtensd .
Following the development of the previous section our treatment will be di-
vided into two partsFirst we obtain tests for the null hypothesis

Hi:hy(dq0) = [h¢(¢o)’ h,(vo)’ hy(')/o)’]’ =0, (4.1)

whereh, () is a continuously differentiable vector function of dimensfore
k + n + g. As a result of the assumed structure of the functm¥), the
matrix Hy(%;) = 0hy(8,)/09} is of the form Hy(d,) = diagoh,(¢)/dg’
ohy(v)/ov’ oh,(y)/dy'], and as usualit is supposed to be of full row rank at
W, = ¥40. If some components off; are not involved in the null hypothesis
the definitions ofh,(¥9,) andH,(9,) are modified in an obvious way

The Wald test for the preceding null hypothesis tests wheik(at;1) is sig-
nificantly different from zeroA general form of the test statistic is

Wl = hl(ﬁng), [Hl(élT) M]TTlHl(ﬁng)’ ] 71h1(1§1T)' (42)

Here M, is any (nonsingulay matrix with the property
T
Y7 IMir Y1t = Y7 D Ry (D47) &5 Qrtér Fry (947) Y72 + 0p(1), (4.3)
t=1

whereYr = diag Tlk TY?l,.4] and

(0vecA(d)'/dd)(Y21-1 X 1)
g (w)/op '

Clearly F1;(9,) is an empirical counterpart of the functidfi(x;9,), so that
the first term on the right hand side @£.3) is an obvious sample analog of the
matrix that is inverted in the weak limit of Theoreml3Instead of only con-
sidering this particular choice of the matr,r we wish to be more general
and also allow for alternative possibilitids particular because the preceding
choice makes use of the asymptotic orthogonality of the paramé&teasdy it
may not work well in small or moderate sampl@sconventional way to allow
for the effects of the short-run parameteis to chooseMy, as

Fu(d) = —

T T
My = D) Fp(17) &5 Q7tar Fy (997) — X Fri(997) @ Q7 Fp (94
t=1 t=1

-1 T

N
X <2 F2t("9T)QT1F2t(ﬁT),> > Fo(91) Q7 ar Fyy (D7), (4.4)
t=1 t=1
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where Fp (9) = —(avecB(¥)/0y)(z(91) ® Is) and z(d1) = [Ay{_,...
AY{_pr1Ui—1(91)"]" with u1(1) = Y11 — A(P)Y2,1-1 — G(w). This choice

is based on the outer product form of the observed information matrix of the
parameters); and. Therefore we can only justify its use when the nuisance
parametei/ is identified and the functioB(¢) is continuously differentiable
Because the limiting distribution of test statisti®;, can be derived without
assuming identifiability of the parameterit is reasonable to consider a mod-
ification of (4.4). A natural possibility is to replac€,(9) by —z,(%,) & ls,
which means that in the test statistic the paramBtés treated as if it were
unconstrainegdalthough in the estimation its values are restricted to thB6#).
Using Lemma Al in Saikkonen(2001) and arguments similar to those in the
Appendix it can be readily seen that the preceding choices of the mdfrix
satisfy condition(4.3).

To develop LM and LR tests for the null hypothe8ig, constrained ML
estimators of the relevant parameters are neefiediscussed in the previous
section the existence and consistency of these constrained estimators obtain
under the same conditions as in the case of the corresponding unconstrained
estimators The constrained ML estimator of the parametaris denoted by
J11, and a similar notation is used for constrained ML estimators of other
parameters

For the LM test statistic it is reasonable to consider the likelihood function
explicitly as a function of the parametefis andB € B(W¥). Thus in (3.1) we
useg; = g(94,B) (see(3.3)) and denotd+ = €+(94, B, Q). Then by straight-
forward differentiation

.
01(91,B,0)/00, = —2 >, F1 (%) a'Q e (8, B), (4.5)
t=1

whereF;; (%) is as in(4.3) and satisfied; (%) a’ = —de; (¥4, B)/0,. Now
we can introduce our LM test statistic

LMy = 50 (17, By, 01)/09) Mz Hi(F17) [Hy(F17)Mii Hy(947)' 171
X Hl(ﬁlT) Mle(agT(ﬁlT’ BT’ QT )/6191), (46)

whereM, is any matrix such thay +*M,; Y7 satisfies(4.3) with the estima-

tors on the right hand side replaced by their constrained counterpéuesdi-
vision by four in the test statistic is needed because we are working with minus
two times the logarithm of the likelihood functio®f course the role of the
matrix M,y in test statisticC. M is entirely similar to that oM,y in test statis-

tic W,. Thus a possible choice fdvi,; is given by the constrained version of
(4.4) (if the parametery is identified or its modification discussed following
(4.4). That these choices satisfy the required analo@d) can be seen in the
same way as in the case Wf.
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Finally, consider the LR test statistic that is defined by
LR, = €T(51T3 ET7QT) - €T(1§1T’ éT,QT)- (4.7)

A convenient feature of the LR test statistic is that no choice of matrices such
asM;r or My is needed because this choice is automatically built into the test
statistic This appears useful when the identification of the nuisance parameter
i is not assumed because then the use of the most natural clidbiteand its
constrained version is not justified by our results

The following theorem shows that a standard chi-square criterion applies to
all three test statistics introduced previousty the proof of this theorem it is
convenient to make explicit use of the continuity of the functi&(w/), which
in Theorem 3L was only an implicit assumption behind the consistency of the
reduced form ML estimatoBr.

THEOREM 41. Suppose that the assumptions of Theogilrhold and that
the null hypothesigt; is true Suppose further that the following assumptions
hold.

(@) The assumptions made of the existence and consistency of the unconstrained
ML estimators in Theorer.1 also hold for the corresponding constrainétL
estimators

(b) The estimator8; and By satisfyBr = By + Op(T ~¥2) and By = By + O,(T ~Y/2).

(c) The function Bi) in Assumptior? is continuous

(d) The function R(¥,) (f; X 1) in (4.1) is continuously differentiable with the ma-
trix Hi(910) = 0hy(940)/09; (f, X (k + n + q)) of full row rank

Then test statisticaV,, LM,, and LR, have an asymptotic chi-square distri-
bution with f degrees of freedom

Remark 41. Assumption(a) of Theorem 41 holds under the same condi-
tions as the corresponding assumption in Theoreir{see Remark.3 and the
discussion at the end of Se@). Assumption(b) holds under the conditions of
Proposition 2 of Saikkonen(2001). Explicit sufficient conditions for all the
consistency assumptions needed in Theoreinade given in Assumptions, 1
2(a) and(b), 3(a), 4(a) and(b), 5(a)—(d), and 6 of Saikkoneri20017).

The result of Theorem.4 is hardly surprising because similar results have
also been obtained previoudlsee e.g., Phillips, 1991, Johansen1991, 1995.
However the required assumptions make our result different from most of its
previous counterpart€ompared with the assumptions of Theorer &e have
been forced to strengthen the consistency assumption made for the estimator
Br by assuming an order of consistenapd a similar assumption is also needed
for the constrained counterpart Bf. These additional assumptions are not re-
strictive, howevey and the same can be said about the other assumptions of
Theorem 41. In fact, the discussion in RemarkXimplies that sufficient con-
ditions for Theorem 4 to hold are fairly standard except for the novel feature
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that identifiability of the short-run parameteris not required and neither is
differentiability of the likelihood function with respect . This particularly
means that the result of Theoren24olds even if the parametér cannot be
consistently estimated

It can be shown that test statisti¥®;, LM, and LR, are consistentand
although this is not studied in this papere would expect that they also have
the same limiting distribution under conventional local alternatiVieshould
be noted howevey that in general this limiting distribution is not noncentral
chi squargcf. Basawa and Scqt1983 Ch. 3; Saikkonen1993 Theorem 53).
Thus as far as asymptotic properties are conceyitad not possible to choose
between these three testgidentification of the nuisance parametgris an
issue the LR test seems convenient becauskke the Wald and LM testst
does not require choosing a matrix suchivas or M;7 that may be somewhat
problematic in small or moderate samplésis probably this feature that also
makes the derivation of the limiting distribution of test statiglig , more dif-
ficult than that of test statisticg/; and LM (see the Appendix Of coursein
finite samples the behavior of the test statisfits, LM, and LR, may be
different so that simulation studies of their small sample propertiespantic-
ularly, of the effects of different choices of the matridds; andM,; would be
of great interestSuch simulations are outside the scope of this pdpevever

Now consider testing restrictions on the short-run paramgtdhe null hy-
pothesis is

Hy:hy() =0, (4.8)

where h,(y) is a continuously differentiable vector function of dimension
f, = € and the matrixH, () = dhy(y)/0¢" is of full row rank aty = . The
tests to be developed for this null hypothesis do not require identifiability of
the parameters andv.

Our general Wald test statistic for the preceding null hypothesis is

W, = hy(gr) [Ho (i) M Ho(di) 1~y (i), (4.9)

whereM,r is any(nonsingulay matrix with the property

.
T ™My = T Y Fo (D7, ) Q7 P (D, ) + 0p(1). (4.10)
t=1

HereF, (94,1¥) = — (0 vecB(y) /o) (z.() X |s) with z,(94) defined follow-

ing (3.4). Note that we havd,(J4, ) = de(J4,¢)"/0¢ and thatF, (94, )
equalsF, () (see(4.4)) except that it is expressed as a function of the re-
duced form parametess and 4 instead of the corresponding structural param-
eters$ andv. The role of the matrit, is similar to that ofVl;1 in test statistic
Wis. If all the parameters are identified and the functidxg)) andg;(u) are
continuously differentiable one can proceed a¢4i4) and choose
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T T
Mor = D Fo (91) Q7 P (97) — X Foy(97) Q7 & By (D47 )
=1 =1

-1 T

.
X <2 Flt(ﬁlT)&{'Q'Fl&T Flt(ﬁlT)’) E Flt(ﬁlT)&!l'Q'l_'lFZt(ﬁT),-
t=1 t=1

(4.11)

This choice can be modified to yield a test statistic that does not require iden-
tifiability of the nuisance parametegs and ». Of course then Fp (97) is re-
placed byFo(d17, fir), whereas a natural modification & (1) is given by
[(Yo,-1 @ 1) = (@f(97)/9y") dr —fi(§7)" & lnsgl” This means that in
the test statistic the parametefsand ¢ are treated as if they were uncon-
strained although in the estimation their values are restricted to the/Aghs$
andd(N), respectively That these choices of the matid,; satisfy condition
(4.10) can again be seen by using Lemma Af Saikkonen(2001) and argu-
ments similar to those in the Appendix

We can also construct LM and LR tests for the null hypothésgjs In this
context it is relevant to consider the likelihood function as a function of the
parameters),, ¢, and Q. Thus in (3.1) we useg; = &(%4, ) see((3.4)) and
denotelt = ¢+ (4, ¢, Q). Straightforward differentiation and the expression of
F.:(J4,4) given following (4.10) show that

.
M1 (01,4, Q)/0p = 2 El For(D1, ) Q Le (94, ). (4.12)
t=

This expression is used to define our general LM test statistic
LMy = 50l (Dyr, 7, Q) /00 YN Ho(dir ) [Ho (P ) Mo Ho ()" 171
X HZ(&T)MET1(66T(§1T’ &T’QT)/alr//)’ (413)

whereM, is any matrix such thaf ~*M,; satisfies(4.10) with the estimators

on the right hand side replaced by their constrained counterpgaftsourse

the matrix M, can be modified in the same way as the matdy; in test
statistic)V,, and these modifications can be justified in the same way as in the
case ofM,r. For the LR test no choice of matrices like these is needbe

test statistic is defined by

LR, = €T(§1TJZT,QT) - €T(1§1T7$T76T)~ (4.14)

The following theorem shows that a conventional chi-square criterion ap-
plies to all three test statistic¥he proof of this theorem assumes consistency
of the infeasible ML estimator of the paramet#y obtained by assuming that
the values of the parametegsand Q) are a priori knownThis estimatarde-
noted byd;r, is obtained by minimizing the functiofir (9,0, Qo) So that
technically it can be interpreted as a constrained ML estimator of the parameter
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. It will also be assumed that the infeasible ML estimators of the parameters
¢ and Q) obtained by assuming that the values of the paramefeand u (or

Y = (A, d,y)) are a priori known are consistefthese ML estimators are de-
noted byyr and Qr, respectively Consistency of the constrained versions of
all these infeasible ML estimators is also assumed

THEOREM 42. Suppose that the assumptions of Theog2rhold and that
the null hypothesigt, is true Suppose further that the following assumptions
hold.

(a) The assumptions made of the existence and consistency of the uncondtfained
estimators in Theorer.2 also hold for the corresponding constrainétlL esti-
mators and for the infeasibl®IL estimatorsd,t, i, and Ot and the con-
strained versions ofir and Q.

(b) The function k(i) ( f, X 1) in (4.8) is continuously differentiable with the matrix
H () = dho(iho) /0y’ (T, X €) of full row rank

Then test statisticaV,, LM,, and LR, have an asymptotic chi-square distri-
bution with £ degrees of freedom

Remark 42. Although Saikkoneri2001) does not explicitly consider the case
where the value of the error covariance matrix is known it is not difficult to see
that similar consistency results can also be proved in this. Gdses the con-
sistency properties of the infeasible ML estimators discussed in assunfgtion
of Theorem £ are the same as those of the other ML estimators the@ein-
sequentlythis assumption as a whole holds under the same conditions as the
corresponding assumptions in Theorerd Gee Remark.2 and the discussion
at the end of SecB). Explicit sufficient conditions for all the consistency as-
sumptions needed in TheorenR4can be found in Assumptions 2(a), 3(a)
and(b), 4(a), 5(a)—(d), and 6 of Saikkoneri2001).

Compared with its previous counterparts the result of Theoré@msdagain
expectedHowever as the discussion in Remark4dmplies a novel feature of
our result is that it has been obtained without assuming identifiability of the
nuisance parametegsandy or even that the likelihood function is differentia-
ble with respect to these parametérbus the application of test statistids,
LM,, and LR, is justified even if the parameters and v cannot be consis-
tently estimatedOf course in the same way as in Theorem23appropriate
identifiability conditions are needed to guarantee consistent estimation of the
parameters/ andvy.

Unlike in Theorem 2 we have needed additional consistency assumptions
about infeasible ML estimators of the parametéis ¢, andQ. This is some-
what unusual and may be an artifact of the employed method of pndoch,
as a result of the potential nonidentifiability of the paramete@ndv, is not
quite standardWe wish to emphasizénowevey that these additional assump-
tions can be justified by the assumptions mentioned in Rem&rkt4nay also
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be noted that similar consistency results about infeasible ML estimators of the
parameter® and() are also used in the proof of Theoreni 4see the proof of
Lemma Al in the Appendix but there they can be deduced from the likeli-
hood function{+ (¥4, B,Q) by using the assumed continuity of the function
B(y) and arguments in Saikkon€R001). A simplifying fact in that case is that
€1(910,B,Q) is the likelihood function of a standard linear regression model
with asymptotically stationary regressors and Gaussian white noise.errors
Finally, note that our previous discussion given for test statistigs LM,
and LR, also applies to test statistid¥,, LM,, and LR, except that under
conventional local alternatives a standard noncentral chi-square limiting distri-
bution can be expected because now the limit theory is based on an ordinary
normal distribution and not on a mixed normal distribution

5. CONCLUSION

This paper has completed the work initiated in Saikko(@001) by develop-

ing an asymptotic theory of statistical inference in cointegrated VAR processes
with nonlinear time trends in cointegrating relatiolge have shown that ML
estimators have normal or mixed normal limiting distributions and that Wald
LM, and LR tests with usual asymptotic chi-square distributions can be applied
even if some nuisance parameters of the model are not identifi¢ke case of
Wald and LM tests potential lack of identification meahewever that care is
needed in choosing an estimator for the information matwixereas LR tests
are free of this difficulty Although the given theory appears fairly complete
several possible extensions can be conside®edhe of them are discussed in
Saikkonen(2001 Sect 4) and will hopefully be studied in the future
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APPENDIX

A.1. Proofs for Section 3.

A.1.1. Proof of Theorem 3.1.Note first that when the estimatofst, By, and Ot
exist they minimize the functio+(94, B,Q). From the consistency of the estimator
H7 and Assumptions 1 and(® it follows thatd,7 is an interior point of® X M with
probability approaching on&hus because);t can also be obtained by minimizing the
function £+(94, Br, O1), we havedtr(d.1, Br, O7)/09, = 0. Using this identity and the
expression ol (91, B,Q)/091 in (4.5) we can therefore write

T
2\t . 21 Fie(910) a1 Q7 ' (910, By)
t=

T
= ZY?l E Flt(élT)&{'ﬁ?l[st(ﬁloy LS’T) - 8t(1§1T’ BT)]

t=1
T A A A

+ 2Y71 X [Fy(910) — Fo(Da1)]1at Q7 e, (940, By), (A1)
t=1

whereFy;(991) and Y are defined following4.3) and an explicit definition ot (91, B)

can be found in3.3). We shall show next that the second term in the last expression is
of order oy(1). This term consists of two components corresponding to the partition
of Fy () into — (9 vecA(d)'/0p)(Ya,t-1 @ I;) and —ag,(w)'/dw. To analyze the first
one notice thate (910, By) = Ay, — Brz wherez = z,(910) = [AY{ 1...AY{ pi1
U—1(P10)"]" With Ur—1(910) = Y1,i-1 — Aldo)Y2,1-1 — G( o). As the discussion at the
end of Section B of Saikkonen(2001) shows z; is an asymptotically stationary pro-
cess Thus it can be shown that the first component in the last expressiqA df is

:
Op(DT 1 (Vom0 ® 1)@t O7t[Ay, — Brz,] = 0,(D),
t=1
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where the termoy(1) on the left hand side just replaces the differesioecA(pr)’/
d¢p — dvecA(¢o)'/d¢ and the equality follows from Lemma.&A(b) of Saikkonen(2001).
The second component in the last expressioffot) is

T
T2 [0g(fir)/op — 89t(;¢0)’/6,u]€v+f){l[Ayt - éT 7] = 0,(D).
t=1

To justify the equality use Theorem 2 of Saikkonen(2001) to conclude that
max,——7r T~ ¥?|Z_, 7| = Op(1) and similarly withz replaced byAy;. The desired
result can then be deduced from Lemm&@) of Saikkonen(2001) and the fact that

by Assumption 8b), dg(x; u)/du satisfies Condition 1 of the same paper in some com-
pact neighborhood ofto. Thus using the definition ofe (4, B) (see(3.3)) we can
write (A.1) as

T

ZY?’l Z Fi(910)ar Q‘T’ls[(ﬁlor |-$>T)

t=1

N
= 2Y71 Y Fo (D) Q7 8 (910, Br) — & (D17, Br)] + 0p(1)
t=1

—2y7t Z Flt(élT)&'i'ﬂ'Fl&T [(AT =AYz, -1t (9 (Ar) — G( o)) + 05(1)

t=1

T
=2Y;! Z Fao(O11) @1 Q7o Fy (947) (947 — 990) + Op(l)5 (A.2)

t=1

where the last equality is based on a mean value expansiofiraqdh) signifies a
matrix whoseith row equals théth row of the matrixFy, (9\7) with 9\) = a; 910 +
1-a)dr,0=a=1i=1...k+n+aq

Now consider the first expression {A.2) and notice that, (910, Br) = Ay; — Brz
ande; (0, Bg) = &;. Becauseig(x; u)/du satisfies Condition 1 of Saikkong2001) in
some compact neighborhood af, we find from the definition ofF(¥,), the consis-
tency of the involved estimatgrand Lemma Al(b) and(c) of Saikkonen(2002) that

T T
2Y17'1 Z F1t(910) &'/I'Q‘Iilsl(ﬁloy Br) = 2Y17'1 Z Fll('&lo)alﬂilst + Op(l)
t=1 t=1
1
=2 [ Fi6 100525 060 (A3)
0

To justify the latter relationnote first that by Theorem 21 of Saikkonen200)), y; =

Xt — Ko(L) a8t (o) + Pg, Yo Wherex, = Aozjt:1 g+ KO(L_)&‘[, Ps, = BL(BLBL)BL

is evaluated at the true parameter valig(L) = 37, K;, L/ is a rational matrix func-

tion of the lag operatok such that its power series representation converges absolutely
in an open disk containing the unit diskndg;( o) = 0, t < 0. Let X, 1 contain the
lasts — r components ok, and note thatin the same way as in the proof of Lemma
A.1(f) of Saikkonen(2001), the replacement of, (—, in the definition ofFy(910) by
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t

X2,t—1 and further byA, >, €; causes an error of ordep(1). Thus arguments used in

the proof of Lemma AL(f) of Saikkonen(2001) give

[Tx]
(T_l/zyZ,[Tx]aT_l/zAO > 8j> = (Wa(X), AgWo (X))

j=1

and

[Tx]
<3Q[Tx](Mo)/aM,Tl/2Ao > Sj) = (39(X; o)/, AgWo (X))
j=1
jointly in the Skorohod topologyHence (A.3) follows from Theorem 2L of Hansen
(1992.
Next consider the first term in the last expressior(Af2) and note that

.
Y71 > Fo(Dar) ad Ot a Fr(947) Y7t

t=1

.
= Y71 Fo(90)at Qrtar Fry(d) Yot + 0p(1)
=1

1
:>f Fr(X;910) b Qo tag Fi(X;940) dX. (A.4)
0

The equality is a straightforward consequence of the consistency of the involved esti-
mators Lemmas Al(e) and A3(a) of Saikkonen(2001), and the facts thaby Assump-

tion 3(b), maxy==1 T 2|y, —1] = Maxi==r T 2| X, i—1] + 0p(1) = Oy(1) and
maxg<¢=1]0g:(w)/dul = O(1) uniformly overu in some compact neighborhood @f,.

The weak convergence {A.4) is obtained from Lemma A(d)—(f) of Saikkonen200J).

Using Assumptions 1 and(8) it is straightforward to check that the limit i(A.4) is
positive definite(a.s.). From Theorem 2 of Hansen(1992) it further follows that the
weak convergences ifA.3) and (A.4) hold jointly so that the result of the theorem is
obtained from(A.2), (A.3), and(A.4). u

A.1.2. Proof of Theorem 3.2.Here it is relevant to define the likelihood function in
terms of the parameta?; and use the notatiofir (91, ¢, ). Assumption 2 and the as-
sumed consistency of the estimatiarimply thatr is an interior point of¥ with prob-
ability approaching one antbecause it minimizes the functidiy (911, ¢, 1), we have
90+ (3, drr, Or)/0 = 0. This in conjunction with the expression (91, ¥, Q)/dy in
(4.12) and the fact that (910, o) = & yields

.
2742 3 Foy (v, th0) O 0 (Dr, o)
t=1
. o . PO
= 2T Y2 X Fou (D47, 4h7) Q7 Lo (ar, o) — & (Dar, )]
t=1

T
+2T7V? E [Fot (D17, 900) — FZt(ﬁlT»lpT)]Q'FlEt
t=1

.
+ 272 21 [Fau D17, th0) = Fal@ar, )] 07 e D, o) — 2], (A.5)
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where F,;(91,#) is defined following(4.10) and (d1,¢) in (3.4). We wish to show
that the second and third terms on the right hand side are of ad#). Using the
definition of z,(9,) following (3.4) and the fact that;(9:9) = z we find that the sec-
ond term on the right hand side 04.5) can be written as

Op(l)T—l/Z 2 [Zt(ﬁlT) ® IS]Q‘Flat
T
= Op(l)T*l/Z 2 (z, ® Is)ﬁ‘lilst
t=1

.
+o, ()T 2 Z [(z(d17) — 2) ® 1107 s, (A.6)

where the terno,(1) just replaces the differencevecB (f1)"/dy — d vecB(4)'/dy. That
the first term on the right hand side is of ordgy(1) is a simple consequence of the
facts thatQ;1 = Op(1) and that(z; ® Is)e; is a square integrable martingale difference
sequgnceTo show the same forAthe second onetice tpat the only nonzero elements
of z(d17) — z; are given byu;_1(d17) — Ui—1(F10) = —(Ar — Ag)Yz, 11 — (dr (7)) —
dofi(yo)). Thus we may consider

.
Op(l)T71/2 Z [(AT - Ao)yz,t—l ® Is]ﬁ;lat

t=1
T
+o, ()T V2 Z[MAT fl(97) = dofi(v0)) ® 15107 e, = 0, (D).

To justify the equalityone can first use Lemma.&(c) of Saikkonen(200J) to conclude
that the second term on the left hand side is of oxj¢t). For the first term the same
conclusion follows from Lemma A(b) of the same paper and the assumption—
Ao = Op(T’l). Thus we have shown thatA.6) or the second term on the right hand
side of(A.5) is of orderoy(1).

To show that the third term on the right hand sidéAf5) is of ordero,(1), conclude
from (3.4) thate;(d11, o) — & = —ao(U—1(d17) — U—1(D10)). Thus in the same way
as in(A.6) we may consider

0,(H)T 2 2 [2(D17) ® )07 o[ U1 (D7) — Up—1(D10)]

.
= Op(l)T71/2 Z [z ® |s]ﬁ?lao[ut71(ﬁn) — U—1(D40)]

t=1
T
+ Op(l)T71/2 > [(z(Di1) = 20) ® 15107 ao[Up— 1 (D7) — Up_a(B10)]. (A7)
t=1

Here we can further write
utfl(ﬁlT) = U_1(Do) = _(AT - AO)y2,lfl - (IZT = do)f(¥7)
— do( T (1) — fe(vo0)). (A.8)
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Recall the assumption&r — Ag = Oy(T™1), dr — do = Oy(T~¥?) and 1 — yo =
O,(T~Y2) and also that max=r| fi(y)| and max=.<r|df.(y)/dy| are bounded in some
neighborhood ofy, by the assumed version of Condition 1 of Saikkoi2001). Thus
because max =1 T Y2|y, 11| = Op(1), it follows from (A.8) after a mean value ex-
pansion off,(971) — f(yo) that max—i=1 |U1(d17) — U—1(F10)| = Op(T~%2). Be-
cause it is also easy to check that max+ E||z| = O(1) we find that the first term on
the right hand side ofA.7) is of orderoy(1). That the same is true forAthe second one
can be readily seen by recalling that the only nonzero elemeng(6f;) — z are
given byut_l(i}n) — Ui—1(d10). Thus we have shown thatA.7) is of orderoy(1) and
thereby that the third term on the right hand sidgA%) is of ordero,(1).

The preceding discussion and the idensitgd 11, ) = Ay, — B(¢)z,(d:17) imply that
we can write(A.5) as

.
2T V2 Y PO, tho) Q7 M (D17, tho)
=1

= 2T V2 3 Fo Dy, i) Q7 [B(rr) — Bleho)1ze(Dr) + 0p(1)

t=1

.
=-2T 2% F2t(ﬁlT>&T)Q'FlF2t(1_§1Ta JT)/((Z/T — tho) + 0,(1), (A.9)

t=1

where the second equality is based on a mean value expansion with the ngkation
defined in the same way as its analog in the proof of TheoreinNbow consider the
extreme expressions i#\.9) and first note that

T T
T V23 Fo(Dirtho) Orte(Sar,tho) = T2 3 For( 90, th0) Qo ey + 0p(1)

t=1 t=1

= N(0,2¢;(l/f0390)71), (A.10)

where the matrixt,, (0, Qo) * is well defined by Lemma A of Saikkonen2001). The

stated weak convergence is obtained from a standard martingale central limit theorem
and the fact that in the definition &% (%10, /o) the vectorz,(d10) = z; can be replaced

by &t = [AX{_1...AX{_ps1 X{—1Bo]" (cf. the proof of Lemma AL of Saikkonen2002).

To justify the equality in(A.10), observe that

8[(§1T7lr/j0) —& = aO(AT —Ao)Ya i1t aO(‘ZT f(¥1) — do (o))
and
Fm(ﬁn,lﬂo) — For(10,400) = —(0 VeCB(‘//O)//a‘//)[(Zt(ﬁlT) -z)® ],

where the only nonzero elements nfd,1) — z are given byu,_1(d11) — U_1(J10).

An explicit expression oft_1(d17) — Ur_1(910) can be found in(A.8) where Ay —

Ao = Oy(T™Y), dt — do = Oy(T~Y2), and§1 — yo = Op(T~Y?) by assumptionThe
equality in(A.10) can now be established by using these faitte consistency of the
estimator()r, and a straightforward though somewhat tedious application of Lemmas
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A.1 and A3 of Saikkonen2001) combined with & possibly termwisgmean value ex-
pansion ofdq( fy(y7) — fi(yvo)) when neededThus we have establishet?.10) as a
whole

Next consider

T T
T2 Fou D, ) Q7 Fou (D, thr) = T2 For (910, th0) Qo ot (910, 0)" + 05(1)
t=1

t=1
=3, (10, Qo)+ + 0,(2). (A.11)

Here the justification of the first equality is similar to that (A.10) except that the
situation is now simpler because the standardization i§ byd not byT %2 The sec-

ond equality follows from the definitions &% (¥4, ) andZ,, (o, Qo) and Lemma Al(a)

of Saikkonen(2001). Combining(A.9)—(A.11) gives the stated limiting distributiofo

show its independence of the limiting distribution in Theorerh Bote that these lim-

iting distributions are determined by the joint weak limit of partial sum processes formed
from g and ({; ® 15)Q'e,. Because we havE({; ® 1) Qo e ely; = O for all j the

weak limits of these partial sum processes are uncorrelated Brownian motions and there-
fore independentThis completes the proof u

Note that the proof of Theorem.B explicitly makes use of the assumed orders of
consistencyln particulay the proofs given for the equalities {(A.7) and(A.10) are not

possible if mere consistency is assupeud even the result; = Ao+ op(T’l/z) proved
in Theorem 31 of Saikkonen2001) does not suffice

A.2. Proofs for Section 4.

A.2.1. Intermediate Results Before starting to prove Theoremsl4and 42 two aux-
iliary results needed to obtain the limiting distributions of the LR tests will be given
These results make use of a decomposition of the likelihood function introduced in equa-
tion (3.6) of Saikkonen(2001). First decompose the vecta;(91,B) in (3.3) as
£(01, B) = £14(1, B) + &2:(B) where
81t(1917 B) = a(A— AO)yZ,t—l + a[dft(Y) —dg ft(?’o)]
and
£5¢(B) = Ay, — Bz
with z; = z;(910) as beforeUsing these definitions we can write

eT(ﬁl’ Bvﬂ) = elT("‘?l7 Ba‘()’) + €2T(B7Q)7

where

T T
0,1(9,,B,Q) = 2tr<n—1 > eV, B)sﬁ(B)’) +1r (ﬂ-l > e1(91, B) ey (9, B)')
t=1 t=1

https://doi.org/10.1017/50266466601172038 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466601172038

COINTEGRATED VECTOR AUTOREGRESSIVE MODELS 349

and
.
£,1(B,Q) = T log det(Q) + tr <Ql > 82t(B)82t(B)’>.

The notations+ (91, ¥, Q), €17(341, ¥, Q), and o1 (if, Q) are used when the parameters
¥, andy are used instead af, andB, respectivelyNow we can prove the following

LEMMA A .1. Suppose the conditions of Theordn hold and letQr be any ran-
dom matrix with the propertft = Qq + 0p(1). Then

(@ €2T(BT,§T) — Or(Br,0r) = Op(l),
(b) €17 (F17, Br, Q1) — €17(17, By, Qp) = Op(1)7
(©) €1r(Da7,Br, Q1) — €11 (Y17, Br, Q1) = 0p(D).

Proof. Let By and Q) be the(infeasible ML estimators ofB and Q, respectively
obtained by minimizing,1(B, Q) over{(B,Q):B € B(¥), Q > 0}. Specializing Theo-
rem 31 and Proposition .2(d) of Saikkonen(2001) to the case wherd, is restricted
by ¥, = 910 one can see that these estimators exist with probability approaching one
and satisfyBr = By + Op(TY2) and Q7 = Qo + 0,(1). (Note that this only requires
continuity of the functiorB(i).) To prove(a), it suffices to show that

Cor (Br, Op) — €1 (Br, Q) = 0p(1) (A.12)

and that the same result holds wih replaced byBr. First observe thaby the defini-
tion of the estimators),7, By, andQr,

0 = eT(ﬁlTr éTﬁﬁT) - €T(1§1T7 B.T’QT)
= €1T(1§1T’ BT?SA)T) - €1T(1§1T’ B.T’(,)T) + €2T(éT?QT) - €2T(B.T?QT)' (Als)

We shall show later that
€1T(1§1T» BT’QT) - €1T(1§1T, B.TaflT) = Op(l)' (A.14)
Assuming that this holds one obtains frq/.13)

0= €or (B, Q) — €21 (Br, Op) + 0,(1)

= tr{Q;1<E 82t(éT)82t(BT)’ - 2 82t(B'T)82t(B.T)’>}

+ tr{(ﬁ?l - Q?l)<2 ea1(Br) ey (Br) — 2 82t(BT)82t(BT)/>}
+0,(1). (A.15)

Here the equality is a direct consequence of the definitiofyafB, (), which also shows
that the first term in the last expression equais(Br, Q1) — €1(Br, Q7). On the other
hand the second term in the last expression is of omjgl) because botlf; and Ot

are consistent estimators 6f and because the difference between the two sums is of
orderO,(1). BecauseBr = By + O,(T ~¥2) andBr = By + O,(T ~¥/2?) this last fact can
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be established in a straightforward manner by using Lemriiéafand(b) of Saikkonen
(2001 and the identities
e2(Br) = £2(By) + (Br — Bz,

=g, — (Br — By)z + (Br — By)z,. (A.16)
Thus we can conclude fromA.15) that
0= €or(Br, Or) — €or(Br, Or) + 0p().

However by the definition of the estimatoi®; andQr, the difference on the right hand
side is nonnegative so that it must be of ordg(l), and we have establishé¢d.12) in
the special cas@r = (. To prove the same result in the general ¢@set observe that
the arguments used for the equality(&.15) also show that,r(Br, Q1) — €27(Br, O1) =
Cor(Br, Q1) — €21(Br, Q1) + 0,(1). Thus to complete the proof ofA.12), we have to
justify (A.14).

From the definition oft17(4, B, Q) it follows that

€1T(1§1T’ éT!‘QT) - €1T(191T’ B'T’QT)

T T
= Zt"{ﬁTl(z 81t(7§1T: BT)SZt(éT)’ - 2 81t(7§1T: BT)Szt(BT)’>}
t=1 t=1

.
+1r {QTl < > en(Dir, Br) ey (97, Br)'

t=1
T A . A .

-2 Slt(ﬂlT’BT)Slt(ﬂlTaBT),)}- (A.17)
t=1

From the definitions one also obtains

e (D1, Br) = dr(Ar = Ag)yo iy + ar[dr F(97) = dofi(¥0)] (A.18)
and
e1(Dr, Br) = e1(D1r, Br) — (Gr — dr)(Ar — Ag)Yo i1

= (@r = aq)[dr f(97) = dof(v0)]. (A.19)

Because the assumptions of Theorerh &e supposed to hold we can conclude that
Ar = Ag + Oy(T™Y), dr = do + Oy(T~Y2), and 91 = yo + O,(T~?), whereas the
functionf;(y) is assumed to satisfy Condition 1 of Saikkon@001) in some compact
neighborhood of. That the first term on the right hand side(@f.17) is of orderog(1)

can be established by using these fathe identities(A.16), (A.18), and (A.19), the
consistency properties of the involved estimatarsd Lemmas AL and A3 of Saikkonen
(2003). The proof for the second term on the right hand sidé2ol.7) is entirely similar
except that in the quantity containing cross products of the last terms on the right hand
sides of(A.18) and (A.19) a (termwise mean value expansion is first employédf
desired a mean value expansion can also be used in several other)cBs¢sils of
these derivations are straightforward but somewhat tedious and will therefore be omit-
ted For the proofs of partgb) and(c) it is useful to note that the preceding arguments
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can also be used to show that all sums on the right hand sidA.a¥) are of order
Op(D).

Thus we have provedA.14) and therebyA.12). To prove(A.12) with By replaced
by By, first notice that the considered restrictions only concern the paranigtand
not B. This means that the inequality i#.13) holds even ifd,r, Br, and Qr are re-
placed by their constrained counterparts that have the same consistency properties as
d11, Br, and ) (see the discussion at the end of S&t Thus the previous proof of
(A.12) also applies in the case of constrained estimators implying the first assertion of
the lemmaThe arguments used to show tfat17) is of orderoy(1) readily prove the
second and third assertians u

Lemma Al is used to obtain the limiting distribution of test statisfi&® ;. For test
statisticLR, we use the following lemma

LEMMA A .2. Suppose the assumptions of Theoreghhold and letQ; be any ran-
dom matrix with the propertft = Qg + 0p(1). Then

elT(ﬁlTvl&TvﬁT) — L1 (D17, 7, Op) = 0p(1).
Proof. First note that
elT(ﬁlT»lZT’QT) - elT(ﬁlTywO’Qo) = 0,(D). (A.20)

Becausel11(d1, ¥, Q) depends ony only throughB(i) and becaus&; and the other
involved estimators satisfy the same consistency properties(Asi) this can be seen
by arguments entirely similar to those used to show that the right hand sideld)) is
of orderoy(1) and also in the proofs of part®) and(c) of Lemma Al. Further be-
cause the same arguments apply with andy replaced byd,+ and i, respectively
the result of the lemma follows if we show that

€t (11,80, Q0) — Car (D17, b0, Qo) = 0p(1). (A.21)
Denoted:t = (Ar, dt, 7). To prove(A.21), it suffices to show that

17 (D17, %0, Qo) — €ar (17, Y0, Qo) = 0p(1) (A.22)
and similarly withdy1 replaced byd,r. To this end notice that

oy (Gar, dir, Q) = Car (D17, Y0, Qo) = 05()

again by arguments similar to those used to show that the right hand sideldj is of
order 0,(1) and also to prove part&) and(c) of Lemma Al. Using this result and
(A.20) one obtains

0= (41,47, Op) — b1 (Dyr, 7, Q)
= €1T('l_§lTaJ’TaQT) - €1T(1_91TalZ’T’QT)
= €lT(1_§1T5¢O5‘QO) - €T('L(}1Tyl7[j0a90) + 05(1).

By the definition ofd,1 the difference in the last expression is nonnegative sq#ap)
follows. Because the same arguments apply with replaced byd,t the proof of the
lemma is complete u
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A.2.2. Proof of Theorem 4.1.First consider the Wald test and note that we have
Yr (17 — $10) = Op(1), Br = By + Oy(T~¥2), and O = Qo + 0,(1) by assumption
Thus because the matriceég andH; (1) commute and(¥10) = 0, a standard mean
value expansion yields

Yr h1(1§1T) = Hl(ﬁlO)YT('&lT — 10) + 0p(D),
whereagA.4) shows that

def

1
Y'_r1'\7|1TY'_r1:>f Fi(X;910) 2 Qo  ag F1(X;910)'dX = M. (A.23)
0

Hence becauseéH (J17) = H(d10) + 0p(1) we can conclude from the preceding discus-
sion and Theorem.3 that

1 ’
W= <H1(1910)fo F1(X§1910)a(’)ﬂoldvvo(x)> (Hl(ﬁlo)’MilHl(ﬂ10)>7l

x (lem f Fl(X;ﬁlo)aéflEld\/\l)(X))-

The stated limiting distribution is obtained by observing that conditionaF@m;910)
thef; X 1 vector in the parentheses is normally distributed with zero mean and covari-
ance matrixH,(%;0)’'M; *H(9,,) (cf. Theorem 3L and the discussion following)it

Next consider the LM test and note th¥f(d1r — 910) = Op(1), Br = By +
Op(T~¥2), and Q7 = Qg + 0,(1) by assumptionAnalogously to(A.1) we have

T
2Y1_'1 E Flt(ﬂlo)&"rﬁ?lst(ﬁlo, BT)
t=1

T
=2Y7! E Fiu(9:7) @ Ot e (D17, Br)
t=1

.
+2Y7' 3 Fu(9y7) @ Q1 e (910, Br) — &(J1r, Br)]

t=1

.
+ 2Y'Fl 2 [Flt(ﬂlo) - Fll(ng)]&'/l' 6?181(010» BT) (A24)
t=1

Because the consistency properties of the involved estimators are the sam@ds in
the last term on the right hand side @.24) is of ordero,(1) by the arguments given
for the corresponding term ifA.1). Further in the same way as ifA.2) we can use a
mean value expansion to express the second term on the right hand $Akl@4fas

T
ZY?l Z F11(51T)51+ ﬁ'?l&T Flt(lT}lT)'(ng — o) = ZMTYT(ﬁlT - 1‘}10) + Op(l),

t=1

whered,7 is defined in the same way as befof® justify the equalitynotice that it
results from replacingl,+ by 9,7 and this can be justified in the same way as the equal-
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ity in (A.4). Thus observing thatA.3) also holds withBr and O replaced byBr and
Q+, respectivelywe find from the preceding discussion that24) can be written as

.
2Y7 D) Fy(90)a’'Q e,
=1

N
=2Y71 D) P () ar Orte(Fyr, Br) + 2(Y7 *Myr Y1) Yo (F41 — 40
t=1

+0,(1). (A.25)

Here the first term on the right hand side equaly;'0¢- (9,7, B, 07)/009, (see
(4.5)). As for the second terpuse the identityh,(J:,1) = 0 and a standard mean value
expansion to conclude thilt () Y (11 — 910) = 0p(1). Thus one obtains frontA.25)
that

Hy(910) (Y1 Mir Y1 1) Y7 2007 (947, Br, Q7)/09,
T
= _2H1(51T)(Y;1M1T Y?l)ilY;l Z Flt(ﬂlo)a/ﬂilst + Op(l)' (A.26)
t=1

To complete the proobbserve thatA.23) also holds withVl;7 replaced byVi; 1 so that
the limiting distribution of test statisti€ M, can be obtained fronfA.26) by using
(A.3) and arguments similar to those used .

Finally, consider the LR test and conclude from a mean value expansion that

LRy = €T('51T7 BT>QT) - €T(7§1T’ BT’QT)

t=1 t=1

=1r {QT1<E 81(§1T’|§T)81(51T: ET)’ - Z st(éle éT)Sl(31T>BT)’>}a

where Oy is defined in the same way as other similar notations and has the property
Qr=Qo + 0p(1). Using the identitye (91, B) = €1:(1, B) + &2(B) in the last expres-
sion and the decomposition of the log-likelihood function given in SectighlAit is
straightforward to check that

LRy = Cr(F17,Br, Qp) — €y (i1, By, Op) + €or(Br, ) — €57 (Br, Q7)
= L7 (O, BT,QT) - €1T(7§1T’ éTrﬁT) + 0,(2),

where the latter equality follows from LemmalA Using the definition oft11(94, B, Q)
we can thus write

T
LR, =2 tr{ﬂTl 2 [sll(ﬁlTv éT) - 81[(1§1T, éT)]SZt(éT),}
t=1
t=1

T
+tr {QTI Z [slt(51T5 BT) - 811(§1T9 BT)]slt('ngy BT)’}

+tr {ﬁ?l Z e (Da7, Br)[ea (Far, Br) — &1 (Dar, éT)],} + 0p(2).

https://doi.org/10.1017/50266466601172038 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466601172038

354 PENTTI SAIKKONEN

Here we can use a standard mean value expansion and further LeminascAA3
of Saikkonen (2001 to show that replacingey(d47,Br) by ey (di1,Br) —
a1 Fu(911) (J47 — 1) causes an error of ordex,(1). Details are similar to those
used for(A.17). Hence after straightforward calculations we find that

T
LRy = *2(51T - 1(A}lT)’ 21F11(1§1T)07+ﬁ?1[81t(1§n: éT) + 82t(éT)]
t=

N
+ (O — Dar)' 2 Fru(Dap) @5 Q5 Fry (D40) Oy — dap) + 0p(1)

t=1
~ A T A A A ~ A
= (ﬁlT - 1911')/ E Flt(ﬂlT)&'/l"Q;l&T Flt(ﬁlT)'('l?lT - ﬁlT) + Op(l)' (A-27)
t=1

Here the latter equality follows because the sum in the first term on the right hand side
of the first equality equals-2~29¢11 (Y17, Br, Or)/99, = 0. Using this identity and ar-
guments similar to those given previously we also find that

Y7196, 1 (47, Br, Q7)/09,

T
_2Y1t1 2 Flt(ng)&+Q?18t(1§1T, Br)

t=1

.
=2Y71 Y Fo(17) a1 Q7 [eg (947, Br) + £2(Br)]

t=1

.
- ZY"F:L E Fll(ﬁlT)d'}Q?l[st(ﬁlT’ BT) - 8[(ﬁ1T7 BT)]

t=1

)
=207t X Fu(Par) a5 05 Har Fu () (Bir = ) + 05(0)
t=

Using similar arguments it can further be seen thgto€,r(J,7,Br,0p)/00, =

Y7901 (F11, By, 07)/00, + 05(1) and YT My YT = YT M1 Y71 + 0,(1). Combin-
ing these facts with the expression of test statigtie, given in (A.27) and using the
definition of the matrixMt yields

ch = 471(Y'Fla€lT('§1Tr BT’ ﬁT)/aﬂl)’(Y;lmlTY;l)il(Y;laelT(ﬁlT’ BT! QT)/aﬂl)

+0,(1). (A.28)
Making use of(A.26), (A.28), and a standard argument based on Lagrange multipliers it
can finally be seen thatR, = LM + 0y(1) (cf. Gallant 1987 pp. 229-230. Thus

because we have proved that test statistief; has the stated limiting distribution the
same is true for test statistitR ;. n

A.2.3. Proof of Theorem 4.2.First consider the Wald test and note thay Theo-
rem 32 and the continuity 0Hx(), Ha(dr) = Ha(o) + 0p(1) and ha(ir) = Ha(tho)
(1 — o) + 0p(T~¥2). BecausgA.11) implies thatT ~*Myr = 3, (o, o) L + 0p(1)
the stated result follows from Theoren?3
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As for the LM test note first thatfr = g + Op(T ~¥2) andér = ag + Op(T ~¥2) by
Theorem 2 and the discussion at the end of SectipmBereas = Qg + 0p(1) by
assumptionNext recall that we showed that the two last terms on the right hand side of
(A.5) are of orderoy(1). Thus because the consistency properties of the constrained
estimators are the same as their unconstrained counterparts the arguments (&&gl for
can be repeated to show that

.
2T V2 3 Fo(Dir, th0) 07 £ (D11, o)
=1

.
= 2T Y2 Fo(Far, r) Q7 6 (Fay, Ur)
=1

T
+217V2 Z th(ﬁlT»IZT)ﬁ?l[et(ﬁlT,‘/’O) - 81(§1T$I/7T)] + Op(1)~

t=1

Further arguments similar to those used (A.9) show that we can write the second
term in the last expression as

.
21" v2 t:El Fou(Dar, ) Q7 Foe(Dar, ) (P — tho)

T
=272 Z F2t(§lT!l]}T)ﬁ¥lF2[(§lT5&T)/(lZT — o) + Op(l)’

t=1

where the notatio; is defined as before and the equality can be justified in the same
way as in(A.11). Thus using the definition oM, we can conclude that

T
2T V2> Fo (11, o) Q7 e (F17, 00)
t=1

T
=271V Z th(f’n:‘/}T)ﬁ?lst(ﬁn,&T) + Z(Tflsz)Tl/z(lﬁT — o) + Op(l)-

t=1

Here the first term on the right hand side equasY29¢+(J1r, P, Or)/dy. Thus
observing that(A.10) also holds withd,7 and O replaced byd,r and {1y, respec-
tively, and proceeding in the same way as followify25) we find that T Y2H, (i)
(1 — o) = 0p(1) and furthermore

Ho (7 ) (T M) 2T Y2061 (S 41, i, Q) /0
T
= 2H, () (T Myp) 1T Y2 3 Fop (910, tho) Qo e + 0p(1).
t=1

BecauseT ~1M, is asymptotically equivalent t& M.t the limiting distribution of
test statisticC M, can be obtained from this by usirig.10) and arguments similar to
those used fowV,.
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Finally, consider the LR tesBy a mean value expansipsimilar to that in the proof
of Theorem 41, we have

LRy = Cyr (Dar, r, Or) = bar Dy, P, Op) + Lor (Fr, Op) — Lo (r, Q)
= lor (7, Or) — €2T(lr/;T’ﬁT) + 0p(1),

where the latter equality follows from Lemma2\ Now consider the infeasible estima-
tor ¢+ and note that it is straightforward to specialize Theorefnf8r it and show that

Jir has the same limiting distribution as. In fact, (A.9)—(A.11) and standard argu-
ments applied to the estimatgs show thaty, andi are asymptotically equivalent in
the sense thal Y2(ir — 4ir) = 0,(1). The same arguments can also be used to show
that TY2(ir — 4¢rr) = 0p(1) whereys is the constrained counterpart #f. Thus be-
cause the estimatogs: andQr and their constrained counterparts can be obtained from
the likelihood functionf,t (i, Q) it is straightforward to conclude from the preceding
representation o£ R, that

LR, = €2T(¢.T7QT) - €2T($T76T) + Op(l)‘

Because standard asymptotics hold for ML estimators based on the likelihood function
{1 (1, Q) the standard chi-square limiting is also obtained for LR tests based on it and
hence forLR,. u
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