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This paper continues the work of Saikkonen~2001, Econometric Theory17, 296–
326! and develops an asymptotic theory of statistical inference in cointegrated vec-
tor autoregressive models with nonlinear time trends in cointegrating relations and
general nonlinear parameter restrictions+ Inference on parameters in cointegrating
relations and short-run dynamics is studied separately+ It is shown that Gaussian
maximum likelihood estimators of parameters in cointegrating relations have mixed
normal limiting distributions and that related Wald, Lagrange multiplier, and like-
lihood ratio tests for general nonlinear hypotheses have usual asymptotic chi-
square distributions+ These results are shown to hold even if parameters in the short-
run dynamics are not identified+ In that case suitable estimators of the information
matrix have to be used to justify the application of Wald and Lagrange multiplier
tests, whereas the likelihood ratio test is free of this difficulty+ Similar results are
also obtained when inference on parameters in the short-run dynamics is studied,
although then Gaussian maximum likelihood estimators have usual normal limit-
ing distributions+ All results of the paper are proved without assuming existence
of second partial derivatives of the likelihood function, and in some cases even
differentiability with respect to nuisance parameters is not required+

1. INTRODUCTION

This paper is a sequel to Saikkonen~2001!, which proved the existence and con-
sistency of a Gaussian maximum likelihood~ML ! estimator in a cointegrated
vector autoregressive~VAR! model with nonlinear time trends in cointegrating
relations+ The practical motivation of the model was also discussed in the pre-
vious paper and more thoroughly in Ripatti and Saikkonen~2001; see also
Heinesen, 1997!+ The treatment of Saikkonen~2001! was very general and al-
lowed for nonlinear parameter restrictions in both the cointegrating relations and
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short-run dynamics+ Further generality was achieved by proving consistency re-
sults without assuming identifiability of all underlying structural parameters+ The
object of this sequel is to complete the previous work by developing a corre-
sponding asymptotic theory of statistical inference+ The test procedures to be con-
sidered include the three classical likelihood based tests, namely, the Wald, score,
or Lagrange multiplier~LM !, and likelihood ratio~LR! tests+

In the same way as Saikkonen~2001!, this paper also proves asymptotic re-
sults without assuming identifiability of all nuisance parameters+ This relates
our work to the recent literature on partially identified models~see Phillips,
1989; Choi and Phillips, 1992!+ In particular, limiting distributions of ML esti-
mators of parameters in cointegrating vectors and related tests will be derived
even if parameters in the short-run dynamics are not identified and vice versa+
To some extent, identifiability of the trend parameters can also be dispensed
with although, as a result of the assumed nonlinearity of the trend, the situation
here is more difficult than in the case of other parameters+

It will be shown in the paper that, when the parameters of interest are iden-
tified, their ML estimators have mixed normal limiting distributions that re-
duce to usual normal limiting distributions in the case of short-run parameter
estimators+ A consequence of this is that the conventional asymptotic chi-
square criterion applies to related Wald, LM , and LR tests+ Proofs of these re-
sults are more complicated than usual, however, because identifiability of
nuisance parameters is not assumed+ This particularly holds for proving the lim-
iting distributions of the LR tests of the paper+ An advantage of the LR test
over corresponding Wald and LM tests is, however, that choosing an estimator
of the information matrix is not required+ This choice is not quite obvious when
identifiability of nuisance parameters is not assumed, although reasonable choices
can be given+ A further theoretical feature of the paper is that commonly used
assumptions of the existence of second partial derivatives of the likelihood func-
tion are not needed and in some cases even differentiability with respect to
nuisance parameters can be dispensed with+

The paper is organized as follows+ Section 2 briefly presents the model and
required assumptions+ For a more thorough treatment and motivating discus-
sions refer to Section 2 of Saikkonen~2001!+ Limiting distributions of ML es-
timators are derived in Section 3 and those of Wald, LM , and LR tests in
Section 4+ Section 5 concludes+ Proofs are given in the Appendix+ Finally, the
employed notation is fairly standard and is discussed at the end of Section 1 of
Saikkonen~2001!+

2. MODEL AND ASSUMPTIONS

Consider thes-dimensional time seriesyt , t 5 1, + + + ,T, which is integrated of
order one~I ~1!! and cointegrated with cointegrating rankr ~0 , r , s!+ Fol-
lowing Saikkonen~2001! we assume that the underlying data generation pro-
cess is a Gaussian VAR process of orderp+When written in the error correction
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form the coefficient matrices of this VAR process can be general nonlinear func-
tions of underlying structural parameters, and a nonlinear time trend depending
on a parameter vector is allowed in the cointegrating relations+ Specifically, the
error correction form of the considered model is

Dyt 5 a~c!@b~f!'yt21 2 gt ~m!# 1 (
j51

p21

Bj ~c!Dyt2j 1 «t , t 5 1, + + + ,T, (2.1)

whereb~f! 5 @Ir 2A~f!# ' ~s 3 r ! is the matrix of normalized cointegrating
vectors, a~c! ~s 3 r ! andBj ~c! ~s 3 s! are matrices of short-run parameters
with a~c! of rank r, andgt~m! ~r 3 1! is a deterministic time trend+ Further-
more, the initial valuesy2p11, + + + , y0 are observable, and«t is Gaussian white
noise, that is, «t ; NID~0,V! with V . 0+ Conditions that guarantee that~2+1!
really defines anI ~1! process withb~f!'yt21 stationary cointegrating relations
are well known and can be found in Johansen~1995, Theorem 4+2! and Saikkonen
~2001, Assumption 1!+ Here these conditions are always assumed, and the acro-
nymsI ~1! model andI ~1! process are used to indicate this+ Because we are not
interested in inference on the cointegrating rank, r, we shall assume that the value
of this parameter is known+

Thus, we assume that the cointegrating vectors are defined by the matrix
function A~f! ~r 3 ~s 2 r !! and the parameter vectorf ~k 3 1! whereas
the short-run dynamics are determined by the matrix functionsa~c! and
Bj ~c! ~ j 5 1, + + + , p 2 1! and the parameter vectorc ~, 3 1!+ Conditions needed
to prove the consistency of the ML estimators of these parameters are given
in Assumptions 2 and 3 of Saikkonen~2001!+ These conditions include conti-
nuity of the previously mentioned functions and appropriate identification con-
ditions that are not stated explicitly here because, by the results of the previous
paper, needed consistency results will be assumed+ Instead, we will only give
conditions required for asymptotic inference and start with the following
assumption+

Assumption 1+ The true parameter valuef0 is an interior point of the param-
eter spaceF , Rk and in some neighborhood off0 the functionA~f! is con-
tinuously differentiable with the matrix] vecA~f0!0]f ' of full column rank+

Assumption 1 is standard in the theory of asymptotic inference, although we
do not need the existence of second partial derivatives ofA~f!, which is often
assumed+ It may be noted that Assumption 1 is not very far from implying As-
sumption 2 of Saikkonen~2001!+ To see this, notice that the differentiability
assumption entails that the matrix] vecA~f!0]f ' is of full column rank in some
neighborhood off0+ This implies that the functionA~f! has a continuous in-
verse in a compact set containingA~f0! but not necessarily a neighborhood of
A~f0! ~see Bartle, 1964, p+ 252!+ Thus, the identification condition of Assump-
tion 2~b! of Saikkonen~2001!, and hence Assumption 2 as a whole, holds if we
further assume that the inverse ofA~f! is defined in some neighborhood of
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A~f0! andA~f0! is an interior point in the relative topology of RA~f!, the clo-
sure ofA~F!+

The next assumption is concerned with the short-run parameters of the model+
We denoteB~c! 5 @B1~c! + + +Bp21~c!a~c!# +

Assumption 2+ The true parameter valuec0 is an interior point of the param-
eter spaceC , R,, and in some neighborhood ofc0 the functionB~c! is con-
tinuously differentiable with the matrix] vecB~c0!0]c ' of full column rank+

Assumption 2 is entirely similar to Assumption 1 and therefore standard in
the theory of asymptotic inference+ It is related to Assumption 3 of Saikkonen
~2001! in the same way as Assumption 1 is related to Assumption 2 of that
paper+

Now consider the trend termgt~m!+ In the same way as in Saikkonen~2001!
we partition the parameter vectorm asm 5 @n ' g '# ' and, for theoretical rea-
sons, make the additional structural assumption

gt ~m! 5 d~n! ft ~g!, (2.2)

whered~n! ~r 3 r1! is a time invariant matrix function of the parameter vector
n ~n 3 1!, whereasft~g! ~r1 3 1! is a time dependent vector function of the
parameter vectorg ~q 3 1!+ The sequenceft~g! is specified by assuming that
ft~g! 5 f ~t0T;g! where f ~{;g! is a suitable function defined on the interval
@0,1# + Of course, the sequencegt~m! is then defined by the functiong~{;m! 5
d~n! f ~{;g! so thatgt~m! 5 g~t0T;m!+ The dependence of the trend term, and
hence the processyt~t 5 1, + + + ,T !, on the sample sizeT is not made explicit
because this feature has no essential effect on asymptotic derivations~cf+
Saikkonen, 2001, particularly Sect+ 2+3!+

Now we can give conditions required for the trend model+ It is convenient to
formulate some of them by using the functiong~x;m! without being explicit
about the structural assumption~2+2!+ In the following assumption we refer to
Condition 1 of Saikkonen~2001!, which is not repeated here+ Simple sufficient
conditions for it will be discussed shortly+

Assumption 3+ Let f ~x;g! be a function from@0,1# 3 G to Rr1 whereG is a
compact subset ofRq+ Let m 5 @n ' g '# ' [ M 5 N 3 G whereN , Rn and let
ft~g! 5 f ~t0T,g! andgt~m! 5 d~n! f ~t0T;g!, t 5 1, + + + ,T+ Assume that the fol-
lowing conditions hold+

~a! The true parameter valuem0 is an interior point ofM, and in some neighborhood
of m0 the functiong~x;m! 5 d~n! f ~x;g! is continuously differentiable with re-
spect tom+

~b! The function formed fromf ~x;g! and]f ~x;g!0]gi ~i 5 1, + + + ,q! satisfies Condi-
tion 1 of Saikkonen~2001! when the value ofg belongs to a compact neighbor-
hood ofg0+

~c! The matrix*0
1@]g~x;m0!'0]m# @]g~x;m0!0]m' #dx is of full rank+
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Unlike with other parameter spaces, we have found it convenient to retain
the compactness assumption imposed onG in Saikkonen~2001!+ The differen-
tiability condition in Assumption 3~a! is standard, although even here we can
do without assuming the existence of second partial derivatives+ The condi-
tions in Assumption 3~b! were also used in Saikkonen~2001! to obtain orders
of consistency+ They imply that sample moments that appear in the derivation
of limiting distributions converge in an appropriate way+ Assumption 3~c! is a
variant of a conventional rank condition that guarantees that estimators have
nonsingular limiting distributions+ Note that here, and also in other similar sit-
uations, we use the notation]g~x;m0!'0]m 5 ~]g~x;m0!0]m'!' ~cf+ Lütkepohl,
1996, p+ 173!+

Assumption 3 is related to Assumptions 4 and 5 of Saikkonen~2001!+ In
particular, because Assumptions 3~a! and~c! imply that the matrix] vecd~n!0
]n ' is of full column rank in some neighborhood of the true parameter valuen0

a reasoning similar to that following Assumption 1 shows that Assumption 4 of
Saikkonen~2001! nearly holds+ However, except for the compactness of the
parameter spaceG, the conditions in Assumption 5 of Saikkonen~2001! are
much stronger than required in the present Assumption 3+ Because consistency
of ML estimators will here be assumed we only need local assumptions on the
likelihood function instead of corresponding global assumptions needed in the
consistency proofs of Saikkonen~2001!+ The nonlinearity of the sequenceft~g!
in both the time indext and the parameterg makes the global assumptions
necessarily much stronger+

As already mentioned, we will not give details of Condition 1 of Saikkonen
~2001!+ A simple sufficient condition for Assumption 3~b! to hold is that the
vector function of~x,g! formed fromf ~x;g! and]f ~x;g!0]gi ~i 5 1, + + + ,q! is
continuously differentiable+ In the case of conventional dummy variables the
function f ~x;g! is discontinuous, but because it is known and hence indepen-
dent of g these cases can also be included+ The most important case that is
excluded is that of structural breaks with unknown break dates or dummy vari-
ables with dates of jump depending on unknown parameters+

3. LIMITING DISTRIBUTIONS OF ML ESTIMATORS

Consider model~2+1! with gt~m! as in~2+2!+ Conditioning on the initial values
y2p11, + + + , y0 minus two times the logarithm of the likelihood function can be
written as

,T 5 T log det~V! 1 tr HV21 (
t51

T

«t «t
'J , (3.1)

where«t is as in~2+1! and is interpreted as a function of the unknown param-
eters therein+ When ML estimators exist they minimize the function,T over
permissible values of the parameters+ In the same way as in Saikkonen~2001!
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we consider a minimization problem and refer to,T as the likelihood function+
It is obvious from~2+1! and~2+2! that the likelihood function only depends on
the structural parametersf, c, andn through the corresponding reduced form
parametersA~f!, B~c!, andd~n!+ It will occasionally be convenient to express
the likelihood function in terms of some of the reduced form parameters, and,
when this is done, appropriate arguments will be added to,T and «t + On the
other hand, we will usually drop the argument from the reduced form param-
etersA~f!, B~c!, andd~n! when their dependence on the underlying structural
parameters is irrelevant+ A similar notational convention applies to estimators+

Theorem 3+1 and Corollary 3+1~c! of Saikkonen~2001! show that, under ap-
propriate regularity conditions, ML estimators of the parametersA, B, d, andg
exist with probability approaching one and are consistent+ Then a consistent
ML estimator of the error covariance matrixV also exists and is defined by

ZVT 5 T21 (
t51

T

[«t [«t
' + (3.2)

Here [«t denotes«t evaluated at ZAT , ZBT , ZdT , and [gT , ML estimators of the pa-
rametersA, B, d, andg, respectively+ After having established the consistency
of these ML estimators Saikkonen~2001! deduced the consistency of the re-
lated structural parameter estimatorsZfT , ZcT , and [nT by using suitable identifi-
cation conditions+ However, these identification conditions were not needed to
prove the consistency of the estimatorsZAT , ZBT , ZdT , and [gT + Some of the sub-
sequent results can also be proved without assuming identifiability of all struc-
tural parameters+

Now define the parameter vectorq 5 @f ' n ' g ' c ' # ' ~~k 1 n 1
q 1 ,! 3 1! and setq1 5 @f ' m'# ' wherem 5 @n ' g '# ' as before+ We shall
first derive the limiting distribution of the ML estimator ofq1+ For this result
we only need the consistency of the reduced form parameter estimatorZBT ,
whereas consistent estimation of the corresponding structural parameterc is
not required+ In asymptotic analyses it is therefore relevant to consider the like-
lihood function as a function of the parametersq1, B, andV and use the nota-
tion ,T 5 ,T~q1,B,V! and «t 5 «t~q1,B!+ Note thatB [ B~C! and that we
explicitly have

«t ~q1,B! 5 Dyt 2 a@ y1, t21 2 A~f!y2,t21 2 gt ~m!# 2 (
j51

p21

Bj Dyt2j , (3.3)

whereyt 5 @ y1t
' y2t

' # ' is partitioned intor 3 1 and~s2 r ! 3 1 subvectors+We
also need further notation+ Let W0~x! be a Brownian motion with covariance
matrix V0 and defineW2~x! 5 e2

' L0W0~x! wheree2
' 5 @0 Is2r # andL0 signi-

fies the true value of the parameter matrixL 5 b4 @a4
' ~Is 2 (j51

p21 Gj !b4 #21a4
' +

Note thatL is the moving average impact matrix that appears in Johansen’s
~1995, p+ 49! version of Granger’s representation theorem and its counterpart
given in Saikkonen~2001, Sect+ 2+3!+ If we finally define
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F1~x;q1! 5 2F~] vecA~f!'0]f!~W2~x! J Ir !

]g~x;m!'0]m G
we can state the following theorem+ Unless otherwise stated, all limits in this
paper assume thatT r `+

THEOREM 3+1+ Let y1, + + + , yT be generated by the I~1! process~2+1! where
gt~m! is as in ~2+2!+ Let Assumptions1 and 3 hold and suppose that ML esti-
mators of the parametersf, m, B, and V exist with probability approaching
one and are consistent. Then,

F T~ ZfT 2 f0!

T 102~ [mT 2 m0!Gn SE
0

1

F1~x;q10!a0
'V0

21a0 F1~x;q10!'dxD21

3 E
0

1

F1~x;q10!a0
'V0

21dW0~x!+

Remark 3+1+ Sufficient conditions for the existence and consistency of the
ML estimators of the parametersf, m, B, andV are given in Theorem 3+1 and
Corollary 3+1~a! and ~c! of Saikkonen~2001!+ These conditions are explicitly
stated in Assumptions 1, 2~a! and ~b!, 3~a!, 4~a! and ~b!, and 5~a!–~d! of that
paper+

An interesting feature in Theorem 3+1 is that it only assumes that the ML
estimator of the reduced form parameterB 5 B~c! is consistent but consistent
estimation of the corresponding structural parameterc is not assumed+ In fact,
the sufficient conditions mentioned in Remark 3+1 only include continuity of
the functionB~c!, but identifiability of the structural parameterc is not as-
sumed, and neither is differentiability of the functionB~c!+ Thus, we have ob-
tained the limiting distribution of the ML estimatorsZfT and [mT even if the
short-run parameterc is not identified and, therefore, cannot be consistently
estimated+ An intuitive explanation behind this result is that the information
matrix between the parametersq1 andc is block diagonal so that these param-
eters can be estimated independently of each other+ Therefore, difficulties with
the estimation ofc do not interfere with the estimation ofq1+ On the other
hand, in the case of the parametersf andm the block diagonality of the infor-
mation matrix does not hold, so that it is difficult to weaken the identification
conditions implicitly assumed in Theorem 3+1 and, for example, derive the lim-
iting distribution of ZfT when consistency of the estimator[mT fails+ It is easy to
check that the Brownian motionsW2~x! anda0

'V0
21W0~x! are uncorrelated and

therefore independent+ This implies the independence of the processesF1~x;q10!
anda0

'V0
21W0~x! so that the limiting distribution in Theorem 3+1 is mixed nor-

mal+ As is well known, this fact has useful implications on hypothesis testing+
We shall next obtain the limiting distribution of the short-run parameter es-

timator ZcT + In this context consistent estimation of the structural parametersf
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andn is not required, so that it is relevant to replace them by the correspond-
ing reduced form parametersA [ A~F! andd [ d~N! in the definition of the
likelihood function+ Thus, we use the notation,T~ tq1,c,V! and«t 5 «t~ tq1,c!
where, for simplicity, tq1 5 ~A,d,g!+ An explicit expression of«t~ tq1,c! is
given by

«t ~ tq1,c! 5 Dyt 2 a~c!ut21~ tq1! 2 (
j51

p21

Bj ~c!Dyt2j , (3.4)

where ut21~ tq1! 5 y1, t21 2 Ay2, t21 2 dft ~g!+ We also definezt ~ tq1! 5
@Dyt21

' + + +Dyt2p11
' ut21~ tq1!' # ' and write zt 5 zt~ tq10! with tq10 the true value

of tq1+ Now we can state the following theorem+

THEOREM 3+2+ Let y1, + + + , yT be generated by the I~1! process~2+1! where
gt~m! is as in ~2+2!+ Let Assumptions2 and 3~a! and ~b! hold and suppose
that ML estimators of the parametersc, A, d, g, and V exist with probability
approaching one and are consistent withZAT 5 A0 1 Op~T21!, ZdT 5 d0 1
Op~T2102!, and [gT 5 g0 1 Op~T2102!+ Then,

T 102~ ZcT 2 c0! n N~0,Sc~c0,V0!!,

where

Sc~c,V! 5 S] vecB~c!'0]cSplimT T21 (
t51

T

zt zt
' J V21D] vecB~c!0]c 'D21

and the weak limit is independent of the weak limit in Theorem3+1+

Remark 3+2+ Sufficient conditions for the existence of the ML estimators of
the parametersc, A, d, g, and V and also for all the consistency results as-
sumed in Theorem 3+2 are given in Theorem 3+1, Corollary 3+1~b! and~c!, and
Proposition 3+2 of Saikkonen~2001!+ These conditions are explicitly stated in
Assumptions 1, 2~a!, 3~a! and~b!, 4~a!, 5~a!–~d!, and 6 of that paper+ The prob-
ability limit in the definition of the matrixSc~c,V! exists by Lemma A+1~a! of
Saikkonen~2001!+

Thus, Theorem 3+2 only assumes that the ML estimators of the reduced form
parametersA 5 A~f! andd 5 d~n! are consistent, but consistency of the cor-
responding structural parameter estimatorsZfT and [nT is not assumed+ The suf-
ficient conditions given in Remark 3+2 only include continuity of the functions
A~f! andd~n!, but identifiability of the structural parametersf and n is not
assumed and neither is differentiability of the functionsA~f! andd~n!+ Thus,
the result of Theorem 3+2 holds even if the structural parametersf andn are
not identified and, therefore, cannot be consistently estimated+ Also, because
the consistency of the estimatorZdT does not require differentiability of the func-
tion d~n! the differentiability requirement of Assumption 3~a! could actually
be weakened in Theorem 3+2 to concern the functionf ~x;g! only+ For ease of
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exposition we have ignored this generalization+ As a whole, the treatment of
nuisance parameters in Theorem 3+2 requires stronger assumptions than needed
in Theorem 3+1, and any relaxations seem difficult to achieve+ The fact that
there is no finite dimensional reduced form counterpart of the parameter vector
g may explain why doing without any identification condition is more difficult
in the case of this parameter than in the case of other parameters+ Note, how-
ever, that in the special case where the sequenceft~g! is known the limiting
distribution in Theorem 3+2 applies without any identification conditions on
nuisance parameters+ This particularly holds in the standard model where the
components offt~g! consist of a constant and conventional seasonal dummies+
It may also be noted that if identifiability of all structural parameters is as-
sumed the proof of Theorem 3+2 can be simplified and the orders of consis-
tency assumed of the nuisance parameter estimators can then be obtained from
Theorem 3+1+

When all structural parameters are identified the estimators in Theorem 3+1
and 3+2 are asymptotically independent of each other+ It is straightforward to
show that then they are also asymptotically independent of the error covariance
matrix estimator ZVT , which has the same limiting distribution as in the case
where the values of the other parameters are a priori known and not estimated+
Moreover, it can be shown that the likelihood ratio of our model belongs to the
locally asymptotically mixed normal~LAMN ! family so that ML estimators
are asymptotically efficient~see, e+g+, Basawa and Scott, 1983; Phillips, 1991;
Jeganathan, 1995!+

We close this section by noting that it is straightforward to extend the results
of Theorems 3+1 and 3+2 to allow for smooth parameter constraints to be con-
sidered in the next section+ Specifically, consider restrictions of the form

h~q! 5 @hf~f!' hn~n!' hg~g!' hc~c!' # ' 5 0, (3.5)

whereh~q! is a continuously differentiable vector function of dimensionf #
k 1 n 1 q 1 ,+ Thus, we assume that each component ofq is restricted sepa-
rately+ Although more general restrictions might be considered we shall restrict
ourselves to this special case because potential generalizations are likely to be
of minor practical interest+When the restrictions in~3+5! are assumed all of our
previous results are easily seen to hold+ To demonstrate this, note first that in
the consistency results of Saikkonen~2001! no particular assumptions were made
of the parameter spacesF, N, andC, so that we can simply assume that they
are defined in such a way that the restrictions implied by~3+5! hold+ The pa-
rameter spaceG was assumed compact, but this causes no problems because
we only need to consider the redefined parameter spaceG ù $hg~g! 5 0%, which
is compact+ Thus, it follows that with appropriate interpretations of the param-
eter spaces all the consistency results proved in Saikkonen~2001! and used in
Theorems 3+1 and 3+2 still hold+ This implies that the limiting distributions of
these ML estimators can be derived by using a standard Lagrange multiplier

COINTEGRATED VECTOR AUTOREGRESSIVE MODELS 335

https://doi.org/10.1017/S0266466601172038 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466601172038


method and arguments similar to those in the proofs of Theorems 3+1 and 3+2
~cf+, e+g+, Kohn, 1978!+

4. HYPOTHESIS TESTING

We consider testing general nonlinear restrictions on the parametersq1 andc+
Following the development of the previous section our treatment will be di-
vided into two parts+ First we obtain tests for the null hypothesis

H1 : h1~q10! 5 @hf~f0!' hn~n0!' hg~g0!' # ' 5 0, (4.1)

whereh1~q1! is a continuously differentiable vector function of dimensionf1 #
k 1 n 1 q+ As a result of the assumed structure of the functionh1~q!, the
matrix H1~q1! 5 ]h1~q1!0]q1

' is of the form H1~q1! 5 diag@]h1~f!0]f '

]h1~n!0]n ' ]h1~g!0]g '# , and, as usual, it is supposed to be of full row rank at
q1 5 q10+ If some components ofq1 are not involved in the null hypothesis
the definitions ofh1~q1! andH1~q1! are modified in an obvious way+

The Wald test for the preceding null hypothesis tests whetherh1~ Zq1T! is sig-
nificantly different from zero+ A general form of the test statistic is

W1 5 h1~ Zq1T !' @H1~ Zq1T ! ZM1T
21H1~ Zq1T !' #21h1~ Zq1T !+ (4.2)

Here ZM1T is any~nonsingular! matrix with the property

YT
21 ZM1T YT

21 5 YT
21 (

t51

T

F1t ~ Zq1T ! [aT
' ZVT

21 [aT F1t ~ Zq1T !'YT
21 1 op~1!, (4.3)

whereYT 5 diag@TIk T 102In1q# and

F1t~q1! 5 2F~] vecA~f!'0]f!~ y2, t21 J Ir !

]gt ~m!'0]m G +
Clearly, F1t~q1! is an empirical counterpart of the functionF1~x;q1!, so that
the first term on the right hand side of~4+3! is an obvious sample analog of the
matrix that is inverted in the weak limit of Theorem 3+1+ Instead of only con-
sidering this particular choice of the matrixZM1T we wish to be more general
and also allow for alternative possibilities+ In particular, because the preceding
choice makes use of the asymptotic orthogonality of the parametersq1 andc it
may not work well in small or moderate samples+ A conventional way to allow
for the effects of the short-run parameterc is to choose ZM1t as

ZM1T 5 (
t51

T

F1t ~ Zq1T ! [aT
' ZVT

21 [aT F1t ~ Zq1T !' 2 (
t51

T

F1t ~ Zq1T ! [aT
' ZVT

21F2t ~ ZqT !'

3 S(
t51

T

F2t ~ ZqT ! ZVT
21F2t ~ ZqT !'D21

(
t51

T

F2t ~ ZqT ! ZVT
21 [aT F1t ~ Zq1T !', (4.4)

336 PENTTI SAIKKONEN

https://doi.org/10.1017/S0266466601172038 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466601172038


where F2t~q! 5 2~] vecB~c!'0]c!~zt~q1! J Is! and zt~q1! 5 @Dyt21
' + + +

Dyt2p11
' ut21~q1!' # ' with ut21~q1! 5 y1, t21 2 A~f!y2, t21 2 gt~m!+ This choice

is based on the outer product form of the observed information matrix of the
parametersq1 andc+ Therefore we can only justify its use when the nuisance
parameterc is identified and the functionB~c! is continuously differentiable+
Because the limiting distribution of test statisticW1 can be derived without
assuming identifiability of the parameterc it is reasonable to consider a mod-
ification of ~4+4!+ A natural possibility is to replaceF2t~q! by 2zt~q1! J Is,
which means that in the test statistic the parameterB is treated as if it were
unconstrained, although in the estimation its values are restricted to the setB~C!+
Using Lemma A+1 in Saikkonen~2001! and arguments similar to those in the
Appendix it can be readily seen that the preceding choices of the matrixZM1T

satisfy condition~4+3!+
To develop LM and LR tests for the null hypothesisH1, constrained ML

estimators of the relevant parameters are needed+ As discussed in the previous
section, the existence and consistency of these constrained estimators obtain
under the same conditions as in the case of the corresponding unconstrained
estimators+ The constrained ML estimator of the parameterq1 is denoted by
Eq1T , and a similar notation is used for constrained ML estimators of other

parameters+
For the LM test statistic it is reasonable to consider the likelihood function

explicitly as a function of the parametersq1 andB [ B~C!+ Thus, in ~3+1! we
use«t 5 «t~q1,B! ~see~3+3!! and denote,T 5 ,T~q1,B,V!+ Then, by straight-
forward differentiation,

],T~q1,B,V!0]q1 5 22 (
t51

T

F1t ~q1!a 'V21«t ~q1,B!, (4.5)

whereF1t~q1! is as in~4+3! and satisfiesF1t~q1!a ' 5 2]«t~q1,B!'0]q1+ Now
we can introduce our LM test statistic

LM1 5 4
1
2~],T~ Eq1T , DBT , EVT !0]q1

' ! GM1T
21H1~ Eq1T !' @H1~ Eq1T ! GM1T

21H1~ Eq1T !' #21

3 H1~ Eq1T ! GM1T
21~],T~ Eq1T , DBT , EVT !0]q1!, (4.6)

where GM1T is any matrix such thatYT
21 GM1T YT

21 satisfies~4+3! with the estima-
tors on the right hand side replaced by their constrained counterparts+ The di-
vision by four in the test statistic is needed because we are working with minus
two times the logarithm of the likelihood function+ Of course, the role of the
matrix GM1T in test statisticLM1 is entirely similar to that of ZM1T in test statis-
tic W1+ Thus a possible choice forGM1T is given by the constrained version of
~4+4! ~if the parameterc is identified! or its modification discussed following
~4+4!+ That these choices satisfy the required analog of~4+3! can be seen in the
same way as in the case ofZM1T +
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Finally, consider the LR test statistic that is defined by

LR1 5 ,T~ Eq1T , DBT , EVT ! 2 ,T~ Zq1T , ZBT , ZVT !+ (4.7)

A convenient feature of the LR test statistic is that no choice of matrices such
as ZM1T or GM1T is needed because this choice is automatically built into the test
statistic+ This appears useful when the identification of the nuisance parameter
c is not assumed because then the use of the most natural choices~4+4! and its
constrained version is not justified by our results+

The following theorem shows that a standard chi-square criterion applies to
all three test statistics introduced previously+ In the proof of this theorem it is
convenient to make explicit use of the continuity of the functionB~c!, which
in Theorem 3+1 was only an implicit assumption behind the consistency of the
reduced form ML estimatorZBT +

THEOREM 4+1+ Suppose that the assumptions of Theorem3+1 hold and that
the null hypothesisH1 is true+ Suppose further that the following assumptions
hold+

~a! The assumptions made of the existence and consistency of the unconstrained
ML estimators in Theorem3+1 also hold for the corresponding constrainedML
estimators+

~b! The estimators ZBT and DBT satisfy ZBT 5 B0 1 Op~T2102! and DBT 5 B0 1 Op~T2102!+
~c! The function B~c! in Assumption2 is continuous+
~d! The function h1~q1! ~ f1 3 1! in ~4+1! is continuously differentiable with the ma-

trix H1~q10! 5 ]h1~q10!0]q1
' ~ f1 3 ~k 1 n 1 q!! of full row rank+

Then, test statisticsW1, LM1, andLR1 have an asymptotic chi-square distri-
bution with f1 degrees of freedom+

Remark 4+1+ Assumption~a! of Theorem 4+1 holds under the same condi-
tions as the corresponding assumption in Theorem 3+1 ~see Remark 3+1 and the
discussion at the end of Sect+ 3!+ Assumption~b! holds under the conditions of
Proposition 3+2 of Saikkonen~2001!+ Explicit sufficient conditions for all the
consistency assumptions needed in Theorem 4+1 are given in Assumptions 1,
2~a! and~b!, 3~a!, 4~a! and~b!, 5~a!–~d!, and 6 of Saikkonen~2001!+

The result of Theorem 4+1 is hardly surprising because similar results have
also been obtained previously~see, e+g+, Phillips, 1991; Johansen, 1991, 1995!+
However, the required assumptions make our result different from most of its
previous counterparts+ Compared with the assumptions of Theorem 3+1, we have
been forced to strengthen the consistency assumption made for the estimator
ZBT by assuming an order of consistency, and a similar assumption is also needed

for the constrained counterpart ofZBT + These additional assumptions are not re-
strictive, however, and the same can be said about the other assumptions of
Theorem 4+1+ In fact, the discussion in Remark 4+1 implies that sufficient con-
ditions for Theorem 4+1 to hold are fairly standard except for the novel feature
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that identifiability of the short-run parameterc is not required and neither is
differentiability of the likelihood function with respect toc+ This particularly
means that the result of Theorem 4+2 holds even if the parameterc cannot be
consistently estimated+

It can be shown that test statisticsW1, LM1, andLR1 are consistent, and,
although this is not studied in this paper, we would expect that they also have
the same limiting distribution under conventional local alternatives+ It should
be noted, however, that in general this limiting distribution is not noncentral
chi square~cf+ Basawa and Scott, 1983, Ch+ 3; Saikkonen, 1993, Theorem 5+3!+
Thus, as far as asymptotic properties are concerned, it is not possible to choose
between these three tests+ If identification of the nuisance parameterc is an
issue the LR test seems convenient because, unlike the Wald and LM tests, it
does not require choosing a matrix such asZM1T or GM1T that may be somewhat
problematic in small or moderate samples+ It is probably this feature that also
makes the derivation of the limiting distribution of test statisticLR1 more dif-
ficult than that of test statisticsW1 andLM1 ~see the Appendix!+ Of course, in
finite samples the behavior of the test statisticsW1, LM1, andLR1 may be
different so that simulation studies of their small sample properties and, partic-
ularly, of the effects of different choices of the matricesZM1T and GM1T would be
of great interest+ Such simulations are outside the scope of this paper, however+

Now consider testing restrictions on the short-run parameterc+ The null hy-
pothesis is

H2 : h2~c0! 5 0, (4.8)

where h2~c! is a continuously differentiable vector function of dimension
f2 # , and the matrixH2~c! 5 ]h2~c!0]c ' is of full row rank atc 5 c0+ The
tests to be developed for this null hypothesis do not require identifiability of
the parametersf andn+

Our general Wald test statistic for the preceding null hypothesis is

W2 5 h2~ ZcT !' @H2~ ZcT ! ZM2T
21H2~ ZcT !' #21h2~ ZcT !, (4.9)

where ZM2T is any~nonsingular! matrix with the property

T21 ZM2T 5 T21 (
t51

T

F2t ~ Ztq1T , ZcT ! ZVT
21F2t ~ Ztq1T , ZcT !' 1 op~1!+ (4.10)

HereF2t~ tq1,c! 5 2~] vecB~c!'0]c!~zt~ tq1! J Is! with zt~ tq1! defined follow-
ing ~3+4!+ Note that we haveF2t~ tq1,c! 5 ]«t~ tq1,c!'0]c and thatF2t~ tq1,c!
equalsF2t~q! ~see~4+4!! except that it is expressed as a function of the re-
duced form parametersA andd instead of the corresponding structural param-
etersf andn+ The role of the matrix ZM2T is similar to that of ZM1T in test statistic
W1+ If all the parameters are identified and the functionsA~f! andgt~m! are
continuously differentiable one can proceed as in~4+4! and choose
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ZM2T 5 (
t51

T

F2t ~ ZqT ! ZVT
21F2t ~ ZqT !' 2 (

t51

T

F2t ~ ZqT ! ZVT
21 [aT F1t ~ Zq1T !'

3 S(
t51

T

F1t ~ Zq1T ! [aT
' ZVT

21 [aT F1t ~ Zq1T !'D21

(
t51

T

F1t ~ Zq1T ! [aT
' ZVT

21F2t ~ ZqT !'+

(4.11)

This choice can be modified to yield a test statistic that does not require iden-
tifiability of the nuisance parametersf and n+ Of course, then F2t~ ZqT! is re-
placed byF2t~ Ztq1T , ZcT!, whereas a natural modification ofF1t~ Zq1T! is given by
@2~ y2, t21 J Ir !' 2~]ft ~ [gT !0]g ' !' ZdT

' 2ft ~ [gT !' J In1q# '+ This means that in
the test statistic the parametersA and d are treated as if they were uncon-
strained, although in the estimation their values are restricted to the setsA~F!
andd~N!, respectively+ That these choices of the matrixZM2T satisfy condition
~4+10! can again be seen by using Lemma A+1 of Saikkonen~2001! and argu-
ments similar to those in the Appendix+

We can also construct LM and LR tests for the null hypothesisH2+ In this
context it is relevant to consider the likelihood function as a function of the
parameterstq1, c, andV+ Thus, in ~3+1! we use«t 5 «t~ tq1,c! see~~3+4!! and
denote,T 5 ,T~ tq1,c,V!+ Straightforward differentiation and the expression of
F2t~ tq1,c! given following ~4+10! show that

],T~ tq1,c,V!0]c 5 2 (
t51

T

F2t ~ tq1,c!V21«t ~ tq1,c!+ (4.12)

This expression is used to define our general LM test statistic

LM2 5 4
1
2~],T~ Etq1T , DcT , EVT !0]c ' ! GM2T

21H2~ DcT !' @H2~ DcT ! GM2T
21H2~ DcT !' #21

3 H2~ DcT ! GM2T
21~],T ~ Etq1T , DcT , EVT !0]c!, (4.13)

where GM2T is any matrix such thatT21 GM2T satisfies~4+10! with the estimators
on the right hand side replaced by their constrained counterparts+ Of course,
the matrix GM2T can be modified in the same way as the matrixZM2T in test
statisticW2, and these modifications can be justified in the same way as in the
case of ZM2T + For the LR test no choice of matrices like these is needed+ The
test statistic is defined by

LR2 5 ,T~ Etq1T , DcT , EVT ! 2 ,T~ Ztq1T , ZcT , ZVT !+ (4.14)

The following theorem shows that a conventional chi-square criterion ap-
plies to all three test statistics+ The proof of this theorem assumes consistency
of the infeasible ML estimator of the parametertq1 obtained by assuming that
the values of the parametersc and V are a priori known+ This estimator, de-
noted by ^tq1T , is obtained by minimizing the function,T~ tq1,c0,V0! so that
technically it can be interpreted as a constrained ML estimator of the parameter
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tq1+ It will also be assumed that the infeasible ML estimators of the parameters
c andV obtained by assuming that the values of the parametersf andm ~or
tq1 5 ~A,d,g!! are a priori known are consistent+ These ML estimators are de-

noted byĉT and V̂T , respectively+ Consistency of the constrained versions of
all these infeasible ML estimators is also assumed+

THEOREM 4+2+ Suppose that the assumptions of Theorem3+2 hold and that
the null hypothesisH2 is true+ Suppose further that the following assumptions
hold+

~a! The assumptions made of the existence and consistency of the unconstrainedML
estimators in Theorem3+2 also hold for the corresponding constrainedML esti-
mators and for the infeasibleML estimatorsq̂1T , ĉT , and V̂T and the con-
strained versions ofĉT and V̂T +

~b! The function h2~c!~ f2 3 1! in ~4+8! is continuously differentiable with the matrix
H2~c0! 5 ]h2~c0!0]c ' ~ f2 3 ,! of full row rank+

Then, test statisticsW2, LM2, andLR2 have an asymptotic chi-square distri-
bution with f2 degrees of freedom+

Remark 4+2+ Although Saikkonen~2001! does not explicitly consider the case
where the value of the error covariance matrix is known it is not difficult to see
that similar consistency results can also be proved in this case+ Thus, the con-
sistency properties of the infeasible ML estimators discussed in assumption~a!
of Theorem 4+2 are the same as those of the other ML estimators therein+ Con-
sequently, this assumption as a whole holds under the same conditions as the
corresponding assumptions in Theorem 3+2 ~see Remark 3+2 and the discussion
at the end of Sect+ 3!+ Explicit sufficient conditions for all the consistency as-
sumptions needed in Theorem 4+2 can be found in Assumptions 1, 2~a!, 3~a!
and~b!, 4~a!, 5~a!–~d!, and 6 of Saikkonen~2001!+

Compared with its previous counterparts the result of Theorem 4+2 is again
expected+ However, as the discussion in Remark 4+2 implies, a novel feature of
our result is that it has been obtained without assuming identifiability of the
nuisance parametersf andn or even that the likelihood function is differentia-
ble with respect to these parameters+ Thus, the application of test statisticsW2,
LM2, andLR2 is justified even if the parametersf andn cannot be consis-
tently estimated+ Of course, in the same way as in Theorem 3+2 appropriate
identifiability conditions are needed to guarantee consistent estimation of the
parametersd andg+

Unlike in Theorem 3+2 we have needed additional consistency assumptions
about infeasible ML estimators of the parameterstq1, c, andV+ This is some-
what unusual and may be an artifact of the employed method of proof, which,
as a result of the potential nonidentifiability of the parametersf andn, is not
quite standard+ We wish to emphasize, however, that these additional assump-
tions can be justified by the assumptions mentioned in Remark 4+2+ It may also
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be noted that similar consistency results about infeasible ML estimators of the
parametersB andV are also used in the proof of Theorem 4+1 ~see the proof of
Lemma A+1 in the Appendix! but there they can be deduced from the likeli-
hood function,T~q10,B,V! by using the assumed continuity of the function
B~c! and arguments in Saikkonen~2001!+ A simplifying fact in that case is that
,T~q10,B,V! is the likelihood function of a standard linear regression model
with asymptotically stationary regressors and Gaussian white noise errors+

Finally, note that our previous discussion given for test statisticsW1, LM1,
andLR1 also applies to test statisticsW2, LM2, andLR2 except that under
conventional local alternatives a standard noncentral chi-square limiting distri-
bution can be expected because now the limit theory is based on an ordinary
normal distribution and not on a mixed normal distribution+

5. CONCLUSION

This paper has completed the work initiated in Saikkonen~2001! by develop-
ing an asymptotic theory of statistical inference in cointegrated VAR processes
with nonlinear time trends in cointegrating relations+ We have shown that ML
estimators have normal or mixed normal limiting distributions and that Wald,
LM , and LR tests with usual asymptotic chi-square distributions can be applied
even if some nuisance parameters of the model are not identified+ In the case of
Wald and LM tests potential lack of identification means, however, that care is
needed in choosing an estimator for the information matrix, whereas LR tests
are free of this difficulty+ Although the given theory appears fairly complete
several possible extensions can be considered+ Some of them are discussed in
Saikkonen~2001, Sect+ 4! and will hopefully be studied in the future+
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APPENDIX

A.1. Proofs for Section 3.

A.1.1. Proof of Theorem 3.1.Note first that when the estimatorsZq1T , ZBT , and ZVT

exist they minimize the function,T~q1,B,V!+ From the consistency of the estimator
Zq1T and Assumptions 1 and 3~a! it follows that Zq1T is an interior point ofF 3 M with

probability approaching one+ Thus, because Zq1T can also be obtained by minimizing the
function,T~q1, ZBT , ZVT!, we have],T~ Zq1T , ZBT , ZVT!0]q1 5 0+ Using this identity and the
expression of],T~q1,B,V!0]q1 in ~4+5! we can therefore write

2YT
21 (

t51

T

F1t ~q10! [aT
' ZVT

21«t ~q10, ZBT !

5 2YT
21 (

t51

T

F1t ~ Zq1T ! [aT
' ZVT

21@«t ~q10, ZBT ! 2 «t ~ Zq1T , ZBT !#

1 2YT
21 (

t51

T

@F1t ~q10! 2 F1t ~ Zq1T !# [aT
' ZVT

21«t ~q10, ZBT !, (A.1)

whereF1t~q1! andYT are defined following~4+3! and an explicit definition of«t~q1,B!
can be found in~3+3!+ We shall show next that the second term in the last expression is
of order op~1!+ This term consists of two components corresponding to the partition
of F1t~q1! into 2~] vecA~f!'0]f!~ y2, t21 J Ir ! and2]gt~m!'0]m+ To analyze the first
one, notice that«t~q10, ZBT! 5 Dyt 2 ZBT zt where zt 5 zt~q10! 5 @Dyt21

' + + +Dyt2p11
'

ut21~q10!' # ' with ut21~q10! 5 y1, t21 2 A~f0!y2, t21 2 gt~m0!+ As the discussion at the
end of Section 2+3 of Saikkonen~2001! shows, zt is an asymptotically stationary pro-
cess+ Thus, it can be shown that the first component in the last expression of~A+1! is

op~1!T21 (
t51

T

~ y2, t21 J Ir ! [aT
' ZVT

21@Dyt 2 ZBT zt # 5 op~1!,
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where the termop~1! on the left hand side just replaces the difference] vecA~ ZfT!'0
]f 2 ] vecA~f0!'0]f and the equality follows from Lemma A+1~b! of Saikkonen~2001!+
The second component in the last expression of~A+1! is

T 102 (
t51

T

@]gt ~ [mT !'0]m 2 ]gt ~m0!'0]m# [aT
' ZVT

21@Dyt 2 ZBT zt # 5 op~1!+

To justify the equality, use Theorem 2+1 of Saikkonen~2001! to conclude that
max1#t#T T21027(j51

t zj 7 5 Op~1! and similarly withzj replaced byDyj + The desired
result can then be deduced from Lemma A+3~b! of Saikkonen~2001! and the fact that,
by Assumption 3~b!, ]g~x;m!0]m satisfies Condition 1 of the same paper in some com-
pact neighborhood ofm0+ Thus, using the definition of«t~q1,B! ~see~3+3!! we can
write ~A+1! as

2YT
21 (

t51

T

F1t ~q10! [aT
' ZVT

21«t ~q10, ZBT !

5 2YT
21 (

t51

T

F1t ~ Zq1T ! [aT
' ZVT

21@«t ~q10, ZBT ! 2 «t ~ Zq1T , ZBT !# 1 op~1!

5 22YT
21 (

t51

T

F1t ~ Zq1T ! [aT
' ZVT

21 [aT @~ ZAT 2 A0!y2, t21 1 ~gt ~ [mT ! 2 gt ~m0!!# 1 op~1!

5 2YT
21 (

t51

T

F1t ~ Zq1T ! [aT
' ZVT

21 [aT F1t ~ Oq1T !'~ Zq1T 2 q10! 1 op~1!, (A.2)

where the last equality is based on a mean value expansion andF1t~ Oq1T! signifies a
matrix whosei th row equals thei th row of the matrixF1t ~ Oq1T

~i !! with Oq1T
~i ! 5 ai q10 1

~1 2 ai ! Zq1T , 0 # ai # 1, i 5 1, + + + , k 1 n 1 q+
Now consider the first expression in~A+2! and notice that«t~q10, ZBT! 5 Dyt 2 ZBT zt

and«t~q10,B0! 5 «t + Because]g~x;m!0]m satisfies Condition 1 of Saikkonen~2001! in
some compact neighborhood ofm0 we find from the definition ofF1t~q1!, the consis-
tency of the involved estimators, and Lemma A+1~b! and~c! of Saikkonen~2001! that

2YT
21 (

t51

T

F1t ~q10! [aT
' ZVT

21«t ~q10, ZBT ! 5 2YT
21 (

t51

T

F1t ~q10!a 'V21«t 1 op~1!

n 2E
0

1

F1~x;q10!a0
'V0

21dW0~x!+ (A.3)

To justify the latter relation, note first that, by Theorem 2+1 of Saikkonen~2001!, yt 5
xt 2 K0~L!a0gt~m0! 1 Pb4 y0 wherext 5 L0 (j51

t «j 1 K0~L!«t , Pb4 5 b4~b4
' b4 !21b4

'

is evaluated at the true parameter value, K0~L! 5 (j51
` Kj 0L j is a rational matrix func-

tion of the lag operatorL such that its power series representation converges absolutely
in an open disk containing the unit disk, andgt~m0! 5 0, t , 0+ Let x2, t21 contain the
last s 2 r components ofxt and note that, in the same way as in the proof of Lemma
A+1~f ! of Saikkonen~2001!, the replacement ofy2, t21 in the definition ofF1t~q10! by
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x2, t21 and further byL0 (j51
t «j causes an error of orderop~1!+ Thus, arguments used in

the proof of Lemma A+1~f ! of Saikkonen~2001! give

ST2102y2, @Tx# ,T2102L0 (
j51

@Tx#

«jDn ~W2~x!,L0W0~x!!

and

S]g@Tx#~m0!0]m,T2102L0 (
j51

@Tx#

«jDn ~]g~x;m0!0]m,L0W0~x!!

jointly in the Skorohod topology+ Hence, ~A+3! follows from Theorem 2+1 of Hansen
~1992!+

Next consider the first term in the last expression of~A+2! and note that

YT
21 (

t51

T

F1t ~ Zq1T ! [aT
' ZVT

21 [aT F1t ~ Oq1T !'YT
21

5 YT
21 (

t51

T

F1t ~q10!aT
' VT

21aT F1t ~q10!'YT
21 1 op~1!

n E
0

1

F1~x;q10!a0
'V0

21a0 F1~x;q10!'dx+ (A.4)

The equality is a straightforward consequence of the consistency of the involved esti-
mators, Lemmas A+1~e! and A+3~a! of Saikkonen~2001!, and the facts that, by Assump-
tion 3~b!, max1#t#T T21027y2, t217 5 max1#t#T T21027x2, t217 1 op~1! 5 Op~1! and
max1#t#T7]gt~m!0]m75 O~1! uniformly overm in some compact neighborhood ofm0+
The weak convergence in~A+4! is obtained from Lemma A+1~d!–~f ! of Saikkonen~2001!+
Using Assumptions 1 and 3~c! it is straightforward to check that the limit in~A+4! is
positive definite~a+s+!+ From Theorem 2+1 of Hansen~1992! it further follows that the
weak convergences in~A+3! and ~A+4! hold jointly so that the result of the theorem is
obtained from~A+2!, ~A+3!, and~A+4!+ n

A.1.2. Proof of Theorem 3.2.Here it is relevant to define the likelihood function in
terms of the parametertq1 and use the notation,T~ tq1,c,V!+ Assumption 2 and the as-
sumed consistency of the estimatorZcT imply that ZcT is an interior point ofC with prob-
ability approaching one and, because it minimizes the function,T~ Ztq1T ,c, ZVT!, we have
],T~ Ztq, ZcT , ZVT!0]c 5 0+ This in conjunction with the expression of],T~ tq1,c,V!0]c in
~4+12! and the fact that«t~ tq10,c0! 5 «t yields

2T2102 (
t51

T

F2t ~ Ztq1T ,c0! ZVT
21«t ~ Ztq1T ,c0!

5 2T2102 (
t51

T

F2t ~ Ztq1T , ZcT ! ZVT
21@«t ~ Ztq1T ,c0! 2 «t ~ Ztq1T , ZcT !#

1 2T2102 (
t51

T

@F2t ~ Ztq1T ,c0! 2 F2t ~ Ztq1T , ZcT !# ZVT
21«t

1 2T2102 (
t51

T

@F2t ~ Ztq1T ,c0! 2 F2t~ Ztq1T , ZcT !# ZVT
21@«t ~ Ztq1T ,c0! 2 «t # , (A.5)
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whereF2t~ tq1,c! is defined following~4+10! and «t~ tq1,c! in ~3+4!+ We wish to show
that the second and third terms on the right hand side are of orderop~1!+ Using the
definition of zt~ tq1! following ~3+4! and the fact thatzt~ tq10! 5 zt we find that the sec-
ond term on the right hand side of~A+5! can be written as

op~1!T2102 (
t51

T

@zt ~ Ztq1T ! J Is# ZVT
21«t

5 op~1!T2102 (
t51

T

~zt J Is! ZVT
21«t

1 op~1!T2102 (
t51

T

@~zt ~ Ztq1T ! 2 zt ! J Is# ZVT
21«t , (A.6)

where the termop~1! just replaces the difference] vecB~ ZcT!'0]c 2 ] vecB~c!'0]c+ That
the first term on the right hand side is of orderop~1! is a simple consequence of the
facts that ZVT

21 5 Op~1! and that~zt J Is!«t is a square integrable martingale difference
sequence+ To show the same for the second one, notice that the only nonzero elements
of zt~ Ztq1T! 2 zt are given byut21~ Ztq1T! 2 ut21~ tq10! 5 2~ ZAT 2 A0!y2, t21 2 ~ ZdT ft~ [gT! 2
d0 ft~g0!!+ Thus, we may consider

op~1!T2102 (
t51

T

@~ ZAT 2 A0!y2, t21 J Is# ZVT
21«t

1 op~1!T2102 (
t51

T

@~ ZdT ft ~ [gT ! 2 d0 ft ~g0!! J Is# ZVT
21«t 5 op~1!+

To justify the equality, one can first use Lemma A+1~c! of Saikkonen~2001! to conclude
that the second term on the left hand side is of orderop~1!+ For the first term the same
conclusion follows from Lemma A+1~b! of the same paper and the assumptionZAT 2
A0 5 Op~T21!+ Thus, we have shown that~A+6! or the second term on the right hand
side of~A+5! is of orderop~1!+

To show that the third term on the right hand side of~A+5! is of orderop~1!, conclude
from ~3+4! that«t~ Ztq1T ,c0! 2 «t 5 2a0~ut21~ Ztq1T! 2 ut21~ tq10!!+ Thus, in the same way
as in~A+6! we may consider

op~1!T2102 (
t51

T

@zt ~ Ztq1T ! J Is# ZVT
21a0 @ut21~ Ztq1T ! 2 ut21~ tq10!#

5 op~1!T2102 (
t51

T

@zt J Is# ZVT
21a0 @ut21~ Ztq1T ! 2 ut21~ tq10!#

1 op~1!T2102 (
t51

T

@~zt ~ Ztq1T ! 2 zt ! J Is# ZVT
21a0 @ut21~ Ztq1T ! 2 ut21~ tq10!# + (A.7)

Here we can further write

ut21~ Ztq1T ! 2 ut21~ tq10! 5 2~ ZAT 2 A0!y2, t21 2 ~ ZdT 2 d0! ft ~ [gT !

2 d0~ ft ~ [gT ! 2 ft ~g0!!+ (A.8)
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Recall the assumptionsZAT 2 A0 5 Op~T21!, ZdT 2 d0 5 Op~T2102! and [gT 2 g0 5
Op~T2102! and also that max1#t#T7 ft~g!7 and max1#t#T7]ft~g!0]g7 are bounded in some
neighborhood ofg0 by the assumed version of Condition 1 of Saikkonen~2001!+ Thus,
because max1#t#T T21027y2, t217 5 Op~1!, it follows from ~A+8! after a mean value ex-
pansion offt~ [gT! 2 ft~g0! that max1#t#T 7ut21~ Ztq1T! 2 ut21~ tq10!7 5 Op~T2102!+ Be-
cause it is also easy to check that max1#t#T E7zt75 O~1! we find that the first term on
the right hand side of~A+7! is of orderop~1!+ That the same is true for the second one
can be readily seen by recalling that the only nonzero elements ofzt~ Ztq1T! 2 zt are
given byut21~ Ztq1T! 2 ut21~ tq10!+ Thus, we have shown that~A+7! is of orderop~1! and
thereby that the third term on the right hand side of~A+5! is of orderop~1!+

The preceding discussion and the identity«t~ Ztq1T ,c! 5 Dyt 2 B~c!zt~ Ztq1T! imply that
we can write~A+5! as

2T2102 (
t51

T

F2t~ Ztq1T ,c0! ZVT
21«t ~ Ztq1T ,c0!

5 2T2102 (
t51

T

F2t ~ Ztq1T , ZcT ! ZVT
21@B~ ZcT ! 2 B~c0!#zt ~ Ztq1T ! 1 op~1!

5 22T2102 (
t51

T

F2t ~ Ztq1T , ZcT ! ZVT
21F2t ~ Ztq1T , OcT !'~ ZcT 2 c0! 1 op~1!, (A.9)

where the second equality is based on a mean value expansion with the notationOcT

defined in the same way as its analog in the proof of Theorem 3+1+ Now consider the
extreme expressions in~A+9! and first note that

T2102 (
t51

T

F2t ~ Ztq1T c0! ZVT
21«t ~ Ztq1T ,c0! 5 T2102 (

t51

T

F2t ~ tq10,c0!V0
21«t 1 op~1!

n N~0,Sc~c0,V0!21!, (A.10)

where the matrixSc~c0,V0!21 is well defined by Lemma A+1 of Saikkonen~2001!+ The
stated weak convergence is obtained from a standard martingale central limit theorem
and the fact that in the definition ofF2t~ tq10,c0! the vectorzt~ tq10! 5 zt can be replaced
by zt 5 @Dxt21

' + + +Dxt2p11
' xt21

' b0# ' ~cf+ the proof of Lemma A+1 of Saikkonen, 2001!+
To justify the equality in~A+10!, observe that

«t ~ Ztq1T ,c0! 2 «t 5 a0~ ZAT 2 A0!y2, t21 1 a0~ ZdT ft ~ [gT ! 2 d0 ft ~g0!!

and

F2t ~ Ztq1T ,c0! 2 F2t ~ tq10,c0! 5 2~] vecB~c0!'0]c!@~zt ~ Ztq1T ! 2 zt ! J Is# ,

where the only nonzero elements ofzt~ Ztq1T! 2 zt are given byut21~ Ztq1T! 2 ut21~ tq10!+
An explicit expression ofut21~ Ztq1T! 2 ut21~ tq10! can be found in~A+8! where ZAT 2
A0 5 Op~T21!, ZdT 2 d0 5 Op~T2102!, and [gT 2 g0 5 Op~T2102! by assumption+ The
equality in ~A+10! can now be established by using these facts, the consistency of the
estimator ZVT , and a straightforward though somewhat tedious application of Lemmas
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A+1 and A+3 of Saikkonen~2001! combined with a~possibly termwise! mean value ex-
pansion ofd0~ ft~ [gT! 2 ft~g0!! when needed+ Thus, we have established~A+10! as a
whole+

Next consider

T21 (
t51

T

F2t ~ Ztq1T , ZcT ! ZVT
21F2t ~ Ztq1T , OcT ! 5 T21 (

t51

T

F2t ~ tq10,c0!V0
21F2t ~ tq10,c0!' 1 op~1!

5 Sc~c0,V0!21 1 op~1!+ (A.11)

Here the justification of the first equality is similar to that in~A+10! except that the
situation is now simpler because the standardization is byT and not byT 102+ The sec-
ond equality follows from the definitions ofF2t~ tq1,c! andSc~c0,V0! and Lemma A+1~a!
of Saikkonen~2001!+ Combining~A+9!–~A+11! gives the stated limiting distribution+ To
show its independence of the limiting distribution in Theorem 3+1, note that these lim-
iting distributions are determined by the joint weak limit of partial sum processes formed
from «t and ~zt J Is!V0

21«t + Because we haveE~zt J Is!V0
21«t «t1j

' 5 0 for all j the
weak limits of these partial sum processes are uncorrelated Brownian motions and there-
fore independent+ This completes the proof+ n

Note that the proof of Theorem 3+2 explicitly makes use of the assumed orders of
consistency+ In particular, the proofs given for the equalities in~A+7! and~A+10! are not
possible if mere consistency is assumed, and even the resultZAT 5 A0 1 op~T2102! proved
in Theorem 3+1 of Saikkonen~2001! does not suffice+

A.2. Proofs for Section 4.

A.2.1. Intermediate Results.Before starting to prove Theorems 4+1 and 4+2 two aux-
iliary results needed to obtain the limiting distributions of the LR tests will be given+
These results make use of a decomposition of the likelihood function introduced in equa-
tion ~3+6! of Saikkonen~2001!+ First decompose the vector«t ~q1,B! in ~3+3! as
«t~q1,B! 5 «1t~q1,B! 1 «2t~B! where

«1t ~q1,B! 5 a~A 2 A0!y2, t21 1 a@dft ~g! 2 d0 ft ~g0!#

and

«2t ~B! 5 Dyt 2 Bzt

with zt 5 zt~ tq10! as before+ Using these definitions we can write

,T~q1,B,V! 5 ,1T~q1,B,V! 1 ,2T~B,V!,

where

,1T~q1,B,V! 5 2 trSV21 (
t51

T

«1t ~q1,B!«2t ~B!'D1 trSV21 (
t51

T

«1t ~q1,B!«1t ~q1,B!'D
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and

,2T~B,V! 5 T log det~V! 1 trSV21 (
t51

T

«2t ~B!«2t ~B!'D +
The notations,T~ tq1,c,V!, ,1T~ tq1,c,V!, and,2T~c,V! are used when the parameters
tq1 andc are used instead ofq1 andB, respectively+ Now we can prove the following+

LEMMA A +1+ Suppose the conditions of Theorem4+1 hold and let OVT be any ran-
dom matrix with the propertyOVT 5 V0 1 op~1!+ Then,

~a! ,2T~ ZBT , OVT! 2 ,2T~ DBT , OVT! 5 op~1!,
~b! ,1T~ Zq1T , ZBT , OVT! 2 ,1T~ Zq1T , ZBT , ZVT! 5 op~1!,
~c! ,1T~ Eq1T , DBT , OVT! 2 ,1T~ Eq1T , ZBT , ZVT! 5 op~1!+

Proof. Let B̂T and V̂T be the~infeasible! ML estimators ofB and V, respectively,
obtained by minimizing,2T~B,V! over $~B,V! :B [ RB~C!, V . 0%+ Specializing Theo-
rem 3+1 and Proposition 3+2~d! of Saikkonen~2001! to the case whereq1 is restricted
by q1 5 q10 one can see that these estimators exist with probability approaching one
and satisfyB̂T 5 B0 1 Op~T2102! and V̂T 5 V0 1 op~1!+ ~Note that this only requires
continuity of the functionB~c!+! To prove~a!, it suffices to show that

,2T~ ZBT , OVT ! 2 ,2T~B̂T , OVT ! 5 op~1! (A.12)

and that the same result holds withZBT replaced by DBT + First observe that, by the defini-
tion of the estimators Zq1T , ZBT , and ZVT ,

0 $ ,T~ Zq1T , ZBT , ZVT ! 2 ,T~ Zq1T , B̂T , ZVT !

5 ,1T~ Zq1T , ZBT , ZVT ! 2 ,1T~ Zq1T , B̂T , ZVT ! 1 ,2T~ ZBT , ZVT ! 2 ,2T~B̂T , ZVT !+ (A.13)

We shall show later that

,1T~ Zq1T , ZBT , ZVT ! 2 ,1T~ Zq1T , B̂T , ZVT ! 5 op~1!+ (A.14)

Assuming that this holds one obtains from~A+13!

0 $ ,2T~ ZBT , ZVT ! 2 ,2T~B̂T , ZVT ! 1 op~1!

5 trHV̂T
21S(

t51

T

«2t ~ ZBT !«2t ~ ZBT !' 2 (
t51

T

«2t ~B̂T !«2t ~B̂T !'DJ
1 trH~ ZVT

21 2 V̂T
21!S(

t51

T

«2t ~ ZBT !«2t ~ ZBT !' 2 (
t51

T

«2t ~B̂T !«2t ~B̂T !'DJ
1 op~1!+ (A.15)

Here the equality is a direct consequence of the definition of,2T~B,V!, which also shows
that the first term in the last expression equals,2T~ ZBT , V̂T! 2 ,2T~B̂T , V̂T!+ On the other
hand, the second term in the last expression is of orderop~1! because bothZVT and V̂T

are consistent estimators ofV and because the difference between the two sums is of
orderOp~1!+ Because ZBT 5 B0 1 Op~T2102! andB̂T 5 B0 1 Op~T2102! this last fact can
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be established in a straightforward manner by using Lemma A+1~a! and~b! of Saikkonen
~2001! and the identities

«2t ~B̂T ! 5 «2t ~ ZBT ! 1 ~ ZBT 2 B̂T !zt

5 «t 2 ~ ZBT 2 B0!zt 1 ~ ZBT 2 B̂T !zt + (A.16)

Thus, we can conclude from~A+15! that

0 $ ,2T~ ZBT , V̂T ! 2 ,2T~B̂T , V̂T ! 1 op~1!+

However, by the definition of the estimatorŝBT andV̂T , the difference on the right hand
side is nonnegative so that it must be of orderop~1!, and we have established~A+12! in
the special caseOVT 5 V̂T + To prove the same result in the general case, just observe that
the arguments used for the equality in~A+15! also show that,2T~ ZBT, OVT! 2 ,2T~B̂T, OVT! 5
,2T~ ZBT , V̂T! 2 ,2T~B̂T , V̂T! 1 op~1!+ Thus, to complete the proof of~A+12!, we have to
justify ~A+14!+

From the definition of,1T~q1,B,V! it follows that

,1T~ Zq1T , ZBT , ZVT ! 2 ,1T~ Zq1T , B̂T , ZVT !

5 2 trH ZVT
21S(

t51

T

«1t ~ Zq1T , ZBT !«2t ~ ZBT !' 2 (
t51

T

«1t ~ Zq1T , B̂T !«2t ~B̂T !'DJ
1 trH ZVT

21S(
t51

T

«1t ~ Zq1T , ZBT !«1t ~ Zq1T , ZBT !'

2 (
t51

T

«1t ~ Zq1T , B̂T !«1t ~ Zq1T , B̂T !'DJ + (A.17)

From the definitions one also obtains

«1t ~ Zq1T , ZBT ! 5 [aT~ ZAT 2 A0!y2, t21 1 [aT @ ZdT f ~ [gT ! 2 d0 ft ~g0!# (A.18)

and

«1t ~ Zq1T , B̂T ! 5 «1t ~ Zq1T , ZBT ! 2 ~ [aT 2 _aT !~ ZAT 2 A0!y2, t21

2 ~ [aT 2 _aT !@ ZdT f ~ [gT ! 2 d0 ft ~g0!# + (A.19)

Because the assumptions of Theorem 3+1 are supposed to hold we can conclude that
ZAT 5 A0 1 Op~T21!, ZdT 5 d0 1 Op~T2102!, and [gT 5 g0 1 Op~T2102!, whereas the

function ft~g! is assumed to satisfy Condition 1 of Saikkonen~2001! in some compact
neighborhood ofg0+ That the first term on the right hand side of~A+17! is of orderop~1!
can be established by using these facts, the identities~A+16!, ~A+18!, and ~A+19!, the
consistency properties of the involved estimators, and Lemmas A+1 and A+3 of Saikkonen
~2001!+ The proof for the second term on the right hand side of~A+17! is entirely similar
except that in the quantity containing cross products of the last terms on the right hand
sides of~A+18! and ~A+19! a ~termwise! mean value expansion is first employed+ ~If
desired, a mean value expansion can also be used in several other cases+! Details of
these derivations are straightforward but somewhat tedious and will therefore be omit-
ted+ For the proofs of parts~b! and~c! it is useful to note that the preceding arguments
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can also be used to show that all sums on the right hand side of~A+17! are of order
Op~1!+

Thus, we have proved~A+14! and thereby~A+12!+ To prove~A+12! with ZBT replaced
by DBT , first notice that the considered restrictions only concern the parameterq1 and
not B+ This means that the inequality in~A+13! holds even if Zq1T , ZBT , and ZVT are re-
placed by their constrained counterparts that have the same consistency properties as
Zq1T , ZBT , and ZVT ~see the discussion at the end of Sect+ 3!+ Thus, the previous proof of

~A+12! also applies in the case of constrained estimators implying the first assertion of
the lemma+ The arguments used to show that~A+17! is of orderop~1! readily prove the
second and third assertions+ n

Lemma A+1 is used to obtain the limiting distribution of test statisticLR1+ For test
statisticLR2 we use the following lemma+

LEMMA A +2+ Suppose the assumptions of Theorem4+2 hold and let OVT be any ran-
dom matrix with the propertyOVT 5 V0 1 op~1!+ Then,

,1T~ Ztq1T , ZcT , OVT ! 2 ,1T~ Etq1T , DcT , OVT ! 5 op~1!+

Proof. First note that

,1T~ Ztq1T , DcT , OVT ! 2 ,1T~ Ztq1T ,c0,V0! 5 op~1!+ (A.20)

Because,1T~ tq1,c,V! depends onc only throughB~c! and becauseZBT and the other
involved estimators satisfy the same consistency properties as in~A+17! this can be seen
by arguments entirely similar to those used to show that the right hand side of~A+17! is
of order op~1! and also in the proofs of parts~b! and ~c! of Lemma A+1+ Further, be-
cause the same arguments apply withZtq1T and ZcT replaced by Etq1T and DcT , respectively,
the result of the lemma follows if we show that

,1T~ Ztq1T ,c0,V0! 2 ,1T~ Etq1T ,c0,V0! 5 op~1!+ (A.21)

Denote ^tq1T 5 ~ÂT , d̂T , _gT!+ To prove~A+21!, it suffices to show that

,1T~ Ztq1T ,c0,V0! 2 ,1T~ ^tq1T ,c0,V0! 5 op~1! (A.22)

and similarly with Ztq1T replaced by Etq1T + To this end, notice that

,1T~ ^tq1T , ZcT , ZVT ! 2 ,1T~ ^tq1T ,c0,V0! 5 op~1!

again by arguments similar to those used to show that the right hand side of~A+17! is of
order op~1! and also to prove parts~b! and ~c! of Lemma A+1+ Using this result and
~A+20! one obtains

0 $ ,T~ Ztq1T , ZcT , ZVT ! 2 ,T~ ^tq1T , ZcT , ZVT !

5 ,1T~ Ztq1T , ZcT , ZVT ! 2 ,1T ~ ^tq1T , ZcT , ZVT !

5 ,1T~ Ztq1T ,c0,V0! 2 ,T~ ^tq1T ,c0,V0! 1 op~1!+

By the definition of ^tq1T the difference in the last expression is nonnegative so that~A+22!
follows+ Because the same arguments apply withZtq1T replaced by Etq1T the proof of the
lemma is complete+ n
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A.2.2. Proof of Theorem 4.1.First consider the Wald test and note that we have
YT~ Zq1T 2 q10! 5 Op~1!, ZBT 5 B0 1 Op~T2102!, and ZVT 5 V0 1 op~1! by assumption+
Thus, because the matricesYT andH1~q1! commute andh1~q10! 5 0, a standard mean
value expansion yields

YT h1~ Zq1T ! 5 H1~q10!YT~ Zq1T 2 q10! 1 op~1!,

whereas~A+4! shows that

YT
21 ZM1T YT

21 n E
0

1

F1~x;q10!a0
'V0

21a0 F1~x;q10!'dx 5
def

M1+ (A.23)

Hence, becauseH~ Zq1T! 5 H~q10! 1 op~1! we can conclude from the preceding discus-
sion and Theorem 3+1 that

W1 n SH1~q10!E
0

1

F1~x;q10!a0
'V0

21dW0~x!D'~H1~q10!'M1
21H1~q10!!21

3 SH1~q10!E
0

1

F1~x;q10!a0
'V0

21dW0~x!D+
The stated limiting distribution is obtained by observing that conditional onF1~x;q10!
the f1 3 1 vector in the parentheses is normally distributed with zero mean and covari-
ance matrixH1~q10!'M1

21H~q10! ~cf+ Theorem 3+1 and the discussion following it!+
Next consider the LM test and note thatYT~ Eq1T 2 q10! 5 Op~1!, DBT 5 B0 1

Op~T2102!, and EVT 5 V0 1 op~1! by assumption+ Analogously to~A+1! we have

2YT
21 (

t51

T

F1t ~q10! [aT
' EVT

21«t ~q10, DBT !

5 2YT
21 (

t51

T

F1t ~ Eq1T ! JaT
' EVT

21«t ~ Eq1T , DBT !

1 2YT
21 (

t51

T

F1t ~ Eq1T ! JaT
' EVT

21@«t ~q10, DBT ! 2 «t ~ Eq1T , DBT !#

1 2YT
21 (

t51

T

@F1t ~q10! 2 F1t ~ Eq1T !# JaT
' EVT

21«t ~q10, DBT !+ (A.24)

Because the consistency properties of the involved estimators are the same as in~A+1!
the last term on the right hand side of~A+24! is of orderop~1! by the arguments given
for the corresponding term in~A+1!+ Further, in the same way as in~A+2! we can use a
mean value expansion to express the second term on the right hand side of~A+24! as

2YT
21 (

t51

T

F1t ~ Eq1T ! JaT
' EVT

21 JaT F1t ~ Oq1T !'~ Eq1T 2 q10! 5 2 GMT YT~ Eq1T 2 q10! 1 op~1!,

where Oq1T is defined in the same way as before+ To justify the equality, notice that it
results from replacingOq1T by Eq1T and this can be justified in the same way as the equal-
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ity in ~A+4!+ Thus, observing that~A+3! also holds with ZBT and ZVT replaced by DBT and
EVT , respectively, we find from the preceding discussion that~A+24! can be written as

2YT
21 (

t51

T

F1t ~q10!a 'V21«t

5 2YT
21 (

t51

T

F1t ~ Eq1T ! JaT
' EVT

21«t ~ Eq1T , DBT ! 1 2~YT
21 GM1T YT

21!YT~ Eq1T 2 q10!

1 op~1!+ (A.25)

Here the first term on the right hand side equals2YT
21],T~ Eq1T , DBT , EVT !0]q1 ~see

~4+5!!+ As for the second term, use the identityh1~ Eq1T! 5 0 and a standard mean value
expansion to conclude thatH1~ Eq1t !YT~ Eq1T 2 q10! 5 op~1!+ Thus, one obtains from~A+25!
that

H1~ Eq1T !~YT
21 GM1T YT

21!21YT
21],T~ Eq1T , DBT , EVT !0]q1

5 22H1~ Eq1T !~YT
21 GM1T YT

21!21YT
21 (

t51

T

F1t ~q10!a 'V21«t 1 op~1!+ (A.26)

To complete the proof, observe that~A+23! also holds with ZM1T replaced by GM1T so that
the limiting distribution of test statisticLM1 can be obtained from~A+26! by using
~A+3! and arguments similar to those used forW1+

Finally, consider the LR test and conclude from a mean value expansion that

LR1 5 ,T~ Eq1T , DBT , EVT ! 2 ,T~ Zq1T , ZBT , ZVT !

5 trH OVT
21S(

t51

T

«t ~ Eq1T , DBT !«t ~ Eq1T , DBT !' 2 (
t51

T

«t ~ Zq1T , ZBT !«t ~ Zq1T , ZBT !'DJ ,
where OVT is defined in the same way as other similar notations and has the property
OVT 5 V0 1 op~1!+ Using the identity«t~q1,B! 5 «1t~q1,B! 1 «2t~B! in the last expres-

sion and the decomposition of the log-likelihood function given in Section A+2+1 it is
straightforward to check that

LR1 5 ,1T~ Eq1T , DBT , OVT ! 2 ,1T~ Zq1T , ZBT , OVT ! 1 ,2T~ DBT , OVT ! 2 ,2T~ ZBT , OVT !

5 ,1T~ Eq1T , ZBT , ZVT ! 2 ,1T~ Zq1T , ZBT , ZVT ! 1 op~1!,

where the latter equality follows from Lemma A+1+ Using the definition of,1T~q1,B,V!
we can thus write

LR1 5 2 trH ZVT
21 (

t51

T

@«1t ~ Eq1T , ZBT ! 2 «1t ~ Zq1T , ZBT !#«2t ~ ZBT !'J
1 trH ZVT

21 (
t51

T

@«1t ~ Eq1T , ZBT ! 2 «1t ~ Zq1T , ZBT !#«1t ~ Eq1T , ZBT !'J
1 trH ZVT

21 (
t51

T

«1t ~ Zq1T , ZBT !@«1t ~ Eq1T , ZBT ! 2 «1t ~ Zq1T , ZBT !# 'J 1 op~1!+
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Here we can use a standard mean value expansion and further Lemmas A+1 and A+3
of Saikkonen ~2001! to show that replacing«1t ~ Eq1T , ZBT ! by «1t ~ Zq1T , ZBT ! 2
[aT F1t~ Zq1T!'~ Eq1T 2 Zq1T! causes an error of orderop~1!+ Details are similar to those

used for~A+17!+ Hence, after straightforward calculations we find that

LR1 5 22~ Eq1T 2 Zq1T !' (
t51

T

F1t ~ Zq1T ! [aT
' ZVT

21@«1t ~ Zq1T , ZBT ! 1 «2t ~ ZBT !#

1 ~ Eq1T 2 Zq1T !' (
t51

T

F1t ~ Zq1T ! [aT
' ZVT

21 [aT F1t ~ Zq1T !' Eq1t 2 Zq1T ! 1 op~1!

5 ~ Eq1T 2 Zq1T !' (
t51

T

F1t ~ Zq1T ! [aT
' ZVT

21 [aT F1t ~ Zq1T !'~ Eq1T 2 Zq1T ! 1 op~1!+ (A.27)

Here the latter equality follows because the sum in the first term on the right hand side
of the first equality equals2221],1T~ Zq1T , ZBT , ZVT!0]q1 5 0+ Using this identity and ar-
guments similar to those given previously we also find that

YT
21],1T~ Eq1T , ZBT , ZVT !0]q1

5 22YT
21 (

t51

T

F1t ~ Eq1T ! [aT
' ZVT

21«t ~ Eq1T , ZBT !

5 22YT
21 (

t51

T

F1t ~ Eq1T ! [aT
' ZVT

21@«1t ~ Zq1T , ZBT ! 1 «2t ~ ZBT !#

2 2YT
21 (

t51

T

F1t ~ Eq1T ! [aT
' ZVT

21@«t ~ Eq1T , ZBT ! 2 «t ~ Zq1T , ZBT !#

5 22YT
21 (

t51

T

F1t ~ Zq1T ! [aT
' ZVT

21 [aT F1t ~ Zq1T !'~ Eq1T 2 Zq1T ! 1 op~1!+

Using similar arguments it can further be seen thatYT
21],1T~ Eq1T , ZBT , ZVT !0]q1 5

YT
21],1T~ Eq1T , DBT , EVT !0]q1 1 op~1! andYT

21 GM1T YT
21 5 YT

21 ZM1T YT
21 1 op~1!+ Combin-

ing these facts with the expression of test statisticLR1 given in ~A+27! and using the
definition of the matrix GM1T yields

LR1 5 421~YT
21],1T~ Eq1T , DBT , EVT !0]q1!'~YT

21 GM1T YT
21!21~YT

21],1T~ Eq1T , DBT , EVT !0]q1!

1 op~1!+ (A.28)

Making use of~A+26!, ~A+28!, and a standard argument based on Lagrange multipliers it
can finally be seen thatLR1 5 LM1 1 op~1! ~cf+ Gallant, 1987, pp+ 229–230!+ Thus,
because we have proved that test statisticLM1 has the stated limiting distribution the
same is true for test statisticLR1+ n

A.2.3. Proof of Theorem 4.2.First consider the Wald test and note that, by Theo-
rem 3+2 and the continuity ofH2~c!,H2~ ZcT! 5 H2~c0! 1 op~1! and h2~ ZcT! 5 H2~c0!
~ ZcT 2 c0! 1 op~T2102!+ Because~A+11! implies thatT21 ZM2T 5 Sc~c0,V0!21 1 op~1!
the stated result follows from Theorem 3+2+
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As for the LM test, note first that DcT 5 c0 1 Op~T2102! and [aT 5 a0 1 Op~T2102! by
Theorem 3+2 and the discussion at the end of Section 3, whereas EVT 5 V0 1 op~1! by
assumption+ Next recall that we showed that the two last terms on the right hand side of
~A+5! are of orderop~1!+ Thus, because the consistency properties of the constrained
estimators are the same as their unconstrained counterparts the arguments used for~A+5!
can be repeated to show that

2T2102 (
t51

T

F2t ~ Etq1T ,c0! EVT
21«t ~ Etq1T ,c0!

5 2T2102 (
t51

T

F2t ~ Etq1T , DcT ! EVT
21«t ~ Etq1T , DcT !

1 2T2102 (
t51

T

F2t ~ Etq1T , DcT ! EVT
21@«t ~ Etq1T ,c0! 2 «t ~ Etq1T , DcT !# 1 op~1!+

Further, arguments similar to those used in~A+9! show that we can write the second
term in the last expression as

2T2102 (
t51

T

F2t ~ Etq1T , DcT ! EVT
21F2t ~ Etq1T , OcT !~ DcT 2 c0!

5 2T2102 (
t51

T

F2t ~ Etq1T , DcT ! EVT
21F2t ~ Etq1T , DcT !'~ DcT 2 c0! 1 op~1!,

where the notationOcT is defined as before and the equality can be justified in the same
way as in~A+11!+ Thus, using the definition of GM2T we can conclude that

2T2102 (
t51

T

F2t ~ Etq1T ,c0! EVT
21«t ~ Etq1T ,c0!

5 2T2102 (
t51

T

F2t ~ Etq1T , DcT ! EVT
21«t ~ Etq1T , DcT ! 1 2~T21 GM2T !T 102~ DcT 2 c0! 1 op~1!+

Here the first term on the right hand side equalsT2102],T~ Eq1T , DcT , EVT!0]c+ Thus,
observing that~A+10! also holds with Ztq1T and ZVT replaced by Etq1T and EVT , respec-
tively, and proceeding in the same way as following~A+25! we find thatT 102H2~ DcT!
~ ZcT 2 c0! 5 op~1! and, furthermore,

H2~ DcT !~T21 GM2T !21T2102],T~ Etq1T , DcT , EVT !0]c

5 2H2~ DcT !~T21 GM2T !21T2102 (
t51

T

F2t ~ tq10,c0!V0
21«t 1 op~1!+

BecauseT21 GM2T is asymptotically equivalent toT21 ZM2T the limiting distribution of
test statisticLM2 can be obtained from this by using~A+10! and arguments similar to
those used forW2+

COINTEGRATED VECTOR AUTOREGRESSIVE MODELS 355

https://doi.org/10.1017/S0266466601172038 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466601172038


Finally, consider the LR test+ By a mean value expansion, similar to that in the proof
of Theorem 4+1, we have

LR2 5 ,1T~ Etq1T , DcT , OVT ! 2 ,1T~ Ztq1T , ZcT , OVT ! 1 ,2T~ DcT , OVT ! 2 ,2T~ ZcT , OVT !

5 ,2T~ DcT , OVT ! 2 ,2T~ ZcT , OVT ! 1 op~1!,

where the latter equality follows from Lemma A+2+ Now consider the infeasible estima-
tor ĉT and note that it is straightforward to specialize Theorem 3+2 for it and show that
ĉT has the same limiting distribution asZcT + In fact, ~A+9!–~A+11! and standard argu-
ments applied to the estimatorĉT show thatĉt and ZcT are asymptotically equivalent in
the sense thatT 102~ ZcT 2 ĉT! 5 op~1!+ The same arguments can also be used to show
that T 102~ DcT 2 \cT! 5 op~1! where \cT is the constrained counterpart ofĉT + Thus, be-
cause the estimatorŝcT andV̂T and their constrained counterparts can be obtained from
the likelihood function,2T~c,V! it is straightforward to conclude from the preceding
representation ofLR2 that

LR2 5 ,2T~ĉT , V̂T ! 2 ,2T~ \cT , \VT ! 1 op~1!+

Because standard asymptotics hold for ML estimators based on the likelihood function
,2T~c,V! the standard chi-square limiting is also obtained for LR tests based on it and
hence forLR2+ n
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