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We compare the results of two-dimensional, biased random walk models of individual
swimming micro-organisms with advection–diffusion models for the whole population.
In particular, we consider the influence of the local flow environment (gyrotaxis) on the
resulting motion. In unidirectional flows, the results of the individual and population
models are generally in good agreement, even in flows in which the cells can experience
a range of shear environments, and both models successfully predict the phenomena of
gravitactic focusing. Numerical results are also compared with asymptotic expressions
for weak and strong shear. Discrepancies between the models arise in two cases:
(i) when reflective boundary conditions change the orientation distribution in the
random walk model from that predicted by the long-term asymptotics used to derive
the advection–diffusion model; (ii) when the spatial and temporal scales are not
large enough for the advection–diffusion model to apply. We also use a simple two-
dimensional flow containing a variety of flow regimes to explore what happens when
there are localized regions in which the generalized Taylor dispersion theory used in
the derivation of the population model does not apply. For spherical cells, we find
good agreement between the models outside the ‘break-down’ regions, but comparison
of the results within these regions is complicated by the presence of nearby boundaries
and their influence on the random walk model. In contrast, for rod-shaped cells which
are reorientated by both vorticity and strain, we see qualitatively different spatial
patterns between individual and advection–diffusion models even in the absence of
gyrotaxis, because cells are advected between regions of differing rates of strain.

Key words: micro-organism dynamics, suspensions

1. Introduction
Swimming micro-organisms are ubiquitous in fluid environments. Phytoplankton in

particular are important in a wide variety of natural phenomena. These single-celled
organisms, many of which are motile, are integral players in the oceanic ecosystem. For
example, massive phytoplankton blooms can have major economic and environmental
impact (Horner, Garrison & Plumley 1997). In the context of climate change, the
oceans are among the largest sinks of carbon dioxide (Raven & Falkowski 1999),
which is transformed by phytoplankton into organic carbon, providing food for a
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Gyrotactic swimming micro-organisms in laminar flow fields 603

wide range of organisms; from marine bacteria which recycle carbon from lysed
phytoplankton, to blue whales which sieve the phytoplankton from the water.

The spatial distribution of phytoplankton in the natural environment is
heterogeneous. For example, thin layers of phytoplankton have been observed in situ
(e.g. Sharples et al. 2001; McManus et al. 2003; Steinbuck et al. 2009) and attempts
have been made to explain these through physical and biological mechanisms alone
(e.g. Franks 1995; Birch, Young & Franks 2008), and including the effect of swimming
(Bearon, Grünbaum & Cattolico 2006; Durham, Kessler & Stocker 2009). On smaller
scales, the phenomenon of bioconvection provides visually striking evidence of how
swimming can interact with fluid dynamics to generate spatial patterns (see review
by Hill & Pedley 2005). Understanding the fundamental differences between how
actively swimming micro-organisms disperse in flow compared to passive solutes also
has industrial relevance, for example in the design of bioreactors, which has recently
received renewed interest within the context of bio-fuel production (Bees & Croze
2010).

Here, we focus on gyrotactic phytoplankton; single-celled bottom-heavy organisms
that tend to swim upwards in still fluid but are reorientated from the vertical in
shear flow because of viscous torques (Pedley & Kessler 1992). Our focus will be on
dilute suspensions of these organisms, in that we neglect cell–cell interactions. This is
motivated by the observation that cells can typically be cultured in liquid suspensions
to a maximum volume fraction of only 10−3. We note however that the effect of
actively swimming cell–cell interactions on the collective motions and fluid rheology
of a suspension is an area of active study, recently reviewed by Ishikawa (2009).

In a still fluid, the swimming behaviour of individual gyrotactic phytoplankton can
be described as a biased random walk: the cell orientation is assumed to be a random
variable that undergoes diffusion with drift (Hill & Häder 1997). At the population
level, the dynamics can be modelled by an advection–diffusion equation for the cell
concentration, n(x, t), where the advection coefficient is the mean-swimming velocity
of the cells and the anisotropic diffusion tensor represents the random component of
swimming (Bearon & Grünbaum 2008).

Ambient fluid motion will interact with the swimming behaviour and alter the
spatial distribution of a population. For example, suppose a cell is subject to a
uniform external field which acts to align cells in the direction of the unit vector F.
Phytoplankton are typically sufficiently small and slow moving such that the local
fluid dynamics are governed by the equations of Stokes flow and it can be assumed
that there is no net torque on the cell. Under these conditions, a general ambient flow
affects the orientation of an axi-symmetric cell via the local vorticity ω and local rate
of strain tensor E, and the cell will rotate according to the deterministic formula

ṗ =
1

2B
[F − (F · p) p] +

1

2
ω ∧ p + α0 p · E · (I − p p), (1.1)

where p is the swimming direction, B is a time scale for the cell to reorient towards
F and α0 is a measure of cell non-sphericity, termed the Bretherton constant, with
α0 = 0 for a sphere and α0 = 1 for an infinitely thin rod (Pedley & Kessler 1992; Kim
& Karrila 2005). In addition, the fluid flow itself will be affected by the presence of
the cells, but we shall neglect any such feedback in the current work.

Dynamical systems methods combined with individual-based simulations have
provided insight into the transport and spatial distribution of self-propelled particles
advected by an externally imposed flow. For example, Torney & Neufeld (2007)
demonstrated in two dimensions the aggregation of thin rod-like particles in laminar
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flow, and Thorn & Bearon (2010) investigated the transport and dispersion of spherical
gyrotactic organisms in a range of three-dimensional flows.

The orientation distribution of cells subject to viscous and gravitational torques
and rotational diffusion was computed by Bees, Hill & Pedley (1998) and Almog
& Frankel (1998) for unbounded homogeneous shear flow. Given the orientation
distribution, it is simple to calculate the mean-swimming velocity of the cells, but the
resultant diffusion tensor is more complicated. For homogeneous shear flow, with the
additional constraint that eigenvalues of the fluid velocity gradient tensor have zero
real part (see § 2.2.1 for further details), Hill & Bees (2002) and Manela & Frankel
(2003) calculated expressions for the diffusion tensor using the theory of generalized
Taylor dispersion (Frankel & Brenner 1991, 1993).

To model phytoplankton in the natural turbulent environment or more well-defined
situations such as bioconvection, a population-level model is needed that describes
the spatial distribution of the cells in an arbitrary flow field. Manela & Frankel (2003)
suggest that the theory of generalized Taylor dispersion, valid for homogeneous shear
flow, is suitable for bioconvection because the velocity gradient varies on length and
time scales that are large relative to the microscopic relaxation in orientation space.
However, the slowly swimming cells may be rapidly advected through the flow field,
and so may experience rapidly changing shear. Furthermore, in bioconvection, there
may be regions of the flow field where the eigenvalues of the fluid velocity gradient
tensor do not have zero real part and thus the theory of generalized Taylor dispersion
may not apply. A main motivation for the research presented here is to investigate
whether the advection–diffusion population-level model derived from the theory of
generalized Taylor dispersion can provide a useful approximation even in regions
where it should not be applied and where there is no alternative continuum model for
the spatial–temporal distribution of cells. To determine how well the model works,
we compare results directly to individual-based simulations.

In addition to the applications specific to phytoplankton, results from this paper
will be useful more generally for models of active suspensions and Taylor dispersion
theory. Specifically, there has been extensive study as to the properties of dispersion
due to the combination of micro-scale molecular diffusion and fluid advection, for
example in the context of shear enhanced dispersion, chaotic advection and turbulence
(e.g. Ottino 1990; Warhaft 2000; Ferreira de Sousa & Pereira 2009). In these studies,
the starting point is an advection–diffusion equation in physical space for the passive
scalar. The theory of generalized Taylor dispersion extends this to explore how
diffusion in more general local variables can give diffusion at the macro-scale (Frankel
& Brenner 1989). A key difference in the theory of generalized Taylor dispersion is
that the starting point is a transport equation which includes diffusion in a micro-scale
variable, for example in orientation space. This paper attempts to make progress in
determining under what conditions this transport equation can be approximated by
an advection–diffusion equation in physical space for the conserved scalar quantity.

We investigate how well population-level models describe the spatio-temporal
distribution of gyrotactic phytoplankton for a selection of example flow fields.
To simplify comparison between the individual-based simulations and population-
level model, and in order to reduce the computational time required for the
simulations, all motions are constrained to a two-dimensional vertical plane and the
consequent population-level models are derived using an appropriate modification
of the generalized Taylor dispersion theory. We note that care must be taken in
extending the results to swimming particles free to move in three dimensions, as
highlighted by Brenner (1979).
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In § 2, we describe the two-dimensional, individual-level biased random walk and
resulting population-level advection–diffusion model based on the generalized Taylor
dispersion method (Hill & Bees 2002; Manela & Frankel 2003). Calculations are made
to demonstrate how the mean-swimming direction and the diffusion tensor depend on
the shear strength and type of flow. In § 3, we investigate dispersion in unidirectional
flow fields. For this class of flows, the eigenvalues of the fluid velocity gradient
tensor are all zero, that is the straining component of the flow cannot dominate
the flow profile. In Couette flow, the shear is homogeneous and so the generalized
Taylor dispersion theory is expected to hold. Furthermore, we can obtain simple
analytic expressions for the equilibrium distribution of cells, providing validation of
both the advection–diffusion-based and the individual-based simulations. For simple
horizontal Couette flow, we demonstrate how using the calculated expressions for
mean-swimming and diffusion, as opposed to simpler ad-hoc approximations, can
alter the spatial distribution of the cells. For example, in the limit of strong shear,
we obtain a shear-independent analytic asymptotic expression for the non-uniform
equilibrium concentration. This is validated against individual-based simulations and
is in contrast to previous predictions of a uniform concentration at equilibrium in
the limit of strong shear. Furthermore, in simple horizontal Couette flow with zero
or weak shear, discrepancies between the equilibrium distribution obtained from
individual-based simulations and solutions to the population-level model highlight
a failure of the population-level model to accurately represent reflective boundary
conditions. For unidirectional flows with variable shear, such as Poiseuille flow, the
mean-swimming direction and diffusion tensor vary in the cross-stream direction. For
these flow fields, we are thus able to examine whether the population-level model
based on the local shear is valid for non-homogeneous shear flows in situations
where cells can swim between regions of differing shear. We explore the influence
of the newly computed diffusion tensor on the phenomenon of gyrotactic focusing
(Kessler 1985) for both spherical and non-spherical cells, and on the formation of
phytoplankton thin layers (Durham et al. 2009). In § 4, we consider dispersion in a two-
dimensional model vortex flow. In this case, there are regions where eigenvalues of the
fluid velocity gradient have non-zero real part, that is regions of straining-dominated
flow. In these regions, generalized Taylor dispersion may fail because of exponential
divergence of particle positions. Furthermore, cells can be rapidly advected between
regions of differing strain which, for non-spherical cells, is a significant deviation from
the assumption that cells experience homogeneous shear. In order to examine this,
transient and equilibrium numerical solutions of the advection–diffusion equation are
compared with individual-based simulations in the two-dimensional box. Finally, in
§ 5, we make some concluding comments.

2. The model
We restrict attention to the two-dimensional plane denoted by unit vectors (i, j ).

We define the fluid velocity, V (x), and fluid velocity gradient, G =(∇V )T, so that
for homogeneous shear flow, we have V (x) = V (0) + x · G. The in-plane vorticity is
ω =G12 − G21 and the rate of strain tensor is E = 1

2
(∇V + (∇V )T).

2.1. Individual-based model

We consider a cell with swimming velocity vs p = vs(sin θ i + cos θ j ) that is also
advected at the local fluid velocity, V (x). The swimming speed vs is assumed to be
constant, but the direction is modelled by a biased random walk. At each small time
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step, δt , the cell orientation to the vertical, θ , is altered by an amount, δθ , where δθ

is a random variable taken from a normal distribution with mean µ and variance σ 2

given by

µ =

(
−1

2
ω + α0(sin(2θ)E11 + cos(2θ)E12) − 1

2B
sin θ

)
δt, (2.1)

σ 2 = 2drδt, (2.2)

where dr can be interpreted as a rotary diffusion coefficient; E11 and E12 are
components of the rate of strain tensor; and, as before, B a time scale for the
cell to reorient towards the vertical ( j ). The mean component of the motion models
gyrotaxis and can be derived from (1.1) by setting F = j .

2.2. Advection–diffusion model

Following Hill & Häder (1997) and Manela & Frankel (2003), in the limit of δt → 0,
the random walk in orientation yields the following micro-scale model for P ( p, x, t),
the probability of finding a cell with orientation p at position x at time t:

∂P

∂t
+ ∇x · ((V + vs p)P ) + drLP = 0, (2.3)

where the linear operator L is defined as

Lf = − ∂

∂θ

((
Pr

(
1

2
ω̂ − α0(sin(2θ)Ê11 + cos(2θ)Ê12)

)
+ κ sin θ

)
f +

∂f

∂θ

)
. (2.4)

In the absence of the terms multiplied by Pr and κ , the linear operator represents
unbiased diffusion in orientation space. The term multiplied by Pr represents a bias
induced by the fluid shear; and Pr is a non-dimensional measure of the shear

Pr =
G

dr

, where G = GĜ. (2.5)

Here, ω̂ is the vorticity non-dimensionalized on G, and Ê11, Ê12 are components of
the rate of strain tensor, also non-dimensionalized on G. The dimensional measure
for the magnitude of the fluid velocity gradient, G, is chosen so that Ĝ is O(1), but the
exact definition will depend on the particular flow field. The second term represents
the bias due to gravitaxis and its relative importance is given by the non-dimensional
parameter κ ,

κ =
1

2drB
. (2.6)

Modifying for two dimensions the previous three-dimensional results (Hill & Bees
2002; Manela & Frankel 2003), applicable for homogeneous shear flow subject to the
constraint that the eigenvalues of G have zero real part, we find that on time scales
long compared to 1/dr , the cell concentration, n(x, t) satisfies an advection–diffusion
equation:

∂n

∂t
= −∇ ·

(
(V + vs p)n − v2

s

dr

D · ∇n

)
, (2.7)

where the mean-swimming direction, p, is given by

p =

∫ 2π

0

pf dθ, (2.8)
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and the non-dimensional diffusion tensor is given by

D =

∫ 2π

0

[
b p +

Pr

f
bb · Ĝ

]sym

dθ. (2.9)

Here, [ ]sym denotes the symmetric part of the tensor.
The equilibrium orientation, f (θ), and vector b(θ) satisfy

Lf = 0, (2.10)

Lb − Prb · Ĝ = f (θ)( p − p), (2.11)

subject to the integral constraints∫ 2π

0

f dθ = 1,

∫ 2π

0

b dθ = 0. (2.12)

A simplified summary of the derivation of this result based on work by Frankel
& Brenner (1991, 1993) is provided as online supplementary material, available at
journals.cambridge.org/flm. The solution of this system confined to two dimensions is
discussed in the Appendix. In particular, a numerical Galerkin method for arbitrary
values of Pr is derived which modifies previous methods used for three dimensions
(Hill & Bees 2002; Manela & Frankel 2003) to two dimensions. New asymptotic
limits for motions confined to two dimensions for weak and strong flow are also
calculated explicitly.

2.2.1. Properties of diffusion tensor for spherical cells in the absence of gravitactic bias

As shown in the Appendix, § A.1, in the absence of flow, the diffusion tensor
is similar to that proposed by Pedley & Kessler (1990), v2

s τ var( p), provided the
correlation time, τ , is a correctly chosen function of the gravitactic bias, κ .

We now consider how the diffusion is altered by the flow in the special case of
spherical cells in the absence of gravitactic bias, that is κ = 0, α0 = 0. With a suitable
choice of axes, the most general homogeneous flow has velocity gradient

Ĝ =

(
0 α

1 0

)
. (2.13)

Note that α = −1 corresponds to pure rotation; α = 0, simple shear flow; and α = 1,
pure straining motion. The theory of generalized Taylor dispersion is only valid if the
eigenvalues of Ĝ have zero real part, that is α � 0, which corresponds to the cases
where either the streamlines are closed α < 0, or the flow is simple shear. When α > 0,
advection by the fluid motion alone leads to exponentially rapid divergence of the
position vector of adjacent material points, and the theory fails (Frankel & Brenner
1991).

In this case, explicit expressions can be obtained from the diffusion tensor, as given
in the Appendix, § A.4.1. From these calculations, we note that for pure rotation, the
diffusion tensor is isotropic and independent of the vorticity. This can be expected as
the flow field corresponds to solid-body rotation, and so, as we are neglecting inertial
effects, we do not expect this flow field to modify the diffusion.

As depicted in figure 1, as straining motion is introduced, the diffusion tensor is
modified for moderate values of the vorticity; specifically, diffusion is enhanced in
the direction of the streamlines, Dxx , and reduced in the cross-stream direction, Dyy .
Care should be taken when making a comparison with the classical Taylor dispersion
phenomenon in which dispersion in the streamline direction is enhanced. In the
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Figure 1. (a–c) Components of diffusion tensor as a function of non-dimensional shear, Pr ,
in the case of no gravitactic bias, κ = 0, and spherical cells, α0 = 1, for increasing values of
strain, α = −0.5, 0, 0.5: solid line Dxx; dash-dot Dyy; dash Dxy .

classical Taylor dispersion phenomenon, the effective diffusion tensor in physical
space is unaltered by the flow, and it is the combination of cross-stream diffusion and
shear that gives rise to the enhanced diffusion in the streamline direction. However,
here we have found that shear modifies the physical space diffusion tensor in such a
way that the classical Taylor dispersion mechanism may actually be reduced because
of a reduction in the cross-stream diffusion, Dyy .

Although the generalized Taylor dispersion theory is not valid for α > 0, we also
plot the components of the diffusion tensor for α = 0.5. Despite the theory not being
valid, in the absence of any alternative population-level model, we shall compute
the diffusion tensor for cells that experience a straining-dominated flow locally and
investigate the resultant spatial distribution in § 4. Therefore, understanding the
characteristics of the formal expression for the diffusion tensor given by (2.9), (2.11),
and (2.12) is helpful to gain insight, for example, in understanding singular behaviour
in the diffusion tensor (§ 4.3.2). For α = 0.5, we see that there is a further enhancement
in dispersion for moderate values of the vorticity due to the increased straining
motion. For pure straining motion, α = 1, the diffusivity tensor is singular when
Pr = 1 as shown in the Appendix, § A.4.1.

For large Pr , except in the singular case of pure rotation, α = −1, the diffusion
tensor decays as 1/P r2, according to the analytic expressions given in Appendix A.3.
As previously noted (Hill & Bees 2002), this behaviour at large shear values is not
captured by the diffusion tensor proposed by Pedley & Kessler (1990), v2

s τ var( p),
which tends to the identity matrix at large Pr instead of vanishing.

2.3. Numerical methods

When solving the advection–diffusion equation numerically, it is convenient to non-
dimensionalize lengths based on L, the size of the computational box, and non-
dimensionalize time on a characteristic time scale for diffusion over the computational
box. From (2.7), the diffusion tensor for the advection–diffusion model is v2

s /dr

multiplied by a non-dimensional tensor which is O(1) in the absence of gravitactic
bias or shear, and thus we take L2dr/v

2
s as a characteristic time scale for diffusion

over a length L. This introduces two non-dimensional parameters into the problem:
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the Péclet number which is given by

Pe =
GL2dr

vs
2

, (2.14)

and ε, a ratio of the typical correlation length scale of the random walk in the absence
of bias to the length scale of the box:

ε =
vs

Ldr

. (2.15)

We assume that ε is a small parameter, and take ε = 0.1 in the numerical simulations.
The non-dimensional shear, Pr , is given by

Pr =
G

dr

= ε2Pe. (2.16)

2.3.1. Finite-element method for advection–diffusion equation

Equation (2.7) in non-dimensional form is given by

∂n

∂t
= −∇ ·

((
PeV̂ +

1

ε
p
)

n − D · ∇n

)
. (2.17)

Noting that the mean-swimming direction, p, and diffusion tensor, D, are functions
of κ , Pr , and Ĝ, we see that the simulations will depend only on the local value of Ĝ
and the three parameters, κ , Pe and ε.

The governing advection–diffusion equation is solved using a Galerkin finite-element
method. Equation (2.17) is transformed into a weak form on multiplication by a test
function, ψ(x), and by integration over the domain∫∫ [

∂n

∂t
+ ∇ ·

((
PeV̂ +

1

ε
p̄
)

n − D · ∇n

)]
ψ dV = 0. (2.18)

Integrating selected terms by parts and using the divergence theorem gives∫∫ [(
∂n

∂t
+ Pe V̂ · ∇n

)
ψ −

(
1

ε
n p̄ − D · ∇n

)
· ∇ψ

]
dV

+

∮
ψ

(
1

ε
n p̄ − D · ∇n

)
· dS = 0. (2.19)

The second integral represents the normal flux out of the domain due to cell swimming
and cell diffusion. In the majority of our computations, we impose no-flux boundary
conditions, in which case the boundary integral is zero and the appropriate weak
form is ∫∫ [(

∂n

∂t
+ Pe V̂ · ∇n

)
ψ −

(
1

ε
n p̄ − D · ∇n

)
· ∇ψ

]
dV = 0. (2.20)

The cell concentration, n, is approximated using standard Lagrangian quadratic
finite elements and the time derivative is approximated using an implicit second-order,
backward difference scheme. The subsequent discrete linear system is assembled using
the C++ library oomph-lib (Heil & Hazel 2006) and solved by a direct solver,
SuperLU (Demmel et al. 1999). The mean cell swimming speed p̄ and diffusion
tensor D are pre-computed using the Galerkin method described in the Appendix,
§ A.4. The estimated error in each element is calculated using Zienkiewicz & Zhu’s
(1992a, b) error estimator based on the recovery of concentration gradients. Elements
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in which the estimated error exceeds a specified threshold, typically 0.1% of the global
error norm, are refined by division into four equal elements. Continuity of the solution
is enforced by constraining the values at any hanging nodes (see Demkowicz et al.
1989). For steady computations, the refinement is continued until the estimated error
is below the threshold for every element, corresponding to an equidistribution of the
error. For unsteady computations, one or two refinements were usually performed
after each timestep.

For the unidirectional flow fields considered in § 3, the maximum number of elements
is of the order 102 in the direction over which the concentration varies. An exception
to this is the early transient solutions in figure 3 which require a fine initial resolution
to characterize cells initially concentrated at y = 0. For the two-dimensional periodic
flow field depicted in figures 7 and 9, the maximum number of elements is of the order
104. In unsteady simulations, a fixed time step of dt =0.01 is typically used, although
a smaller time step of dt =0.001 is required to accurately capture early-time transient
dynamics in figures 3(d ) and 5(e). Simulations were validated by comparison with
analytic solutions and individual-based simulations (see the following sections) and
by repeating selected simulations with smaller error tolerances and timesteps.

2.3.2. Individual-based modelling method

Applying the above choice of non-dimensionalization to the individual-based model
(IBM) described in § 2.1 in the limit of δt tending to zero yields the following coupled
ordinary-stochastic differential equation system for a single individual with position
xi and orientation θi:(

ẋi

ẏi

)
= PeV̂ (xi) +

1

ε

(
sin θi

cos θi

)
, (2.21)

dθi =

(
ξP e

(
−1

2
ω̂ + α0 sin(2θ)Ê11 + α0 cos(2θ)Ê12

)
− κ

ε2
sin θ

)
dt +

√
2

ε2
dW,

(2.22)

where the θi equation is an expression for a biased correlated random walk with a
bias given by the first (deterministic) term, and a variance given by the second term
(dW is a standard Weiner process). In the full simulation, cells are gyrotactic and
affected by vorticity which is modelled by setting ξ = 1. Simulations are also run for
purely gravitactic cells by setting ξ = 0. The latter simulations are equivalent to a
reduced population-level model in which the diffusion tensor and mean-swimming
are computed assuming that the flow has no influence on behaviour (Pr = 0 in (2.4)).

Equations (2.21) and (2.22) are integrated at each time step following Sobczyk
(1991): The position (xn

i , y
n
i ) is updated to the new position (xn+1

i , yn+1
i ) and θn

i

is updated to θ∗
i via the fourth-order Runge–Kutta method for (2.21) and the

deterministic part of (2.22) for a time step δt . A value δθ is drawn from the
N(0, 2/ε2 δt) distribution and added to θ∗

i to give the new orientation θn+1
i . For

Pe = 0, 1, 5, the time step was taken as δt =10−3, and for Pe = 10, 50, the time
step was reduced to δt =10−4. Convergence of results was checked by reducing the
time step δt by up to a factor of 10, and the convergence of equilibrium results
was confirmed by extending the total duration of the simulation. Unless otherwise
stated, the initial position and orientation of each cell was sampled from a uniform
distribution.

To ensure conservation of cells, reflective boundary conditions corresponding to
perfectly elastic collisions are imposed on both cell position and orientation at solid
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boundaries. Specifically, when there are solid boundaries at x = 0 and x = 1, if the
new x lies outside this region, it is reflected in the relevant boundary back into the
domain and θ is replaced by −θ . Likewise, when there are solid boundaries at y =0
and y = 1, then if the new y lies outside this region, it is reflected in the relevant
boundary back into the domain and θ is replaced by π − θ .

For the unidirectional flows, the simulation was performed on a single PC with 105

cells. For the two-dimensional flow field, the problem was split into 1000 separate
runs with 105 cells each and run on a Condor high-throughput computing system,
where unused computing time on a network of PCs is used to perform large-scale
computations.

3. Unidirectional flow
We consider unidirectional flow between two parallel walls in either the horizontal

(i) or vertical ( j ) direction

V̂ = V (y)i, y ∈ [0, 1], (3.1)

or V̂ = V (x) j , x ∈ [0, 1]. (3.2)

Note that the corresponding dimensional velocity is given by GLV̂ , hence a suitable
choice of G for this geometry is U/L, where U is a characteristic speed of the flow.
We take no flux boundary condition on the walls, and seek one-dimensional solutions,
n(y, t) and n(x, t) for the horizontal and vertical flows, respectively.

From (2.17), for horizontal flow, the steady equilibrium distribution satisfies

n(y) = n0 exp

(
1

ε

∫ y

0

νy dy

)
, νy =

py

Dyy

. (3.3)

Locally, the flow field can be approximated by horizontal Couette flow with a shear
strength that may vary with y. Whatever the shear, the vertical migration is always
positive (see figure 2). Hence, for sufficiently small values of ε, the cells form a thin
layer near the top of the channel at equilibrium. Although the evolution towards
equilibrium is affected by the shear distribution across the channel, the final state is
well-approximated by the simple exponential

n = n0 e(1/ε)νy (1)y, (3.4)

where νy(1) is the value of py/Dyy calculated for the surface shear, V ′(1).
For vertical flow, the equilibrium solution for n(x) is completely equivalent

n = n0 exp

(
1

ε

∫ x

0

νx dx

)
, νx =

px

Dxx

. (3.5)

However, because px , and hence, νx , can be either positive or negative depending on
the sign of the shear, the resulting distribution will depend on the shear profile V ′(x).
This will be considered further in the context of gyrotactic focusing in § 3.2.

3.1. Horizontal Couette flow

For horizontal Couette flow, the shear is homogeneous, V ′(y) = 1, and so the
diffusion tensor and mean-swimming direction are constant throughout the chamber.
In this section, we focus attention on spherical cells, and will highlight a major
discrepancy between the IBM and population-level model due to the reflective
boundary conditions. In figure 2, the mean-swimming direction and components
of diffusion tensor are plotted as functions of the shear strength, Pr , for an example
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Figure 2. (a) Mean-swimming direction, p̄, (b) diffusion tensor, D, and (c) ratio νy = py/Dyy

as a function of shear, Pr , for horizontal Couette flow with gravitactic bias κ = 2.2: solid line
px,Dxx; dash-dot py,Dyy; dash Dxy . As |Pr | → ∞, νy → κ , as indicated by dotted line.

value of gravitactic bias κ of 2.2 (cf. Hill & Bees 2002). We see that there is a
mean-swimming component in the direction of the flow, i.e. px is positive for positive
values of Pr . This is because cells are more likely to be swimming upwards because
of the bias, and the vorticity will, on average, rotate upward swimming cells to the
right. The strong bias also modifies the diffusion tensor: for example, on comparing
figure 2 with figure 1 (α = 0), we see that the Dxx component of the diffusion tensor
peaks at a higher value of Pr and has a lower maximum.

For horizontal Couette flow, the equilibrium distribution given by (3.3) is a simple
exponential

n = n0 e(1/ε)νyy . (3.6)

The value of νy is plotted as a function of shear strength, Pr , in figure 2. For large
values of |Pr |, asymptotic calculations (A 31) give the leading order expressions:

py =
2κ

P r2
, (3.7)

Dyy =
2

Pr2
, (3.8)

which give the leading order expression νy = κ , and thus the equilibrium distribution
becomes independent of the shear strength at large shear. Hence, although the ability
to swim upwards is compromised because of the shear, there is a corresponding
reduction in the diffusivity, which means that the equilibrium attained is an
exponential distribution that depends only on the strength of the bias. Note,
however, the time taken to reach this equilibrium will vary considerably because the
diffusion rate scales as 1/P r2 for large Pr . Also note that this asymptotic equilibrium
distribution would not be predicted if using the diffusion tensor v2

s τ var( p), which
tends to the identity matrix at large Pr instead of vanishing; in that case, the
equilibrium distribution is uniform across the channel.

The equilibrium distribution is depicted in figure 3 as a function of shear, Pr . For
a bias of κ = 2.2, with ε = 0.1, the cells are confined to the top 5% of the channel at
equilibrium. As the shear is increased, the concentration of cells near the upper wall
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Figure 3. Distribution of cells in horizontal Couette flow with κ =2.2. (a) Equilibrium
distribution in the upper part of the channel for increasing values of shear Pr . Symbols are
results from numerical solution of advection–diffusion equation: stars Pr =0; circles Pr = 2;
squares Pr = 5. Solid lines are analytic prediction, n= n0 e(1/ε)νyy . The asymptotic distribution
for Pr → ∞ is indistinguishable from Pr = 5. (b) The grey histogram is the equilibrium
distribution from the IBM with Pr = 0. This agrees with the asymptotic distribution for
Pr → ∞ (solid line), but not the analytic prediction for Pr = 0 (dash line). (c) The orientation
distribution at t = 0.04 with Pr =0. The grey histogram represents results from the IBM,
solid line is the distribution f (θ ) as given in the Appendix, § A.1. (d ) The uniform orientation
distribution for Pr = 0 from the IBM obtained when cells have attained the equilibrium
position distribution.

decreases and the cells spread across the channel, with the numerical solution showing
excellent agreement with the analytic prediction. For shear Pr = 5, the concentration
is indistinguishable from the asymptotic result of n= n0 e(κ/ε)y .

Figure 3(b) depicts the equilibrium distribution found from the IBM in the no-flow
case, Pr = 0. Interestingly, this distribution does not agree with the analytic prediction
based on the advection–diffusion model at Pr = 0, but instead agrees with the analytic
prediction for Pr → ∞. Furthermore, the equilibrium distribution calculated using
the IBM is identical for all values of Pr tested. In other words, the equilibrium
distribution appears to be independent of the flow. To understand this, it is necessary
to consider in more detail how the cell orientation distribution is affected by the
imposed boundary conditions.

In the absence of boundaries, the equilibrium orientation distribution found from
the IBM in the no-flow case, Pr = 0, is the von Mises distribution, which is
the equilibrium orientation distribution predicted from the population-level model
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(see the Appendix, § A.1). This equilibrium orientation distribution can be seen at
early times for the IBM with appropriate initial conditions (see figure 3c). Specifically,
if cells are initially at y = 0, after a sufficient time for cells to randomly reorientate (a
dimensional time of 1/dr , corresponding to a non-dimensional time of ε2 = 0.01), but
not so long a time as to reach the top of the chamber and be reflected from the top
boundary (a dimensional time of at least L/vs , corresponding to a non-dimensional
time of at least ε = 0.1), the von Mises distribution is attained. In the derivation of the
generalized Taylor dispersion theory, it is assumed that cell orientation is distributed
according to this equilibrium distribution, and the population-level model is based on
this assumption using (2.7)–(2.12). However, after reflecting off the boundaries many
times and reorientating subsequent to reflection, the cells’ equilibrium orientation
distribution is indistinguishable from the uniform distribution (see figure 3d ). This
was confirmed using the IBM for κ = 0.5, 1 and 2.2, and moreover no spatial variation
in the orientation distribution was found.

This discrepancy between the population-level model and IBM induced by the
boundary conditions can be further explored if we consider the governing equation
(2.3) describing the full random walk in the presence of flow. We find that P (y, θ),
the equilibrium probability of finding a cell with orientation θ at vertical position y,
satisfies the following equation:

ε
∂

∂y
(cos θP ) − ∂

∂θ

((
Pr

2
ω̂ + κ sin θ

)
P − ∂P

∂θ

)
= 0. (3.9)

In addition, we require that the solution is periodic in θ and, because of the reflective
boundaries, there can be no vertical flux of cells in the equilibrium distribution:

P (y, θ + 2π) = P (y, θ), (3.10)∫
cos θP dθ = 0. (3.11)

Note that no assumptions regarding long-time approximations have been made in
the derivation of this governing equation, and so the solution should be the exact
equilibrium solution.

This system of equations has the following solution:

P (y, θ) =
1

2π
n0 e(κ/ε)y, (3.12)

which agrees with the results of the numerical simulations, in that it has the
correct spatial distribution, n(y) =

∫
P dθ = n0 e(κ/ε)y and the uniform orientation

distribution. Furthermore, this solution agrees with the observation that the
equilibrium distribution is independent of the flow in the IBM. As shown in
figure 3(b), for the strong bias of κ = 2.2, this major difference in equilibrium
orientation distribution due to the reflective boundary conditions can manifest itself in
a significant difference in the predicted equilibrium spatial distribution in the no-flow
case. For smaller values of κ (for example, κ =0.5, 1), the difference in equilibrium
spatial distribution is less noticeable. As the shear increases, the equilibrium spatial
distributions converge because the distribution found in the IBM is the same as that
predicted from the advection–diffusion model in the asymptotic limit of large Pr .

This analysis demonstrates a failing of the generalized Taylor dispersion theory in
the case where boundary conditions are critical in determining the spatial distribution.
The fact that the IBM agrees with the solution of the underlying governing equation
(2.3) demonstrates that it is more accurate than the solution of the advection–diffusion
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equation, derived under the approximation that variation is occurring on long time
and length scales compared to the scales associated with the random walk. We can
gain insight into why the advection–diffusion model fails when κ =O(1) by noting
that the length scale of the equilibrium distribution is O(ε/κ) and so spatial variation
occurs on a length scale comparable with the correlation length scale of the random
walk, given by the non-dimensional parameter, ε.

3.2. Vertical Poiseuille flow

For vertical Poiseuille flow, the eigenvalues of the fluid velocity gradient tensor are
all zero, but cells can swim across streamlines and experience variable shear. In
this section, the reflective boundary conditions do not have a strong influence on
the equilibrium spatial distribution because the average swimming direction in the
absence of flow is parallel, rather than normal, to the boundaries. Consequently, we
find good agreement between the population-level model and IBM.

The approximate behaviour in vertical Poiseuille flow can be predicted by
considering vertical Couette flow with V ′(x) = 1. For small values of |Pr |, asymptotic
calculation (A 5), (A 13) gives the following leading order expressions for the mean
horizontal swimming velocity and Dxx component of the diffusion tensor:

px =
Pr

2κ

(
1

I0(κ)2
− 1 + α0

I2(κ)

I0(κ)

)
, (3.13)

Dxx =
1

κ2

(
1 − 1

I0(κ)2

)
. (3.14)

For large values of |Pr |, asymptotic calculations (A 33), (A 35) give the following
leading order expressions for the mean horizontal swimming velocity and Dxx

component of the diffusion tensor:

px = − κ

P r(1 + α0)
, (3.15)

Dxx =
2 − α0

Pr2(1 − α0)(1 + α0)2
. (3.16)

These asymptotic expressions were used when validating the numerical simulations.
Note that for spherical cells, α0 = 0, both the asymptotic expressions for νx = px/Dxx

for large and small Pr give νx ≈ − 1
2
κP r .

For vertical Poiseuille flow

V̂ = x(1 − x) j , (3.17)

we suppose that the mean-swimming and diffusivity can be computed based on the
local shear. When the shear is positive, corresponding to anti-clockwise rotation of
cells, the horizontal component of mean-swimming, px , is negative corresponding to
a tendency for cells to swim in the negative x-direction, and vice-versa for negative
shear. This leads to the phenomenon of gyrotactic focusing in the centre of downwards
pipe flow corresponding to negative values of Pr . The equilibrium distribution given
by (3.5) is applied, where the expression for νx(y) is obtained based on the expressions
for px and Dxx for vertical Couette flow, but with Pr replaced by the local shear
strength in the Poiseuille flow, Pr(1 − 2x). For example, an approximate analytic
expression is found by using the asymptotic expressions for small Pr (3.13), (3.14) to
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Figure 4. Equilibrium cell concentration in downward Poiseuille flow normalized so that the
total cell population is unity. Solid line is the approximate Gaussian distribution given by
(3.18); stars are numerical solutions of the advection–diffusion equation; circles are from the
IBM. (a) Spherical cells, α0 = 0, with bias κ = 1 for increasing shear: grey line and symbols,
Pe = −200; black line and symbols, Pe = −1000. (b) κ = 5, P e = −200: grey line and symbols,
non-spherical cells, α0 = 0.9; black line and symbols, spherical cells α0 = 0.

give the equilibrium distribution

n = n0 exp

(
−εκP e

2
x(1 − x)

(
1 − α0

I2(κ)I0(κ)

(I0(κ))2 − 1

))
, (3.18)

where we have used (2.16) to write Pr = ε2Pe in order to give a more physically
intuitive description in terms of the Péclet number, Pe. From this expression for the
distribution, as depicted in figure 4, we see how increasing either the gyrotactic bias,
κ , or the Péclet number increases the strength of the focusing, while increasing α0, i.e.
considering more elongated cells, flattens the distribution. Again, note this asymptotic
equilibrium distribution is not predicted using the diffusion tensor v2

s τ var( p); in that
case, once again, a uniform distribution is predicted at equilibrium for sufficiently
strong flows, i.e. large Pe.

3.3. Formation of phytoplankton thin layers

As an example solution that displays interesting transient dynamics, we consider the
following flow field which displays strong shear in a thin region of width δ around
y = 0.5:

V̂ = tanh

(
y − 0.5

δ

)
i, y ∈ [0, 1]. (3.19)

This flow field was considered by Durham et al. (2009) who combined experiments
and simple models to investigate whether gyrotaxis can lead to the formation of thin
layers of phytoplankton. We note that the flow field does not satisfy the Navier–Stokes
equations (except under the addition of artificial body forces), yet does provides a
simple model of the physical system being studied. For this flow field, the horizontal
component of the fluid velocity, mean-upswimming velocity and Dyy component of
the diffusion tensor based on the local shear are plotted in figure 5. In the region
when there is a rapid change in fluid velocity, there is a big drop in upswimming
and vertical diffusion. Also plotted in figure 5 are the transient solutions to the
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Figure 5. Formation of thin layer with parameter values δ = 0.05, κ =1, Pe = 50. (a)
Horizontal fluid velocity, Vx (dot line); mean vertical swimming direction py (dash line)
and Dyy component of the diffusion tensor (dash-dot line). (b) Numerical transient solution
of advection–diffusion equation: lines plotted at intervals of dt =0.01 for t =0 (uniform
distribution) to t = 0.1. (c) Dotted line, solution for t = 0.1; dash line, solution for t = 0.5; solid
line, still fluid equilibrium solution n= n0 e(1/ε)νyy , with νy calculated for the zero flow case
Pe = 0. The solution of the advection–diffusion equation for t � 1 is indistinguishable from
the still fluid equilibrium solution. (d )–(f ) Comparison of results from IBM (histogram) with
numerical solution of advection–diffusion equation (solid line) at (d ) t = 0, (e) t = 0.01 and (f )
t =0.1.

advection–diffusion equation. Starting from an initially uniform distribution, cells
form a thin layer due to the suppression of upswimming in the strong shear layer.
Although the diffusivity and upswimming are small in this region, they are not zero,
and eventually cells pass through this region and ultimately form a layer of cells at
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the top of the channel. As discussed previously, the equilibrium distribution can be
approximated by a simple exponential n= n0 e(1/ε)νyy , where νy is the value of py/Dyy

in the region containing the bulk of the cells. In this flow field, there is zero shear in
the top layer, and so the equilibrium solution is indistinguishable from the still fluid
case, as shown in figure 5.

A comparison of the IBM with the solution of the advection–diffusion equation at
early times is shown in figure 5(d–f ). In the region of rapidly changing shear, we note
a slight discrepancy between the IBM and the solution of the advection–diffusion
equation in figure 5(e). As described in § 2.3, the numerical schemes were particularly
sensitive to the choice of time step for these early transient distributions. In particular,
we verified that the distribution shown in figure 5(e) was fully converged by comparing
the solution of the advection–diffusion equation taking δt = 10−3 and taking δt = 10−4.
For the IBM, comparison of the solution with δt =10−4 and δt = 10−5 demonstrated
convergence.

The difference between the solution of the advection–diffusion equation and IBM
could be because cells experience rapidly changing shear when crossing the thin layer,
whereas the theory of generalized Taylor dispersion only applies to homogeneous
shear. Specifically, cells with a strong bias towards swimming upwards can swim
across the layer and experience rapidly changing shear on a non-dimensional time
scale O(εδ) = 0.005 which is faster than the non-dimensional correlation time of the
random walk, ε2 = 0.01. Nonetheless, the agreement in the layer is excellent by t = 0.1.
However, we note that the distribution near the upper boundary is more diffuse for
the IBM than the corresponding solution of the advection–diffusion equation, which
is likely because of the influence of boundary effects as previously discussed for
Couette flow.

3.4. Conclusions

In unidirectional flows, the results of the individual and population models are
generally in good agreement because cells can only move between regions of varying
shear by swimming, which occurs on relatively long time scales; and so the theory of
generalized Taylor dispersion is expected to hold. Both models successfully predict
the phenomena of gravitactic focusing and shear-induced formation of thin layers.

Nonetheless, discrepancies between the models do arise due to (i) the boundary
conditions imposed on the individual model, which can dominate the equilibrium
orientation distribution, as found for horizontal Couette flow; and (ii) phenomena
that occur on spatial and temporal scales that are too short for the population model
to apply, such as the early-time dynamics of the shear-induced formation of thin
layers.

4. Two-dimensional flow
We now consider two-dimensional flow in a box x ∈ [0, 1], y ∈ [0, 1] with a fluid

velocity V̂ that represents a convection cell

V̂ = π(sin(πx) cos(πy), − cos(πx) sin(πy))T. (4.1)

Once again, we note that this flow field does not satisfy the Navier–Stokes equations
(except under the addition of artificial body forces), yet does provide a simple model
of the mixing behaviour present in a convection cell. In this flow field, the shear is not
homogeneous and, moreover, the real parts of the eigenvalues of the velocity-gradient
tensor, Ĝ, are non-zero in the straining-dominated corner regions; i.e. outside the
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square with vertices {(1/2, 0), (1/2, 1), (0, 1/2), (1, 1/2)}. Although generalized Taylor
dispersion theory is not expected to apply in these regions, we shall continue to use it
to compute the macroscopic advection and diffusion coefficients based on local values
of shear.

For this flow field vorticity contours align with the streamlines and so spherical cells
will only experience variation in viscous torque when they swim across streamlines.
In § 3.2, variation in shear due to swimming across streamlines was shown not
to invalidate the generalized Taylor dispersion theory, and so we do not expect this
source of variation to be significant here. However, non-spherical cells will be advected
between regions where they experience different viscous torques because the rate of
strain varies along streamlines. At sufficiently high fluid velocities, this advection
between regions of differing strain can cause a major failing in the generalized Taylor
dispersion theory, as will be demonstrated in § 4.1 when we consider the spatial
distribution in the absence of gravitactic bias.

Restricting attention to spherical cells, we then examine in more detail the failings
associated with using generalized Taylor dispersion theory based on local values of
shear in straining-dominated regions. Specifically, we solve the advection–diffusion
equation with no-flux boundary conditions on the walls x = 0, 1, y = 0, 1 and compare
the results with an individual-based simulation. The solution depends on three key
parameters: κ the strength of gravitactic bias; Pe, the strength of the advection and
ε, the ratio of the length scale of random walk to the convection cell size, which we
take as 0.1 in the numerical simulations.

4.1. No bias

In the absence of gravitatic bias, Torney & Neufeld (2007) demonstrated that strongly
elongated particles aggregated at the edges of convection cells. In contrast, we now
demonstrate that applying the method of generalized Taylor dispersion theory based
on the local shear predicts that cells are uniformly distributed. From (2.4), the local
equilibrium orientation distribution satisfies

d

dθ

(
Pr

(
1

2
ω̂ − α0(sin(2θ)Ê11 + cos(2θ)Ê12)

)
f +

df

dθ

)
= 0. (4.2)

By symmetry, the solution to this must satisfy f (θ) = f (θ + π), and hence the mean-

swimming direction, p, is zero. The advection–diffusion equation (2.17) for the cell
concentration with zero mean-swimming and no flux boundary conditions has a
uniform equilibrium solution. In contrast, in figure 6, we see that in the IBM strongly
elongated particles do aggregate at the edges of the box, although the effect of
rotational diffusion can significantly reduce the aggregation. Results of Torney &
Neufeld (2007) demonstrate significant aggregation when the ratio of swimming
speed to flow speed, which we here denote by V, is 0.016 and state that these hold for
dr � U0/L, where U0 corresponds to πGL in our description of the flow field. In our
simulations, where lengths are non-dimensionalized on L and time on the time scale
for diffusion over this length, L2dr/v

2
s , we have a non-dimensional swimming speed

of 1/ε and non-dimensional flow speed πPe. Thus, we obtain the ratio of speeds,
V = 1/(εP eπ), which we take to be 0.016. The restriction on the rotational diffusion,
dr � U0/L, corresponds to ε2Peπ � 1 and for the simulation presented in figure 6
which includes rotational diffusion we take ε2Peπ = 2. This choice of parameters
corresponds to taking Pe = 620 and ε =0.032. For the deterministic individual-based
simulations, the same values of Pe and ε were used but the stochastic component of
the model given by (2.21) and (2.22) was eliminated.
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Figure 6. IBM equilibrium results for non-spherical cells, α0 = 1: (a) cell positions for
deterministic simulations; (b) cell positions for simulations which include rotational diffusion;
(c) histogram of vertical position for cells with horizontal position x ∈ (0.2, 0.8) for simulation
with rotational diffusion. Parameters chosen to compare with figure 1 of Torney & Neufeld
(2007) correspond to Pe = 620, ε =0.032, see main text.

4.2. Weak flow

In the absence of flow, Pe =0, the equilibrium solution is the simple exponential
distribution, i.e. n= n0 exp(νy), where we have defined ν = 1/(ενy) = py/(εDyy). An

example plot of this is given in figure 3(a) with Pr = ε2Pe = 0.
Flow will modify this exponential distribution through two mechanisms: (i)

advection by the flow; (ii) modification of the mean-swimming and diffusion
coefficients. The quantity Pr = ε2Pe determines how significantly the mean-swimming
and diffusion coefficients are modified and so, as we typically take ε 	 1, and for
weak flow, Pe 	 1, only the first mechanism is likely to be important. We can
therefore approximate the case of weak flow by considering purely gravitactic cells,
that is cells whose mean-swimming and self-diffusion is not modified by the flow. For
such cells, the mean-swimming direction is directly upwards, and we can rewrite the
non-dimensional governing equation as

∂n

∂t
= −∇ ·

((
PeV +

1

ε
py j

)
n − D · ∇n

)
, (4.3)

where py and D are values of the mean-swimming and self-diffusion calculated when
flow has no influence on behaviour. For weak flow, Pe 	 1, an analytic expression
for the leading order correction to the still-fluid exponential distribution for the
convection cell flow field can be found and was used for code validation. (Details in
online supplementary material).

4.3. Spherical cells in moderate and strong flow

4.3.1. Numerical solution of advection–diffusion equation

Example equilibrium solutions for spherical cells for increasing values of Pe are
given in figure 7. For small values of Pe, the flow advects the thin upper layer of
cells towards the top-left corner. As Pe is increased, cells are entrained into the
main bulk of the convection cell. As Pe is increased further, the cell concentration
is approximately uniform except for boundary layers which form in the numerical
solution of the advection–diffusion equation. For Pe = 5 and Pe =10, the maximum
value of the concentration in the top-left corner is smaller for the full solution than for
the reduced solution, in which the diffusion tensor and mean-swimming are computed
when the flow has no influence on behaviour (Pr = 0 in (2.4)) (see table 1). In contrast,
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Figure 7. Equilibrium cell concentration for spherical cells, α0 = 0, with gravitactic bias κ = 1
for increasing values of Pe: (a) Pe = 0, (b) Pe = 1, (c) Pe = 5, (d ) Pe = 10, (e) Pe = 50.
(ai–ei) are the solutions of full advection–diffusion equation and (aii–eii) are solutions
with mean-swimming and diffusion calculated for when flow has no influence on behaviour.
(aiii–ciii) are solutions from the IBM. The grey scale is based on the minimum and maximum
concentrations found in the IBM solution. (aiv)–(eiv) show the concentration at x = 0.5 as a
function of y for the IBM (solid line), full numerical solution of advection–diffusion equation
(dash line) and solutions with mean-swimming and diffusion calculated for when flow has no
influence on behaviour (dotted line).

for Pe =50, the maximum value of the concentration in the top-left corner is larger
for the full solution than for the reduced solution. Although the distribution shows
the same general characteristics in the bulk of the region, the full solution does display
sharper gradients in cell concentration than the reduced solution, as highlighted by
the concentration slice at x = 0.5 at Pe = 5 and Pe = 10.

4.3.2. Singularities in the diffusion in straining-dominated regions

As previously discussed in § 2.2.1, the generalized Taylor dispersion theory is not
valid in straining-dominated regions, yet, in the absence of any alternative population-
level model, we have used the formal expression for the diffusion tensor obtained
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Pe Full solution Reduced solution IBM

0 15.02 15.02 9.27
1 41.88 46.62 22.53
5 6.11 16.28 5.50

10 2.00 9.22 3.33
50 11.09 3.55 1.60

Table 1. Maximum concentration at top-left corner for increasing values of Pe as computed
using solution of full advection–diffusion equation, reduced solution with mean-swimming and
diffusion calculated for when flow has no influence on behaviour, and IBM solution.

via the theory to model the spatial distribution in the convection cell. We now
explore further the breakdown of this theory as evidenced by the differences in
cell concentration between full and reduced simulations in the top-left corner by
considering the pure-straining flow on the boundaries of the convection cell.

As discussed in § 2.2.1, for such pure straining flow given by

Ĝ =

(
0 1

1 0

)
, (4.4)

in the absence of bias the diffusion tensor becomes singular as the shear strength,
Pr = G/dr = ε2Pe, approaches unity. We now consider where the singularity in the
Dyy component of the diffusion tensor occurs on the left boundary of the cell.
Symmetry arguments give the relationship on the other boundary regions and for
the Dxx component of the diffusion tensor. On the left boundary, the eigenvalues of
Ĝ are ±π2 cos(πy) and so when π2ε2Pe < 1, the diffusion tensor is nowhere singular,
and Dyy will take its maximum value at the top-left corner, and be a monotonically
increasing function on the left boundary. As π2ε2Pe approaches 1, Dyy increases and
tends to ∞ in the top-left corner. For π2ε2Pe > 1, the singularity moves downwards
towards y = 0.5 as π2ε2Pe → ∞. Although introducing bias, i.e. taking a non-zero
value of κ , modifies exactly when the transition occurs, the qualitative argument still
holds, as shown in figure 8: up to Pe = 10, the maximum value of Dyy is at the
top-left corner which increases for increasing values of ε2Pe. This enhanced diffusion
in the top-left corner is the primary reason why the cell concentration at the top-left
corner in the full solution is lower than for the solution calculated for when flow
has no influence on behaviour (see table 1). However, in contrast, for Pe = 50, the y

component of the diffusion in the top-left corner is lower than that of the reduced
solution. Furthermore, this component has two singularities when x =0, which results
in non-smooth behaviour in the concentration profile near the boundaries, as shown
in figure 7.

4.3.3. Comparison with IBM

As shown in figure 7, the individual-based simulation shows the same general
pattern as the numerical solution of the advection–diffusion equation. As discussed in
the context of unidirectional flow, in the absence of fluid advection, Pe = 0, the IBM
has a broader equilibrium distribution in the y-direction because of boundary effects.
For moderate flow strength, Pe = 5 and Pe = 10, the IBM is in better agreement with
the full numerical solution than for the reduced solution. For example, the full solution
better matches the sharp gradients in cell concentration than the reduced solution, as
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Figure 8. Dyy component of diffusion tensor at x = 0 as a function of y for increasing Pe:
Pe = 0, dot; Pe = 1, dash; Pe = 5 , dash-dot; Pe =10, solid; Pe = 50, dot. For Pe � 10, Dyy is
a monotonically increasing function of y. When Pe =50, a bifurcation has occurred causing
the diffusion singularity to split and to move away from y =1.

highlighted by the concentration slice at x = 0.5. Also, the peak concentration near the
top-left corner in the IBM better matches the full solution maxima than the reduced
solution maxima (see table 1). For Pe = 50, in contrast to the numerical solution of
the advection–diffusion equation, concentration peaks are not observed in the top-left
corner which is likely to be because of the reflective boundary conditions, as found
in the unidirectional simulations. The sharp gradients found in the IBM at x = 0.5
are better captured by the full solution, but the sharp gradients at larger values of
x were not well-captured in the advection–diffusion models. Discrepancies between
IBM and the full solution are likely to be partly due to the unrealistic values of
the diffusion tensor in the straining-dominated regions where the generalized Taylor
dispersion method is not predicted to hold. Nonetheless, the agreement between the
IBM and advection–diffusion equation remains reasonable in the lower left corner
of the domain, which suggests that a localized breakdown of the generalized Taylor
dispersion does not necessarily invalidate the results throughout the entire domain.

4.3.4. Transient distribution

An example transient concentration distribution computed using the population-
level model is shown in figure 9. The initial condition is a normalized Gaussian of
radius 1/

√
50 centred at x = 0.75, y = 0.5. Interestingly, despite the large modification

in the diffusion tensor in the corner regions, the overall spatial–temporal distribution is
not dramatically altered from the prediction made using the diffusion values calculated
for when flow has no influence on behaviour. A possible explanation for this is that
in the bulk central area of the convection cell, the velocity field is approximately
pure rotation, for which the method of generalized Taylor dispersion predicts no
modification of the diffusion tensor in the absence of gravitactic bias for spherical
particles. Also plotted in figure 9 is the IBM solution both including the effect of flow
(gyrotaxis), and neglecting it. In the latter case, cells are advected by the flow but
their swimming behaviour is unaltered by shear. Interestingly, the effect of including
gyrotaxis is very different with the IBM compared to the numerical solution of the
advection–diffusion equation. This is perhaps because the population-level model is
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Figure 9. Cell concentration for parameter values α0 = 0, κ = 0, Pe = 10: (a) solution of full
advection–diffusion equation at increments of dt =0.01 from t = 0 to t = 0.08; (b) full solution
minus reduced solution; (c) solution of gyrotactic IBM at same times; (d ) gyrotactic IBM
solution minus reduced IBM solution.

not appropriate at short time scales, as found in the unidirectional studies. At early

times in the IBM, we see that gyrotaxis enhances the dispersion of the cells: decreasing
the maximum concentration in the region of high-cell concentration and increasing
the concentration at the periphery. At later times, we see a more complex behaviour.
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5. Summary and concluding remarks
We have investigated the spatial distribution of gyrotactic swimming micro-

organisms in a range of flow fields based on a population-level model derived via
the method of generalized Taylor dispersion, and an individual-based stochastic
simulation. Analytic solutions have been compared to numerical solutions, and
limiting asymptotic results for large and small Péclet numbers have been derived.
We have attempted to explain why the different methods sometimes showed good
agreement and other times did not.

For gyrotactic focusing in pipe flow, the numerical methods agreed well with each
other and with new asymptotic calculations for both spherical and non-spherical
cells. Furthermore, the complex expression for the diffusion tensor derived using
the generalized Taylor dispersion method was necessary to capture the horizontal
spatial distribution observed in experiments. It would be of interest to investigate
what the implications are for other phenomena, such as gyrotactic plume formation,
and to determine the accuracy of previous calculations which assumed a constant
cell swimming diffusivity and a deterministic orientation direction (e.g. Ghorai & Hill
1999). Recent work has examined how the active swimming behaviour of gyrotactic
cells modifies the spatial dispersion in a pipe flow from the classical Taylor–Aris
results (Bees & Croze 2010). This work used a less rigorous population-level model
than presented here for the cell concentration which predicts a uniform horizontal
distribution of cells at sufficiently high flow rates. Extending the analysis presented
here to allow for swimming in three dimensions, in combination with the analysis
of Bees & Croze (2010), will provide further insight into how actively swimming
micro-organisms disperse in flow and has the potential to be experimentally testable.
We also found good agreement between both methods in the example application to
the formation of thin phytoplankton layers.

For horizontal Couette flow, we found the method of generalized Taylor dispersion
could lead to spatial distributions which differed from the individual-based simulation
because of boundary effects. Specifically, we found that, because of the no-flux
boundary conditions on the top and bottom walls, the equilibrium orientation
distribution was uniform in contrast to the von Mises distribution predicted in
the absence of boundaries which forms the basis of the generalized Taylor dispersion
method. When the bias in upswimming was strong, this resulted in a significant
difference in the equilibrium spatial distribution between the IBM and the population-
level model, and, in particular, we found that the equilibrium spatial distribution was
independent of the shear strength.

For two-dimensional flow in a box, there were discrepancies between the IBM and
the population-level model which were associated with application of the generalized
Taylor dispersion method beyond its range of applicability. At sufficiently high values
of the Péclet number, cells were rapidly advected between regions of differing strain
which, for non-spherical cells, is a significant deviation from the assumption that cells
experience homogeneous shear. As previously found by Torney & Neufeld (2007),
this led to a significant aggregation of cells near the boundaries in the IBM even
in the absence of gyrotactic bias whereas the population-level model had a uniform
distribution at equilibrium. Discrepancies between the IBM and the population-level
model were also observed near the boundaries of the convection cell for spherical
cells subject to gyrotactic bias, for the same reasons as found for horizontal Couette
flow. Furthermore, in straining-dominated regions, there were singularities in the
diffusion tensor computed using the generalized Taylor dispersion method, which is
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to be expected as the method is only valid if the real parts of the eigenvalues of Ĝ
are non-zero. However, in the presence of gravitactic bias, the full population-level
model better matched the equilibrium solution obtained from the IBM than did the
reduced population-level model where the diffusion tensor and mean-swimming were
computed for when flow has no influence on behaviour. In particular, the full model
was able to capture the sharp concentration gradients in the bulk of the convection
cell at moderate flow strengths.

Several open questions remain as regards this paper. We have not closed the
question of what happens if cells experience rapidly changing shear. In the work
presented on horizontal flow with varying shear we showed how the method of
generalized Taylor dispersion remains a good approximation in situations where cells
can swim between regions of differing shear and thus experience non-homogeneous
shear. However, in that case, the cells typically only experience slowly varying shear,
as cells swim relatively slowly. In contrast, for two-dimensional flow in a box, we
found significant deviations between the IBM and population-level model when
we considered non-spherical cells which were rapidly advected between regions of
differing strain. A natural extension is to examine a three-dimensional flow field where
cells are advected between regions of varying shear, for example constant longitudinal
advection within a cylindrical tube rotating at a spatially variable rate. This theoretical
flow field could have the feature that the real part of the eigenvalues of the fluid
velocity gradient is zero, thus allowing one to examine how well the population-level
model describes the spatial distribution of phytoplankton which experience rapidly
changing shear without the added complication of straining-dominated regions.
We have also not closed the question of what population-level model should be
used in straining-dominated regions. In the two-dimensional flow considered in this
paper, boundary effects confounded comparison between the population-level model
and the IBM. A numerical investigation using a theoretical flow field which has
straining-dominated regions but with periodic boundaries could therefore be helpful
to understand what happens in straining-dominated regions. In the preliminary part
of work by Morris & Brady (1996), these authors highlight an alternative method
for analysing self-diffusion in sheared suspensions. Specifically, they give an explicit
expression for the spatial distribution of a solute diffusing in any linear shear flow
through the use of spatial Fourier transforms. This approach may be useful to further
investigate what happens in straining flow for the governing transport equation
considered in this paper which includes diffusion in orientation space rather than
starting with a diffusion model in physical space for the conserved scalar quantity.

In order to focus attention on how well population-level models can predict the
spatial dynamics of swimming cells, we have made many simplifications, some of
which we now highlight as possible future directions of study. In this paper, we
have demonstrated that, for non-spherical cells, rapid advection between regions
of differing strain can generate variability between the IBM and population-level
model. Likewise, time-varying shear is also expected to generate variability. Further
analysis investigating the combined effect of non-sphericity and gyrotaxis is therefore
desirable. For example Manela & Frankel (2003) found exceptional dispersion rates
which were unique to non-spherical cells, and so it would be informative to explore
the implications of this in terms of the spatial distribution of cells in the flow fields
considered in this paper. Swimming micro-organisms display a range of behaviours,
for example ‘run-and-tumble’ or ‘run-and-reverse’ swimming motions. Luchsinger,
Bergesen & Mitchell (1999) demonstrated that the optimal swimming strategy can
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depend on the fluid motions and so, as generalized Taylor dispersion can be naturally
extended to alternative swimming strategies (Bearon 2003), it may be of interest to
explore how different swimming strategies affect the spatial dispersion. We highlighted
the importance of boundary conditions for determining the spatial distribution,
yet in the IBM we only considered simple reflection of swimming cells which
encounter a boundary. Extending the IBM to incorporate recent work integrating
detailed experimental data and mathematical models on the behaviour of swimming
micro-organisms near boundaries (e.g. Cisneros et al. 2008) could be worthwhile.
Additionally, it would be interesting to understand how to incorporate such an
individual-based model into appropriate boundary conditions of the population-level
model.

Throughout this work, we have neglected any coupling between cells. Even at low
volume fractions, cells can interact via the hydrodynamics, for example bioconvection
has been successfully modelled by coupling the Navier–Stokes equations, with density
being dependent on the concentration of cells, to a population-level model for the
cell concentration. It would be interesting to explore whether the full population-
level model used in this paper based on the generalized Taylor dispersion model
gives any different predictions for bioconvection. The two-dimensional model of a
convection cell without hydrodynamical interactions presented in this paper displayed
a peak in cell concentration near the top-left corner, which, if not artefactual, may
cause interesting features in models of bioconvection when the cell concentration is
coupled to the hydrodynamics. Of further complexity is to include the direct cell–cell
hydrodynamic coupling, which for self-propelled cells at high volume fractions has
been shown to drive fluid motions on spatial and temporal scales much larger than
the individual cells (Cisneros et al. 2007).

Supplementary material is available at journals.cambridge.org/flm.

Appendix. Calculation of mean-swimming and diffusion
A.1. No flow

We first consider the solution in the absence of flow, Pr = 0, taking f = f (0) and
b = b(0). Setting Pr = 0 in the governing equations for f , (2.4), (2.10), subject to the
appropriate integral constraint, (2.12), we obtain the von Mises equilibrium orientation
distribution

f (0) =
1

2πI0(κ)
exp(κ cos θ), (A 1)

where the normalization constant is I0(κ) = (1/(2π))
∫ 2π

0
exp(κ cos θ) dθ , the modified

Bessel function of the first kind and zero order (e.g. see Batschelet 1981). This results
in the following expression for the mean-swimming direction:

px = 0, py =
I1(κ)

I0(κ)
, (A 2)

where I1(κ) = (1/(2π))
∫ 2π

0
cos θ exp(κ cos θ) dθ is the modified Bessel function of the

first kind and first order.
General expressions for the vector b(0) and leading order expressions for the diffusion

tensor are quite complicated, but the x components can be found as fairly simple
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functions of κ . On integrating (2.11) with Pr = 0 with respect to θ , we obtain

κ sin θb(0)
x +

db(0)
x

dθ
=

1

2πκI0(κ)
(exp(κ cos θ) − C1), (A 3)

where C1 is a constant to be determined. Integrating again, gives the following
expression for bx:

b(0)
x =

exp(κ cos θ)

2πκI0(κ)

(
θ − C1

∫ θ

0

exp(−κ cos θ ′)θ ′ − C2

)
. (A 4)

In order for b(0)
x to be a periodic function, and noting that I0(κ) = I0(−κ), we find that

C1 = 1/I0(κ). Integrating (A 3) over all θ gives an easy way to compute the leading
order Dxx component of the non-dimensional diffusion tensor:

Dxx =

∫ 2π

0

bxpx dθ =

∫ 2π

0

bx sin θ dθ =
1

κ2

(
1 − 1

I0(κ)2

)
. (A 5)

The dimensional components are obtained via multiplication by v2
s /dr .

This agrees with the ad-hoc dimensional expression for Dxx = v2
s τ var(px) proposed

by Pedley & Kessler (1990) if we take the correct correlation time. We can compute

var(px) =

∫ 2π

0

f (0)p2
x dθ =

1

2

(
1 − I2(κ)

I0(κ)

)
, (A 6)

and hence we should take the correlation time as

τ =
1

dr

2

(
1 − 1

I0(κ)2

)

κ2

(
1 − I2(κ)

I0(κ)

) . (A 7)

Thus, the correlation time is inversely proportional to the rotary diffusion coefficient,
dr , and monotonically decreases as a function of κ , the bias due to gravitaxis.

Furthermore, if we compute Dyy = v2
s τ var(py) using this correlation time,

specifically, we can compute

var(py) =

∫ 2π

0

f (0)(py − py)
2 dθ =

1

2

(
1 +

I2(κ)

I0(κ)
− 2

(
I1(κ)

I0(κ)

)2
)

, (A 8)

and using the expression for τ from (A 7), the diffusion tensor shows very good
agreement.

A.2. Weak flow

For weak flow, Pr 	 1, consider the following perturbation expansion for f and b:

f = f (0) + Prf (1) + O(Pr2), (A 9)

b = b(0) + Prb(1) + O(Pr2). (A 10)

If we insert this expansion into the governing equations for f , (2.4), (2.10), subject to
the appropriate integral constraint, (2.12), we obtain at leading order the distribution
found in the no-flow case. At O(Pr), we obtain the following expression for f (1):
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f (1) =
exp(κ cos θ)

4πI0(κ)

(
− ω̂θ + α0(−Ê11(cos 2θ − 1) + Ê12 sin 2θ)

+
ω̂

I0(κ)

∫ θ

0

exp(−κ cos θ ′)θ ′ − C3

)
. (A 11)

As for the leading order calculation of Dxx , we can integrate an equation equivalent
to (A 3) for f (1) to obtain the x component of the mean-swimming direction

px = Pr

∫ 2π

0

f (1) sin θ dθ =
Pr

κ

(
ω̂

2

(
1

I0(κ)2
− 1

)
+ α0Ê12

I2(κ)

I0(κ)

)
. (A 12)

For vertical Couette flow, V̂ = x j , considered in § 3.2, we have that ω̂ = 1, Ê12 = 1/2,
and thus

px =
Pr

2κ

(
1

I0(κ)2
− 1 + α0

I2(κ)

I0(κ)

)
. (A 13)

A.3. Large Pr limit

From (2.4) and (2.10), we have that the equilibrium orientation distribution, f , satisfies

Pr
d

dθ

((
1

2
ω̂ − α0(sin(2θ)Ê11 + cos(2θ)Ê12)

)
f

)
= − d

dθ

(
κ sin θf +

df

dθ

)
. (A 14)

For large Pr , consider the following perturbation expansion for f :

f =
1

2π

(
f (0) +

1

Pr
f (1) +

(
1

Pr

)2

f (2) + . . .

)
, (A 15)

which yields at leading order in Pr

f (0) =
C0

1
2
ω̂ − α0(sin(2θ)Ê11 + cos(2θ)Ê12)

, (A 16)

where C0 is a normalization constant which ensures that f (0) satisfies the constraint
(2.12). This expression is valid provided the straining motion is not sufficiently strong
to generate a singularity in the expression. For example, for vertical Couette flow,
with ω̂ = 1, Ê11 = 0, Ê12 = 1/2, we require that α0 < 1. Using symmetry arguments, we

have zero mean-swimming at leading order, p(0) =
∫ 2π

0
f (0) p dθ = 0.

The following expression for f (1) follows on integrating (A 14):

f (1) = −f (0)

C0

(
κ sin θf (0) +

df (0)

dθ
+ C1

)
, (A 17)

where C1 = 0 is a normalization constant which ensures that f (1) integrates to zero.
Using symmetry arguments, we are thus able to compute the mean-swimming to
O(1/P r):

p =
1

2πPr

∫ 2π

0

f (1) p dθ = − κ

2πC0Pr

∫ 2π

0

(f (0))2 sin θ p dθ. (A 18)

We consider the following perturbation expansion for b:

b =
1

2π

(
1

Pr
b(1) +

(
1

Pr

)2

b(2) + · · ·
)

. (A 19)
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From (2.4) and (2.11), and making use of the leading order expression for f , we have
that b satisfies:

Pr

(
− d

dθ

(
C0

f (0)
b
)

− b · Ĝ
)

= f ( p − p) +
d

dθ

(
κ sin θb +

db
dθ

)
, (A 20)

subject to the integral constraint (2.12).
At leading order, we thus obtain the following equation for b(1):

− d

dθ

(
C0

f (0)
b(1)

)
− b(1) · Ĝ = f (0) p. (A 21)

This will be solved explicitly below for two classes of problems: spherical cells in
arbitrary flow; and non-spherical cells in vertical Couette flow.

To calculate the diffusion tensor, by combining (2.9) and (2.11), we can rewrite the
diffusion tensor as

D =

∫ 2π

0

[
b
f

Lb
]sym

dθ. (A 22)

Writing in this form is particularly convenient for calculating the leading order
expression for the diffusion tensor as it only requires calculation of b(1) and not
higher order terms.

At O(1/P r), we see that the diffusion tensor is zero

D = −C0

2π

∫ 2π

0

[
b(1)

f (0)

d

dθ

(
b(1)

f (0)

)]sym

dθ = 0. (A 23)

At O(1/P r2), we can write the diffusion tensor as

D =
1

2πPr2

∫ 2π

0

[
f (1)

(f (0))2
b(1) d

dθ

(
C0b(1)

f (0)

)
− b(1)

f (0)

d

dθ

(
κ sin θb(1) +

db(1)

dθ

)]sym

dθ.

(A 24)

This expression can be simplified, making use of the expression for f (1) from (A 17),
to demonstrate explicitly that to O(1/P r2) the diffusion tensor is independent of the
gyrotactic bias

D =
1

2πPr2

∫ 2π

0

[(
d

dθ

(
b(1)

f (0)

))2

f (0)

]sym

dθ. (A 25)

A.3.1. Spherical cells

For spherical cells, α0 = 0, the leading order equilibrium orientation is f (0) = 1, and
the constant C0 = ω̂/2. We can also explicitly compute higher order terms in the
expansion:

f1 = −2κ

ω̂
sin θ, f2 = −2κ2

ω̂2
cos 2θ +

4k

ω̂2
cos θ. (A 26)

We note that if (κ/ω̂) = O(Pr), i.e. the bias is very strong, or the vorticity is very close
to zero, the expansion will fail. Hence, the leading order asymptotic expressions for
the mean orientation are given by

px = − κ

ω̂P r
, py =

2κ

ω̂2Pr2
. (A 27)
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From (A 25), we obtain the following expression for the diffusion tensor:

D =
1

2πPr2

∫ 2π

0

[(
db(1)

dθ

)2
]sym

dθ, (A 28)

where (A 21) for b(1) reduces to

− d

dθ

(
ω̂

2
b(1)

)
− b(1) · Ĝ = p, (A 29)

which has solution b(1) = λ cos θ + µ sin θ , where λ and µ depend on the choice of Ĝ.
For example, for the flow given by (2.13), the diffusion tensor is given at leading

order by

D =
1

Pr2(α + 1)4

(
2(α − 3)2 0

0 2(3α − 1)2

)
. (A 30)

Note that the expansion fails when (α + 1)2 = O(1/P r), i.e. as we approach pure
rotation, i.e. α = −1.

With reference to § 3.1 on horizontal Couette flow, we therefore have the asymptotic
result in the strong flow limit for homogeneous unidirectional shear flow, α = 0, with
ω̂ =1 as

py =
2κ

P r2
, Dyy =

2

Pr2
. (A 31)

A.3.2. Axi-symmetric cells in vertical Couette flow

For vertical Couette flow, V̂ = x j , considered in § 3.2, we have that
ω̂ =1, Ê11 = 0, Ê12 = 1

2
, and thus from (A 16), we obtain the leading order equilibrium

orientation

f (0) =
C0

1
2

− α0 cos(2θ)Ê12

, (A 32)

and hence from (A 18) the leading order expression for mean horizontal swimming

px = − κ

P r(1 + α0)
. (A 33)

Noting that b · Ĝ= bx j for vertical Couette flow, (A 21), yields the following
equation for b(1)

x :

− d

dθ

(
C0

f (0)
b(1)

x

)
= f (0) sin θ, (A 34)

which can be inserted into (A 25) to obtain the following leading order expression for
Dxx , the component of the diffusion tensor required in § 3.2:

Dxx =
1

2πC2
0Pr2

∫ 2π

0

(f (0))3 sin2 θ dθ

=
2 − α0

Pr2(1 − α0)(1 + α0)2
. (A 35)
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A.4. Garlekin’s method for general flow

To calculate the mean-swimming direction and diffusion tensor for general flow, we
make the following Fourier series expansion for f and b:

f =
1

2π

(
1 +

∞∑
1

ak cos kθ + bk sin kθ

)
, (A 36)

b =
1

2π

∞∑
1

λk cos kθ + µk sin kθ. (A 37)

This expansion gives the following form for the mean-swimming direction and
diffusion tensor:

p =
1

2
(b1, a1) (A 38)

Dxx =
1

2
µx

1 + Pr

∫ 2π

0

bx(bxĜxx + byĜyx)

f (θ)
dθ, (A 39)

Dyy =
1

2
λ

y

1 + Pr

∫ 2π

0

by(bxĜxy + byĜyy)

f (θ)
dθ, (A 40)

Dyx = Dxy =
1

4

(
λx

1 + µ
y

1

)
+

Pr

2

∫ 2π

0

(bx(bxĜxy + byĜyy)) + (by(bxĜxx + byĜyx))

f (θ)
dθ.

(A 41)

The Fourier coefficients of f satisfy the following system of linear equations

Lf =
Pr

2
ω̂

∞∑
1

kak sin kθ − kbk cos kθ

−Pr

2
α0Ê11

(
−a1 cos θ + b1 sin θ+

∞∑
1

k(ak+2 − ak−2) cos kθ + k(bk+2 − bk−2) sin kθ

)

−Pr

2
α0Ê12

(
a1 sin θ + b1 cos θ+

∞∑
1

k(ak+2 + ak−2) sin kθ − k(bk+2 + bk−2) cos kθ

)

+
κ

2

∞∑
1

k(ak+1 − ak−1) cos kθ + k(bk+1 − bk−1) sin kθ

+

∞∑
1

k2(ak cos kθ + bk sin kθ) = 0. (A 42)

Likewise, we can obtain a similar expression for the Fourier coefficients of b:

Lb − Pr

∞∑
1

(λk cos kθ + µk sin kθ) · Ĝ = 2πf (θ)( p − p). (A 43)

By truncating the infinite system of equations at k =N , the Fourier coefficients can
be computed and hence the mean-swimming and diffusion tensor can be found. In
practice we took N =10 in our calculations as this gave sufficiently converged results.
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A.4.1. Spherical cells with no gyrotactic bias

This analysis simplifies in the case of spherical cells where there is no bias,
that is α0 = 0, κ = 0. In this case, the equilibrium distribution of orientation is
uniform, f (θ) = 1/2π, the mean-swimming direction is zero and only the k = 1 modes
appear in the calculation of b, i.e. we can let b = (1/(2π)) (λ cos θ + µ sin θ). We can
further simplify the calculations by choosing co-ordinates such that the most general
homogeneous shear is given by (2.13). In this case, the diffusion tensor is given by

Dxx =
1

2
µx +

Pr

2
(λxλy + µxµy), (A 44)

Dyy =
1

2
λy +

Pr

2
α(λxλy + µxµy), (A 45)

Dyx = Dxy =
1

4
(λx + µy) +

Pr

4

(
(λ2

x + µ2
x)α + (λ2

y + µ2
y)

)
, (A 46)

where the λ and µ satisfy

−Pr

2
(α − 1)µx + λx − Prλy = 0, (A 47)

Pr

2
(α − 1)λx + µx − Prµy = 1, (A 48)

−Pr

2
(α − 1)µy + λy − Prαλx = 1, (A 49)

Pr

2
(α − 1)λy + µy − Prαµx = 0. (A 50)

This system of equations has two special features worth highlighting. Firstly, there is
a singularity for pure strain, α = 1, at Pr = 1. Secondly, for pure rotation, α = −1, the
solution is λx = 0, λy =1, µx = 1, µy = 0 so that the diffusion tensor is isotropic and
unaltered by the vorticity. Note that this agrees with the observation in § A.3, where
we found that when α = −1 the large Pr asymptotic scaling for the diffusion tensor,
1/P r2, failed.
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