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Local flow topology and velocity gradient
invariants in compressible turbulent mixing layer

Navid S. Vaghefi1 and Cyrus K. Madnia1,†
1Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo,

Buffalo, NY 14260, USA

(Received 8 May 2014; revised 6 April 2015; accepted 20 April 2015;
first published online 4 June 2015)

The local flow topology is studied using the invariants of the velocity gradient
tensor in compressible turbulent mixing layer via direct numerical simulation (DNS)
data. The topological and dissipating behaviours of the flow are analysed in two
different regions: in proximity of the turbulent/non-turbulent interface (TNTI), and
inside the turbulent region. It is found that the distribution of various flow topologies
in regions close to the TNTI differs from inside the turbulent region, and in these
regions the most probable topologies are non-focal. In order to better understand the
behaviour of different flow topologies, the probability distributions of vorticity norm,
dissipation and rate of stretching are analysed in incompressible, compressed and
expanded regions. It is found that the structures undergoing compression–expansion in
axial–radial directions have the highest contraction rate in locally compressed regions,
and in locally expanded regions the structures undergoing expansion–compression in
axial–radial directions have the highest stretching rate. The occurrence probability
of different flow topologies conditioned by the dilatation level is presented and it
is shown that the structures in the locally compressed regions tend to have stable
topologies while in locally expanded regions the unstable topologies are prevalent.

Key words: compressible turbulence, shear layer turbulence, turbulence simulation

1. Introduction
The study of velocity gradient tensor characteristics is of great importance in

understanding the behaviour of turbulent flows (Cantwell 1992; Wallace 2009).
Analysing the velocity gradient tensor can reveal important information about the
small-scale dynamics in turbulence, such as intermittency, vortex stretching and
dissipation of kinetic energy (Tsinober 2009; Meneveau 2011). Invariants of velocity
gradient tensor, which are scalar quantities and independent of the coordinate system
orientation, facilitate the study of kinematics and dynamics of turbulent motions.
These invariants can be employed to classify the local topology of the flow (Perry &
Chong 1987).

Chong, Perry & Cantwell (1990) proposed a general method for characterizing flow
topology in three-dimensional flow fields based on the critical point theory. They
showed that local topology at any point in both compressible and incompressible
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turbulent fields can be described by three invariants (P,Q,R) of the velocity gradient
tensor. In incompressible flows, since the first invariant is zero, the local topology
can be described by the second and third invariants. In this case, the joint probability
density function (JPDF) of Q and R exhibits a universal teardrop shape. Such a
universal shape is reproduced analytically (Cantwell 1993), and has been observed in
numerical simulation of incompressible turbulence for the plane mixing layer (Soria
et al. 1994), channel flow (Blackburn, Mansour & Cantwell 1996; Chacín, Cantwell
& Kline 1996), boundary layer (Chong et al. 1998), forced and decaying isotropic
turbulence (Ooi et al. 1999; Suman & Girimaji 2010) and plane jet (da Silva &
Pereira 2008). The existence of the teardrop shape of the JPDF was also confirmed
experimentally in turbulent boundary layers (Andreopoulos & Honkan 2001; Elsinga
& Marusic 2010). It indicates that although the large-scale motions of these flows are
different due to the different global geometries, the small-scale motions of turbulence
shows a universal behaviour. In addition to the topological behaviour of the flow,
tensorial invariants have been used by several researchers to better understand some
aspects of turbulent flows such as generation of Reynolds stress, turbulent kinetic
energy, and dissipation (Chacín & Cantwell 2000), subgrid-scale closures (Chertkov,
Pumir & Shraiman 1999; van der Bos et al. 2002; Wang et al. 2006; Kobayashi,
Ham & Wu 2008; Li et al. 2009) and intermittency (Li & Meneveau 2005, 2006).

Compared with the extensive works for analysing the flow topology in incompressible
turbulence, fewer works have been done for compressible flows. Pirozzoli & Grasso
(2004) conducted numerical simulation of decaying compressible isotropic turbulence
at various initial turbulent Mach numbers to examine the effect of compressibility
on the time evolution of mean turbulence properties, to characterize the statistical
properties of the turbulent structures, and to quantify their dynamics and similarities
with the incompressible case. They showed that the JPDF of the second and third
invariants of the anisotropic part of the deformation rate tensor demonstrates a
universal tear-drop shape as in the incompressible turbulence. Lee, Girimaji & Kerimo
(2009) and Suman & Girimaji (2009) showed that the strain-rate tensor statistics are
highly dependent on the normalized dilatation in compressible turbulence. Suman &
Girimaji (2010) studied the dependence of flow topology and velocity gradients on
dilatation in compressible decaying isotropic turbulence. They demonstrated that the
flow field topological statistics are almost independent of Reynolds and Mach numbers.
They also showed that in compressible turbulence, when the invariant statistics are
conditioned based on zero dilatation, results are very similar to the incompressible
turbulence. Wang & Lu (2012) analysed the flow topology of compressible boundary
layer at Mach number M = 2.0 using direct numerical simulation (DNS) data. They
found that the conditional mean of enstrophy, dissipation and their productions depend
on the various topologies in incompressible, compressed and expanded regions of the
flow and found that locally compressed regions are more stable and locally expanded
regions are more dissipative.

It has been shown that the flow characteristics near the turbulent/non-turbulent
interface (TNTI), separating the turbulent region from the irrotational region, differs
from inside the turbulent field (Bisset, Hunt & Rogers 2002; Hunt, Eames &
Westerweel 2006; Westerweel et al. 2009). Analysing velocity gradient tensor near
the TNTI is very useful in illuminating the topology and dynamics of the turbulent
structures during the entrainment (Chauhan et al. 2014). The turbulent entrainment
takes place across the TNTI which is highly convoluted and very thin with the
thickness of the order of the Taylor microscale for the flows with mean shear (da
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Local flow topology in compressible turbulent mixing layer 69

Silva & Taveira 2010). da Silva & Pereira (2008, 2009) studied the invariants of
the velocity gradient tensor across the TNTI in incompressible plane jets. They
analysed the statistics of invariants in the coordinate system normal to the TNTI and
showed that all of the invariants rapidly change once the interface is crossed into
the turbulent region. They also showed that irrotational viscous dissipation of kinetic
energy exists outside the turbulent region which was further analysed by da Silva &
dos Reis (2011). To the best of the authors’ knowledge, the study of the topological
characteristics of the flow close to the TNTI in compressible turbulence has never
been done.

In this paper, a detailed statistical depiction of the turbulence structures for
the compressible turbulent mixing layer is presented. A comparative study of the
invariants and the local flow topology in the core of the turbulent flow and near
the TNTI is performed, and when similar data is available in the literature, the
presented results are compared with the other types of turbulent flows (isotropic,
jet and boundary layer) to highlight the similarities and differences of the findings.
The main objective of this work is to gain a better understanding of the small-scale
features in compressible turbulence, especially in the regions close to the TNTI. The
current paper is organized as follows: in § 2 a brief description of DNS is given. In
§ 3 the tensorial invariants and local flow topologies are explained. The procedures
used to detect the TNTI and to compute the statistics in interface coordinate system
are described in § 4. The main results are presented in § 5 and concluding remarks
are presented in § 6.

2. DNS of compressible mixing layer
DNS of temporally evolving compressible turbulent mixing layer is performed by

solving conservation equations for mass, momentum and sensible energy. A range of
convective Mach numbers, from 0.2 to 1.8, is considered. The most compressible case
(Mc= 1.8) is selected to be studied for this paper. The criteria for this selection is to
have the broadest range of dilatation values, since it has been shown by Suman &
Girimaji (2010) that the local flow topology and the behaviour of velocity gradients
are highly dependent on the dilatation. A brief description of the DNS is provided
in this section while a detailed description can be found in the previous works by
Vaghefi et al. (2013) and Vaghefi (2014).

Computational domain lengths in streamwise (x), transverse (y) and spanwise
(z) directions are 300δθ0 , 250δθ0 and 100δθ0 respectively, where δθ0 is the initial
momentum thickness. This domain is discretized on uniform finite difference grid
points with size of (Nx = 1261, Ny = 1051, Nz = 421). DNS is conducted with a
parallel implementation of the two–four finite difference method of Gottlieb & Turkel
(1976). Boundary conditions are periodic in homogeneous directions (x and z), and
in transverse direction (y) the boundaries are characteristic slip walls. The mean flow
in streamwise direction is initialized with hyperbolic tangent profile and the mean
vertical and spanwise velocities are zero. The pressure field is initially uniform, initial
temperature is obtained from the Busemann–Crocco relationship (Ragab & Wu 1989),
and the initial density is calculated from the equation of state for an ideal gas. The
convective Mach number, Mc =1U/(c1 + c2), is 1.8 where 1U= 2U1 is the velocity
difference between upper and lower streams, U1 is the reference velocity, and c1 and
c2 are speed of sound in upper and lower streams, respectively. The dynamic viscosity,
specific heats and thermal conductivity are constant during the simulations. To initiate
turbulence, three-dimensional perturbations obtained by digital filter method (Klein,
Sadiki & Janicka 2003) are imposed on mean velocities.
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FIGURE 1. PDF of dilatation in the turbulent region for six instantaneous times during
the self-similar state between t/tr = 1300–1400 in increments of t/tr = 20.

Results from the DNS validation study (Vaghefi 2014) show that the present
simulation has sufficient spatial resolution to capture the smallest scales in the flow
(Kolmogorov’s scale), and the domain size is large enough compared to the integral
scales of the flow. It is also observed that flow reaches a self-similar state in which
the shear layer growth rate approaches a constant value, and the turbulent statistics
become self-similar. The self-similar stage starts at t/tr = 1300, where tr = δθ0/1U
is the reference time. During this stage, the Reynolds number based on vorticity
thickness and the free stream velocity, density and viscosity is Reω = 13 000–16 800.
The Reynolds number based on the Taylor microscale (Pope 2000) is Reλ≈ 175, and
the maximum turbulent Mach number is Mt ≈ 0.6.

Figure 1 shows the probability density function (PDF) of the velocity divergence
or dilatation, Θ = ∂ui/∂xi, where ui is the velocity component in xi direction. Results
are shown for six instantaneous times during t/tr = 1300–1400 in increment of t/tr =
20 in the turbulent region. It can be seen that PDFs overlap during the self-similar
times and they are strongly skewed towards the negative values. The power-law tail
for large negative dilatations is qualitatively similar to that observed in compressible
isotropic turbulence (Wang et al. 2012b). It has been seen in previous works (Pirozzoli
& Grasso 2004; Wang et al. 2012a) that the PDF of dilatation is skewed towards the
negative values and as the turbulent Mach number is increased, the PDF becomes
more skewed towards the negative dilatation. In order to have sufficient statistical
points for extreme values of dilatations for the analysis provided in the rest of this
paper, all of the analyses for regions with negative or positive dilatations are done
with 26 instantaneous times during the self-similar regime from t/tr = 1300 to 1400
with increment of t/tr = 4, but for the analysis in regions with small dilatation, six
instantaneous times in the above range with increment of t/tr = 20 are used since it
is observed that increasing the data samples does not change the results.

3. Invariants of velocity gradient tensor and local flow topology
The local topology of a three-dimensional flow field can be obtained by invariants

of the velocity gradient tensor, Aij = ∂ui/∂xj, using critical point theory (Chong et al.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

23
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.235


Local flow topology in compressible turbulent mixing layer 71

1990). The eigenvalues of velocity gradient tensor, λi have the following characteristic
equation:

λ3
i + Pλ2

i +Qλi + R= 0 (3.1)

where the first, second and third invariants are

P=−Sii =−Θ, (3.2)
Q= 1

2(P
2 − SijSji −W ijW ji), (3.3)

and
R= 1

3(−P3 + 3PQ− SijSjkSki − 3W ijW jkSki), (3.4)

respectively. In the above equations, the strain-rate tensor, Sij= 1/2(∂ui/∂xj+ ∂uj/∂xi),
and the rotation-rate tensor, W ij = 1/2(∂ui/∂xj − ∂uj/∂xi), are the symmetric and
antisymmetric parts of Aij, respectively. The invariants of Sij are

PS = P=−Sii, (3.5)
QS = 1

2(P
2
S − SijSji), (3.6)

RS = 1
3(−P3

S + 3PSQS − SijSjkSki). (3.7)

The first and third invariants of W ij are zero and its second invariant is

QW =− 1
2 W ijW ji. (3.8)

Chong et al. (1990) showed that P–Q–R space is divided into several regions, each
region represents a particular flow topology. They showed that the discriminant surface
of (3.1), which separates regions with real and complex eigenvalues, is

S1 = 27R2 + (4P3 − 18PQ)R+ (4Q3 − P2Q2)= 0. (3.9)

In the focal region (S1 > 0), Aij has one real and two complex-conjugate eigenvalues,
and in the non-focal region (S1 < 0), Aij has three real, distinct eigenvalues. Surface
S1 can be split into two surfaces:

S1a = 1
3 P
(
Q− 2

9 P2
)− 2

27(−3Q+ P2)3/2 − R= 0, (3.10)

and
S1b = 1

3 P
(
Q− 2

9 P2
)+ 2

27(−3Q+ P2)3/2 − R= 0. (3.11)

These surfaces osculate each other and form a cusp at which all of the eigenvalues
are real and equal. In the region with S1 > 0, Aij has purely imaginary eigenvalues
on surface S2 which is

S2 = PQ− R= 0. (3.12)

The surfaces S1a, S1b, S2 and R= 0 divide P–Q–R space into different zones with
particular flow topology.

For compressible flows, due to the spatial complexity of different zones in P–Q–R
space, it is more convenient to analyse the flow topology in the Q–R plane for a
specific value of P (Suman & Girimaji 2010). Intersections of the planes S1a, S1b,
S2 and R = 0 with the P-constant planes appear as curves dividing Q–R plane into
various zones. Figure 2 shows these zones for P = 0, P > 0 and P < 0 where the
corresponding local flow topology for each zone is given in table 1. For P = 0, the
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(a) (b) (c)

FIGURE 2. The local flow topologies in Q–R plane for (a) incompressible, P = 0, (b)
compressed, P > 0, and (c) expanded, P < 0, regions. The description of acronyms is
provided in table 1.

Zone Type Abbreviation

Z1 Unstable focus compressing UFC
Z2 Unstable node/saddle/saddle UN/S/S
Z3 Stable node/saddle/saddle SN/S/S
Z4 Stable focus stretching SFS
Z5 Stable focus compressing SFC
Z6 Stable node/stable node/stable node SN/SN/SN
Z7 Unstable focus stretching UFS
Z8 Unstable node/unstable node/unstable node UN/UN/UN

TABLE 1. Description of the acronyms of various local topologies in P–Q–R space.

curve S2 is coincident with R= 0 and the curves S1a and S1b are symmetric with
respect to R= 0. These curves divide Q–R plane into four zones corresponding to two
focal (UFC and SFS) and two non-focal (UN/S/S and SN/S/S) topologies. If P 6= 0,
intersection of S1a and S1b is not on R= 0 and S2 intersects with S1b and S1a for
P> 0 and P< 0, respectively. For P> 0, three focal regions, (UFC, SFS and SFC),
and three non-focal regions (UN/S/S, SN/S/S and SN/SN/SN) can exist, and for P< 0,
six possible topologies are distinguished, three of them are focal (UFC, SFS and UFS),
and three of them are non-focal (UN/S/S, SN/S/S and UN/UN/UN).

4. Detection of turbulent/non-turbulent interface
The interface between turbulent and non-turbulent regions can be detected either

with the vorticity norm (Bisset et al. 2002; da Silva & Pereira 2008), |Ω| = (ΩiΩi)
0.5

where Ωi is the vorticity vector, or with the conserved scalar convected by the
turbulent flow, as usually done in experimental studies (Westerweel et al. 2009). In
present work, a certain threshold for vorticity magnitude is chosen to determine the
TNTI. In order to find this threshold, the same procedure as that explained in Bisset
et al. (2002) is followed. It is found that the threshold of |Ω| = 0.01U1/δθ0 , which
is 7 % of the mean vorticity norm in the centre plane, provides the best detection of
the TNTI.

Conditional statistics with respect to the TNTI are calculated using a similar
procedure as in previous works (Bisset et al. 2002; da Silva & Pereira 2008). Since
the flow is homogenous in spanwise (z) direction, the detection of the interface and
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FIGURE 3. (Colour online) (a) Schematic of the TNTI for upper stream. (b) Contours
of vorticity norm in logarithmic scale for middle x–y plane for t/tr = 1372, along with
interface coordinates for two arbitrary points in upper and lower streams.

calculation of the corresponding statistics are done in x–y planes. In each plane,
two interfaces are detected, for upper and lower streams, whose vorticity magnitudes
are constant and equal to the predefined threshold. The location of each interface
is found using linear interpolation for each grid point in x direction. Since the
shape of the interface can be quite complex, it is more common to use interface
envelope rather than the interface (Bisset et al. 2002; Westerweel et al. 2005). For
each stream, the interface envelope is defined as the outermost point of the interface
in vertical direction. It should be noted that in compressible mixing layers, the flow
shocklets appear both inside and outside of the mixing layer. Strong flow shocklets
produce vorticity, consequently, regions with high vorticity magnitude, higher than
the threshold used to detect TNTI, may exist outside of the turbulent mixing region.
Therefore, in the detection of the TNTI, it is ensured that the interface belongs to
the edge of the turbulent mixing region not the high-vorticity regions corresponding
to the flow shocklets outside of the mixing layer. Figure 3(a) shows schematic of
the TNTI for upper stream, where the solid line represents the interface detected by
vorticity norm and the broken line indicates the interface envelope.

In order to obtain the conditional statistics with respect to the distance from the
TNTI, an interface coordinate system (xI, yI) is defined. The origin of the new
coordinate system is on the interface envelope and its axes, xI and yI , are tangent and
normal to the interface envelope respectively. For both upper and lower interfaces,
the direction of the axes are such that the points with yI > 0 and yI < 0 are located
in turbulent and irrotational regions, respectively. Figure 3(b) shows the interface
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FIGURE 4. PDF of the vertical distance of interface envelope from the mid-plane, YI , for
the lower stream corresponding to an instantaneous time in self-similar state.

coordinates for two arbitrary points on upper and lower interfaces along with vorticity
norm contours in logarithmic scale. The value of a flow variable at each (xI, yI) point
in interface coordinates in z= Z plane at time t= T , F (xI, yI, Z, T), is calculated by
the value of its neighbour points in simulation coordinates, F(x, y,Z,T), using bilinear
interpolation. In order to obtain conditional statistics of any flow variable related to
the normal distance yI from TNTI, the average value of all of the (0, yI) points
in interface coordinate system is calculated. For this procedure, first the irrotational
holes and engulfed regions, shown in figure 3(a), are subtracted from statistical
points which results in Nup

x and N low
x statistical points in upper and lower interfaces

for each z-plane at each instantaneous time. Then, the value of statistical points for
all the z-planes for Nt times during the self-similar regime are averaged. Therefore,
conditional mean of a flow variable in interface coordinate system is calculated by

〈 f (yI)〉I = 1
NP

Nt∑
n=1

Nz∑
k=1

 Nup
x∑

i=1

F (0, yI, z, t)

∣∣∣∣∣∣
up

+
Nlow

x∑
i=1

F (0, yI, z, t)

∣∣∣∣∣∣
low

 (4.1)

where NP =
∑Nt

n=1

∑Nz
k=1(N

up
x + N low

x ) is the number of total statistical points at each
location with respect to the interface. In order to obtain the statistics in interface
coordinate system, Nt = 26 instantaneous times from t/tr = 1300 to t/tr = 1400 with
increment of t/tr = 4 are used.

Figure 4 shows PDF of the vertical distance of the TNTI envelope from the mid-
plane, YI , for the lower stream. The mean, variance, skewness and kurtosis of PDF are
−45.22, 9.44, −0.01 and 2.98, respectively, which indicates that the PDF of interface
location is close to the Gaussian, in agreement with previous studies for turbulent
jets and wakes (Bisset et al. 2002; Westerweel et al. 2005; da Silva & Pereira 2008).
Interface location in the upper stream has the same behaviour except the mean value
is positive.

In the rest of this paper, for the analysis in interface coordinate system, the normal
distance from the TNTI is normalized with the Kolmogorov or Taylor length scales.
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FIGURE 5. (Colour online) Conditional average of (a) Kolmogorov and (b) Taylor length
scales in interface coordinate system. Each thin black line represents the conditional profile
for an instantaneous time and the thick (red online) line shows the conditional average
profile for Nt = 26 times.

Figure 5(a) shows conditional mean profile of Kolmogorov length scale η= (ν3/ε)1/4,
where ν is the kinematic viscosity and ε is the turbulent dissipation. It can be seen
that the conditional profiles are similar for 26 instantaneous times used for averaging
process and the Kolmogorov length scale is approximately constant in turbulent region.
Therefore, the value of η= 0.33δθ0 is chosen as the reference Kolmogorov length scale
for the analysis in interface coordinate system.

The conditional mean profiles of the Taylor length scale are shown in figure 5(b).
The Taylor length scale is defined as 〈λ〉I = 〈λx + λy + λz〉I/3, where λi is the Taylor
length scale in i direction:

〈λi〉I =
(

〈u′i2〉I
〈(∂u′i/∂xi)2〉I

)1/2

, (4.2)

where u′i is the fluctuating part of ui velocity. The conditional profiles of Taylor
microscale are similar for the times used for averaging process, and 〈λ〉I is roughly
constant inside the turbulent region. The reference value of λ= 5.13δθ0 is chosen for
Taylor length scale for the analysis in interface coordinate system.

5. Results
5.1. Average of invariants

The variations of the mean invariants in the simulation coordinate system, 〈.〉R, and
their conditional averages in interface coordinate system are shown in figure 6. The
mean statistics in simulation coordinates are obtained by spatial averaging in periodic
x–z planes and time averaging in self-similar stage. Figure 6(a) shows that 〈QW〉R,
which is proportional to the enstrophy, has its maximum value in the middle of the
shear layer and decreases towards the free streams. Variation of 〈QS〉R, which is
related to the local dissipation of kinetic energy per unit viscosity, is opposite to the
〈QW〉R. As a result, the sum of two, 〈Q〉R, is approximately zero in the mixing layer.
Figure 6(b) shows that 〈RS〉R, which is the production term in the dissipation transport
equation, exhibits the same behaviour as 〈QW〉R, its maximum is in the middle of the
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FIGURE 6. (a,b) Average of invariants in simulation coordinate system; (c,d) conditional
average of invariants in interface coordinate system. The second and the third invariants
are normalized by (U2

1/δ
2
θ0
) and (U3

1/δ
3
θ0
), respectively.

layer and it approaches zero near the edge of the mixing layer. Figure 6(b) shows that
〈R〉R is nearly zero in the mixing layer, therefore, 〈ΩiSijΩj〉R/4= 〈RS〉R− 〈R〉R, which
is proportional to the vortex stretching (enstrophy production) has approximately the
same profile as 〈RS〉R. It should be noted that for more clarity, 〈RS〉R is shown with
the opposite sign.

Figure 6(c,d) show the conditional mean of invariants with respect to the normal
distance from the TNTI, which reveals some trends cannot be extracted from mean
profiles in simulation coordinate system. In these figures, the distance from TNTI is
normalized by the reference Taylor microscale, λ. Figure 6(c) demonstrates that 〈QW〉I
has a sharp jump near the TNTI. It has been shown in incompressible turbulence (da
Silva & Taveira 2010) that the sharp jump in vorticity magnitude corresponds to the
interface layer with thickness close to one Taylor scale for the flows with presence of
the mean shear. Figure 6(c) confirms that the thickness of the interface layer is also of
the order of one Taylor scale for the compressible mixing layer. This figure also shows
that 〈QS〉I has a sharp drop in proximity of the TNTI. For yI < 0 and far from the
interface, 〈QS〉I is almost zero, but, 〈QS〉I starts to increase (in magnitude) before the
interface (yI = 0) in irrotational region. It indicates that viscous dissipation of kinetic
energy exists in an irrotational flow region close to the TNTI, which is consistent with
the observations for incompressible jets (da Silva & Pereira 2008). The conditional
mean of the second invariant 〈Q〉I has the same behaviour as 〈QS〉I for yI 6 0 since in
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irrotational region QW (or enstrophy) is almost zero. By moving from the irrotational
region into the turbulent region, 〈Q〉 increases and reaches a positive value. For yI >

2λ, 〈QW〉I and 〈QS〉I have almost the same magnitude and 〈Q〉I ≈ 0, which is similar
to the observations for the plane jets (da Silva & Pereira 2008). This behaviour of the
〈Q〉I will be further analysed in § 5.3.1.

Figure 6(d) shows that 〈ΩiSijΩj〉I/4 and 〈RS〉I are zero in irrotational flow and
after a sharp rise in the interface layer, they become positive inside the turbulent
region. For 0 < yI < 0.24λ, 〈RS〉I increases with higher rate than 〈ΩiSijΩj〉I/4, and
〈R〉I , which represents the competition between the production of enstrophy and the
production of dissipation, has its maximum value at yI≈0.24λ. For 0.24λ< yI <0.62λ,
〈ΩiSijΩj〉I/4 increases more rapidly than 〈RS〉I and at yI ≈ 0.62λ, 〈R〉I reaches its
minimum value. In the turbulent region and outside of the interface layer, yI > λ, 〈R〉I
becomes approximately zero which is in agreement with the results found in the plane
jets (da Silva & Pereira 2008).

5.2. Local flow topology
In this section, statistics of invariants of the velocity gradient tensor are studied
using JPDF. Because of the complexity of JPDFs in three-dimensional P–Q–R space,
statistics are shown in P = constant planes. Different values of P are chosen to
compare the statistics in regions with zero, positive and negative dilatations. Figure 7
shows JPDFs of second and third invariants for P = 0, 0.1, 0.3 and −0.1. Statistics
are calculated for all of the points with P± ε around the above levels. The threshold
of ε = 0.005 is chosen, and it is examined that using the smaller thresholds does not
change the shape of JPDFs and other statistics of the flow. Unless otherwise stated,
all of the values of P presented in this work are based on the reference velocity and
initial momentum thickness, (U1/δθ0).

For P=0, data of 6 instantaneous times during the self-similar state are used but for
other dilatation levels, in order to have sufficient statistical points, 26 times are used
between t/tr = 1300–1400. Statistical points are taken in turbulent region (between
upper and lower TNTIs) and all the points with |Ω| = (4QW)

1/2 < 0.01 are subtracted
from statistics to exclude the effect of irrotational regions from results. In order to
be able to make comparisons with the other works in the literature, invariants Q and
R are normalized by 〈QW〉 and 〈QW〉3/2 respectively, where 〈.〉 denotes the mean of
statistical samples.

Figure 7(a) shows that the JPDFs of Q and R for P = 0 have teardrop shape
around the origin. It has been shown that for different flow configurations (Soria
et al. 1994; Blackburn et al. 1996; Chacín et al. 1996; Chong et al. 1998; Ooi et al.
1999; da Silva & Pereira 2008; Suman & Girimaji 2010), the JPDF of second and
third invariants has a universal teardrop shape in the Q–R plane. It is also shown
that for compressible isotropic turbulence and compressible turbulent boundary layer,
the joint statistics between R and Q in P = 0 plane has the same behaviour as
the incompressible turbulence (Suman & Girimaji 2010; Wang & Lu 2012). These
observations are confirmed here for the compressible mixing layer. It is inferred
from figure 7(a) that for P = 0, focal structures (S1 > 0) are more than non-focal
structures (S1 < 0) (64.3 %–35.7 %) which is in agreement with results reported for
incompressible isotropic turbulence (Pirozzoli & Grasso 2004).

The contours of JPDF for P= 0.1 is presented in figure 7(b) which corresponds to
the compression region. Comparing figure 7(a,b) reveals that in compression regions,
the JPDF is more symmetrical with respect to R = 0. Also, in contrast to P = 0,
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FIGURE 7. (Colour online) JPDFs of R and Q for four different dilatation levels: (a) P=
0.0, (b) P= 0.1, (c) P= 0.3, (d) P=−0.1, with corresponding normalized first invariants
of P/〈QW〉1/2= 0.0, 1.78, 7.35 and −1.07, respectively. Both colour and line contours are
in logarithmic scale. The line contour levels from outer to inner are −4, −3, −2 and −1.

the focal structures are less than non-focal structures (48.4–51.6 %). As the level of
compression is increased, figure 7(c), more area of JPDF is below the discriminant
(S1= 0) and the ratio between focal and non-focal structures decreases (23.7–76.3 %).
For the regions with expansion, figure 7(d), JPDFs are weakly skewed towards S2 and
ratio of focal to non-focal structures are less than P= 0 (59.2–40.8 %). As it has been
shown in figure 1, in compressible mixing layer the majority of points with non-zero
dilatation are in compression regions, therefore there are not enough points available
to study the regions with extreme expansion. Figure 7 shows that both compression
and expansion increase the probability of non-focal structures in the field, however
this increase is more significant for compression regions.

In order to quantify the statistical properties of JPDFs in figure 7, the probability
of occurrence of different topologies shown in table 1 (Z1–Z8) is examined. The
occurrence of each topology zone is calculated by volume ratio, Vr, which is
the percentage of volume of each zone in total volume. To study the effect of
compressibility, the probabilities are analysed for different levels of dilatation. Figure 8
shows conditional volume ratio of each zone, Vr|P, based on different levels of the
first invariant, P. In order to calculate the conditional statistics, for each level of the
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FIGURE 8. Variation of the volume ratio occupied by different topological zones
conditioned by the first invariant, P.

first invariant, P0, all of the points with P = P0 ± ε are chosen as data sample and
the occurrence probability of different zones for each data sample is calculated.

It can be seen in figure 8 that for P = 0, which corresponds to the points with
zero dilatation, the most probable topology is SFS (37.7 %), after that UN/S/S and
UFC have the highest probabilities (27.2 % and 26.6 %), and the least probable
topology is SN/S/S (8.5 %). The percentage of different topologies are very close
to those reported by Suman & Girimaji (2010) for incompressible flow field. They
observed that for incompressible isotropic turbulence, SFS, UN/S/S, UFC and SN/S/S
topologies occupy 39.8 %, 25.4 %, 27.5 % and 7.3 % of the computational box,
respectively. Similar results are also obtained for the DNS data for convective Mach
numbers Mc = 0.2, 0.8 and 1.2. These agreements show that the regions in mixing
layer with negligible dilatation have similar behaviour as the incompressible isotropic
turbulence.

Figure 8 also shows that in compressed regions (P > 0), by increasing the
compressibility level, occurrence of topology SN/S/S is increased and it becomes
the dominant topology. Probability of the regions with SFS structures decreases
significantly as the compression increases and for P> 0.3 they occupy less than 5 %
of the flow volume. In regions with moderate compression 0.1 < P < 0.3, SFC has
the second highest probability, and for the regions with high compression P > 0.3,
corresponding to shocklets, the SN/SN/SN structures are the most probable topology
after SN/S/S. It can also be seen that in locally compressed regions the majority of
structures are stable (more than 80 % for P > 0.1). In expansion regions, P < 0, the
probability of unstable topologies UN/S/S and UFS is increased and they become
the dominant topologies in these regions. By increasing the expansion level, the
probability of unstable topology UN/UN/UN is increased, and it becomes the third
most probable topology. The presented results show that in locally expanding regions,
the majority of structures are unstable (more than 90 % for P<−0.1).

In topological classification based on critical point theory, the local streamline in
stable topologies are converged toward the critical point and in unstable topologies the
local streamlines are diverged from the critical point. Therefore, in locally compressed
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FIGURE 9. (Colour online) JPDFs of R∗ and Q∗: (a) incompressible region, (b) entire
turbulent region and (c) compressed region with P> 0.15. Both colour and line contours
are in logarithmic scale. The line contour levels from outer to inner are −5, −4, −3, −2
and −1.

regions, where the volume of the flow is decreased, structures are mostly stable and
in locally expanding regions, where the volume of the flow is increased, the majority
of structures are unstable. Similar observation is reported for compressible isotropic
turbulence (Suman & Girimaji 2010).

The statistics of the invariants of the velocity gradient tensor are further studied
using the JPDF of the second and third invariants of the traceless part of the velocity
gradient tensor (Q∗, R∗) in figure 9, where

Q∗ =− 1
2(S

∗
ijS
∗
ij −W ijW ij)=Q− 1

3 P2, (5.1)

and
R∗ =− 1

3(S
∗
ijS
∗
jkS
∗
ki + 3W ijW jkS

∗
ki)= R− 1

3 PQ+ 2
27 P3. (5.2)

In the above equations, S∗ij is the anisotropic part of the strain-rate tensor, S∗ij = Sij −
(1/3)Skkδij.

Pirozzoli & Grasso (2004) showed that the JPDF of the second and third invariants
of the traceless part of the velocity gradient tensor (Q∗, R∗) has a universal teardrop
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shape similar to incompressible turbulence. However, in a more recent work by Wang
et al. (2012a), it has been shown that the JPDFs of (Q∗, R∗) do not remain universal
with the variation of the dilatation level. They showed that in compressible turbulence
with high turbulent Mach number, the JPDF has a longer tail in the fourth quadrant
compared with that observed in weakly and moderately compressible turbulence in
Pirozzoli & Grasso (2004) work. Wang et al. (2012a) showed that the shape of the
JPDF in weak compression and expansion regions is similar to the tear-drop shape
observed by Pirozzoli & Grasso (2004). They also showed that the shape of the JPDF
becomes sharp with an extended tail around the right branch of the discriminant curve
in strong compression regions, leading to the longer tail of the JPDF of (Q∗, R∗) for
the overall flow field when compared with incompressible turbulence. These findings
are confirmed for a compressible mixing layer in figure 9. This figure shows that
the JPDF has universal tear-drop shape in incompressible regions of the flow. In
figure 9(b) JPDF of (Q∗, R∗) is shown for the entire turbulent region. It can be seen
that this JPDF has a longer tail in fourth quadrant compared with the incompressible
turbulence which is in agreement with the results found by Wang et al. (2012a).
Figure 9(c) shows that in the regions under strong compression, P> 0.15, the JPDF
is skewed towards the discriminant line and does not have the universal tear-drop
shape, which again is in agreement with the results found by Wang et al. (2012a)
for compressible isotropic turbulence.

5.2.1. Local flow topology near the TNTI
In order to examine the local flow topology in the proximity of the TNTI, the

analysis presented in the previous section is extended to the interface coordinate
system. Figure 10 shows JPDFs of R and Q at three locations on interface coordinates:
yI = 0 (TNTI), yI ≈ 4η (near the TNTI) and yI = λ (inside the turbulent region) for the
data points with zero dilatation. Figure 10(a) shows that at the TNTI, the JPDF does
not have the characteristic tear-drop shape, and it is mainly found in non-focal region
(S1 < 0). This means that for almost all of the points on TNTI, the strain regions
dominate the enstrophy regions and Q < 0, which is consistent with the previous
results for average statistics presented in figure 6(c). It can also be seen that the
JPDF is stretched in zone Z2 and the majority of the points have UN/S/S topology.

It is depicted in figure 10(b) that at a small distance from the TNTI, yI ≈ 4η, JPDF
extends towards the zone Z4 in the focal region but it does not have the self-similar
shape observed in turbulent regions. Figure 10(c) shows that at the distance of one
Taylor scale from the TNTI, yI = λ, the JPDF demonstrates the self-similar tear-drop
shape. It indicates that, in the mixing layer, the invariants of the velocity gradients
in turbulent flow (outside of the interface layer) exhibit a similar behaviour as the
isotropic turbulence.

To examine the local flow topology in regions close to the TNTI, the volume ratio
of different zones are calculated in interface coordinate system. In order to observe
the effect of local compression and expansion, the variation of different topologies
for incompressible (P= 0), compressed (P> 0.05) and expanded (P6−0.05) regions
is represented in figure 11. The thresholds for the compressed and expanded regions
are chosen such that the points with very small dilatation, which have the similar
statistics as the incompressible region, do not affect the results. It is examined that
the results presented in this paper are not significantly altered by changing this
threshold as long as the threshold is not very small, which results in having many
points with incompressible behaviour in compression or expansion regions, or very
large, which confines the results to the strong shocklets. This figure indicates that the
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FIGURE 10. (Colour online) JPDFs of R and Q for incompressible regions of the flow
for three different locations in interface coordinates: (a) yI = 0, (b) yI/≈ 4η and (c) yI = λ.
The contour levels are the same as in figure 7.

TNTI affects the local topology of the turbulent flow. It can be seen in figure 11(a)
that the probability of different topologies changes significantly in the regions close
to the TNTI. At, yI = 0, the dominant topology is UN/S/S, as it can be inferred from
JPDF in figure 10(a). By moving from the TNTI to the inner turbulent flow, the
probability of topology SFS is increased. At yI ≈ 0.24λ ≈ 4η, this topology has the
same probability as UN/S/S and farther away from TNTI, it becomes the dominant
topology in the flow. For yI > λ, the probability of different topologies becomes
constant and equal to the values reported for P = 0 in figure 8 for the turbulent
region.

Variation of topological zones in an interface coordinate system for locally
compressed regions is shown in figure 11(b). It can be seen that in turbulent flow
outside of the TNTI thickness, yI > λ, the probability of different zones is almost
constant and SN/S/S is the dominant topology in the flow, followed by SFC, SFS
and UFC zones, respectively. This is consistent with the results shown in figure 8. It
should be noted that since regions with P> 0.3 occupy very small volume of the flow,
their topological characteristics, i.e. increased probability of SN/SN/SN structures, do
not affect the average statistics of the compressed regions represented in figure 11(b).
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FIGURE 11. Variation of the volume ratio occupied by different topological zones in
interface coordinates for (a) incompressible, (b) compressed and (c) expanded structures.

In compression zones, as is observed for incompressible and expansion zones, the
probability of focal structures (SFC, SFS and UFC) close to the interface decreases
and is almost zero on TNTI, and topologies become non-focal with domination of
SN/S/S.

Figure 11(c) shows that the probability of different topologies for the structures
under expansion changes near the TNTI. For yI > λ inside the turbulent region, the
structures with topologies UN/S/S and UFS have the highest probabilities. This is in
agreement with the results reported in figure 8 for expanded zones. In regions close
to the TNTI, yI < 0.5λ, the probability of the focal zone UFS decreases and UN/S/S
becomes the dominant topology in the flow. It shows that locally expanding structures
close to the TNTI, have non-focal topology, similar to the incompressible structures.

Figure 12 represents the distribution of the various flow topologies in turbulent
regions. It can be seen that the majority of the structures are focal; however, in the
regions close to the TNTI, the non-focal topologies are dominant.

5.3. Relationship between the second invariants
For compressible flows, the dissipation rate of kinetic energy is (Batchelor 1967)

ε = 2ν
(
SijSij − 1

3 P2
)=−4ν

(
QS − 1

3 P2
)
. (5.3)

It can be shown that the dissipation rate of kinetic energy is proportional to the
second invariant of anisotropic part of the strain-rate tensor, ε = −4νQS∗ , where
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FIGURE 12. (Colour online) Local flow topology in turbulent regions between TNTIs.

QS∗ = −S∗ijS
∗
ij/2. Kevlahan, Mahesh & Lee (1992) introduced three different flow

regions based on enstrophy and dissipation: (i) convergence region, QW < −QS∗/2,
where irrotational straining is high compared with the rotational straining, (ii) shear
region, −QS∗/2 6 QW 6 −2QS∗ , where irrotational and rotational straining are
approximately equal, and (iii) eddy region, QW >−2QS∗ , where rotational straining is
high compared with irrotational straining.

Figure 13 shows JPDFs of QS∗ and QW for several compressibility levels. In this
figure, the convergence, shear and eddy regions are separated with broken lines.
For the regions with zero dilatation, figure 13(a), the shape of JPDF is similar to
the JPDF obtained for incompressible isotropic turbulence (Ooi et al. 1999). In this
region, 19.2 % of the flow volume is in eddy zone, 44.6 % is in shear zone and 36.2 %
is in convergence zone. This is in agreement with the results obtained by Pirozzoli
& Grasso (2004) for decaying isotropic turbulence with low initial turbulent Mach
number (eddy, 21 %; shear, 44 %; convergence, 35 %). In locally compressed regions,
figure 13(b,c), as the dilatation level increases, JPDFs skew towards the QW = 0
axis and the ratio of irrotational to rotational straining is increased. For moderate
compression, P= 0.1, the percentage of eddy, shear and convergence zones are 7.6 %,
29.6 % and 62.8 %, respectively, and for high compression region, P = 0.3, these
percentages are changed to 0.3 %, 5.4 % and 94.3 % indicating the domination of the
convergence zone in high compression regions. For moderate expansion, figure 13(d),
eddy, shear and convergence zones occupy 22.1 %, 43.9 % and 34.0 % of the flow
respectively, close to the values obtained for incompressible region.

5.3.1. Relationship between the second invariants near the TNTI
In order to investigate the relationship between the second invariants in proximity of

the TNTI, the JPDFs of (QW,QS∗) are depicted in figure 14 for incompressible regions
for four locations in interface coordinates: yI ≈ 0.7η, yI ≈ 4η, yI =λ and yI = 2λ. It can
be seen in figure 14(a) that at yI≈0.7η, the JPDF tends to be aligned with QW =0 and
is located in convergence zone which indicates the dominance of dissipation over the
enstrophy on TNTI and regions close to the interface of the order of one Kolmogorov
length scale. At yI ≈ 4η (figure 14b), since QW starts to increase in interface layer,
the JPDF has values in shear and eddy regions, but still a slight domination of strain
product over enstrophy can be observed. Figure 14(c) shows that at yI=λ, the JPDF is
skewed towards the QS∗ =0 axis. Comparing this JPDF with that in figure 13(a), it can
be seen that at yI = λ the joint probability of (QW,QS∗) does not have the same shape
as that obtained in the turbulent region, contrary to the JPDF of (Q, R). However,
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FIGURE 13. (Colour online) JPDFs of QW and QS∗ for four different dilatation levels: (a)
P = 0.0, (b) P = 0.1, (c) P = 0.3 and (d) P = −0.1. The convergence, shear and eddy
regions are separated by the broken lines. The contour levels are the same as in figure 7.

figure 14(d) shows that by moving deeper inside the turbulent region, yI > 2λ, this
JPDF is less skewed towards the QS∗ = 0 axis and is more similar to the JPDF found
for the turbulent region. The above observation suggests that from yI = 0 to yI = λ,
QW increases with higher rate than QS∗ , such that the behaviour of joint probabilities
changes from convergence dominant to eddy dominant. After this point in λ< yI < 2λ,
QS∗ increases with higher rate than QW which makes the joint probabilities skewed
towards the QS∗ = 0 axis. For yI > 2λ the variation of two invariants is almost the
same and JPDF preserves the shape for the turbulent region.

In order to further study the relationship between the second invariants, the trace
of average values of QW and QS∗ in interface coordinates are shown in figure 15.
For incompressible regions, figure 15(a) shows that 〈QW〉I increases more for yI < λ
compared with 〈QS∗〉I and for λ < yI < 2λ, 〈QS∗〉I increases at a higher rate until
yI > 2λ, where the values of the two invariants become the same. In figure 15(b)
the traces of 〈QW〉I and 〈QS∗〉I are depicted for incompressible, compressed and
expanded regions in interface coordinates. It can be seen that in both compressed
and expanded regions, for yI < λ, 〈QW〉I increases faster than 〈QS∗〉I and by moving
deeper into the turbulent region, both invariants vary with almost a constant rate. It is
also observed that for incompressible, compressed and expanded regions, very close
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FIGURE 14. (Colour online) JPDFs of QW and QS∗ for incompressible regions of the flow
for four different locations in interface coordinates: (a) yI ≈ 0.7η, (b) yI ≈ 4η, (c) yI = λ
and (d) yI = 2.5λ. The contour levels are the same as the figure 7.

to the TNTI, dissipation dominates the enstrophy and the majority of the structures
are in convergence zone. However, for yI > λ the structures in incompressible and
expanded regions tend to be in the shear zone and in locally compressed regions,
structures tend to be in the convergence zone.

5.4. Characteristics of topological zones
In this section some invariant-related features of topological zones (vorticity norm,
kinetic energy dissipation and the rate of stretching and contraction) are studied
by means of the PDF. In order to find the role of compression and expansion on
invariants distribution in each zone, statistics are analysed in three different regions:
incompressible (P= 0), compressed (P > 0.05) and expanded (P 6−0.05) regions.

The vorticity norm, |Ω|, is proportional to the invariant of the rate of rotation tensor,
|Ω| = (4QW)

1/2. The PDFs of |Ω| for different topological zones in incompressible,
compressed and expanded regions are depicted in figure 16 while the mean values
of the PDFs are provided in table 2. The PDF of all of the zones combined is also
plotted as a reference for comparison. This figure shows that for all of the regions,
the structures with SFS topology have the highest probability of having intense
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FIGURE 15. (Colour online) (a) Average of QW and QS∗ in interface coordinates for
incompressible regions. (b) Trace of 〈QW〉I and 〈QS∗〉I as moving from the irrotational
region to the inner turbulent region for incompressible (E), compressed (A) and expanded
(@) points. The location of yI = 0 is shown by ×. Big symbols and filled big symbols
correspond to yI = λ and yI = 2λ, respectively. The second invariants are normalized by
(U2

1/δ
2
θ0
).

UFC UN/S/S SN/S/S SFS SFC SN/SN/SN UFS UN/UN/UN

〈|Ω|〉, P= 0 0.1120 0.0750 0.0660 0.1490 — — — —
〈|Ω|〉, P > 0.05 0.1250 0.0770 0.0620 0.1720 0.1550 0.0510 — —
〈|Ω|〉, P 6−0.05 0.1450 0.0890 0.1100 0.2590 — — 0.1910 0.0420
〈−QS∗〉, P= 0 0.0040 0.0067 0.0040 0.0046 — — — —
〈−QS∗〉, P > 0.05 0.0097 0.0122 0.0074 0.0071 0.0052 0.0101 — —
〈−QS∗〉, P 6−0.05 0.0088 0.0103 0.0120 0.0170 — — 0.0058 0.0015
〈ξ〉, P= 0 −0.0040 0.0220 0.0120 0.0200 — — — —
〈ξ〉, P > 0.05 −0.0430 0.0060 −0.0160 0.0110 −0.0340 −0.0360 — —
〈ξ〉, P 6−0.05 0.0190 0.0460 0.0420 0.0680 — — 0.0330 0.0250

TABLE 2. Conditional mean of |Ω|, −QS∗ , and ξ in different topological zones.

vorticity compared with the other topologies. It can be seen for incompressible
regions, figure 16(a), SN/S/S and UN/S/S zones (non-focal zones) tend to have low
vorticity magnitude. The PDF of SFS decays at a slower rate compared with the
other zones, and for moderate and high values of vorticity, the SFS structures are
predominant.

In locally compressed regions, figure 16(b), the non-focal zones (UN/S/S, SN/S/S
and SN/SN/SN) have weak vorticity. Considering the mean values and shape of the
PDFs, it can be seen that among the focal zones, structures with SFS and SFC
topologies, which are stable, have higher vorticity, and extreme values of vorticity
correspond to the SFS topology. In locally expanded regions, figure 16(c), as is
expected, the non-focal zones (UN/S/S, SN/S/S and UN/UN/UN) have weak vorticity
and their PDF decay at a higher rate than other topologies. The focal structures
SFS and UFS, have higher values of vorticity and similar to the incompressible and
compressed structures, in locally expanded structures the extreme values of vorticity
occur in SFS topological zone.
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FIGURE 16. (Colour online) PDFs of vorticity magnitude in different topological zones
for (a) incompressible, (b) compressed and (c) expanded regions.

Results shown above suggest that the most probable topology for the structures
with intense vorticity in incompressible regions is SFS, in locally compressed regions
the most probable topologies are SFS and SFC, and in locally expanded regions the
most probable topologies are SFS and UFS. In order to further quantify this result,
the structures with intense vorticity are detected and the probability of different
topological zones is calculated for them. Jiménez et al. (1993) suggested that the
structures with intense vorticity in the flow field can be defined as the points with
vorticity greater than a specific high threshold. They defined this threshold such that
intense vorticity structures cover 1 % of the total fluid volume. These structures are
found in the turbulent region and the probability of different topological zones for
them is provided in table 3. It can be seen that SFS is the dominant topology for
structures with intense vorticity, and for the compressed and expanded regions, SFC
and UFS have the second highest probability, respectively.

Figure 17 shows the PDF of −QS∗ , which is related to the rate of dissipation of
kinetic energy, for different topologies in incompressible, compressed and expanded
regions. The mean values of the PDFs are given in table 2. It can be seen that for the
incompressible regions, figure 17(a), the non-focal structures with topology UN/S/S
have the highest mechanical dissipation. In locally compressed regions, UN/S/S
structures have the highest dissipation on the average. It can be seen in figure 17(b)
that these structures have the highest probability among the other topologies for
moderate dissipation, −QS∗ < 0.05, however, the most probable topologies for the
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FIGURE 17. (Colour online) PDFs of QS∗ in different topological zones:
(a) incompressible, (b) compressed and (c) expanded regions.

UFC UN/S/S SN/S/S SFS SFC SN/SN/SN UFS UN/UN/UN

P= 0.0 10.580 % 6.08 % 1.29 % 82.06 % — — — —
P > 0.05 10.300 % 1.64 % 1.05 % 59.25 % 27.74 % 0.02 % — —
P 6−0.05 4.510 % 4.17 % 0.48 % 55.64 % — — 35.19 % 0.0 %

TABLE 3. The occurrence probability of various flow topologies in structures with
intense vorticity.

extreme values of dissipation are SN/SN/SN followed by SN/S/S. It is already
shown in § 5.2 that these topologies are the dominant topologies in high compression
regions, therefore, the extreme values of kinetic energy dissipation in non-focal stable
structures, may correspond to shocklets. In locally expanding regions, figure 17(c), the
focal structures with SFS topology are the dominant structures for dissipation, unlike
the incompressible and compressed regions for which the non-focal structures play
the dominant role for dissipation. Also, the extreme values of dissipation mostly occur
for SFS structures. It shows that in expanding regions, the extreme kinetic energy
dissipation takes place in structures with high enstrophy. This also can be inferred
from joint probability distribution between QS∗ and QW in figure 13(d) around the
border of the shear and eddy zones where the high enstrophy structures are highly
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FIGURE 18. (Colour online) PDFs of rate of stretching in different topological zones: (a)
incompressible, (b) compressed and (c) expanded regions.

dissipative. These structures also exist in incompressible regions, tail of the PDF in
figure 17(a), with less probability.

The rate of vorticity stretching or contraction, ξ , can be explained in terms of the
invariants QW , R and RS as (Ooi et al. 1999)

ξ = ΩiSijΩj

ΩkΩk
= RS − R

QW
. (5.4)

The PDF of ξ for various local topologies are shown in figure 18. The mean values
of the PDFs are provided in table 2. The PDFs and the mean values of ξ show that
for the majority of the incompressible points the vorticity vectors are stretched. This is
consistent with the results of Ooi et al. (1999) for incompressible isotropic turbulence.
Among the topological zones in incompressible regions, the non-focal structures with
UN/S/S topology and focal structures with SFS topology have the maximum vortex
stretching rate on the average. It is shown in figure 16 that UN/S/S structures have
weak vorticity. This is in agreement with the previous studies (Jiménez et al. 1993;
Ooi et al. 1999) showing that the regions with small enstrophy can be associated with
high stretching rates.

Figure 18(b) shows that for the majority of the points in locally compressed
regions, vorticity vectors are being contracted. The positive tails of the PDFs for
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different topologies decay very fast which indicates that the rate of vortex stretching
is small in compression regions. However, for the structure with topology SFS,
which are undergoing radial contraction and axial stretching (Suman & Girimaji
2010), the average of ξ is positive. The UFC structures have the highest contraction
rate on the average among the other topological zones. It indicates that in locally
compressed regions, the focal structures undergoing compression–expansion in
axial–radial directions (UFC) have higher contraction rate than the focal structures
with compression in both directions (SFC). The PDFs also suggest that the probability
of extreme contractions for topology SN/SN/SN is higher than the others.

It is shown in figure 18(c) that in locally expanding regions, vortex stretching is
dominant. The rate of stretching for structures with SFS topology is the highest among
the other topologies and UFC structures have the lowest stretching rate. It can also
be inferred that in expanding regions, the rate of stretching for the focal structures
undergoing expansion–compression in axial–radial directions (SFS) is higher than the
rate of stretching for the focal structures with expansion in both directions (UFS).

6. Concluding remarks

DNS of a compressible temporally evolving turbulent mixing layer is performed to
characterize the invariants of the velocity gradient tensor and the local flow topology
in the flow. The topological and dissipating behaviours of the flow are studied in two
different regions: inside the turbulent region, and in proximity of the TNTI, to provide
a better understanding of differences in the small-scale motions between the core of
turbulence and the regions close to the TNTI in compressible flows.

The flow behaviour is analysed in incompressible, compressed and expanded regions.
It is shown that the shape of the JPDF between the second and third invariants of the
velocity gradient tensor and the local flow topology in compressible mixing layers are
highly dependent on the local dilatation level. In the regions with zero dilatation in
compressible mixing layer, the JPDF between the second and third invariants of the
velocity gradient tensor has the same characteristic tear-drop shape as that observed
in previous numerical and experimental works for incompressible turbulent flows. It
is also shown that in these regions, the occurrence probability of different topological
zones is similar to the one observed for incompressible isotropic turbulence. In locally
compressed regions, the irrotational straining dominates the rotational straining and
it becomes more dominant as the level of compression is increased. These regions
tend to have stable topology with domination of SN/S/S. In these regions, the second
most probable topology in moderate compression is SFC and by increasing the
compression level SN/SN/SN becomes the second dominant topology. The locally
expanding regions tend to have unstable topologies with domination of UFS and
UN/S/S.

It is observed that by crossing the TNTI from the irrotational flow towards the
turbulent region, all of the velocity gradient invariants change rapidly. In the regions
very close to the TNTI, dissipation dominates the enstrophy and the majority of the
structures are in the convergence zone. In turbulent regions and outside of the interface
layer, the values of enstrophy and dissipation become approximately equal for locally
incompressible and expanded regions. However, in locally compressed regions, the
irrotational straining dominates the rotational straining and it becomes more dominant
as the level of compression is increased. The distribution of various flow topologies
in regions close to the TNTI differs from inside the turbulent region. In proximity
of the TNTI, the preeminent topologies are non-focal: UN/S/S in incompressible and
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expanded regions and SN/S/S in compressed regions. At the distances farther than one
Taylor microscale from TNTI, yI > λ, the probability of various topologies is almost
constant, and is equal to the values obtained for turbulent regions in mixing layer.

The distribution of the vorticity norm, kinetic energy dissipation and the rate of
stretching and contraction for various flow topologies are studied. The results show
that the structures with intense vorticity are mostly focal undergoing radial contraction
and axial expansion (SFS). In the locally compressed or expanded regions, the focal
structures with both radial and axial compression (SFC) and the focal structures
undergoing expansion in both radial and axial directions (UFS) also contain high
amount of vorticity. It is shown that in incompressible and compressed regions, the
non-focal UN/S/S structures have the highest rate of mechanical dissipation, however,
in locally expanded regions, the focal SFS structures have the maximum dissipation.
In locally compressed regions, the focal structures undergoing compression–expansion
in axial–radial directions (UFC) have higher contraction rate than the other structures
and the rate of stretching for the focal structures undergoing expansion–compression
in axial–radial directions (SFS) is higher among the other topological structures.
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