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We study a stochastic fluid EOQ-type model operating in a Markovian random
environment of alternating good and bad periods determining the demand rate+We
deal with the classical problem of “when to place an order” and “how big it should
be,” leading to the trade-off between the setup cost and the holding cost+ The key
functionals are the steady-state mean of the content level, the expected cycle length
~which is the time between two large orders!, and the expected number of orders in
a cycle+ These performance measures are derived in closed form by using the level
crossing approach in an intricate way+ We also present numerical examples and
carry out a sensitivity analysis+

1. INTRODUCTION

The simple economic order quantity ~EOQ! model is the most fundamental of all
inventory models ~see, e+g+, @15# !+ It lucidly describes the trade-off between the
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constant setup cost and the variable holding cost+ Its formula still serves as an effec-
tive approximation for much more complicated EOQ-type models+ Although the
simple EOE ~SEOQ! is a deterministic model with constant demand rate, most of
its ramifications include added factors of randomness+ For these stochastic EOQ
models, three types of approximation are generally used:

1+ In jump models ~see, e+g+, @8,13,14# ! discrete amounts of input and output
enter and leave the buffer one by one or in small batches; the content level
processes generated in this case are step functions+

2+ In heavy-traffic models @3,4#, both the gross input and the gross output are
assumed to be very large ~approaching infinity! over any time interval, with
the ratio of input rate and output rate being close to unity and their differ-
ence being almost constant+ Generally, the buffer content processes include
Brownian components+

3+ Fluid models @5,6# are characterized by large amounts of inflow and out-
flow over any time interval, with the ratio of input rate and output rate not
equal to unity; the stochastic fluctuations of the input and the output streams
are replaced by their local drifts, which might also depend on external fac-
tors changing randomly over time+

In this article we introduce a fluid EOQ ~FEOQ! model with a two-state ran-
dom environment that is modeled as a continuous-time Markov chain alternating
between a good and a bad state+ The net change rate of the system is assumed to be
constantly equal to a in the good state and to b in the bad state+ It can be assumed
that a � b, which is intuitive since the sales during good periods are higher than
those during bad ones, but this is not necessary for the analysis+ Good and bad
periods follow each other according to an alternating renewal process+ In this arti-
cle we restrict attention to the Markovian case of independent and exponentially
distributed random variables with parameters l and µ, respectively+

The two-state model reflects situations in which the demand rate for a certain
commodity undergoes periodically recurring changes+ For example, the demand for
beef went down dramatically after the occurrence of BSE ~mad cow disease! cases
and then after some time of alertness, it swung back to its normal rate+ Similar
phenomena connected to diseases or health consciousness ~e+g+, popular diet plans!
can be observed for poultry, pork, and other foodstuffs+ The sales of furs are peri-
odically influenced by campaigns of animal rights groups, and those of mineral
water and canned food are influenced by terror alerts+ Indeed, demand rates for
many goods go up and down between different levels due to fashion or other recur-
ring external effects+Models including a multistate Markovian environment can be
suitable for such situations; the two-state case presented in this article could serve
as a first approximation+We denote by X � $X~t ! : t � 0% the content level process
of the inventory operating under the alternating good and bad states+ X decreases
linearly at rates a or b depending on the state of the environment+ Once the system
becomes empty, a replenishment order, with a negligible lead time, of a certain
controllable size is placed+ Note that as demand is assumed to arrive in infinitesi-
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mal portions at rate a or b and the lead times are zero, there is no backlogging+ Let
I � $I ~t ! : t � 0% be the status process of the environment; that is, I ~t !� 1 ~0! if at
time t the state of the environment is good ~bad!+ The two-dimensional process
~X, I! is Markovian and the content level process X alone is regenerative+ There are
several options for defining regeneration points for it+ The cycle structure we will
use is given by the periods between replenishments occurring in good periods+ Let
~X~0!, I ~0!!� ~qg,1! ~i+e+, X starts at level qg in the good state!+We define T to be
the time of the first replenishment taking place in a good period; then @0,T ! is the
first cycle+ One expects X to proceed swiftly toward zero during good periods,
whereas during bad periods, it will probably decrease more sluggishly+ If this is the
case, the marginal revenue is higher during good periods than during bad ones+
Whenever the content level process hits zero at good ~bad! periods, the controller
places an order of size qg ~qb!, where qg and qb are controllable parameters+ Note
that the successive order sizes form a random sequence of values in $qg,qb% , deter-
mined in accordance with the random environment+ However, in contrast to ran-
dom yield models @10,11# in which the random order sizes are determined externally
~“by nature”!, in this model they are selected optimally+

In the monograph @17# a large variety of inventory models is presented in detail+
The stochastic models are based on point processes for the demand arrivals in ran-
dom environments ~in the book called “world-driven”!+ The fluid systems in @17#
are deterministic EOQ models with the classical extensions such as planned back-
orders, limited capacity, quantity discounts, and imperfect quality+ In the determin-
istic setting, time-varying demands are considered also, however without multiple-
order quantities+ The stochastic FEOQ model with more than one order quantity
expounded in this article seems to be new+

The controller’s objective is to maximize the long-run average revenue by select-
ing qg and qb so as to properly balance between the setup cost K, due each time an
order is placed, and the proportional holding cost h per unit time and per unit of
stored items+ Let p and c be the sale price and the purchase price of one unit, respec-
tively+ The long-run average holding cost is hEX, where X is a random variable
having the steady-state distribution of X+ ~Note that X~t ! r X in distribution, by
the limit theorem for regenerative processes @1, p+ 170# , and that 0 � X~t ! �
max@qg,qb# so that also EX~t !r EX+! Let N be the number of replenishment orders
in one cycle ~say, the first one! that are issued while the environment is in the bad
state+ Then the number of orders in this cycle is N �1 and it is easily seen that N has
a geometric distribution+ The expected setup cost in a cycle is KE~N �1!; the mean
cycle length is, of course, ET+ The expected total sold output during a cycle is qg �
qb EN+ Combining all of these functionals, it follows from the renewal reward theo-
rem @16# that the long-run average profit is given by

R~qg ,qb ! � ~ p � c!
qg � qb EN

ET
� hEX �

KE~N � 1!

ET
+ (1.1)

Of course, the expected values EN, EX, and ET are all functions of qg and qb+
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Because the long-run average income generated by the sales depends only on
the proportions of times in good and bad periods, it is independent of the order
sizes, implying that the maximization of R~qg,qb! is equivalent to the minimization
of the cost functional

C~qg ,qb ! � hEX �
KE~N � 1!

ET
+ (1.2)

It is easy to see that the long-run average profit and the long-run average cost are
related by

R~qg ,qb ! � ~ p � c!�a
µ

l� µ
� b

l

l� µ
�� C~qg ,qb !+ (1.3)

An intuitive conjecture is that if a � b, the optimal ~long-run average cost mini-
mizing! replenishment levels qg

* and qb
* satisfy qg

* � qb
*+ The numerical analysis in

Section 4 confirms this expectation+
In order to maximize ~1+1! ~or minimize ~1+2!! we first need to compute the

functionals EN, EX, and ET+ To this end, we use an extension of the so-called level
crossing technique ~see, e+g+, @2,4,6# !+ In our context, this approach turns out to be
more intricate than in most other applications because the exact calculation of the
upcrossing rates requires some refined arguments+

The level crossing theory ~LCT! was introduced in @7# for regenerative dam
processes of the GI0G01 type and generalized in @9# to stationary dam processes+
The general approach makes it possible to construct Khintchine–Pollaczek formu-
las for dam processes by equating the long-run average number of upcrossings and
downcrossings of an arbitrary level+ It is based on the idea that the long-run average
of upcrossings ~or downcrossings! of level x gives the value of the steady-state
density of the dam process at x multiplied by the local release rule of the dam+ In
@7,9# and the applications following these two pioneer studies, attention is restricted
to the case that the release rule of the dam is a deterministic function+ In the model
considered here, the demand rate is not state dependent but stochastically changing
according to the Markov environment, which makes a rigorous analysis more
complicated+

The article is organized as follows+ In Section 2 the dynamics of the FEOQ
model are described in a formal manner+ In Section 3 all relevant functionals are
derived in closed form from a steady-state analysis of the model+ Based on these
explicit results, Section 4 provides numerical examples in which we consider, in
particular, the sensitivity of the optimal ordering policies with respect to the model
parameters+

2. MODEL DYNAMICS

Let U1,V1,U2,V2, + + + be the lengths of the alternating time periods in which the con-
tent decreases at rates a and b, respectively+ For the analysis, we do not need the
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assumption a � b+We assume that ~U1,U2, + + + ! and ~V1,V2, + + + ! are two independent
sequences of independent and identically distributed ~i+i+d+! random variables, dis-
tributed according to exp~l! and exp~µ!, respectively+ The two threshold values qg

and qb are positive numbers satisfying qg � qb+ Let Y~t ! be the accumulated out-
put at time t � 0 and set Y � $Y~t ! : t � 0% + Let Sn �(i�1

n Ui and Sn
'�(i�1

n Vi for
n � 1 and S0 � S0

' � 0+ In terms of these sequences, Y~t ! is defined by

Y~t ! � �aSn � bSn
'� a~t � Sn � Sn

' ! if Sn � Sn
' � t � Sn�1 � Sn

' for some n � 0

aSn�1 � bSn
'� b~t � Sn�1 � Sn

' ! if Sn�1 � Sn
' � t � Sn�1 � Sn�1

' for some n � 0+

(2.1)

The sample paths of Y increase strictly and continuously to infinity+ The status
process I � $I ~t ! : t � 0% is given by

I ~t ! � �1 if Sn � Sn
' � t � Sn�1 � Sn

' for some n � 0

0 if Sn�1 � Sn
' � t � Sn�1 � Sn�1

' for some n � 0+

The sample paths of Y increase strictly and continuously to infinity+ Now we
define recursively a sequence of level hitting times t1 � t2 � {{{ ; ` and the
clearing process W � $W~t ! : t � 0% + Let t1 � inf $t � 0 6Y~t ! � qg% and W~t ! �
Y~t ! for t � @0,t1!+ If tn and W~t !, t � @0,tn!, have already been defined, let

tn�1 � �inf $t � tn 6Y~t !� Y~tn !� qg % if I ~tn !� 1

inf $t � tn 6Y~t !� Y~tn !� qb % if I ~tn !� 0

and set

W~t ! � ~qg � qb !1$I ~tn !�0%� Y~t !� Y~tn !, t � @tn ,tn�1!+

By this construction, W~t ! is defined for all t � 0+ The content level process X �
$X~t ! : t � 0% is given by

X~t ! � qg � W~t !+

We will show that W, and thus X, has an absolutely continuous stationary distri-
bution+ The associated densities are denoted by fX and fW , respectively+ Clearly,

fW ~x! � fX ~qg � x!

and

EW � qg � EX+

The processes W and X are regenerative+ Typical realizations are depicted in Fig-
ures 1a and 1b+ W starts to increase at time 0 from W~0! � 0 at slope a+ Slopes
alternate between a and b+ Each time level qg is reached by W+ The process has a
negative jump leading to 0 if the current slope is a or to qg � qb if it is b+ Cycles are
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defined to be the intervals between jumps to zero+ Let N be the number of jumps to
qg � qb before the first return to zero+ Then T � tN�1 is that value tn for which
I ~tn!� 1 and I ~tj !� 0 for j � n+ @0,T ! is the first cycle of W+ The time intervals
@0,t1!, @t1,t2!, + + + , @tn,tn�1! are called subcycles+

Let u1~x! be the probability that level x is upcrossed by Y while growing at rate
a; similarly, let u0~x! be the probability that x is upcrossed by $Y~t � U1! � aU1 :
t � U1% while the process grows at rate a+ Note that $Y~t � U1!� aU1 : t � U1% is the
accumulated output process starting in the bad state ~i+e+, growing at rate b!+ These
probabilities will appear throughout our derivations+

The following facts are consequences of the strong Markov property of W+ For
any n � 1, the subcycle lengths t1,t2 � t1, + + + ,tn�1 � tn are conditionally indepen-
dent given that N � n+Moreover, t2 � t1, + + + ,tn � tn�1 are conditionally i+i+d+ given
that N � n, provided n � 1+ The number N � 1 of subcycles has a modified geo-
metric distribution with parameter u0~qb!:We have P~N � 0!� u1~qg! and

P~N � n!� ~1 � u1~qg !!~1 � u0~qb !!
n�1u0~qb !, n � 1,2, + + + +

Figure 1. Typical realizations of W and X.
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3. STEADY-STATE ANALYSIS

In this section we derive ET and

EX ��
0

qg

~qg � w! fW ~w! dw+

For both, we need explicit formulas for u1~x! and u0~x!+

Lemma 1:

u1~x! �
µb � la e�~la�µb !x

la � µb

(3.1)

and

u0~x! �
µb

la � µb

@1 � e�~la�µb !x # , (3.2)

where la � l0a and µb � µ0b.

Proof. Consider the process Z � $Z~t ! : t � 0% obtained from Y by replacing its
linear pieces of slope b by independent exp~µb!-distributed upward jumps+ For-
mally, let

Z~t ! � at � bSN~t !
' ,

where N~t !� max$n � 0 6Sn � t % + Z is the sum of a compound Poisson process and
the linear function at and thus has the exponent

w~a! :� log Ee�aZ~1! � �aa �
la

µb � a
+ (3.3)

It is well known that the process M � $M~t ! : t � 0% defined by

M~t ! � w~a!�
0

t

e�aZ~s! ds � 1 � e�aZ~t ! (3.4)

is a martingale ~see @12# !+ Fix x � 0 and define the stopping time

Tx � inf $t � 0 : Z~t !� x%+
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Applying the martingale stopping theorem to M and Tx , we find that

w~a!E��
0

Tx

e�aZ~s! ds� � �1 � E~e�aZ~Tx ! !

� �1 � E~e�aZ~Tx !1$Z~Tx !�x% !� E~e�aZ~Tx !1$Z~Tx !�x% !

� �1 � e�axE~1$Z~Tx !�x% !� e�ax
µb

µb � a
E~1$Z~Tx !�x% !,

(3.5)

where the third step of ~3+5! follows from the lack-of-memory property of the jump
size distribution: Given the event $Z~Tx ! � x% , the random variable Z~Tx ! � x is
exp~µb! distributed for any x so that the conditional Laplace transform of Z~Tx ! is
e�axµb0~µb � a!+

The right-hand side of ~3+3! has the two roots 0 and

a * � �~la � µb !+ (3.6)

If we can set a� a * in ~3+5!, we get

1 � e ~la�µb !xE~1$Z~Tx !�x% !� e ~la�µb !x
µb

µb � ~la � µb !
E~1$Z~Tx !�x% !+ (3.7)

However, the event $Z~Tx !� x% is equivalent to the event that Y upcrosses level x
during a good period+ This means that

E~1$Z~Tx !�x% ! � u1~x!+

Solving for u1~x! in ~3+7!, we obtain ~3+1!+
There is a difficulty with inserting the root a * in ~3+5!: a * � �µb is negative

whereas the Laplace transforms of Z~1! and of the exp~µb!-distribution are only
defined for nonnegative arguments a and the defining integrals are not finite for
a� �µb+ This problem can be solved as follows+ Being the logarithm of a Laplace
transform, w~a! is only defined for a � R�+ However, w~a! can be analytically
extended to C�$�µb% by identity ~3+3!, taking the right-hand side of ~3+3! as defi-
nition of w+ Next, the integral *0

Tx e�aZ~s! ds is easily seen to be an analytic function
of a for all a � C; note that 0 � Z~s! � x for s � @0,Tx !+ Now let

G~a! � ~µb � a!��aa �
la

µb � a
�E��

0

Tx

e�aZ~s! ds�
H~a! � ~µb � a!@e�axE~1$Z~Tx !�x% !� 1#� e�axµb E~1$Z~Tx !�x% !+
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Then G is analytic on C �$�µb% , H is analytic on C, and, by ~3+5!, G and H coincide
on R�+ By the identity theorem for analytic functions, we obtain G~a!� H~a! for
all a � C �$�µb% + Since G~a *!� 0, it follows that H~a *!� 0, i+e+, ~3+7!+

To prove ~3+2!, let us make the dependence of u1~x! on la and µb explicit by
writing it as u1~x,la, µb!+ Then a little reflection shows that

u0~x;la , µb ! � 1 � u1~x;µb ,la !

and ~3+2! follows from ~3+1!+ �

The following explicit formula for the steady-state density of W is the main
analytical result of this article+ It is derived by means of an intricate use of the
LCT+ The constant factor fW~0�! can be determined by the normalizing condition
for the density; using another argument, an explicit formula for fW~0�! is given in
Theorem 1+

Theorem 1: The stationary density fW of W is given by

fW ~x! � ��u1~x!
a

�
1 � u1~x!

b
�

� ~1 � u1~qg !!�1 � u0~qb !

u0~qb !
�g~x!

a
�

1 � g~x!

b
�

�
n~x!

a
�

1 � n~x!

b
�1@qg�qb ,qg !

~x!�afW ~0�!,

x � ~0,qb !, (3.8)

where u0~{! and u1~{! have been computed in Lemma 1,

g~x! �
u0~x � qg � qb !~1 � u1~qg � x!!

~1 � u0~qb !!
, (3.9)

n~x! �
u0~x � qg � qb !u1~qg � x!

u0~qb !
, (3.10)

and fW~0�! can be determined from the normalizing condition *0
qg fW ~x! dx � 1.

Proof: By the limit theorem for regenerative processes @1, p+ 170# , the stationary
distribution function FW of W is given by

FW ~x! �

E��
0

T

1$W~t !�x% dt�
ET

, (3.11)
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where 1A denotes the indicator function of the set A+ Fix 0 � x � qg+ Then 0 � x �
qg � « for sufficiently small « � 0+ We now use the basic arguments of the level
crossing approach+ Consider the integral

�
0

T

1$x�W~t !�x�«% dt,

which is equal to the amount of time that W spends in the interval @x, x � «! during
the cycle @0,T !+ Clearly,

�
0

T

1$x�W~t !�x�«% dt ��
0

t1

1$x�W~t !�x�«% dt �(
j�1

N �
tj

tj�1

1$x�W~t !�x�«% dt (3.12)

~where an empty sum is defined to be zero!+ For x � ~0,qg � qb � «!, the sum on the
right-hand side of ~3+12! vanishes since all of the indicator variables in it are equal
to zero+ For x � @qg � qb,qg � «!, each of them is equal to unity during an interval
of length either «0a or «0b or between these numbers, because during each sub-
cycle, the sample path of W is increasing and runs through @x, x � «! linearly at
alternating slopes a and b+ It follows that

1

«
�

0

T

1$x�W~t !�x�«% dt � ~N � 1!max@a,b# (3.13)

for all « � ~0,qg � x!+ As W~t ! is piecewise linear, the derivative

d

dx
��

0

T

1$W~t !�x% dt� (3.14)

exists, and ~3+13! and a similar estimate for negative « together yield

d

dx
��

0

T

1$W~t !�x% dt� � ~N � 1!max@a,b# + (3.15)

Since N has a modified geometric distribution ~see Section 2!, we have

EN �
1 � u1~qg !

u0~qb !
� `+ (3.16)

Thus, we can use dominated convergence to conclude that

E� d

dx
�

0

T

1$W~t !�x% dt� �
d

dx
E��

0

T

1$W~t !�x% dt� (3.17)

�
d

dx
�ET

E��
0

T

1$W~t !�x% dt�
ET

�
� ET

d

dx
FW ~x!

� ETfW ~x!, (3.18)
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where the third equality follows from ~3+11!+ Hence, FW is an absolutely contin-
uous distribution whose density can be computed by taking the derivative of x �
E~*0

T 1$W~t !�x% dt !0ET+
Let us compute E~*0

T 1$x�W~t !�x�«% dt !+ If x � ~0,qg � qb!, the interval @x, x �
«! is crossed exactly once in the cycle @0,T !, and during this crossing, the sample
path has slope a with probability u1~x! � O~«! and slope b with probability 1 �
u1~x!� O~«! as «' 0+ ~The terms O~«! are due to the possibility that @x, x � «! can
also be crossed by a piece of sample path in which the slope changes+! Hence, the
expected amount of time spent in @x, x � «! is

«u1~x!

a
�
«~1 � u1~x!!

b
� O~«2 ! as « ' 0+ (3.19)

Relation ~3+19! accounts for the term in square brackets in the corresponding asser-
tion of ~3+8! for x � ~0,qg � qb!+

Now let x � @qg � qb,qg!+ In this case we can write

E��
0

T

1$x�W~t !�x�«% dt�
� «�u1~x!

a
�

1 � u1~x!

b
� O~«!�

� (
n�0

`

P~N � n � 1!�«E~Y 6N � n � 1!

�
«n~x!

a
�
«~1 � n~x!!

b
� O~«2 !�

� «�u1~x!
a

�
1 � u1~x!

b
�� « (

n�0

`

~1 � u1~qg !!~1 � u0~qb !!
nu0~qb !

� �ng~x!� n~x!

a
�

n~1 � g~x!!� 1 � n~x!

b
�� O~«2 !, (3.20)

where «Y denotes the sojourn time of W in @x, x � «! during those subcycles of
@0,T ! that start and end in the bad state+ Indeed, the expected amount of time spent
in @x, x � «! during the first subcycle is the same as in the case x � ~0,qg � qb!; that
is, it is given by ~3+19!+ The series in ~3+20! gives the contribution of the other
subcycles of @0,T !+ With probability 1 � u1~qg!, the first subcycle is followed by
n � 0 consecutive subcycles starting and ending in the bad state and a final sub-
cycle starting in the bad state and ending in the good state+ The counting variable of
the upcrossings of @x, x � «! at slope a ~i+e+, while being in the good state! during
the n subcycles starting and ending in the bad state is a binomial random variable
with success probability
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u0~x � qg � qb !u1~qg � x!

u0~qb !
� O~«! � g~x!� O~«!

and the probability that the upcrossing of @x, x � «! during the final subcycle ~start-
ing in the bad state and ending in the good state! occurs while growing at slope a is

u0~x � qg � qb !u1~qg � x!

u0~qb !
� O~«! � n~x!� O~«!+

The corresponding values for slope b are 1 � g~x!� O~«! and 1 � n~x!� O~«!,
respectively+ The probability of having n consecutive subcycles leading from bad to
bad followed by one leading from bad to good is ~1 � u0~qb!!

nu0~qb!+ These argu-
ments explain ~3+20!+ The series on the right-hand side of ~3+20! can easily be cal-
culated in closed form, leading to the term in square brackets in assertion ~3+8! for
x � @qg � qb,qg!+

To complete the analysis, it remains to show that

ET �
1

afW ~0�!
+ (3.21)

During a cycle level, x is upcrossed exactly once for every x � ~0,qg � qb!+ Since
the cycle @0,T ! starts in the good state, the initial slope is a, so that the slope while
crossing @x, x � «! is a with probability 1 � O~x! as xr 0+ Thus, by ~3+18!,

ETfW ~0�! � lim
x' 0

lim
«' 0

E��
0

T

1$x�W~t !�x�«% dt��
1

a
,

yielding ~3+21!+
Since fW is a probability density on ~0,qg!, the value fW~0�! can be obtained by

the normalizing condition *0
qg fW ~x! dx � 1+ The proof is complete+ �

An explicit formula for ET and thus fW~0�! is given in the following theorem+

Theorem 2:

ET � �a
µ

l� µ
� b

l

l� µ
��1 qb~1 � u1~qg !!� qgu0~qb !

u0~qb !
+ (3.22)

Proof: From ~1+1! and ~1+3!, we can conclude that

qg � qb EN

ET
� a

µ

l� µ
� b

l

l� µ
; (3.23)

~3+22! now follows from EN � ~1 � u1~qg!!0u0~qb!+ �
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4. NUMERICAL EXAMPLES AND SENSITIVITY ANALYSIS

We start with several asymptotic formulas+ These results are quite intuitive and
their proofs,while not difficult, are quite tedious in some cases and therefore omitted+

Lemma 2:

(a)

lim
lr0

EX � lim
µr`

EX � lim
ar`

EX �
qg

2

(b)

lim
lr`

EX � lim
µr0

EX �
qb

2

(c)

lim
µr`

ET � lim
lr0

ET �
qg

a

(d)

lim
µr0

ET � lim
lr`

ET �`

(e)

lim
ar`

ET � 0

(f )

lim
µr`

1 � EN

ET
� lim
lr0

1 � EN

ET
�

a

qg

(g)

lim
lr`

1 � EN

ET
� lim

µr0

1 � EN

ET
�

b

qb

(h)

lim
ar`

1 � EN

ET
� `+

Notice that parts ~a!, ~c!, and ~g! provide the classical EOQ results for a
system that is always in a good period+ However, when a r `, the expected
cycle time is zero ~part ~e!!, whereas when l r 0 or µ r `, it is positive and
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finite+ When a r `, an order of size qg02 is made an infinite number of times
~part ~h!!+ Parts ~b! and ~g! provide the classical EOQ result of expected inven-
tory and expected number of orders for a system that is always in a bad period+
However, when µ r 0 or l r `, the length of the cycle tends to infinity ~part
~d!!+

Next we investigate the effect of parameter changes on the optimal solution+
The following example is typical of many other examples studied+ Consider a sys-
tem with l� 0+40unit of time, µ � 0+60unit of time, a � 100unit of time, and b �
50unit of time+We let h vary in $0+5,1,1+5,2, + + + ,5% and K vary in $5,10,15,20, + + + ,50% +
The optimal values of qg,qb,EX,ET,EN, and C~qg,qb! are given in Table 1, parts
a–f, respectively+ The following observations can be made from Table 1:

1+ As expected, as K increases, the optimal values of qg,qb,EX,ET, and C~qg,qb!
increase and the optimal value of EN decreases+

2+ As expected, as h increases, the optimal qg,qb,EX,ET, and C~qg,qb! decrease
and the optimal EN increases+

3+ The expected number of orders ~1 � EN !0ET decreases when K increases,
and it increases when h increases+

4+ When K increases ~h increases!, both qg and qb increase ~decrease!, as noted
in observations 1 and 2, but their difference qg � qb increases ~decreases!+ In
other words, qg is more sensitive to changes in K than qb, and qb is more
sensitive to changes in h than qg+

In Table 2, parts a–f, we set h � $10~unit � unit of time! and K � $100order
and let a vary in $12,13,14, + + + ,22% and b vary in $1,2,3, + + + ,11% + The following
observations can be made:

5+ As a increases, qg,EX, and C~qg,qb! increase and ET decreases+ Both qb

and EN decrease as a increases+
6+ As b increases, qb,EX, and C~qg,qb! increase+Also, qg,ET, and EN increase

as b increases+
7+ When a increases ~b increases!, the difference between qg and qb increases
~decreases!+

8+ When either a or b increase, the expected number of orders increases+
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Table 1. Optimal Values as a Function of h and K

K0h 5 10 15 20 25 30 35 40 45 50

a+ qg as a function of h and K
0+5 13+49607 18+87746 22+96775 26+39839 29+41122 32+12927 34+6251 36+94572 39+12354 41+18221
1 9+638926 13+49608 16+42454 18+87747 21+02898 22+96776 24+74624 26+39839 27+94777 29+41122
1+5 7+911063 11+08581 13+49608 15+51427 17+2837 18+87747 20+33882 21+69577 22+96776 24+16886
2 6+874215 9+638926 11+73831 13+49608 15+03693 16+42454 17+69657 18+87747 19+98418 21+02898
2+5 6+163358 8+646513 10+53258 12+11179 13+49608 14+74256 15+88509 16+94564 17+93942 18+87747
3 5+636793 7+911062 9+638926 11+08581 12+35408 13+49608 14+54276 15+51427 16+42454 17+2837
3+5 5+226407 7+337654 8+942069 10+28571 11+46354 12+52407 13+49608 14+39823 15+24347 16+04121
4 4+894849 6+874216 8+378775 9+638928 10+74361 11+73831 12+64996 13+49608 14+2888 15+03693
4+5 4+619685 6+489476 7+911063 9+101853 10+14579 11+08581 11+94735 12+74695 13+49608 14+20306
5 4+386521 6+16336 7+514561 8+646513 9+638928 10+53257 11+35163 12+1118 12+82398 13+49608

b+ qk as a function of h and K
0+5 10+40142 15+03348 18+72394 21+91409 24+77331 27+38927 29+81528 32+08694 34+22987 36+2632
1 7+251524 10+40141 12+8887 15+03347 16+9579 18+72392 20+36808 21+91409 23+37846 24+77331
1+5 5+887175 8+416169 10+40141 12+10685 13+63332 15+03347 16+33638 17+56202 18+72393 19+83192
2 5+082171 7+251524 8+948041 10+40141 11+69997 12+88870 13+99415 15+03348 16+01853 16+9579
2+5 4+536155 6+464393 7+968459 9+254344 10+40141 11+45013 12+42442 13+33976 14+20687 15+03348
3 4+134758 5+887175 7+251524 8+416171 9+453768 10+40140 11+28103 12+10685 12+8887 13+63373
3+5 3+82373 5+440719 6+697821 7+769639 8+723562 9+594026 10+40141 11+15893 11+87575 12+55849
4 3+573596 5+082171 6+253657 7+25152 8+13889 8+948039 9+698079 10+40142 11+06663 11+69997
4+5 3+366787 4+786054 5+887175 6+824368 7+657211 8+416171 9+119308 9+778347 10+40141 10+99439
5 3+192095 4+536152 5+578125 6+464395 7+251526 7+968459 8+63235 9+254343 9+84216 10+40141

c+ EX as a function of h and K
0+5 6+254008 8+857438 10+86133 12+55431 14+04799 15+39964 16+64336 17+8014 18+88927 19+91832
1 4+418531 6+254007 7+665418 8+857441 9+909234 10+86134 11+73781 12+55431 13+32173 14+04799

~continued!
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Table 1. continued

K0h 5 10 15 20 25 30 35 40 45 50

1+5 3+606624 5+103561 6+254007 7+225241 8+081997 8+857441 9+571257 10+23626 10+86134 11+45296
2 3+122937 4+418531 5+413909 6+254007 6+994926 7+665419 8+282553 8+857442 9+397798 9+909234
2+5 2+792969 3+951343 4+841108 5+591929 6+254007 6+853073 7+404407 7+917955 8+400625 8+857442
3 2+549453 3+606624 4+418531 5+103562 5+707554 6+254007 6+756873 7+225241 7+665418 8+081997
3+5 2+360223 3+338787 4+090241 4+724203 5+283116 5+788743 6+254007 6+687323 7+094535 7+479896
4 2+207706 3+122937 3+825697 4+418531 4+941148 5+413909 5+848904 6+254009 6+634687 6+994925
4+5 2+081386 2+944176 3+606624 4+165418 4+657999 5+103562 5+513512 5+895275 6+254007 6+593462
5 1+974531 2+79297 3+421331 3+951344 4+418532 4+841108 5+229892 5+591929 5+932113 6+254007

d+ ET as a function of h and K
0+5 2+159931 3+014618 3+67137 4+227349 4+719093 5+165055 5+576142 5+959454 6+31994 6+661237
1 1+550802 2+159931 2+623905 3+014619 3+359225 3+67137 3+959033 4+227349 4+47985 4+719093
1+5 1+27754 1+779259 2+159931 2+479435 2+760509 3+014619 3+248479 3+466407 3+67137 3+865508
2 1+113096 1+550802 1+882267 2+159931 2+403775 2+623905 2+826247 3+014619 3+191648 3+359225
2+5 1+000055 1+393943 1+691923 1+941237 2+159931 2+357147 2+538258 2+706728 2+864941 3+014619
3 0+916125 1+27754 1+550802 1+779259 1+979497 2+159931 2+325511 2+479435 2+623905 2+760509
3+5 0+850583 1+186654 1+44068 1+652947 1+838888 2+006344 2+159931 2+302632 2+436504 2+563034
4 0+797537 1+113096 1+351586 1+550802 1+725239 1+882267 2+026228 2+159931 2+285313 2+403775
4+5 0+753445 1+051949 1+27754 1+465938 1+630853 1+779259 1+915271 2+041549 2+159931 2+271745
5 0+716032 1+000055 1+214708 1+393944 1+550802 1+691923 1+821222 1+941237 2+053717 2+159931

e+ EN as a function of h and K
0+5 0+363736 0+348521 0+341979 0+338614 0+336714 0+335576 0+334863 0+334401 0+334094 0+333884
1 0+381643 0+363736 0+354318 0+348521 0+344667 0+34198 0+340043 0+338614 0+337537 0+336714
1+5 0+392253 0+374073 0+363736 0+356923 0+352095 0+348521 0+345794 0+343667 0+34198 0+340623
2 0+399544 0+381642 0+371011 0+363736 0+3584 0+354318 0+351104 0+348521 0+346411 0+344667
2+5 0+404986 0+387513 0+376836 0+36935 0+363736 0+359351 0+355829 0+352944 0+350543 0+348521
3 0+409264 0+392253 0+381642 0+374073 0+368307 0+363736 0+360014 0+356923 0+354318 0+352095
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3+5 0+412752 0+396194 0+385703 0+378121 0+372276 0+367591 0+363736 0+360503 0+357751 0+355382
4 0+415672 0+399544 0+389199 0+381643 0+375764 0+371011 0+367069 0+363736 0+360879 0+3584
4+5 0+418166 0+402443 0+392253 0+384747 0+378863 0+374073 0+370074 0+366672 0+363736 0+361176
5 0+420331 0+404986 0+394954 0+387513 0+381642 0+376836 0+372801 0+36935 0+366359 0+363736

f+ C~qg,qk! as a function of h and K
0+5 6+283901 8+901992 10+91355 12+61027 14+10541 15+4572 16+70027 17+85724 18+94381 19+97144
1 8+873138 12+5678 15+40761 17+80398 19+9165 21+8271 23+58451 25+22053 26+75726 28+21082
1+5 10+85889 15+37807 18+8517 21+78328 24+36798 26+70598 28+85684 30+85939 32+74065 34+52028
2 12+53259 17+74628 21+75357 25+13561 28+11763 30+81521 33+29706 35+60797 37+77906 39+83301
2+5 14+00697 19+83223 24+30932 28+08784 31+41951 34+43348 37+20652 39+78868 42+21471 44+50996
3 15+3398 21+71779 26+61941 30+75614 34+40366 37+70341 40+73945 43+56656 46+22282 48+73595
3+5 16+5654 23+45156 28+74344 33+20942 37+14723 40+7096 43+98731 47+0395 49+90729 52+62061
4 17+7061 25+06519 30+72021 35+49255 39+70044 43+50713 47+00965 50+27121 53+33575 56+23526
4+5 18+77745 26+58065 32+57668 37+63667 42+09814 46+13421 49+84778 53+30588 56+55511 59+62939
5 19+79072 28+01394 34+33245 39+66445 44+36569 48+61865 52+53176 56+17568 59+59952 62+83901
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Table 2. Optimal Values as a Function of a and b

a0b 1 2 3 4 5 6 7 8 9 10 11

a+ qg as a function of a and b
12 12+69754 13+36293 13+88956 14+2882 14+59134 14+8249 15+00718 15+15105 15+26565 15+35761 15+43181
13 13+16968 13+83332 14+36982 14+78196 15+09898 15+34567 15+54001 15+69479 15+8192 15+91996 16+00207
14 13+6246 14+28554 14+83037 15+25462 15+58438 15+8433 16+04895 16+21404 16+34779 16+45697 16+54667
15 14+06411 14+72165 15+27347 15+70862 16+05012 16+32044 16+53674 16+7116 16+85424 16+97148 17+06848
16 14+48972 15+14331 15+701 16+14599 16+49832 16+7793 17+00564 17+18978 17+3409 17+46587 17+56989
17 14+90271 15+55194 16+11452 16+56839 16+93075 17+22172 17+45756 17+65051 17+80973 17+94211 18+0529
18 15+30417 15+94873 16+51536 16+97727 17+34893 17+64928 17+8941 18+09544 18+26242 18+40192 18+51923
19 15+69502 16+3347 16+90463 17+37383 17+75413 18+06331 18+31664 18+52599 18+7004 18+84675 18+97035
20 16+07609 16+71074 17+28332 17+75914 18+14747 18+46496 18+72638 18+94337 19+12491 19+27785 19+40753
21 16+44809 17+07759 17+65227 18+13409 18+52992 18+85525 19+12435 19+34865 19+53703 19+69633 19+83188
22 16+81165 17+43595 18+01223 18+49949 18+90231 19+23505 19+51147 19+74277 19+93772 20+10315 20+24438

b+ qk as a function of a and b
12 4+586706 6+646131 8+149368 9+372399 10+41985 11+34452 12+1774 12+93855 13+64175 14+29701 14+91181
13 4+524125 6+600389 8+119166 9+356486 10+41727 11+35448 12+19925 12+97169 13+68566 14+3512 14+97585
14 4+466962 6+555921 8+087599 9+337125 10+40948 11+35771 12+21299 12+99548 13+71908 14+39388 15+02742
15 4+414738 6+513091 8+055463 9+315432 10+39785 11+35577 12+22037 13+01183 13+74408 14+42721 15+06881
16 4+366962 6+472082 8+023304 9+292219 10+38341 11+34986 12+22274 13+02223 13+76226 14+45292 15+10181
17 4+323165 6+432961 7+991491 9+268078 10+36693 11+34092 12+22117 13+02785 13+77488 14+47236 15+12788
18 4+28292 6+395729 7+960274 9+243442 10+34899 11+32965 12+21648 13+02962 13+78297 14+48663 15+14819
19 4+245839 6+360338 7+929814 9+218632 10+33005 11+31661 12+20933 13+02828 13+78735 14+49662 15+16368
20 4+21158 6+326719 7+900212 9+193879 10+31044 11+30225 12+20023 13+02442 13+78867 14+50305 15+17513
21 4+179844 6+294786 7+871525 9+169353 10+29042 11+2869 12+18961 13+01852 13+78747 14+50651 15+18318
22 4+150366 6+264447 7+843781 9+145176 10+27021 11+27085 12+17779 13+01098 13+78421 14+50748 15+18836

c+ EX as a function of a and b
12 5+914148 6+065132 6+268809 6+473229 6+667173 6+849062 7+019677 7+180304 7+332212 7+476518 7+614171
13 6+140324 6+275563 6+470679 6+670427 6+861668 7+041911 7+211485 7+371429 7+52287 7+666842 7+804241
14 6+358994 6+479224 6+665879 6+8609 7+049359 7+227887 7+396363 7+555581 7+706527 7+850149 7+987289
15 6+570881 6+676798 6+855109 7+045374 7+230987 7+407735 7+575059 7+733509 7+883929 8+02718 8+16405
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16 6+776595 6+868858 7+038955 7+224448 7+407163 7+582076 7+748197 7+905838 8+0557 8+198557 8+335142
17 6+976657 7+055885 7+217909 7+398626 7+578402 7+751431 7+916305 8+073098 8+222371 8+36481 8+501092
18 7+171516 7+238293 7+392388 7+568337 7+745142 7+916245 8+079832 8+235741 8+384395 8+526393 8+662354
19 7+361565 7+416437 7+562753 7+73395 7+907759 8+076902 8+239163 8+394156 8+542164 8+683696 8+819318
20 7+547148 7+590628 7+729317 7+895784 8+066579 8+233731 8+394636 8+548683 8+696018 8+837062 8+972326
21 7+728569 7+76114 7+892352 8+054118 8+221887 8+387022 8+546543 8+699616 8+846252 8+986789 9+121678
22 7+906101 7+928213 8+0521 8+209198 8+373933 8+537029 8+695141 8+847215 8+993131 9+13314 9+267637

d+ ET as a function of a and b
12 1+706188 1+772774 1+836163 1+891063 1+938338 1+979496 2+015808 2+048247 2+077552 2+104283 2+128872
13 1+636075 1+696324 1+754664 1+805553 1+849498 1+887789 1+921568 1+951726 1+978944 2+003742 2+026525
14 1+573969 1+628847 1+682857 1+730307 1+771407 1+807258 1+838888 1+867115 1+89257 1+91574 1+937004
15 1+518453 1+568727 1+61898 1+663446 1+702084 1+73583 1+765612 1+792183 1+816131 1+83791 1+857879
16 1+468436 1+514725 1+561686 1+603536 1+640019 1+67193 1+700105 1+725239 1+747881 1+76846 1+787312
17 1+423066 1+465878 1+509927 1+549461 1+584042 1+614335 1+641098 1+664974 1+686475 1+706006 1+723885
18 1+381665 1+421418 1+462874 1+500342 1+533227 1+562084 1+587596 1+610358 1+630853 1+649461 1+666486
19 1+343684 1+380729 1+41986 1+455471 1+486835 1+514406 1+5388 1+560571 1+58017 1+59796 1+614227
20 1+308677 1+343311 1+380343 1+414275 1+444265 1+470676 1+494065 1+514946 1+533744 1+550802 1+566394
21 1+276275 1+308749 1+343879 1+376284 1+405025 1+430384 1+452864 1+472941 1+491016 1+507416 1+522401
22 1+246168 1+276699 1+310096 1+341105 1+368706 1+393105 1+414757 1+434104 1+451525 1+467329 1+481766

e+ EN as a function of a and b
12 0+058755 0+123269 0+18826 0+251072 0+311076 0+368307 0+422988 0+475379 0+525732 0+574271 0+621192
13 0+054405 0+114398 0+17516 0+234088 0+290489 0+344338 0+395812 0+445139 0+492542 0+538226 0+582373
14 0+050667 0+106751 0+163838 0+219388 0+27266 0+323577 0+372276 0+418953 0+463811 0+507036 0+548795
15 0+047419 0+100086 0+153948 0+206529 0+257053 0+305398 0+351666 0+396027 0+438662 0+479743 0+519424
16 0+044571 0+094225 0+145227 0+195176 0+243263 0+289331 0+333449 0+375764 0+416439 0+45563 0+493483
17 0+042051 0+089028 0+137477 0+185071 0+23098 0+275013 0+317214 0+357706 0+396636 0+434149 0+470378
18 0+039805 0+084386 0+130539 0+176013 0+219962 0+262164 0+302641 0+341497 0+378863 0+414872 0+449648
19 0+037791 0+080214 0+124291 0+167844 0+210015 0+25056 0+289477 0+326854 0+362808 0+39746 0+430927
20 0+035974 0+076444 0+118631 0+160434 0+200985 0+240021 0+277518 0+31355 0+348221 0+381642 0+413922
21 0+034326 0+073019 0+113479 0+153679 0+192747 0+230401 0+2666 0+301402 0+334901 0+367199 0+398397
22 0+032825 0+069893 0+108769 0+147495 0+185198 0+22158 0+256585 0+290258 0+322681 0+353949 0+384155

~continued!
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Table 2. continued

a0b 1 2 3 4 5 6 7 8 9 10 11

f+ C~qg,qb! as a function of a and b
12 12+11953 12+40135 12+74024 13+08894 13+43109 13+76146 14+07882 14+38344 14+67611 14+95779 15+22944
13 12+58505 12+84505 13+16803 13+50538 13+83918 14+16314 14+47541 14+77584 15+06498 15+34361 15+61255
14 13+03427 13+27391 13+58173 13+90814 14+23382 14+55156 14+85889 15+15529 15+44104 15+71675 15+98312
15 13+46882 13+68941 13+98273 14+29856 14+61637 14+92804 15+23057 15+52304 15+80551 16+0784 16+34232
16 13+89009 14+09278 14+37223 14+67783 14+98795 15+29371 15+59153 15+88017 16+15945 16+42962 16+69117
17 14+29923 14+48507 14+75123 15+0469 15+34954 15+6495 15+94272 16+22762 16+50377 16+77128 17+03054
18 14+69726 14+8672 15+1206 15+40664 15+70196 15+99625 16+28495 16+56617 16+83925 17+10418 17+36119
19 15+08504 15+23994 15+48107 15+75777 16+04595 16+33466 16+61892 16+89652 17+1666 17+42897 17+68379
20 15+46334 15+60399 15+83332 16+10093 16+38212 16+66537 16+94526 17+21929 17+48641 17+74628 17+99894
21 15+83283 15+95996 16+17791 16+43669 16+71104 16+98891 17+2645 17+53502 17+79921 18+05661 18+30715
22 16+19411 16+30836 16+51536 16+76554 17+03319 17+30578 17+57713 17+84418 18+10549 18+36044 18+60889
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