Hardy–Poincaré inequalities with boundary singularities

Mouhamed Moustapha Fall

Département de Mathématique, Université Catholique de Louvain-La-Neuve, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium (mouhamed.fall@uclouvain.be)

Roberta Musina

Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze 206, 33100 Udine, Italy (musina@dimi.uniud.it)

(MS received 27 April 2010; accepted 21 June 2011)

We are interested in variational problems involving weights that are singular at a point of the boundary of the domain. More precisely, we study a linear variational problem related to the Poincaré inequality and to the Hardy inequality for maps in $H_0^1(\Omega)$, where Ω is a bounded domain in \mathbb{R}^N , $N \ge 2$, with $0 \in \partial \Omega$. In particular, we give sufficient and necessary conditions so that the best constant is achieved.

1. Introduction

We are interested in linear variational problems involving weights that are singular at a point of the boundary of the domain. More precisely, let Ω be a bounded domain in \mathbb{R}^N , with $N \ge 2$. We assume that $0 \in \partial \Omega$, and that $\partial \Omega$ is sufficiently smooth (hereafter, the assumptions that Ω is Lipschitz and $\partial \Omega$ is of class C^2 at the origin are sufficient for our purposes). We study the minimization problem

$$\mu_{\lambda}(\Omega) := \inf_{u \in H_0^1(\Omega), \ u \neq 0} \frac{\int_{\Omega} |\nabla u|^2 \,\mathrm{d}x - \lambda \int_{\Omega} |u|^2 \,\mathrm{d}x}{\int_{\Omega} |x|^{-2} |u|^2 \,\mathrm{d}x},\tag{1.1}$$

where $\lambda \in \mathbb{R}$ is a varying parameter. For $\lambda = 0$ the Ω -Hardy constant $\mu_0(\Omega) \geq \frac{1}{4}(N-2)^2$ is the best constant in the Hardy inequality for maps supported by Ω . If N = 2, it has been proved [4, theorem 1.6] that $\mu_0(\Omega)$ is positive. Therefore, it always happens that $H_0^1(\Omega) \hookrightarrow L^2(\Omega; |x|^{-2} dx)$ with a continuous embedding.

Problem (1.1) has some similarities with the questions studied by Brézis and Marcus [1], where the weight is the inverse square of the distance from the boundary of Ω . The work of Dávila and Dupaigne [5] is related to the minimization problem (1.1). Indeed, note that, for any fixed $\lambda \in \mathbb{R}$, any extremal for $\mu_{\lambda}(\Omega)$ is a weak solution to the linear Dirichlet problem

$$-\Delta u = \mu |x|^{-2} u + \lambda u \text{ on } \Omega, \quad u = 0 \text{ on } \partial\Omega, \tag{1.2}$$

 \bigodot 2012 The Royal Society of Edinburgh

where $\mu = \mu_{\lambda}(\Omega)$. If $\mu_{\lambda}(\Omega)$ is achieved, then $\mu_{\lambda}(\Omega)$ is the first eigenvalue of the operator $-\Delta - \lambda$ on $H_0^1(\Omega) \hookrightarrow L^2(\Omega; |x|^{-2} dx)$. Starting from a different point of view, for $0 \in \Omega$, $N \ge 3$ and $\mu \le \frac{1}{4}(N-2)^2$, Dávila and Dupaigne proved [5] the existence of the first eigenfunction φ_1 of the operator $-\Delta - \mu |x|^{-2}$ on a suitable functional space $H(\Omega) \hookrightarrow L^2(\Omega)$, such that $H(\Omega) \supseteq H_0^1(\Omega)$. Note that φ_1 solves (1.2), where the eigenvalue λ depends on the datum μ .

The problem of the existence of extremals for the Ω -Hardy constant $\mu_0(\Omega)$ was discussed in [4] for the case where N = 2 (with Ω possibly unbounded or having a conical singularity at $0 \in \partial \Omega$) and in [14], where Ω is a suitable compact perturbation of a cone in \mathbb{R}^N . Hardy–Sobolev inequalities with singularity at the boundary have been studied by several authors (see, for example, [3,6,7,10–12] and the references therein).

The minimization problem (1.1) is not compact, due to the group of dilations in \mathbb{R}^N . Actually, it may be that all minimizing sequences concentrate at 0. In this case $\mu_{\lambda}(\Omega)$ is not achieved and $\mu_{\lambda}(\Omega) = \mu^+$, where

$$\mu^+ = \frac{1}{4}N^2$$

is the best constant in the Hardy inequality for maps with support in a half-space. Indeed, in $\S\,3$ we show that

$$\sup_{\lambda \in \mathbb{R}} \mu_{\lambda}(\Omega) = \mu^+, \tag{1.3}$$

then we deduce that, provided $\mu_{\lambda}(\Omega) < \mu^+$, every minimizing sequence for $\mu_{\lambda}(\Omega)$ converges in $H_0^1(\Omega)$ to an extremal for $\mu_{\lambda}(\Omega)$.

We recall that \varOmega is said to be locally concave at $0\in\partial\varOmega$ if there exists r>0 such that

$$\{x \in \mathbb{R}^N \mid x \cdot \nu > 0\} \cap B_r(0) \subset \Omega, \tag{1.4}$$

where ν is the interior normal of $\partial \Omega$ at 0. Note that if all the principal curvatures of $\partial \Omega$ at 0, with respect to ν , are strictly negative, then condition (1.4) is satisfied. Our first main result is stated in the following theorem.

THEOREM 1.1. Let $\Omega \in \mathbb{R}^N$ be a smooth bounded domain with $0 \in \partial \Omega$. Assume that Ω is locally concave at 0. Then $\mu_{\lambda}(\Omega)$ is attained if and only if $\mu_{\lambda}(\Omega) < \mu^+$.

The 'only if' part, which is the most intriguing, is a consequence of corollary 4.2, where we provide local non-existence results for the problem

$$-\Delta u \ge \mu |x|^{-2} u + \lambda u \text{ on } \Omega, \quad u \ge 0 \text{ in } \Omega, \tag{1.5}$$

and also for negative values of the parameter λ .

At this point, several questions concerning the infimum $\mu_{\lambda}(\Omega)$ are still open. Set

$$\lambda^* := \inf\{\lambda \in \mathbb{R} \mid \mu_\lambda(\Omega) < \mu^+\}.$$
(1.6)

Since the map $\lambda \mapsto \mu_{\lambda}(\Omega)$ is non-increasing, $\mu_{\lambda}(\Omega)$ is achieved for any $\lambda > \lambda^*$ by the existence theorem 3.2. If $\lambda^* \in \mathbb{R}$, then, from (1.3), it follows that $\mu_{\lambda}(\Omega) = \mu^+$ for any $\lambda \leq \lambda^*$, and hence $\mu_{\lambda}(\Omega)$ is not achieved if $\lambda < \lambda^*$. We do not know whether there exist domains Ω for which $\lambda^* = -\infty$. On the other hand, we are able to prove the following facts (see §6 for the precise statements).

- (i) If Ω is locally convex at 0, that is, if there exists r > 0 such that $\Omega \cap B_r(0)$ is contained in a half-space, then $\lambda^* > -\infty$.
- (ii) If Ω is contained in a half-space, then

$$\lambda^* \ge \frac{\lambda_1(\mathbb{D})}{|\operatorname{diam}(\Omega)|^2},\tag{1.7}$$

where $\lambda_1(\mathbb{D})$ is the first Dirichlet eigenvalue of the unit ball \mathbb{D} in \mathbb{R}^2 and diam(Ω) is the diameter of Ω .

(iii) For any $\delta > 0$, there exists $\rho_{\delta} > 0$ such that if

$$\Omega \supseteq \{ x \in \mathbb{R}^N \mid x \cdot \nu > -\delta |x|, \ \alpha < |x| < \beta \}$$

for some $\nu \in \mathbb{S}^{N-1}$, $\beta > \alpha > 0$ with $\beta/\alpha > \rho_{\delta}$, then $\lambda^* < 0$. In particular, the Hardy constant $\mu_0(\Omega)$ is achieved.

The relevance of the geometry of Ω at the origin is confirmed by theorem 1.1, by item (i) and by the existence theorems proved in [10–12] for a related superlinear problem. However, it should also be noted that the (conformal) 'size' of Ω (even far away from the origin) has some impact on the existence of compact minimizing sequences. Actually, no requirement on the curvature of Ω at 0 is needed in (iii). In particular, there exist smooth domains having strictly positive principal curvatures at 0, and such that the Hardy constant $\mu_0(\Omega)$ is achieved.

This paper is organized as follows. In § 2 we point out a few remarks on the Hardy inequality on dilation-invariant domains. In § 3 (see theorem 3.2 we give sufficient conditions for the existence of minimizers for (1.1). In §4 we prove some non-existence theorems for solutions to (1.5) that might have an independent interest.

To prove inequality (1.7) for the case where Ω is contained in a half-space, in §5 we provide computable remainder terms for the Hardy inequality on half-balls. We adopt here an argument by Brézis and Vázquez [2], where bounded domains $\Omega \subset \mathbb{R}^N$ with $N \ge 3$ and $0 \in \Omega$ are considered.

In §6 we estimate λ^* from below and from above, under suitable assumptions on Ω .

Notation

• \mathbb{R}^N_+ and \mathbb{S}^{N-1}_+ denote any half-space and any hemisphere, respectively. More precisely,

$$\mathbb{R}^N_+ = \{ x \in \mathbb{R}^N \mid x \cdot \nu > 0 \}, \qquad \mathbb{S}^{N-1}_+ = \mathbb{S}^{N-1} \cap \mathbb{R}^N_+,$$

where ν is any unit vector in \mathbb{R}^N .

- $B_R(x)$ is the open ball in \mathbb{R}^N of radius r centred at x. If x = 0, we simply write B_R . If N = 2, we shall often write \mathbb{D}_R and \mathbb{D} instead of B_R and B_1 , respectively.
- We denote by $H^1(\mathbb{S}^{N-1})$ the standard Sobolev space of maps on the unit sphere and we denote by ∇_{σ} and Δ_{σ} the gradient and the Laplace-Beltrami operator on \mathbb{S}^{N-1} , respectively.

- Let Σ be a domain in \mathbb{S}^{N-1} . We denote by $H_0^1(\Sigma)$ the closure of $C_c^{\infty}(\Sigma)$ in the $H^1(\mathbb{S}^{N-1})$ -space and by $\lambda_1(\Sigma)$ the first Dirichlet eigenvalue on Σ .
- A bounded domain $\Omega \subset \mathbb{R}^N$ with $0 \in \partial \Omega$ is said to be *smooth* if $\partial \Omega$ is of class C^2 in a neighbourhood of the origin.

We denote by $L^2(\Omega; |x|^{-2} dx)$ the space of measurable maps on Ω such that

$$\int_{\Omega} |x|^{-2} |u|^2 \, \mathrm{d}x < \infty.$$

We also set

$$\hat{H}^1(\Omega) := H^1(\Omega) \cap L^2(\Omega; |x|^{-2} \,\mathrm{d}x),$$

where $H^1(\Omega)$ is the standard Sobolev space of maps on Ω .

2. Preliminaries

In this section we collect a few remarks on the Hardy inequality on dilation-invariant domains that are partially contained, for example, in [4] (in the case where N = 2) and in [14].

Via polar coordinates, to any domain Σ in \mathbb{S}^{N-1} we associate a cone $\mathcal{C}_{\Sigma} \subset \mathbb{R}^{N-1}$ and a (half) cylinder $\mathcal{Z}_{\Sigma} \subset \mathbb{R}^{N+1}$ by setting

$$\mathcal{C}_{\Sigma} := \{ t\sigma \mid t > 0, \ \sigma \in \Sigma \}, \qquad \mathcal{Z}_{\Sigma} := \mathbb{R}_+ \times \Sigma.$$

If Σ is a smooth domain in \mathbb{S}^{N-1} , then \mathcal{C}_{Σ} is a Lipschitz dilation-invariant domain in \mathbb{R}^{N-1} . In particular, if Σ is a half-sphere, then \mathcal{C}_{Σ} is a half-space. The map

$$\mathbb{R}^{N-1} \setminus \{0\} \to \mathbb{R}^{N+1}, \qquad x \mapsto \left(-\log|x|, \frac{x}{|x|}\right)$$

is a homeomorphism $\mathcal{C}_{\Sigma} \to \mathcal{Z}_{\Sigma}$. It induces the Emden–Fowler transform

$$T \colon C^{\infty}_{c}(\mathcal{C}_{\Sigma}) \to C^{\infty}_{c}(\mathcal{Z}_{\Sigma}), \qquad u(x) = |x|^{(2-N)/2}(Tu) \left(-\log|x|, \frac{x}{|x|}\right).$$

A direct computation based on the divergence theorem gives

$$\int_{\mathcal{C}_{\Sigma}} |\nabla u|^2 \,\mathrm{d}x = \frac{1}{4} (N-2)^2 \int_0^\infty \int_{\Sigma} |Tu|^2 \,\mathrm{d}s \,\mathrm{d}\sigma + \int_0^\infty \int_{\Sigma} |\nabla_{s,\sigma} Tu|^2 \,\mathrm{d}s \,\mathrm{d}\sigma, \quad (2.1)$$
$$\int_{\mathcal{C}_{\Sigma}} |x|^{-2} |u|^2 \,\mathrm{d}x = \int_0^\infty \int_{\Sigma} |Tu|^2 \,\mathrm{d}s \,\mathrm{d}\sigma, \quad (2.2)$$

where $\nabla_{s,\sigma} = (\partial_s, \nabla_\sigma)$ denotes the gradient on $\mathbb{R}_+ \times \mathbb{S}^{N-1}$.

Now we introduce the Hardy constant on the cone \mathcal{C}_{Σ} :

$$\mu_0(\mathcal{C}_{\Sigma}) := \inf_{u \in C_c^{\infty}(\mathcal{C}_{\Sigma}), \ u \neq 0} \frac{\int_{\mathcal{C}_{\Sigma}} |\nabla u|^2 \, \mathrm{d}x}{\int_{\mathcal{C}_{\Sigma}} |x|^{-2} |u|^2 \, \mathrm{d}x}.$$
(2.3)

In the next proposition we note that the Hardy inequality on C_{Σ} is equivalent to the Poincaré inequality for maps supported by the cylinder \mathcal{Z}_{Σ} .

PROPOSITION 2.1. Let C_{Σ} be a cone. Then

$$\mu_0(\mathcal{C}_{\Sigma}) = \frac{1}{4}(N-2)^2 + \lambda_1(\Sigma)$$

Proof. By (2.1) and (2.2), it turns out that

$$\mu_0(\mathcal{C}_{\Sigma}) - \frac{1}{4}(N-2)^2 = \inf_{v \in C_c^{\infty}(\mathcal{Z}_{\Sigma}), v \neq 0} \frac{\int_0^{\infty} \int_{\Sigma} |\nabla_{s,\sigma} v|^2 \,\mathrm{d}s \,\mathrm{d}\sigma}{\int_0^{\infty} \int_{\Sigma} |v|^2 \,\mathrm{d}s \,\mathrm{d}\sigma}$$
$$=: \lambda_1(\mathcal{Z}_{\Sigma}).$$

The result follows by noting that $\lambda_1(\mathcal{Z}_{\Sigma}) = \lambda_1(\Sigma)$.

The eigenvalue $\lambda_1(\Sigma)$ is explicitly known in few cases. For example, if $\Sigma = \mathbb{S}^{N-1}_+$ is a half-sphere, then $\lambda_1(\mathbb{S}^{N-1}_+) = N - 1$. Thus, the Hardy constant of a half-space is given by

$$\mu_0(\mathbb{R}^N_+) = \mu^+ := \frac{1}{4}N^2.$$
(2.4)

If N = 2 and if $\mathcal{C}_{\Sigma_{\theta}} \subset \mathbb{R}^2$ is a cone of amplitude $\theta \in (0, 2\pi]$ then $\lambda_1(\Sigma_{\theta})$ coincide with the Dirichlet eigenvalue on the interval $(0, \theta)$. Hence, we obtain the conclusion, which was first pointed out in [4]:

$$\mu_0(\mathcal{C}_{\Sigma_\theta}) = \frac{\pi^2}{\theta^2} \ge \frac{1}{4}.$$
(2.5)

Let Σ be a domain in \mathbb{S}^{N-1} . If $N \ge 3$, the space $\mathcal{D}^{1,2}(\mathcal{C}_{\Sigma})$ is defined in a standard way as a close subspace of $\mathcal{D}^{1,2}(\mathbb{R}^{N-1})$. Note that, in the case where $\Sigma = \mathbb{S}^{N-1}$, it turns out that

$$\mathcal{D}^{1,2}(\mathcal{C}_{\mathbb{S}^{N-1}}) = \mathcal{D}^{1,2}(\mathbb{R}^N \setminus \{0\}) = \mathcal{D}^{1,2}(\mathbb{R}^N)$$

by a known density result.

If N = 2 and if Σ is properly contained in \mathbb{S}^1 , then $\mu_0(\mathcal{C}_{\Sigma}) > 0$ by (2.5). In this case we can introduce the space $\mathcal{D}^{1,2}(\mathcal{C}_{\Sigma})$ by completing $C_c^{\infty}(\mathcal{C}_{\Sigma})$ with respect to the Hilbertian norm $(\int_{\mathcal{C}_{\Sigma}} |\nabla u|^2 dx)^{1/2}$. The next result is an immediate consequence of the fact that the Dirichlet eigen-

The next result is an immediate consequence of the fact that the Dirichlet eigenvalue problem of $-\Delta$ in the strip \mathcal{Z}_{Σ} is never achieved. The same conclusion was already noted in [4] in the case N = 2 and in [14].

PROPOSITION 2.2. Let Σ be a domain in \mathbb{S}^{N-1} . Then $\mu_0(\mathcal{C}_{\Sigma})$ is not achieved in $\mathcal{D}^{1,2}(\mathcal{C}_{\Sigma})$.

3. Existence

In this section we show that the condition $\mu_{\lambda}(\Omega) < \mu^{+} = \frac{1}{4}N^{2}$ is sufficient to guarantee the existence of a minimizer for $\mu_{\lambda}(\Omega)$. We note here that, throughout this section, the regularity of Ω can be relaxed to Lipschitz domains that are of class C^{2} at 0. We start with a preliminary result.

LEMMA 3.1. Let Ω be a smooth domain with $0 \in \partial \Omega$. Then

$$\sup_{\lambda \in \mathbb{R}} \mu_{\lambda}(\Omega) = \mu^+$$

773

Proof. The proof will be carried out in two steps.

(i) We claim that $\sup_{\lambda \in \mathbb{R}} \mu_{\lambda}(\Omega) \ge \mu^+$.

We denote by ν the interior normal of $\partial \Omega$ at 0. For $\delta > 0$, we consider the cone

$$\mathcal{C}_{-}^{\delta} := \{ x \in \mathbb{R}^{N-1} \mid x \cdot \nu > -\delta |x| \}$$

Now fix $\varepsilon > 0$. If δ is sufficiently small, then $\mu_0(\mathcal{C}^{\delta}_{-}) \ge \mu^+ - \varepsilon$. Since Ω is smooth at 0, there exists a small radius r > 0 (depending on δ) such that $\Omega \cap B_{r_{\delta}}(0) \subset \mathcal{C}^{\delta}_{-}$. Next, let $\psi \in C^{\infty}(B_r(0))$ be a cut-off function, satisfying

 $0 \leqslant \psi \leqslant 1, \qquad \psi \equiv 0 \text{ in } \mathbb{R}^N \setminus B_{r/2}(0), \qquad \psi \equiv 1 \text{ in } B_{r/4}(0).$

We write any $u \in H_0^1(\Omega)$ as $u = \psi u + (1 - \psi)u$ to obtain

$$\int_{\Omega} |x|^{-2} |u|^2 \, \mathrm{d}x \leqslant \int_{\Omega} |x|^{-2} |\psi u|^2 \, \mathrm{d}x + c \int_{\Omega} |u|^2 \, \mathrm{d}x, \tag{3.1}$$

where the constant c does not depend on u. Since $\psi u \in \mathcal{D}^{1,2}(\mathcal{C}^{\delta}_{-})$, then

$$(\mu^+ -\varepsilon) \int_{\Omega} |x|^{-2} |\psi u|^2 \,\mathrm{d}x \leqslant \mu_0(\mathcal{C}^{\delta}_-) \int_{\Omega} |x|^{-2} |\psi u|^2 \,\mathrm{d}x \leqslant \int_{\Omega} |\nabla(\psi u)|^2 \,\mathrm{d}x \qquad (3.2)$$

by our choice of the cone \mathcal{C}_{-}^{δ} . In addition, we have

$$\int_{\Omega} |\nabla(\psi u)|^2 \,\mathrm{d}x \leqslant \int_{\Omega} |\nabla u|^2 \,\mathrm{d}x + \frac{1}{2} \int_{\Omega} \nabla(\psi^2) \cdot \nabla(u^2) \,\mathrm{d}x + c \int_{\Omega} |u|^2 \,\mathrm{d}x.$$

Integrating by parts, we obtain

$$\int_{\Omega} |\nabla(\psi u)|^2 \,\mathrm{d}x \leqslant \int_{\Omega} |\nabla u|^2 \,\mathrm{d}x - \frac{1}{2} \int_{\Omega} \Delta(\psi^2) |u|^2 \,\mathrm{d}x + c \int_{\Omega} |u|^2 \,\mathrm{d}x.$$

Comparing this with (3.1) and (3.2), we infer that there exists a positive constant c depending only on δ such that

$$(\mu^{+} - \varepsilon) \int_{\Omega} |x|^{-2} |u|^{2} \,\mathrm{d}x \leqslant \int_{\Omega} |\nabla u|^{2} \,\mathrm{d}x + c \int_{\Omega} |u|^{2} \,\mathrm{d}x \quad \forall u \in H_{0}^{1}(\Omega).$$
(3.3)

Hence, we obtain $(\mu^+ - \varepsilon) \leq \mu_{-c}(\Omega)$. Consequently, $(\mu^+ - \varepsilon) \leq \sup_{\lambda} \mu_{\lambda}(\Omega)$, and the conclusion follows by letting $\varepsilon \to 0$.

(ii) We claim that $\sup_{\lambda} \mu_{\lambda}(\Omega) \leq \mu^{+}$.

For $\delta > 0$ we consider the cone

$$\mathcal{C}^{\delta}_{+} := \{ x \in \mathbb{R}^{N-1} \mid x \cdot \nu > \delta |x| \}.$$

As in the first step, for any $\delta > 0$ there exists $r_{\delta} > 0$ such that $\mathcal{C}^{\delta}_{+} \cap B_{r}(0) \subset \Omega$ for all $r \in (0, r_{\delta})$. Clearly, by scale invariance,

$$\mu_0(\mathcal{C}^{\delta}_+ \cap B_r(0)) = \mu_0(\mathcal{C}^{\delta}_+).$$

For $\varepsilon > 0$, we let $\phi \in H_0^1(\mathcal{C}^{\delta}_+ \cap B_r(0))$ such that

$$\frac{\int_{\mathcal{C}^{\delta}_{+}\cap B_{r}(0)}|\nabla\phi|^{2}\,\mathrm{d}x}{\int_{\mathcal{C}^{\delta}_{+}\cap B_{r}(0)}|x|^{-2}|\phi|^{2}\,\mathrm{d}x}\leqslant\mu_{0}(\mathcal{C}^{\delta}_{+})+\varepsilon.$$

From this we deduce that

$$\begin{split} \mu_{\lambda}(\varOmega) &\leqslant \frac{\int_{\mathcal{C}^{\delta}_{+} \cap B_{r}(0)} |\nabla \phi|^{2} \,\mathrm{d}x - \lambda \int_{\mathcal{C}^{\delta}_{+} \cap B_{r}(0)} |\phi|^{2} \,\mathrm{d}x}{\int_{\mathcal{C}^{\delta}_{+} \cap B_{r_{\delta}}(0)} |x|^{-2} |\phi|^{2} \,\mathrm{d}x} \\ &\leqslant \mu_{0}(\mathcal{C}^{\delta}_{+}) + \varepsilon + |\lambda| \frac{\int_{\mathcal{C}^{\delta}_{+} \cap B_{r}(0)} |\phi|^{2} \,\mathrm{d}x}{\int_{\mathcal{C}^{\delta}_{+} \cap B_{r}(0)} |x|^{-2} |\phi|^{2} \,\mathrm{d}x}. \end{split}$$

Since

$$\int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)} |x|^{-2} |\phi|^{2} \, \mathrm{d}x \ge r^{-2} \int_{\mathcal{C}_{+}^{\delta} \cap B_{r}(0)} |\phi|^{2} \, \mathrm{d}x.$$

we obtain

$$\mu_{\lambda}(\Omega) \leqslant \mu_0(\mathcal{C}^{\delta}_+) + \varepsilon + r^2 |\lambda|.$$

The conclusion follows immediately, since $\mu_0(\mathcal{C}^{\delta}_+) \to \mu^+$ when $\delta \to 0$.

Note that if Ω is bounded, then by (3.3) and the Poincaré inequality,

$$\mu_0(\Omega) > 0. \tag{3.4}$$

This was shown in [4] for the case when N = 2 and for more general domains. We are now in a position to prove the main result of this section.

THEOREM 3.2. Let $\lambda \in \mathbb{R}$ and let Ω be a smooth bounded domain of \mathbb{R}^N with $0 \in \partial \Omega$. If $\mu_{\lambda}(\Omega) < \mu^+$, then $\mu_{\lambda}(\Omega)$ is attained.

Proof. Let $u_n \in H^1_0(\Omega)$ be a minimizing sequence for $\mu_{\lambda}(\Omega)$. We can normalize it to obtain

$$\int_{\Omega} |\nabla u_n|^2 = 1, \tag{3.5}$$

$$1 - \lambda \int_{\Omega} |u_n|^2 = \mu_{\lambda}(\Omega) \int_{\Omega} |x|^{-2} |u_n|^2 + o(1).$$
 (3.6)

We can assume that $u_n \rightharpoonup u$ weakly in $H_0^1(\Omega)$, $|x|^{-1}u_n \rightharpoonup |x|^{-1}u$ weakly in $L^2(\Omega)$, and $u_n \rightarrow u$ in $L^2(\Omega)$, by (3.4) and by the Rellich theorem. Setting $\theta_n := u_n - u$, from (3.5) and (3.6) we obtain

$$\int_{\Omega} |\nabla \theta_n|^2 + \int_{\Omega} |\nabla u|^2 = 1 + o(1),$$

$$1 - \lambda \int_{\Omega} |u|^2 = \mu_\lambda(\Omega) \left(\int_{\Omega} |x|^{-2} |\theta_n|^2 + \int_{\Omega} |x|^{-2} |u|^2 \right) + o(1).$$
(3.7)

By lemma 3.1, for any fixed positive $\delta < \mu^+ - \mu_{\lambda}(\Omega)$, there exists $\lambda_{\delta} \in \mathbb{R}$ such that $\mu_{\lambda_{\delta}}(\Omega) \ge \mu^+ - \delta$. Hence,

$$\int_{\Omega} |\nabla \theta_n|^2 + o(1) \ge (\mu^+ - \delta) \int_{\Omega} |x|^{-2} |\theta_n|^2,$$

775

as $\theta_n \to 0$ in $L^2(\Omega)$. Testing $\mu_{\lambda}(\Omega)$ with u, we obtain

$$\begin{split} \mu_{\lambda}(\Omega) \int_{\Omega} |x|^{-2} |u|^{2} &\leq \int_{\Omega} |\nabla u|^{2} - \lambda \int_{\Omega} |u|^{2} \\ &\leq 1 - \int_{\Omega} |\nabla \theta_{n}|^{2} - \lambda \int_{\Omega} |u|^{2} + o(1) \\ &\leq 1 - (\mu^{+} - \delta) \int_{\Omega} |x|^{-2} |\theta_{n}|^{2} - \lambda \int_{\Omega} |u|^{2} + o(1) \\ &\leq (\mu_{\lambda}(\Omega) - \mu^{+} + \delta) \int_{\Omega} |x|^{-2} |\theta_{n}|^{2} + \mu_{\lambda}(\Omega) \int_{\Omega} |x|^{-2} |u|^{2} + o(1) \end{split}$$

by (3.7). Therefore,

776

$$\int_{\Omega} |x|^{-2} |\theta_n|^2 \to 0,$$

since $\mu_{\lambda}(\Omega) - \mu^{+} + \delta < 0$. In particular,

$$\mu_{\lambda}(\Omega) \int_{\Omega} |x|^{-2} |u|^2 = \int_{\Omega} |\nabla u|^2 - \lambda \int_{\Omega} |u|^2$$

and $u \neq 0$ by (3.7). Thus, u achieves $\mu_{\lambda}(\Omega)$.

We conclude this section with a corollary of theorem 3.2.

COROLLARY 3.3. Let Ω be a smooth bounded domain of \mathbb{R}^N with $0 \in \partial \Omega$. Then

$$\frac{1}{4}(N-2)^2 < \mu_0(\Omega) \leqslant \frac{1}{4}N^2.$$

Proof. It has already been proved in lemma 3.1 that $\mu_{\lambda}(\Omega) \leq \frac{1}{4}N^2$. If the strict inequality holds, then, by theorem 3.2, there exists $u \in H_0^1(\Omega)$ that achieves $\mu_0(\Omega)$. But then $\frac{1}{4}(N-2)^2 < \mu_0(\Omega)$, otherwise a null extension of u outside Ω would achieve the Hardy constant on \mathbb{R}^N .

REMARK 3.4. Following [4], for non-smooth domains Ω we can introduce the 'limiting' Hardy constant

$$\hat{\mu}_0(\Omega) = \sup_{r>0} \mu_0(\Omega \cap B_r).$$

Using similar arguments it can be proved that $\sup_{\lambda} \mu_{\lambda}(\Omega) = \hat{\mu}_{0}(\Omega)$, and that $\mu_{\lambda}(\Omega)$ is achieved provided $\mu_{\lambda}(\Omega) < \hat{\mu}_{0}(\Omega)$.

4. Non-existence

The main result in this section is stated in the following theorem.

THEOREM 4.1. Let Ω be a domain in \mathbb{R}^N , $N \ge 2$, and let $\lambda \in \mathbb{R}$. Assume that there exist R > 0 and a Lipschitz domain $\Sigma \subset \mathbb{S}^{N-1}$ such that $B_R \cap \mathcal{C}_{\Sigma} \subset \Omega$. If $u \in \hat{H}^1(\Omega)$ solves

$$-\Delta u \ge \left(\frac{1}{4}(N-2)^2 + \lambda_1(\Sigma)\right)|x|^{-2}u + \lambda u \quad in \ \mathcal{D}'(\Omega \setminus \{0\}), \quad u \ge 0, \tag{4.1}$$

then $u \equiv 0$ in Ω .

Before proving theorem 4.1 we point out some of its consequences.

COROLLARY 4.2. Let Ω be a smooth bounded domain containing a half-ball and such that $0 \in \partial \Omega$. If $\mu_{\lambda}(\Omega) = \mu^+$, then $\mu_{\lambda}(\Omega)$ is not achieved.

Proof. Assume that u achieves $\mu_{\lambda}(\Omega) = \mu^+$. Then u is a weak solution to

$$-\Delta u = \mu^+ |x|^{-2} u + \lambda u. \tag{4.2}$$

Test (4.2) with the negative and the positive part of u to conclude that u has constant sign. Now, by the maximum principle, u > 0 in Ω , contradicting theorem 4.1, since $\Omega \supset B_R \cap \mathcal{C}_{\mathbb{S}^{N-1}_+}$ and $\lambda_1(\mathbb{S}^{N-1}_+) = N - 1$.

We also point out the following consequence to theorem 4.1, which holds for smooth domains Ω with $0 \in \partial \Omega$.

THEOREM 4.3. Let Ω be a smooth domain in \mathbb{R}^N , $N \ge 2$, with $0 \in \partial \Omega$ and let $\lambda \in \mathbb{R}$. If $u \in \hat{H}^1(\Omega)$ solves

$$-\Delta u \ge \mu |x|^{-2}u + \lambda u \quad in \ \mathcal{D}'(\Omega), \quad u \ge 0,$$

for some $\mu > \mu^+$, then $u \equiv 0$ in Ω .

Proof. We start by noting that there exists a geodesic ball $\Sigma \subset \mathbb{S}^{N-1}$ contained in a hemisphere, and such that $\lambda_1(\Sigma) \leq N - 1 + \mu - \mu^+$. Since $0 \in \partial \Omega$ and since $\partial \Omega$ is smooth then, up to a rotation, we can find a small radius r > 0 such that $B_r \cap \mathcal{C}_{\Sigma} \subset \Omega$. The conclusion follows from theorem 4.1, as $\mu \geq \frac{1}{4}(N-2)^2 + \lambda_1(\Sigma)$.

REMARK 4.4. Theorem 4.1 also applies when the origin lies in the interior of the domain. More precisely, let Ω be any domain in \mathbb{R}^N , with $N \ge 2$ and $0 \in \Omega$. If $u \in \hat{H}^1_{\text{loc}}(\Omega)$ is a non-negative solution to

$$-\Delta u \ge \frac{1}{4}(N-2)^2 |x|^{-2}u + \lambda u \quad \text{in } \mathcal{D}'(\Omega \setminus \{0\})$$

for some $\lambda \in \mathbb{R}$, then $u \equiv 0$ in Ω .

In order to prove theorem 4.1 we need few preliminary results regarding maps of two variables. Recall that $\mathbb{D}_R \subset \mathbb{R}^2$ is the open disc of radius R centred at 0.

LEMMA 4.5. Let $\psi \in \hat{H}^1(\mathbb{D}_R)$ and $f \in L^1_{loc}(\mathbb{D}_R)$ for some R > 0. If ψ solves

$$-\Delta \psi \ge f \quad in \ \mathcal{D}'(\mathbb{D}_R \setminus \{0\}), \tag{4.3}$$

then $-\Delta \psi \ge f$ in $\mathcal{D}'(\mathbb{D}_R)$.

Proof. We start by noting that, from

$$\infty > \int_{\mathbb{D}_R} |z|^{-2} |\psi|^2 = \int_0^R \frac{1}{r} \left(r^{-1} \int_{\partial B_r} |\psi|^2 \right),$$

it follows that there exists a sequence $r_h \to 0, r_h \in (0, R)$ such that

$$r_h^{-1} \int_{\partial B_{r_h}} |\psi|^2 \to 0, \qquad r_h^{-2} \int_{\partial B_{r_h^2}} |\psi|^2 \to 0 \tag{4.4}$$

as $h \to \infty$. Next we introduce the following cut-off functions:

$$\eta_h(z) = \begin{cases} 0 & \text{if } |z| \le r_h^2, \\ \frac{\log |z|/r_h^2}{|\log r_h|} & \text{if } r_h^2 < |z| < r_h, \\ 1 & \text{if } r_h \le |z| \le R. \end{cases}$$

Let $\varphi \in C^{\infty}_{c}(\mathbb{D}_{R})$ be any non-negative function. We test (4.3) with $\eta_{h}\varphi$ to obtain

$$\int \nabla \psi \cdot \nabla (\eta_h \varphi) \ge \int f \eta_h \varphi$$

Since $\psi \in H^1(\mathbb{D}_R)$ and since $\eta_h \rightharpoonup 1$ weakly^{*} in L^{∞} , it is easy to check that

$$\int f \eta_h \varphi = \int f \varphi + o(1), \qquad \int \eta_h \nabla \psi \cdot \nabla \varphi = \int \nabla \psi \cdot \nabla \varphi + o(1)$$

as $h \to \infty$. Therefore,

$$\int \nabla \psi \cdot \nabla \varphi + \int \varphi \nabla \psi \cdot \nabla \eta_h \ge \int f \varphi + o(1).$$
(4.5)

To pass to the limit in the left-hand side, we note that $\nabla \eta_h$ vanishes outside the annulus $A_h := \{r_h^2 < |z| < r_h\}$, and that η_h is harmonic on A_h . Thus,

$$\int \varphi \nabla \psi \cdot \nabla \eta_h = \int_{A_h} \nabla (\psi \varphi) \cdot \nabla \eta_h - \int_{A_h} \psi \nabla \varphi \cdot \nabla \psi$$
$$= \mathcal{R}_h - \int_{A_h} \psi \nabla \varphi \cdot \nabla \eta_h,$$

where

$$\mathcal{R}_h := -r_h^{-2} \int_{\partial B_{r_h^2}} (\nabla \eta_h \cdot z) \psi \varphi + r_h^{-1} \int_{\partial B_{r_h}} (\nabla \eta_h \cdot z) \psi \varphi.$$

Now

$$|\mathcal{R}_{h}| \leq c(r_{h}|\log r_{h}|)^{-1} \int_{\partial B_{r_{h}}} |\psi| + c \ (r_{h}^{2}|\log r_{h}|)^{-1} \int_{\partial B_{r_{h}^{2}}} |\psi|,$$

where c > 0 is a constant that does not depend on h, and

$$(r_h |\log r_h|)^{-1} \int_{\partial B_{r_h}} |\psi| \le c |\log r_h|^{-1} \left(r_h^{-1} \int_{\partial B_{r_h}} |\psi|^2 \right)^{1/2} = o(1)$$

by the Hölder inequality and by (4.4). In the same way, also

$$(r_h^2|\log r_h|)^{-1} \int_{\partial B_{r_h^2}} |\psi| \leqslant c |\log r_h|^{-1} \left(r_h^{-2} \int_{\partial B_{r_h^2}} |\psi|^2 \right)^{1/2} = o(1),$$

and hence $\mathcal{R}_h = o(1)$. Moreover, from $\psi \in L^2(\mathbb{D}_R; |z|^{-2} dz)$ it follows that

$$\left| \int_{A_h} \psi \nabla \varphi \cdot \nabla \eta_h \right| |\log r_h|^{-1} \int |z|^{-1} \psi |\nabla \varphi| = o(1).$$

In conclusion, we have proved that

$$\int \varphi \nabla \psi \cdot \nabla \eta_h = o(1),$$

and therefore (4.5) gives

$$\int \nabla \psi \cdot \nabla \varphi \geqslant \int f \varphi.$$

Since φ was an arbitrary non-negative function in $C_{c}^{\infty}(\mathbb{D}_{R})$, this proves that $-\Delta \psi \ge f$ in the distributional sense on \mathbb{D}_{R} , as desired.

The same proof gives a similar result for subsolutions.

LEMMA 4.6. Let $\varphi \in \hat{H}^1(\mathbb{D}_R)$ and $f \in L^1_{loc}(\mathbb{D}_R)$ for some R > 0. If φ solves

 $\Delta \varphi \ge f \quad in \ \mathcal{D}'(\mathbb{D}_R \setminus \{0\}),$

then $\Delta \varphi \ge f$ in $\mathcal{D}'(\mathbb{D}_R)$.

The next result is crucial in our proof. We state it in a more general form than needed, as it could have an independent interest. Note that we do not need any *a priori* knowledge of the sign of ψ in the interior of its domain.

LEMMA 4.7. For any $\lambda \in \mathbb{R}$ there exists $R_{\lambda} > 0$ such that for any $R \in (0, R_{\lambda})$, $\varepsilon > 0$, problem

$$\begin{array}{ll} -\Delta\psi \ge \lambda\psi & \text{in } \mathcal{D}'(\mathbb{D}_R \setminus \{0\}), \\ \psi \ge \varepsilon & \text{on } \partial \mathbb{D}_R. \end{array}$$

$$(4.6)$$

has no solution $\psi \in \hat{H}^1(\mathbb{D}_R)$.

Proof. We fix sufficiently small $R_{\lambda} < \frac{1}{3}$ in such a way that

$$\lambda < \lambda_1(\mathbb{D}_{R_\lambda}) \qquad \text{if } \lambda \ge 0, \qquad (4.7)$$

$$|\lambda||z|^2 |\log|z||^2 \leqslant \frac{3}{4} \quad \text{for any } z \in \mathbb{D}_{R_\lambda} \quad \text{if } \lambda < 0.$$

$$(4.8)$$

We claim that the conclusion in lemma 4.7 holds with this choice of R_{λ} . We argue by contradiction. Let $R < R_{\lambda}$ and $\varepsilon > 0$, $\psi \in \hat{H}^1(\mathbb{D}_R)$ as in (4.6).

For any $\delta \in (\frac{1}{2}, 1)$ we introduce the following radially symmetric function on \mathbb{D}_R :

$$\varphi_{\delta}(z) = |\log |z||^{-\delta}$$

By direct computation one can easily check that $\varphi_{\delta} \in \hat{H}^1(\mathbb{D}_R)$, and, in particular,

$$(2\delta - 1) \int_{\mathbb{D}_R} |z|^{-2} |\varphi_{\delta}|^2 = 2\pi + o(1) \text{ as } \delta \to \frac{1}{2}.$$
 (4.9)

Since $\delta > \frac{1}{2}$, φ_{δ} is a smooth solution to

$$\Delta \varphi_{\delta} \ge \frac{3}{4} |z|^{-2} |\log |z||^{-2+\delta} = \frac{3}{4} |z|^{-2} |\log |z||^{-2} \varphi_{\delta}$$
(4.10)

in $\mathbb{D}_R \setminus \{0\}$. By lemma 4.6 we infer that φ_{δ} solves (4.10) in the dual of $\hat{H}^1(\mathbb{D}_R)$. Next we set

$$v := \varepsilon \varphi_{\delta} - \psi \in \hat{H}^1(\mathbb{D}_R),$$

and we note that $v \leq 0$ on $\partial \mathbb{D}_R$, as $R < \frac{1}{3}$. Note also that

$$\Delta v \ge \frac{3}{4} |z|^{-2} |\log |z||^{-2} (\varepsilon \varphi_{\delta}) + \lambda \psi$$
$$= [\frac{3}{4} |z|^{-2} |\log |z||^{-2} + \lambda] (\varepsilon \varphi_{\delta}) - \lambda v$$

on the dual of $\hat{H}^1(\mathbb{D}_R)$, by (4.8). We use

$$v^+ := \max\{v, 0\} \in H^1_0(\mathbb{D}_R) \cap \hat{H}^1(\mathbb{D}_R)$$

as a test function to obtain

$$-\int_{\mathbb{D}_R} |\nabla v^+|^2 \ge \int_{\mathbb{D}_R} [\frac{3}{4}|z|^{-2}|\log|z||^{-2} + \lambda](\varepsilon\varphi_{\delta})v^+ - \lambda \int_{\mathbb{D}_R} |v^+|^2.$$

If $\lambda \ge 0$, we infer that

$$\int_{\mathbb{D}_R} |\nabla v^+|^2 \leqslant \lambda \int_{\mathbb{D}_R} |v^+|^2$$

and hence $v^+ \equiv 0$ on \mathbb{D}_R by (4.7). If $\lambda < 0$, we get

$$0 \ge -\int_{\mathbb{D}_R} |\nabla v^+|^2 \ge |\lambda| \int_{\mathbb{D}_R} |v^+|^2,$$

and hence again $v^+ = 0$ on \mathbb{D}_R , by (4.8). Thus $\psi \ge \varepsilon \varphi_{\delta}$ on \mathbb{D}_R , and therefore

$$\infty > \int_{\mathbb{D}_R} |z|^{-2} |\psi|^2 \ge \varepsilon \int_{\mathbb{D}_R} |z|^{-2} |\varphi_{\delta}|^2,$$

which contradicts (4.9).

Proof of theorem 4.1. Without loss of generality, we may assume that $\lambda < 0$. Let $\Phi > 0$ be the first eigenfunction of $-\Delta_{\sigma}$ on Σ . Thus Φ solves

$$\begin{aligned} -\Delta_{\sigma} \Phi &= \lambda_1(\Sigma) \Phi \quad \text{in } \Sigma, \\ \Phi &= 0, \quad \frac{\partial \Phi}{\partial \eta} \leqslant 0 \quad \text{on } \partial \Sigma, \end{aligned}$$
 (4.11)

where $\eta \in T_{\sigma}(\mathbb{S}^{N-1})$ is the exterior normal to Σ at $\sigma \in \partial \Sigma$.

By density and the trace theorem, we can define the radially symmetric map ψ in $\mathbb{D}_R \setminus \{0\}$ as

$$\psi(z) = |z|^{(N-2)/2} \int_{\Sigma} u(|z|\sigma) \Phi(\sigma) \,\mathrm{d}\sigma$$
$$= |z|^{(N-2)/2} \int_{|z|\Sigma} u(\sigma') \Phi_{|z|}(\sigma') \,\mathrm{d}\sigma', \tag{4.12}$$

where $\Phi_r(\sigma') = \Phi(\sigma'/r)$ for all $\sigma' \in r\Sigma$. Since, in polar coordinates $(r, \sigma) \in (0, \infty) \times \mathbb{S}^{N-1}$, it holds that

$$u_{rr} = -(N-1)r^{-1}u_r - r^{-2}\Delta_{\sigma}u;$$

direct computations based on (4.1) lead to

$$-\Delta \psi \ge \lambda \psi$$
 in $\mathcal{D}'(\mathbb{D}_R \setminus \{0\}).$

We claim that $\psi \in \hat{H}^1(\mathbb{D}_R)$. Indeed, for r = |z|,

$$|\psi'| \leqslant cr^{(N-2)/2-1} \int_{\Sigma} |u(r\sigma)| + cr^{(N-2)/2} \int_{\Sigma} |\nabla u(r\sigma)|,$$

and, by the Hölder inequality,

$$\int_{\mathbb{D}_R} \left(r^{(N-2)/2-1} \int_{\Sigma} |u(r\sigma)| \right)^2 = c \int_0^R \int_{\Sigma} r^{N-3} u^2 \leqslant c \int_{\Omega} |x|^{-2} u^2 < \infty,$$
$$\int_{\mathbb{D}_R} \left(r^{(N-2)/2} \int_{\Sigma} |\nabla u(r\sigma)| \right)^2 \leqslant c \int_0^R r^{N-1} \int_{\Sigma} |\nabla u|^2 \leqslant c \int_{\Omega} |\nabla u|^2 < \infty.$$

Finally, $\psi \in L^2(R_R^2; |z|^{-2} dz)$ as

$$\begin{split} \int_{\mathbb{D}_R} |z|^{-2} |\psi|^2 &= 2\pi \int_0^R r^{-1} |\psi|^2 \\ &\leqslant c \int_0^R r^{N-3} \int_{\Sigma} |u|^2 \\ &= c \int_{\Omega} |x|^{-2} |u|^2 < \infty. \end{split}$$

Thus, lemma 4.7 applies and since ψ is radially symmetric we obtain $\psi \equiv 0$ in a neighbourhood of 0. Hence, $u \equiv 0$ in $B_r \cap \mathcal{C}_{\Sigma}$ for sufficiently small r > 0. To conclude the proof for the case where Ω strictly contains $B_r \cap \mathcal{C}_{\Sigma}$, take any domain Ω' compactly contained in $\Omega \setminus \{0\}$ and such that Ω' intersects $B_r \cap \mathcal{C}_{\Sigma}$. Via a convolution procedure, approximate u in $H^1(\Omega')$ by a sequence of smooth maps u_{ε} that solve

$$-\Delta u_{\varepsilon} + |\lambda| u_{\varepsilon} \ge 0 \quad \text{in } \Omega'.$$

Since $u_{\varepsilon} \ge 0$ and $u_{\varepsilon} \equiv 0$ on $\Omega' \cap B_r \cap \mathcal{C}_{\Sigma}$, $u_{\varepsilon} \equiv 0$ on Ω' by the maximum principle. Thus also $u \equiv 0$ in Ω' , and the conclusion follows.

5. Remainder terms

We now prove some inequalities that will be used in the next section to estimate the infimum λ^* defined in (1.6).

Brézis and Vázquez proved [2] the following improved Hardy inequality:

$$\int_{\Omega} |\nabla u|^2 - \frac{1}{4} (N-2)^2 \int_{\Omega} |x|^{-2} |u|^2 \ge \omega_N \frac{\lambda_1(\mathbb{D})}{|\Omega|} \int_{\Omega} |u|^2, \tag{5.1}$$

which holds for any $u \in C_c^{\infty}(\Omega)$. Here $\Omega \subset \mathbb{R}^N$ is any bounded domain, $\lambda_1(\mathbb{D})$ is the first Dirichlet eigenvalue of the unit ball \mathbb{D} in \mathbb{R}^2 , and ω_N and $|\Omega|$ denote the measures of the unit ball in \mathbb{R}^N and of Ω , respectively. If $0 \in \Omega$, then $\frac{1}{4}(N-2)^2$ is the Hardy constant $\mu_0(\Omega)$ relative to the domain Ω , by the invariance of the ratio

$$\frac{\int_{\varOmega} |\nabla u|^2 \,\mathrm{d}x}{\int_{\varOmega} |x|^{-2} |u|^2 \,\mathrm{d}x}$$

with respect to dilations in \mathbb{R}^N .

We show that a Brézis–Vázquez-type inequality holds in cases where the singularity is placed at the boundary of the domain. We start with conic domains

$$\mathcal{C}_{R,\Sigma} = \{ t\sigma \mid t \in (0,R), \ \sigma \in \Sigma \},\$$

where $\Sigma \subset \mathbb{S}^{N-1}$ and R > 0.

PROPOSITION 5.1. Let Σ be a domain in \mathbb{S}^{N-1} . Then

$$\int_{\mathcal{C}_{R,\Sigma}} |\nabla u|^2 - \mu_0(\mathcal{C}_{\Sigma}) \int_{\mathcal{C}_{R,\Sigma}} |x|^{-2} |u|^2 \ge \frac{\lambda_1(\mathbb{D})}{R^2} \int_{\mathcal{C}_{R,\Sigma}} |u|^2 \quad \forall u \in C_c^{\infty}(\mathcal{C}_{1,\Sigma}).$$
(5.2)

Proof. By homogeneity, it suffices to prove the proposition for R = 1. Fix $u \in C_c^{\infty}(\mathcal{C}_{1,\Sigma})$ and compute in polar coordinates $t = |x|, \sigma = x/|x|$:

$$\int_{\mathcal{C}_{1,\Sigma}} |\nabla u|^2 = \int_0^1 \int_{\Sigma} \left| \frac{\partial u}{\partial t} \right|^2 t^{N-1} \,\mathrm{d}t \,\mathrm{d}\sigma + \int_0^1 \int_{\Sigma} |\nabla_{\sigma} u|^2 t^{N-3} \,\mathrm{d}t \,\mathrm{d}\sigma,$$
$$\int_{\mathcal{C}_{1,\Sigma}} |x|^{-2} |u|^2 = \int_0^1 \int_{\Sigma} |u|^2 t^{N-3} \,\mathrm{d}t \,\mathrm{d}\sigma.$$

Since, for every $t \in (0, 1)$, it holds that

$$\int_{\Sigma} |\nabla_{\sigma} u|^2 t^{N-3} \,\mathrm{d}\sigma \ge \lambda_1(\Sigma) \int_{\Sigma} |u|^2 t^{N-3} \,\mathrm{d}\sigma,$$

by proposition 2.1, we only have to show that

$$\int_{0}^{1} \left| \frac{\partial u}{\partial t} \right|^{2} t^{N-1} \,\mathrm{d}t - \frac{1}{4} (N-2)^{2} \int_{0}^{1} |u|^{2} t^{N-3} \,\mathrm{d}t \ge \lambda_{1}(\mathbb{D}) \int_{0}^{1} |u|^{2} t^{N-1} \,\mathrm{d}t \qquad (5.3)$$

for any fixed $\sigma \in \Sigma$. For that, we set $w(t) = t^{(N-2)/2}u(t\sigma)$, and we compute

$$\begin{split} \int_0^1 \left| \frac{\partial u}{\partial t} \right|^2 t^{N-1} \, \mathrm{d}t - \mu_0(\mathbb{R}^N) \int_0^1 |u|^2 t^{N-3} \, \mathrm{d}t &= \int_0^1 \left| \frac{\partial w}{\partial t} \right|^2 t \, \mathrm{d}t + (2-N) \int_0^1 \frac{\partial w}{\partial t} w \, \mathrm{d}t \\ &= \int_0^1 \left| \frac{\partial w}{\partial t} \right|^2 t \, \mathrm{d}t + \frac{1}{2} (2-N) \int_0^1 \frac{\partial w^2}{\partial t} \, \mathrm{d}t \\ &= \int_0^1 \left| \frac{\partial w}{\partial t} \right|^2 t \, \mathrm{d}t \\ &\ge \lambda_1(\mathbb{D}) \int_0^1 w^2 t \, \mathrm{d}t \\ &= \lambda_1(\mathbb{D}) \int_0^1 |u|^2 t^{N-1} \, \mathrm{d}t. \end{split}$$

This gives (5.3) and the proposition is proved.

The main result of this section is contained in the next theorem.

THEOREM 5.2. Let Ω be a bounded domain of \mathbb{R}^N with $0 \in \partial \Omega$. If Ω is contained in a half-space, then

$$\int_{\Omega} |\nabla u|^2 - \mu^+ \int_{\Omega} |x|^{-2} |u|^2 \ge \frac{\lambda_1(\mathbb{D})}{|\operatorname{diam}(\Omega)|^2} \int_{\Omega} |u|^2 \quad \forall u \in H^1_0(\Omega).$$

Proof. Let R > 0 be the diameter of Ω . Then $\Omega \subset B_R^+$, where B_R^+ is a half-ball of radius R centred at the origin. Take Σ to be a half-sphere in \mathbb{S}^{N-1} in proposition 5.1 so that \mathcal{C}_{Σ} is a half-space. Recalling (2.4), we conclude that

$$\int_{B_R^+} |\nabla u|^2 - \mu^+ \int_{B_R^+} |x|^{-2} |u|^2 \ge \frac{\lambda_1(\mathbb{D})}{R^2} \int_{B_R^+} |u|^2$$

for any R > 0, $u \in C^{\infty}_{c}(\Omega)$, and the theorem readily follows.

REMARK 5.3. Let Ω be a bounded domain of \mathbb{R}^2 with $0 \in \partial \Omega$ and assume that Ω does not intersect a half-line emanating from the origin. Then (2.5) and proposition 5.1 imply the following improved Hardy inequality:

$$\int_{\Omega} |\nabla u|^2 - \frac{1}{4} \int_{\Omega} |x|^{-2} |u|^2 \geqslant \frac{\lambda_1(\mathbb{D})}{|\operatorname{diam}(\Omega)|^2} \int_{\Omega} |u|^2 \quad \forall u \in H^1_0(\Omega).$$

REMARK 5.4. As pointed out in [2, extension 4.3], the following Hardy–Sobolev inequality holds:

$$\int_{\mathcal{C}_{1,\Sigma}} |\nabla u|^2 - \mu_0(\mathcal{C}_{1,\Sigma}) \int_{\mathcal{C}_{1,\Sigma}} |x|^{-2} |u|^2 \ge c_p \left(\int_{\mathcal{C}_{1,\Sigma}} |u|^p \right)^{2/p} \quad \forall u \in C^{\infty}_{\mathsf{c}}(\mathcal{C}_{1,\Sigma})$$

for all $p \in (2, 2N/(N-2))$, where c_p is a positive constant depending on p and N.

6. Estimates on λ^*

In this section we provide sufficient conditions to have $\lambda^* > -\infty$ or $\lambda^* < 0$.

6.1. Estimates from below

Let Ω be a smooth domain in \mathbb{R}^N with $0 \in \partial \Omega$. We say that Ω is *locally convex* at 0 if there exists a ball B centred at 0 such that $\Omega \cap B$ is contained in a half-space. In essence, for domains of class C^2 , this means that all the principal curvatures of $\partial \Omega$ (with respect to the interior normal) at 0 are strictly positive.

In the case where Ω is locally convex at $0 \in \partial \Omega$, the supremum in lemma 3.1 is attained.

PROPOSITION 6.1. If Ω is locally convex at 0, then there exists $\lambda^*(\Omega) \in \mathbb{R}$ such that

$$\mu_{\lambda}(\Omega) = \mu^{+} \quad \forall \lambda \leqslant \lambda^{*}(\Omega),$$

$$\mu_{\lambda}(\Omega) < \mu^{+} \quad \forall \lambda > \lambda^{*}(\Omega).$$

Proof. The local convexity assumption at 0 means that there exists r > 0 such that $B_r(0) \cap \Omega$ is contained in a half-space. We let $\psi \in C_c^{\infty}(\mathbb{R}^N)$ with $0 \leq \psi \leq 1$, $\psi \equiv 0$ in $\mathbb{R}^N \setminus B_{r/2}(0)$ and $\psi \equiv 1$ in $B_{r/4}(0)$. Arguing in the same way as in the proof of lemma 3.1, for every $u \in H_0^1(\Omega)$ we obtain

$$\int_{\Omega} |x|^{-2} |u|^2 \, \mathrm{d}x \leq \int_{\Omega} |x|^{-2} |\psi u|^2 \, \mathrm{d}x + c \int_{\Omega} |u|^2 \, \mathrm{d}x \tag{6.1}$$

https://doi.org/10.1017/S0308210510000740 Published online by Cambridge University Press

for some constant c = c(r) > 0. Since $\psi u \in H_0^1(B_r(0) \cap \Omega)$, from the definition of μ^+ we infer

$$\mu^+ \int_{\Omega} |x|^{-2} |\psi u|^2 \, \mathrm{d}x \leqslant \int_{\Omega} |\nabla(\psi u)|^2 \, \mathrm{d}x.$$

As in lemma 3.1, we obtain

$$\int_{\Omega} |\nabla(\psi u)|^2 \, \mathrm{d}x \leqslant \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x + c \int_{\Omega} |u|^2 \, \mathrm{d}x.$$

Comparing this with (6.1), we infer that there exists a positive constant c such that

$$\mu^{+} \int_{\Omega} |x|^{-2} |u|^{2} \,\mathrm{d}x \leqslant \int_{\Omega} |\nabla u|^{2} \,\mathrm{d}x + c \int_{\Omega} |u|^{2} \,\mathrm{d}x.$$

This proves that $\mu_{-c}(\Omega) \ge \mu^+$. Thus, $\mu_{-c}(\Omega) = \mu^+$ by lemma 3.1. Finally, noting that $\mu_{\lambda}(\Omega)$ is decreasing in λ , we can set

$$\lambda^*(\Omega) := \sup\{\lambda \in \mathbb{R} \colon \mu_\lambda(\Omega) = \mu^+\}$$
(6.2)

so that $\mu_{\lambda}(\Omega) < \mu^+$ for all $\lambda > \lambda^*(\Omega)$.

Finally, we note that, by lemma 3.1, if Ω is contained in a half-space, then $\mu_0(\Omega) = \mu^+$, and therefore $\lambda^*(\Omega) \ge 0$. Thus, from theorem 5.2 we infer the following result.

THEOREM 6.2. Let Ω be a bounded smooth domain with $0 \in \partial \Omega$. If Ω is contained in a half-space, then

$$\lambda^*(\Omega) \ge \frac{\lambda_1(\mathbb{D})}{|\operatorname{diam}(\Omega)|^2}.$$

It would be of interest to know whether it is possible to obtain lower bounds depending only on the measure of Ω , as in [2,13].

6.2. Estimates from above

The local convexity assumption of Ω at 0 does not necessarily imply that $\lambda^*(\Omega) \ge 0$. Indeed, the following remark holds.

PROPOSITION 6.3. For any $\delta > 0$, there exists $\rho_{\delta} > 0$ such that if Ω is a smooth domain with $0 \in \partial \Omega$ and

$$\Omega \supseteq \{ x \in \mathbb{R}^N \mid x \cdot \nu > -\delta |x|, \ \alpha < |x| < \beta \}$$

for some $\nu \in \mathbb{S}^{N-1}$, $\beta > \alpha > 0$ with $\beta/\alpha > \rho_{\delta}$, then $\lambda^* < 0$. In particular, the Hardy constant $\mu_0(\Omega)$ is achieved.

Proof. Since the cone

$$\mathcal{C}_{\delta} = \{ x \in \mathbb{R}^N \mid x \cdot \nu > -\delta |x| \}$$

contains a half-space, then its Hardy constant is smaller than μ^+ . Thus, there exists $u \in C_c^{\infty}(\mathcal{C}_{\delta})$ such that

$$\frac{\int_{\mathcal{C}_{\delta}} |\nabla u|^2 \,\mathrm{d}x}{\int_{\mathcal{C}_{\delta}} |x|^{-2} |u|^2 \,\mathrm{d}x} < \mu^+$$

Assume that the support of u is contained in an annulus of radii b > a > 0. Then the conclusion in proposition 6.3 holds, with $\rho := b/a$.

Note that Ω can be locally strictly convex at 0.

REMARK 6.4. A similar remark holds for the following minimization problem, which is related to the Caffarelli–Kohn–Nirenberg inequalities:

$$\inf_{\iota \in H_0^1(\Omega), \ u \neq 0} \frac{\int_{\Omega} |\nabla u|^2 \, \mathrm{d}x}{(\int_{\Omega} |x|^{-b} |u|^p \, \mathrm{d}x)^{2/p}},\tag{6.3}$$

where $2 , <math>b := N - p\frac{1}{2}(N-2)$. In the case where $0 \in \partial \Omega$, the minimization problem (6.3) was studied in [10–12].

REMARK 6.5. We do not know whether the strict local concavity of Ω at 0 implies that $\mu_0(\Omega) < \mu^+$ (see [10] for the minimization problem (6.3)).

Note added in proof

After this paper was submitted for publication, it was proved in [8] that $\lambda^*(\Omega) < \infty$ whenever Ω is a smooth bounded domain, and that the strict local concavity of Ω at 0 does not necessarily imply that $\mu_0(\Omega) < \mu^+$. We also cite [9] for some nonexistence results related to theorem 4.1.

Acknowledgements

M.M.F. was partly supported by the FIRB project 'Analysis and Beyond', 2009–2012.

References

- H. Brézis and M. Marcus. Hardy's inequalities revisited. Annali Scuola Norm. Sup. Pisa IV 25 (1997), 217–237.
- 2 H. Brézis and J. L. Vázquez. Blow-up solutions of some nonlinear elliptic problems. *Rev. Mat. Univ. Complut. Madrid* 10 (1997), 443–469.
- 3 P. Caldiroli and R. Musina. On a class of two-dimensional singular elliptic problems. Proc. R. Soc. Edinb. A 131 (2001), 479–497.
- 4 P. Caldiroli and R. Musina. Stationary states for a two-dimensional singular Schrödinger equation. Boll. UMI B 4 (2001), 609–633.
- 5 J. Dávila and L. Dupaigne. Comparison results for PDEs with a singular potential. *Proc. R. Soc. Edinb.* A **133** (2003), 61–83.
- A. V. Demyanov and A. I Nazarov. On the solvability of the Dirichlet problem for the semilinear Schrödinger equation with a singular potential. Zap. Nauchn. Semin. POMI 336 (2006), 25–45. (In Russian.)
- 7 H. Egnell. Positive solutions of semilinear equations in cones. Trans. Am. Math. Soc. 330 (1992), 191–201.
- 8 M. M. Fall. On the Hardy Poincaré inequality with boundary singularities. *Commun. Contemp. Math.* (In the press.)
- 9 M. M. Fall and R. Musina. Sharp nonexistence results for a linear ellipticinequality involving Hardy and Leray potentials. J. Inequal. Applicat. 2011 (2011), 222–222.
- 10 N. Ghoussoub and X. S. Kang. Hardy–Sobolev critical elliptic equations with boundary singularities. Annales Inst. H. Poincaré Analyse Non Linéaire 21 (2004), 767–793.
- 11 N. Ghoussoub and F. Robert. Concentration estimates for Emden–Fowler equations with boundary singularities and critical growth. Int. Math. Res. Pap. 21867 (2006), 1–85.

- 12 N. Ghoussoub and F. Robert. The effect of curvature on the best constant in the Hardy– Sobolev inequalities. Geom. Funct. Analysis 16 (2006), 1201–1245.
- 13 M. Hoffmann-Ostenhof and T. L. A. Hoffmann-Ostenhof. A geometrical version of Hardy's inequality. J. Funct. Analysis 189 (2002), 539–548.
- 14 Y. Pinchover and K. Tintarev. Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality. *Indiana Univ. Math. J.* 54 (2005), 1061–1074.

(Issued 3 August 2012)