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We are interested in variational problems involving weights that are singular at a
point of the boundary of the domain. More precisely, we study a linear variational
problem related to the Poincaré inequality and to the Hardy inequality for maps in
H1

0 (Ω), where Ω is a bounded domain in RN , N � 2, with 0 ∈ ∂Ω. In particular, we
give sufficient and necessary conditions so that the best constant is achieved.

1. Introduction

We are interested in linear variational problems involving weights that are singular
at a point of the boundary of the domain. More precisely, let Ω be a bounded
domain in R

N , with N � 2. We assume that 0 ∈ ∂Ω, and that ∂Ω is sufficiently
smooth (hereafter, the assumptions that Ω is Lipschitz and ∂Ω is of class C2 at
the origin are sufficient for our purposes). We study the minimization problem

µλ(Ω) := inf
u∈H1

0 (Ω), u �=0

∫
Ω

|∇u|2 dx − λ
∫

Ω
|u|2 dx∫

Ω
|x|−2|u|2 dx

, (1.1)

where λ ∈ R is a varying parameter. For λ = 0 the Ω-Hardy constant µ0(Ω) �
1
4 (N − 2)2 is the best constant in the Hardy inequality for maps supported by Ω.
If N = 2, it has been proved [4, theorem 1.6] that µ0(Ω) is positive. Therefore, it
always happens that H1

0 (Ω) ↪→ L2(Ω; |x|−2 dx) with a continuous embedding.
Problem (1.1) has some similarities with the questions studied by Brézis and Mar-

cus [1], where the weight is the inverse square of the distance from the boundary
of Ω. The work of Dávila and Dupaigne [5] is related to the minimization prob-
lem (1.1). Indeed, note that, for any fixed λ ∈ R, any extremal for µλ(Ω) is a weak
solution to the linear Dirichlet problem

−∆u = µ|x|−2u + λu on Ω, u = 0 on ∂Ω, (1.2)
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where µ = µλ(Ω). If µλ(Ω) is achieved, then µλ(Ω) is the first eigenvalue of the
operator −∆ − λ on H1

0 (Ω) ↪→ L2(Ω; |x|−2 dx). Starting from a different point of
view, for 0 ∈ Ω, N � 3 and µ � 1

4 (N − 2)2, Dávila and Dupaigne proved [5] the
existence of the first eigenfunction ϕ1 of the operator −∆ − µ|x|−2 on a suitable
functional space H(Ω) ↪→ L2(Ω), such that H(Ω) ⊇ H1

0 (Ω). Note that ϕ1 solves
(1.2), where the eigenvalue λ depends on the datum µ.

The problem of the existence of extremals for the Ω-Hardy constant µ0(Ω) was
discussed in [4] for the case where N = 2 (with Ω possibly unbounded or hav-
ing a conical singularity at 0 ∈ ∂Ω) and in [14], where Ω is a suitable compact
perturbation of a cone in R

N . Hardy–Sobolev inequalities with singularity at the
boundary have been studied by several authors (see, for example, [3,6,7,10–12] and
the references therein).

The minimization problem (1.1) is not compact, due to the group of dilations
in R

N . Actually, it may be that all minimizing sequences concentrate at 0. In this
case µλ(Ω) is not achieved and µλ(Ω) = µ+, where

µ+ = 1
4N2

is the best constant in the Hardy inequality for maps with support in a half-space.
Indeed, in § 3 we show that

sup
λ∈R

µλ(Ω) = µ+, (1.3)

then we deduce that, provided µλ(Ω) < µ+, every minimizing sequence for µλ(Ω)
converges in H1

0 (Ω) to an extremal for µλ(Ω).
We recall that Ω is said to be locally concave at 0 ∈ ∂Ω if there exists r > 0 such

that
{x ∈ R

N | x · ν > 0} ∩ Br(0) ⊂ Ω, (1.4)

where ν is the interior normal of ∂Ω at 0. Note that if all the principal curvatures
of ∂Ω at 0, with respect to ν, are strictly negative, then condition (1.4) is satisfied.

Our first main result is stated in the following theorem.

Theorem 1.1. Let Ω ∈ R
N be a smooth bounded domain with 0 ∈ ∂Ω. Assume

that Ω is locally concave at 0. Then µλ(Ω) is attained if and only if µλ(Ω) < µ+.

The ‘only if’ part, which is the most intriguing, is a consequence of corollary 4.2,
where we provide local non-existence results for the problem

−∆u � µ|x|−2u + λu on Ω, u � 0 in Ω, (1.5)

and also for negative values of the parameter λ.
At this point, several questions concerning the infimum µλ(Ω) are still open. Set

λ∗ := inf{λ ∈ R | µλ(Ω) < µ+}. (1.6)

Since the map λ �→ µλ(Ω) is non-increasing, µλ(Ω) is achieved for any λ > λ∗ by
the existence theorem 3.2. If λ∗ ∈ R, then, from (1.3), it follows that µλ(Ω) = µ+

for any λ � λ∗, and hence µλ(Ω) is not achieved if λ < λ∗. We do not know whether
there exist domains Ω for which λ∗ = −∞. On the other hand, we are able to prove
the following facts (see § 6 for the precise statements).
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(i) If Ω is locally convex at 0, that is, if there exists r > 0 such that Ω ∩ Br(0)
is contained in a half-space, then λ∗ > −∞.

(ii) If Ω is contained in a half-space, then

λ∗ � λ1(D)
|diam(Ω)|2 , (1.7)

where λ1(D) is the first Dirichlet eigenvalue of the unit ball D in R
2 and

diam(Ω) is the diameter of Ω.

(iii) For any δ > 0, there exists ρδ > 0 such that if

Ω ⊇ {x ∈ R
N | x · ν > −δ|x|, α < |x| < β}

for some ν ∈ S
N−1, β > α > 0 with β/α > ρδ, then λ∗ < 0. In particular, the

Hardy constant µ0(Ω) is achieved.

The relevance of the geometry of Ω at the origin is confirmed by theorem 1.1, by
item (i) and by the existence theorems proved in [10–12] for a related superlinear
problem. However, it should also be noted that the (conformal) ‘size’ of Ω (even
far away from the origin) has some impact on the existence of compact minimizing
sequences. Actually, no requirement on the curvature of Ω at 0 is needed in (iii). In
particular, there exist smooth domains having strictly positive principal curvatures
at 0, and such that the Hardy constant µ0(Ω) is achieved.

This paper is organized as follows. In § 2 we point out a few remarks on the Hardy
inequality on dilation-invariant domains. In § 3 (see theorem 3.2 we give sufficient
conditions for the existence of minimizers for (1.1). In § 4 we prove some non-
existence theorems for solutions to (1.5) that might have an independent interest.

To prove inequality (1.7) for the case where Ω is contained in a half-space, in
§ 5 we provide computable remainder terms for the Hardy inequality on half-balls.
We adopt here an argument by Brézis and Vázquez [2], where bounded domains
Ω ⊂ R

N with N � 3 and 0 ∈ Ω are considered.
In § 6 we estimate λ∗ from below and from above, under suitable assumptions

on Ω.

Notation

• R
N
+ and S

N−1
+ denote any half-space and any hemisphere, respectively. More

precisely,

R
N
+ = {x ∈ R

N | x · ν > 0}, S
N−1
+ = S

N−1 ∩ R
N
+ ,

where ν is any unit vector in R
N .

• BR(x) is the open ball in R
N of radius r centred at x. If x = 0, we simply

write BR. If N = 2, we shall often write DR and D instead of BR and B1,
respectively.

• We denote by H1(SN−1) the standard Sobolev space of maps on the unit
sphere and we denote by ∇σ and ∆σ the gradient and the Laplace–Beltrami
operator on S

N−1, respectively.

https://doi.org/10.1017/S0308210510000740 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000740


772 M. M. Fall and R. Musina

• Let Σ be a domain in S
N−1. We denote by H1

0 (Σ) the closure of C∞
c (Σ) in

the H1(SN−1)-space and by λ1(Σ) the first Dirichlet eigenvalue on Σ.

• A bounded domain Ω ⊂ R
N with 0 ∈ ∂Ω is said to be smooth if ∂Ω is of class

C2 in a neighbourhood of the origin.

We denote by L2(Ω; |x|−2 dx) the space of measurable maps on Ω such that∫
Ω

|x|−2|u|2 dx < ∞.

We also set
Ĥ1(Ω) := H1(Ω) ∩ L2(Ω; |x|−2 dx),

where H1(Ω) is the standard Sobolev space of maps on Ω.

2. Preliminaries

In this section we collect a few remarks on the Hardy inequality on dilation-invariant
domains that are partially contained, for example, in [4] (in the case where N = 2)
and in [14].

Via polar coordinates, to any domain Σ in S
N−1 we associate a cone CΣ ⊂ R

N−1

and a (half) cylinder ZΣ ⊂ R
N+1 by setting

CΣ := {tσ | t > 0, σ ∈ Σ}, ZΣ := R+ × Σ.

If Σ is a smooth domain in S
N−1, then CΣ is a Lipschitz dilation-invariant domain

in R
N−1. In particular, if Σ is a half-sphere, then CΣ is a half-space. The map

R
N−1 \ {0} → R

N+1, x �→
(

− log |x|, x

|x|

)

is a homeomorphism CΣ → ZΣ . It induces the Emden–Fowler transform

T : C∞
c (CΣ) → C∞

c (ZΣ), u(x) = |x|(2−N)/2(Tu)
(

− log |x|, x

|x|

)
.

A direct computation based on the divergence theorem gives∫
CΣ

|∇u|2 dx = 1
4 (N − 2)2

∫ ∞

0

∫
Σ

|Tu|2 ds dσ +
∫ ∞

0

∫
Σ

|∇s,σTu|2 ds dσ, (2.1)

∫
CΣ

|x|−2|u|2 dx =
∫ ∞

0

∫
Σ

|Tu|2 ds dσ, (2.2)

where ∇s,σ = (∂s,∇σ) denotes the gradient on R+ × S
N−1.

Now we introduce the Hardy constant on the cone CΣ :

µ0(CΣ) := inf
u∈C∞

c (CΣ), u �=0

∫
CΣ

|∇u|2 dx∫
CΣ

|x|−2|u|2 dx
. (2.3)

In the next proposition we note that the Hardy inequality on CΣ is equivalent to
the Poincaré inequality for maps supported by the cylinder ZΣ .
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Proposition 2.1. Let CΣ be a cone. Then

µ0(CΣ) = 1
4 (N − 2)2 + λ1(Σ).

Proof. By (2.1) and (2.2), it turns out that

µ0(CΣ) − 1
4 (N − 2)2 = inf

v∈C∞
c (ZΣ), v �=0

∫ ∞
0

∫
Σ

|∇s,σv|2 ds dσ∫ ∞
0

∫
Σ

|v|2 ds dσ

=: λ1(ZΣ).

The result follows by noting that λ1(ZΣ) = λ1(Σ).

The eigenvalue λ1(Σ) is explicitly known in few cases. For example, if Σ = S
N−1
+

is a half-sphere, then λ1(SN−1
+ ) = N − 1. Thus, the Hardy constant of a half-space

is given by
µ0(RN

+ ) = µ+ := 1
4N2. (2.4)

If N = 2 and if CΣθ
⊂ R

2 is a cone of amplitude θ ∈ (0, 2π] then λ1(Σθ) coincide
with the Dirichlet eigenvalue on the interval (0, θ). Hence, we obtain the conclusion,
which was first pointed out in [4]:

µ0(CΣθ
) =

π2

θ2 � 1
4
. (2.5)

Let Σ be a domain in S
N−1. If N � 3, the space D1,2(CΣ) is defined in a standard

way as a close subspace of D1,2(RN−1). Note that, in the case where Σ = S
N−1, it

turns out that
D1,2(CSN−1) = D1,2(RN \ {0}) = D1,2(RN )

by a known density result.
If N = 2 and if Σ is properly contained in S

1, then µ0(CΣ) > 0 by (2.5). In this
case we can introduce the space D1,2(CΣ) by completing C∞

c (CΣ) with respect to
the Hilbertian norm (

∫
CΣ

|∇u|2 dx)1/2.
The next result is an immediate consequence of the fact that the Dirichlet eigen-

value problem of −∆ in the strip ZΣ is never achieved. The same conclusion was
already noted in [4] in the case N = 2 and in [14].

Proposition 2.2. Let Σ be a domain in S
N−1. Then µ0(CΣ) is not achieved in

D1,2(CΣ).

3. Existence

In this section we show that the condition µλ(Ω) < µ+ = 1
4N2 is sufficient to

guarantee the existence of a minimizer for µλ(Ω). We note here that, throughout
this section, the regularity of Ω can be relaxed to Lipschitz domains that are of
class C2 at 0. We start with a preliminary result.

Lemma 3.1. Let Ω be a smooth domain with 0 ∈ ∂Ω. Then

sup
λ∈R

µλ(Ω) = µ+.
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Proof. The proof will be carried out in two steps.

(i) We claim that supλ∈R µλ(Ω) � µ+.
We denote by ν the interior normal of ∂Ω at 0. For δ > 0, we consider the cone

Cδ
− := {x ∈ R

N−1 | x · ν > −δ|x|}.

Now fix ε > 0. If δ is sufficiently small, then µ0(Cδ
−) � µ+ − ε. Since Ω is smooth

at 0, there exists a small radius r > 0 (depending on δ) such that Ω ∩ Brδ
(0) ⊂ Cδ

−.
Next, let ψ ∈ C∞(Br(0)) be a cut-off function, satisfying

0 � ψ � 1, ψ ≡ 0 in R
N \ Br/2(0), ψ ≡ 1 in Br/4(0).

We write any u ∈ H1
0 (Ω) as u = ψu + (1 − ψ)u to obtain∫

Ω

|x|−2|u|2 dx �
∫

Ω

|x|−2|ψu|2 dx + c

∫
Ω

|u|2 dx, (3.1)

where the constant c does not depend on u. Since ψu ∈ D1,2(Cδ
−), then

(µ+ − ε)
∫

Ω

|x|−2|ψu|2 dx � µ0(Cδ
−)

∫
Ω

|x|−2|ψu|2 dx �
∫

Ω

|∇(ψu)|2 dx (3.2)

by our choice of the cone Cδ
−. In addition, we have∫

Ω

|∇(ψu)|2 dx �
∫

Ω

|∇u|2 dx + 1
2

∫
Ω

∇(ψ2) · ∇(u2) dx + c

∫
Ω

|u|2 dx.

Integrating by parts, we obtain∫
Ω

|∇(ψu)|2 dx �
∫

Ω

|∇u|2 dx − 1
2

∫
Ω

∆(ψ2)|u|2 dx + c

∫
Ω

|u|2 dx.

Comparing this with (3.1) and (3.2), we infer that there exists a positive constant
c depending only on δ such that

(µ+ − ε)
∫

Ω

|x|−2|u|2 dx �
∫

Ω

|∇u|2 dx + c

∫
Ω

|u|2 dx ∀u ∈ H1
0 (Ω). (3.3)

Hence, we obtain (µ+ − ε) � µ−c(Ω). Consequently, (µ+ − ε) � supλ µλ(Ω), and
the conclusion follows by letting ε → 0.

(ii) We claim that supλ µλ(Ω) � µ+.
For δ > 0 we consider the cone

Cδ
+ := {x ∈ R

N−1 | x · ν > δ|x|}.

As in the first step, for any δ > 0 there exists rδ > 0 such that Cδ
+ ∩ Br(0) ⊂ Ω for

all r ∈ (0, rδ). Clearly, by scale invariance,

µ0(Cδ
+ ∩ Br(0)) = µ0(Cδ

+).

For ε > 0, we let φ ∈ H1
0 (Cδ

+ ∩ Br(0)) such that∫
Cδ
+∩Br(0) |∇φ|2 dx∫

Cδ
+∩Br(0) |x|−2|φ|2 dx

� µ0(Cδ
+) + ε.
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From this we deduce that

µλ(Ω) �

∫
Cδ
+∩Br(0) |∇φ|2 dx − λ

∫
Cδ
+∩Br(0) |φ|2 dx∫

Cδ
+∩Brδ

(0) |x|−2|φ|2 dx

� µ0(Cδ
+) + ε + |λ|

∫
Cδ
+∩Br(0) |φ|2 dx∫

Cδ
+∩Br(0) |x|−2|φ|2 dx

.

Since ∫
Cδ
+∩Br(0)

|x|−2|φ|2 dx � r−2
∫

Cδ
+∩Br(0)

|φ|2 dx,

we obtain
µλ(Ω) � µ0(Cδ

+) + ε + r2|λ|.

The conclusion follows immediately, since µ0(Cδ
+) → µ+ when δ → 0.

Note that if Ω is bounded, then by (3.3) and the Poincaré inequality,

µ0(Ω) > 0. (3.4)

This was shown in [4] for the case when N = 2 and for more general domains. We
are now in a position to prove the main result of this section.

Theorem 3.2. Let λ ∈ R and let Ω be a smooth bounded domain of R
N with

0 ∈ ∂Ω. If µλ(Ω) < µ+, then µλ(Ω) is attained.

Proof. Let un ∈ H1
0 (Ω) be a minimizing sequence for µλ(Ω). We can normalize it

to obtain ∫
Ω

|∇un|2 = 1, (3.5)

1 − λ

∫
Ω

|un|2 = µλ(Ω)
∫

Ω

|x|−2|un|2 + o(1). (3.6)

We can assume that un ⇀ u weakly in H1
0 (Ω), |x|−1un ⇀ |x|−1u weakly in L2(Ω),

and un → u in L2(Ω), by (3.4) and by the Rellich theorem. Setting θn := un − u,
from (3.5) and (3.6) we obtain∫

Ω

|∇θn|2 +
∫

Ω

|∇u|2 = 1 + o(1),

1 − λ

∫
Ω

|u|2 = µλ(Ω)
( ∫

Ω

|x|−2|θn|2 +
∫

Ω

|x|−2|u|2
)

+ o(1).

⎫⎪⎪⎬
⎪⎪⎭ (3.7)

By lemma 3.1, for any fixed positive δ < µ+ − µλ(Ω), there exists λδ ∈ R such that
µλδ

(Ω) � µ+ − δ. Hence,∫
Ω

|∇θn|2 + o(1) � (µ+ − δ)
∫

Ω

|x|−2|θn|2,
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as θn → 0 in L2(Ω). Testing µλ(Ω) with u, we obtain

µλ(Ω)
∫

Ω

|x|−2|u|2 �
∫

Ω

|∇u|2 − λ

∫
Ω

|u|2

� 1 −
∫

Ω

|∇θn|2 − λ

∫
Ω

|u|2 + o(1)

� 1 − (µ+ − δ)
∫

Ω

|x|−2|θn|2 − λ

∫
Ω

|u|2 + o(1)

� (µλ(Ω) − µ+ + δ)
∫

Ω

|x|−2|θn|2 + µλ(Ω)
∫

Ω

|x|−2|u|2 + o(1)

by (3.7). Therefore, ∫
Ω

|x|−2|θn|2 → 0,

since µλ(Ω) − µ+ + δ < 0. In particular,

µλ(Ω)
∫

Ω

|x|−2|u|2 =
∫

Ω

|∇u|2 − λ

∫
Ω

|u|2

and u �= 0 by (3.7). Thus, u achieves µλ(Ω).

We conclude this section with a corollary of theorem 3.2.

Corollary 3.3. Let Ω be a smooth bounded domain of R
N with 0 ∈ ∂Ω. Then

1
4 (N − 2)2 < µ0(Ω) � 1

4N2.

Proof. It has already been proved in lemma 3.1 that µλ(Ω) � 1
4N2. If the strict

inequality holds, then, by theorem 3.2, there exists u ∈ H1
0 (Ω) that achieves µ0(Ω).

But then 1
4 (N−2)2 < µ0(Ω), otherwise a null extension of u outside Ω would achieve

the Hardy constant on R
N .

Remark 3.4. Following [4], for non-smooth domains Ω we can introduce the ‘lim-
iting’ Hardy constant

µ̂0(Ω) = sup
r>0

µ0(Ω ∩ Br).

Using similar arguments it can be proved that supλ µλ(Ω) = µ̂0(Ω), and that µλ(Ω)
is achieved provided µλ(Ω) < µ̂0(Ω).

4. Non-existence

The main result in this section is stated in the following theorem.

Theorem 4.1. Let Ω be a domain in R
N , N � 2, and let λ ∈ R. Assume that

there exist R > 0 and a Lipschitz domain Σ ⊂ S
N−1 such that BR ∩ CΣ ⊂ Ω. If

u ∈ Ĥ1(Ω) solves

−∆u � ( 1
4 (N − 2)2 + λ1(Σ))|x|−2u + λu in D′(Ω \ {0}), u � 0, (4.1)

then u ≡ 0 in Ω.
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Before proving theorem 4.1 we point out some of its consequences.

Corollary 4.2. Let Ω be a smooth bounded domain containing a half-ball and
such that 0 ∈ ∂Ω. If µλ(Ω) = µ+, then µλ(Ω) is not achieved.

Proof. Assume that u achieves µλ(Ω) = µ+. Then u is a weak solution to

−∆u = µ+|x|−2u + λu. (4.2)

Test (4.2) with the negative and the positive part of u to conclude that u has con-
stant sign. Now, by the maximum principle, u > 0 in Ω, contradicting theorem 4.1,
since Ω ⊃ BR ∩ C

S
N−1
+

and λ1(SN−1
+ ) = N − 1.

We also point out the following consequence to theorem 4.1, which holds for
smooth domains Ω with 0 ∈ ∂Ω.

Theorem 4.3. Let Ω be a smooth domain in R
N , N � 2, with 0 ∈ ∂Ω and let

λ ∈ R. If u ∈ Ĥ1(Ω) solves

−∆u � µ|x|−2u + λu in D′(Ω), u � 0,

for some µ > µ+, then u ≡ 0 in Ω.

Proof. We start by noting that there exists a geodesic ball Σ ⊂ S
N−1 contained

in a hemisphere, and such that λ1(Σ) � N − 1 + µ − µ+. Since 0 ∈ ∂Ω and since
∂Ω is smooth then, up to a rotation, we can find a small radius r > 0 such that
Br ∩ CΣ ⊂ Ω. The conclusion follows from theorem 4.1, as µ � 1

4 (N − 2)2 +λ1(Σ).

Remark 4.4. Theorem 4.1 also applies when the origin lies in the interior of the
domain. More precisely, let Ω be any domain in R

N , with N � 2 and 0 ∈ Ω. If
u ∈ Ĥ1

loc(Ω) is a non-negative solution to

−∆u � 1
4 (N − 2)2|x|−2u + λu in D′(Ω \ {0})

for some λ ∈ R, then u ≡ 0 in Ω.

In order to prove theorem 4.1 we need few preliminary results regarding maps of
two variables. Recall that DR ⊂ R

2 is the open disc of radius R centred at 0.

Lemma 4.5. Let ψ ∈ Ĥ1(DR) and f ∈ L1
loc(DR) for some R > 0. If ψ solves

−∆ψ � f in D′(DR \ {0}), (4.3)

then −∆ψ � f in D′(DR).

Proof. We start by noting that, from

∞ >

∫
DR

|z|−2|ψ|2 =
∫ R

0

1
r

(
r−1

∫
∂Br

|ψ|2
)

,

it follows that there exists a sequence rh → 0, rh ∈ (0, R) such that

r−1
h

∫
∂Brh

|ψ|2 → 0, r−2
h

∫
∂B

r2
h

|ψ|2 → 0 (4.4)
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as h → ∞. Next we introduce the following cut-off functions:

ηh(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if |z| � r2
h,

log |z|/r2
h

|log rh| if r2
h < |z| < rh,

1 if rh � |z| � R.

Let ϕ ∈ C∞
c (DR) be any non-negative function. We test (4.3) with ηhϕ to obtain∫

∇ψ · ∇(ηhϕ) �
∫

fηhϕ.

Since ψ ∈ H1(DR) and since ηh ⇀ 1 weakly∗ in L∞, it is easy to check that∫
f ηhϕ =

∫
fϕ + o(1),

∫
ηh∇ψ · ∇ϕ =

∫
∇ψ · ∇ϕ + o(1)

as h → ∞. Therefore,∫
∇ψ · ∇ϕ +

∫
ϕ∇ψ · ∇ηh �

∫
fϕ + o(1). (4.5)

To pass to the limit in the left-hand side, we note that ∇ηh vanishes outside the
annulus Ah := {r2

h < |z| < rh}, and that ηh is harmonic on Ah. Thus,∫
ϕ∇ψ · ∇ηh =

∫
Ah

∇(ψϕ) · ∇ηh −
∫

Ah

ψ∇ϕ · ∇ψ

= Rh −
∫

Ah

ψ∇ϕ · ∇ηh,

where
Rh := −r−2

h

∫
∂B

r2
h

(∇ηh · z)ψϕ + r−1
h

∫
∂Brh

(∇ηh · z)ψϕ.

Now
|Rh| � c(rh|log rh|)−1

∫
∂Brh

|ψ| + c (r2
h|log rh|)−1

∫
∂B

r2
h

|ψ|,

where c > 0 is a constant that does not depend on h, and

(rh|log rh|)−1
∫

∂Brh

|ψ| � c|log rh|−1
(

r−1
h

∫
∂Brh

|ψ|2
)1/2

= o(1)

by the Hölder inequality and by (4.4). In the same way, also

(r2
h|log rh|)−1

∫
∂B

r2
h

|ψ| � c|log rh|−1
(

r−2
h

∫
∂B

r2
h

|ψ|2
)1/2

= o(1),

and hence Rh = o(1). Moreover, from ψ ∈ L2(DR; |z|−2 dz) it follows that∣∣∣∣
∫

Ah

ψ∇ϕ · ∇ηh

∣∣∣∣|log rh|−1
∫

|z|−1ψ|∇ϕ| = o(1).
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Hardy–Poincaré inequalities with boundary singularities 779

In conclusion, we have proved that∫
ϕ∇ψ · ∇ηh = o(1),

and therefore (4.5) gives ∫
∇ψ · ∇ϕ �

∫
fϕ.

Since ϕ was an arbitrary non-negative function in C∞
c (DR), this proves that −∆ψ �

f in the distributional sense on DR, as desired.

The same proof gives a similar result for subsolutions.

Lemma 4.6. Let ϕ ∈ Ĥ1(DR) and f ∈ L1
loc(DR) for some R > 0. If ϕ solves

∆ϕ � f in D′(DR \ {0}),

then ∆ϕ � f in D′(DR).

The next result is crucial in our proof. We state it in a more general form than
needed, as it could have an independent interest. Note that we do not need any
a priori knowledge of the sign of ψ in the interior of its domain.

Lemma 4.7. For any λ ∈ R there exists Rλ > 0 such that for any R ∈ (0, Rλ),
ε > 0, problem

−∆ψ � λψ in D′(DR \ {0}),
ψ � ε on ∂DR.

}
(4.6)

has no solution ψ ∈ Ĥ1(DR).

Proof. We fix sufficiently small Rλ < 1
3 in such a way that

λ < λ1(DRλ
) if λ � 0, (4.7)

|λ||z|2|log |z||2 � 3
4 for any z ∈ DRλ

if λ < 0. (4.8)

We claim that the conclusion in lemma 4.7 holds with this choice of Rλ. We argue
by contradiction. Let R < Rλ and ε > 0, ψ ∈ Ĥ1(DR) as in (4.6).

For any δ ∈ ( 1
2 , 1) we introduce the following radially symmetric function on DR:

ϕδ(z) = |log |z||−δ.

By direct computation one can easily check that ϕδ ∈ Ĥ1(DR), and, in particular,

(2δ − 1)
∫

DR

|z|−2|ϕδ|2 = 2π + o(1) as δ → 1
2 . (4.9)

Since δ > 1
2 , ϕδ is a smooth solution to

∆ϕδ � 3
4 |z|−2|log |z||−2+δ = 3

4 |z|−2|log |z||−2ϕδ (4.10)

in DR \ {0}. By lemma 4.6 we infer that ϕδ solves (4.10) in the dual of Ĥ1(DR).
Next we set

v := εϕδ − ψ ∈ Ĥ1(DR),
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and we note that v � 0 on ∂DR, as R < 1
3 . Note also that

∆v � 3
4 |z|−2|log |z||−2(εϕδ) + λψ

= [ 34 |z|−2|log |z||−2 + λ](εϕδ) − λv

on the dual of Ĥ1(DR), by (4.8). We use

v+ := max{v, 0} ∈ H1
0 (DR) ∩ Ĥ1(DR)

as a test function to obtain

−
∫

DR

|∇v+|2 �
∫

DR

[ 34 |z|−2|log |z||−2 + λ](εϕδ)v+ − λ

∫
DR

|v+|2.

If λ � 0, we infer that ∫
DR

|∇v+|2 � λ

∫
DR

|v+|2

and hence v+ ≡ 0 on DR by (4.7). If λ < 0, we get

0 � −
∫

DR

|∇v+|2 � |λ|
∫

DR

|v+|2,

and hence again v+ = 0 on DR, by (4.8). Thus ψ � εϕδ on DR, and therefore

∞ >

∫
DR

|z|−2|ψ|2 � ε

∫
DR

|z|−2|ϕδ|2,

which contradicts (4.9).

Proof of theorem 4.1. Without loss of generality, we may assume that λ < 0. Let
Φ > 0 be the first eigenfunction of −∆σ on Σ. Thus Φ solves

−∆σΦ = λ1(Σ)Φ in Σ,

Φ = 0,
∂Φ

∂η
� 0 on ∂Σ,

⎫⎪⎬
⎪⎭ (4.11)

where η ∈ Tσ(SN−1) is the exterior normal to Σ at σ ∈ ∂Σ.
By density and the trace theorem, we can define the radially symmetric map ψ

in DR \ {0} as

ψ(z) = |z|(N−2)/2
∫

Σ

u(|z|σ)Φ(σ) dσ

= |z|(N−2)/2
∫

|z|Σ
u(σ′)Φ|z|(σ′) dσ′, (4.12)

where Φr(σ′) = Φ(σ′/r) for all σ′ ∈ rΣ. Since, in polar coordinates (r, σ) ∈ (0,∞)×
S

N−1, it holds that
urr = −(N − 1)r−1ur − r−2∆σu;

direct computations based on (4.1) lead to

−∆ψ � λψ in D′(DR \ {0}).
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We claim that ψ ∈ Ĥ1(DR). Indeed, for r = |z|,

|ψ′| � cr(N−2)/2−1
∫

Σ

|u(rσ)| + cr(N−2)/2
∫

Σ

|∇u(rσ)|,

and, by the Hölder inequality,∫
DR

(
r(N−2)/2−1

∫
Σ

|u(rσ)|
)2

= c

∫ R

0

∫
Σ

rN−3u2 � c

∫
Ω

|x|−2u2 < ∞,

∫
DR

(
r(N−2)/2

∫
Σ

|∇u(rσ)|
)2

� c

∫ R

0
rN−1

∫
Σ

|∇u|2 � c

∫
Ω

|∇u|2 < ∞.

Finally, ψ ∈ L2(R2
R; |z|−2 dz) as∫

DR

|z|−2|ψ|2 = 2π

∫ R

0
r−1|ψ|2

� c

∫ R

0
rN−3

∫
Σ

|u|2

= c

∫
Ω

|x|−2|u|2 < ∞.

Thus, lemma 4.7 applies and since ψ is radially symmetric we obtain ψ ≡ 0 in
a neighbourhood of 0. Hence, u ≡ 0 in Br ∩ CΣ for sufficiently small r > 0. To
conclude the proof for the case where Ω strictly contains Br ∩ CΣ , take any domain
Ω′ compactly contained in Ω \ {0} and such that Ω′ intersects Br ∩ CΣ . Via a
convolution procedure, approximate u in H1(Ω′) by a sequence of smooth maps uε

that solve
−∆uε + |λ|uε � 0 in Ω′.

Since uε � 0 and uε ≡ 0 on Ω′ ∩ Br ∩ CΣ , uε ≡ 0 on Ω′ by the maximum principle.
Thus also u ≡ 0 in Ω′, and the conclusion follows.

5. Remainder terms

We now prove some inequalities that will be used in the next section to estimate
the infimum λ∗ defined in (1.6).

Brézis and Vázquez proved [2] the following improved Hardy inequality:∫
Ω

|∇u|2 − 1
4 (N − 2)2

∫
Ω

|x|−2|u|2 � ωN
λ1(D)
|Ω|

∫
Ω

|u|2, (5.1)

which holds for any u ∈ C∞
c (Ω). Here Ω ⊂ R

N is any bounded domain, λ1(D) is
the first Dirichlet eigenvalue of the unit ball D in R

2, and ωN and |Ω| denote the
measures of the unit ball in R

N and of Ω, respectively. If 0 ∈ Ω, then 1
4 (N − 2)2 is

the Hardy constant µ0(Ω) relative to the domain Ω, by the invariance of the ratio∫
Ω

|∇u|2 dx∫
Ω

|x|−2|u|2 dx

with respect to dilations in R
N .
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We show that a Brézis–Vázquez-type inequality holds in cases where the singu-
larity is placed at the boundary of the domain. We start with conic domains

CR,Σ = {tσ | t ∈ (0, R), σ ∈ Σ},

where Σ ⊂ S
N−1 and R > 0.

Proposition 5.1. Let Σ be a domain in S
N−1. Then∫

CR,Σ

|∇u|2 − µ0(CΣ)
∫

CR,Σ

|x|−2|u|2 � λ1(D)
R2

∫
CR,Σ

|u|2 ∀u ∈ C∞
c (C1,Σ). (5.2)

Proof. By homogeneity, it suffices to prove the proposition for R = 1. Fix u ∈
C∞

c (C1,Σ) and compute in polar coordinates t = |x|, σ = x/|x|:∫
C1,Σ

|∇u|2 =
∫ 1

0

∫
Σ

∣∣∣∣∂u

∂t

∣∣∣∣
2

tN−1 dt dσ +
∫ 1

0

∫
Σ

|∇σu|2tN−3 dt dσ,

∫
C1,Σ

|x|−2|u|2 =
∫ 1

0

∫
Σ

|u|2tN−3 dt dσ.

Since, for every t ∈ (0, 1), it holds that∫
Σ

|∇σu|2tN−3 dσ � λ1(Σ)
∫

Σ

|u|2tN−3 dσ,

by proposition 2.1, we only have to show that∫ 1

0

∣∣∣∣∂u

∂t

∣∣∣∣
2

tN−1 dt − 1
4 (N − 2)2

∫ 1

0
|u|2tN−3 dt � λ1(D)

∫ 1

0
|u|2tN−1 dt (5.3)

for any fixed σ ∈ Σ. For that, we set w(t) = t(N−2)/2u(tσ), and we compute∫ 1

0

∣∣∣∣∂u

∂t

∣∣∣∣
2

tN−1 dt − µ0(RN )
∫ 1

0
|u|2tN−3 dt =

∫ 1

0

∣∣∣∣∂w

∂t

∣∣∣∣
2

t dt + (2 − N)
∫ 1

0

∂w

∂t
w dt

=
∫ 1

0

∣∣∣∣∂w

∂t

∣∣∣∣
2

t dt + 1
2 (2 − N)

∫ 1

0

∂w2

∂t
dt

=
∫ 1

0

∣∣∣∣∂w

∂t

∣∣∣∣
2

t dt

� λ1(D)
∫ 1

0
w2t dt

= λ1(D)
∫ 1

0
|u|2tN−1 dt.

This gives (5.3) and the proposition is proved.

The main result of this section is contained in the next theorem.

Theorem 5.2. Let Ω be a bounded domain of R
N with 0 ∈ ∂Ω. If Ω is contained

in a half-space, then∫
Ω

|∇u|2 − µ+
∫

Ω

|x|−2|u|2 � λ1(D)
|diam(Ω)|2

∫
Ω

|u|2 ∀u ∈ H1
0 (Ω).
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Proof. Let R > 0 be the diameter of Ω. Then Ω ⊂ B+
R , where B+

R is a half-ball of
radius R centred at the origin. Take Σ to be a half-sphere in S

N−1 in proposition 5.1
so that CΣ is a half-space. Recalling (2.4), we conclude that∫

B+
R

|∇u|2 − µ+
∫

B+
R

|x|−2|u|2 � λ1(D)
R2

∫
B+

R

|u|2

for any R > 0, u ∈ C∞
c (Ω), and the theorem readily follows.

Remark 5.3. Let Ω be a bounded domain of R
2 with 0 ∈ ∂Ω and assume that Ω

does not intersect a half-line emanating from the origin. Then (2.5) and proposi-
tion 5.1 imply the following improved Hardy inequality:∫

Ω

|∇u|2 − 1
4

∫
Ω

|x|−2|u|2 � λ1(D)
|diam(Ω)|2

∫
Ω

|u|2 ∀u ∈ H1
0 (Ω).

Remark 5.4. As pointed out in [2, extension 4.3], the following Hardy–Sobolev
inequality holds:

∫
C1,Σ

|∇u|2 − µ0(C1,Σ)
∫

C1,Σ

|x|−2|u|2 � cp

( ∫
C1,Σ

|u|p
)2/p

∀u ∈ C∞
c (C1,Σ)

for all p ∈ (2, 2N/(N − 2)), where cp is a positive constant depending on p and N .

6. Estimates on λ∗

In this section we provide sufficient conditions to have λ∗ > −∞ or λ∗ < 0.

6.1. Estimates from below

Let Ω be a smooth domain in R
N with 0 ∈ ∂Ω. We say that Ω is locally convex

at 0 if there exists a ball B centred at 0 such that Ω∩B is contained in a half-space.
In essence, for domains of class C2, this means that all the principal curvatures of
∂Ω (with respect to the interior normal) at 0 are strictly positive.

In the case where Ω is locally convex at 0 ∈ ∂Ω, the supremum in lemma 3.1 is
attained.

Proposition 6.1. If Ω is locally convex at 0, then there exists λ∗(Ω) ∈ R such that

µλ(Ω) = µ+ ∀λ � λ∗(Ω),

µλ(Ω) < µ+ ∀λ > λ∗(Ω).

Proof. The local convexity assumption at 0 means that there exists r > 0 such that
Br(0) ∩ Ω is contained in a half-space. We let ψ ∈ C∞

c (RN ) with 0 � ψ � 1, ψ ≡ 0
in R

N \ Br/2(0) and ψ ≡ 1 in Br/4(0). Arguing in the same way as in the proof of
lemma 3.1, for every u ∈ H1

0 (Ω) we obtain∫
Ω

|x|−2|u|2 dx �
∫

Ω

|x|−2|ψu|2 dx + c

∫
Ω

|u|2 dx (6.1)
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for some constant c = c(r) > 0. Since ψu ∈ H1
0 (Br(0) ∩ Ω), from the definition of

µ+ we infer

µ+
∫

Ω

|x|−2|ψu|2 dx �
∫

Ω

|∇(ψu)|2 dx.

As in lemma 3.1, we obtain∫
Ω

|∇(ψu)|2 dx �
∫

Ω

|∇u|2 dx + c

∫
Ω

|u|2 dx.

Comparing this with (6.1), we infer that there exists a positive constant c such that

µ+
∫

Ω

|x|−2|u|2 dx �
∫

Ω

|∇u|2 dx + c

∫
Ω

|u|2 dx.

This proves that µ−c(Ω) � µ+. Thus, µ−c(Ω) = µ+ by lemma 3.1. Finally, noting
that µλ(Ω) is decreasing in λ, we can set

λ∗(Ω) := sup{λ ∈ R : µλ(Ω) = µ+} (6.2)

so that µλ(Ω) < µ+ for all λ > λ∗(Ω).

Finally, we note that, by lemma 3.1, if Ω is contained in a half-space, then
µ0(Ω) = µ+, and therefore λ∗(Ω) � 0. Thus, from theorem 5.2 we infer the following
result.

Theorem 6.2. Let Ω be a bounded smooth domain with 0 ∈ ∂Ω. If Ω is contained
in a half-space, then

λ∗(Ω) � λ1(D)
|diam(Ω)|2 .

It would be of interest to know whether it is possible to obtain lower bounds
depending only on the measure of Ω, as in [2, 13].

6.2. Estimates from above

The local convexity assumption of Ω at 0 does not necessarily imply that λ∗(Ω) �
0. Indeed, the following remark holds.

Proposition 6.3. For any δ > 0, there exists ρδ > 0 such that if Ω is a smooth
domain with 0 ∈ ∂Ω and

Ω ⊇ {x ∈ R
N | x · ν > −δ|x|, α < |x| < β}

for some ν ∈ S
N−1, β > α > 0 with β/α > ρδ, then λ∗ < 0. In particular, the Hardy

constant µ0(Ω) is achieved.

Proof. Since the cone
Cδ = {x ∈ R

N | x · ν > −δ|x|}
contains a half-space, then its Hardy constant is smaller than µ+. Thus, there exists
u ∈ C∞

c (Cδ) such that ∫
Cδ

|∇u|2 dx∫
Cδ

|x|−2|u|2 dx
< µ+.
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Assume that the support of u is contained in an annulus of radii b > a > 0. Then
the conclusion in proposition 6.3 holds, with ρ := b/a.

Note that Ω can be locally strictly convex at 0.

Remark 6.4. A similar remark holds for the following minimization problem,
which is related to the Caffarelli–Kohn–Nirenberg inequalities:

inf
u∈H1

0 (Ω), u �=0

∫
Ω

|∇u|2 dx

(
∫

Ω
|x|−b|u|p dx)2/p

, (6.3)

where 2 < p < 2∗, b := N −p 1
2 (N −2). In the case where 0 ∈ ∂Ω, the minimization

problem (6.3) was studied in [10–12].

Remark 6.5. We do not know whether the strict local concavity of Ω at 0 implies
that µ0(Ω) < µ+ (see [10] for the minimization problem (6.3)).

Note added in proof

After this paper was submitted for publication, it was proved in [8] that λ∗(Ω) < ∞
whenever Ω is a smooth bounded domain, and that the strict local concavity of Ω
at 0 does not necessarily imply that µ0(Ω) < µ+. We also cite [9] for some non-
existence results related to theorem 4.1.
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