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Queues operated by a processor-sharing mode have important applications in many mod-
ern systems. However, because of the simultaneous sharing of service capacity by all
customers, the distribution function and moments of the sojourn time are difficult to
derive, even with a given initial condition. In addition, when a limit on the number of
customers in the system is enforced to ensure the quality of service, the sojourn time
becomes more complicated. In recent literature, the distribution function is obtained via
the Laplace–Stieltjes transform. In this paper, we take a pure algebraic approach to derive
the moments of the sojourn time. We obtain an iterative formula and use it to investi-
gate properties of the conditional sojourn time. The approach is simple and intuitive, and
applies to queues with multiple class customers as well.

1. INTRODUCTION

In the classical paper of queueing control, Naor [9] considered a single-server system with
Poisson arrivals, exponential service times, and a finite system capacity limit, theM/M/1/N
queue. He showed that the self-optimization and the social-optimization of a given utility
function for the system under first-in-first-out (FIFO) service discipline are in general dif-
ferent. He demonstrated the difference by explicitly calculating the expected conditional
waiting time of an entering customer given the number of customers in the system upon
arrival.

When one wants to apply Naor’s analysis to a modern queueing model, the
processor-sharing (PS) queue, he may have found no handy formula for the corresponding
distribution or expectation as those of the FIFO queue. Indeed, despite the great demand,
there was no such closed form in the literature. The difficulty in deriving the distribution
function of the conditional sojourn time is because it depends on not only the present
number of customers in system, but also the future arrivals.

The earliest work on this problem, to our best knowledge, is by Coffman, Muntz Jr.,
and Trotter [5]; in which they obtain the conditional sojourn time distribution on both the
number seen by the arrival and his service time. Their result is useful from the customer’s
point of view.

On the other hand, customers are usually assumed to be i.i.d. by the system administra-
tor. So, the conditional sojourn time distribution that only depends on the number seen is
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more practical for system management. But, it is difficult to obtain directly from [5] a simple
expression for the moment of the conditional sojourn time for only the number in the system.
Thus, Sengupta and Jagerman [10] took a different approach to get the rth moment of the
conditional sojourn time as a polynomial of degree r, and the Laplace–Stieltjes transform
of the distribution.

To be specific, they considered an M/M/1/∞ PS queue with arrival rate λ and service
rate μ. Define the traffic intensity ρ = λ/μ, and let W (n) denote the conditional sojourn
time of an entering (tagged) customer who sees n− 1 customers upon his arrival. They
obtained the first moment as

EPS[W (n)] =
n+ 1
μ(2 − ρ)

. (1)

Clearly, (1) is a linear function of n, whereas for the same queue under FIFO,
EFIFO[W (n)] = n/μ, is also linear in n. Moreover, EFIFO[W (n)] is finite no matter whether
the system is stable or not, yet EPS[W (n)], depends on λ, is shown (later by [11]) to be
finite iff ρ < 2.

As mentioned in [10], it is interesting to note that

EPS[W (n)] < EFIFO[W (n)] iff n− 1 >
ρ

1 − ρ
,

where ρ/(1 − ρ) is the expected number of customers in system under either FIFO or PS.
That is to say, when the number of customers seen by an arrival is greater than the mean
stationary number in system, joining the PS queue has a smaller mean conditional sojourn
time than the FIFO queue. This is true for ρ < 1.

The recent progress on this topic made by Zhen and Knessl [11], where a new formula,
as well as an approximation, for the conditional sojourn time distribution is obtained. It
then derives various asymptotic limits as n and/or ρ are large. Also, an up-to-date reference
of this topic can be found therein.

In many applications, the system administration will enforce a limit on the number
of customers in system to ensure the quality of service as discussed in [2], or potential
customers will set up a stop-loss threshold for his utility as assumed in [9]. When the
number reaches the limit, arrivals will be rejected or leave without service. While the limit
lets the conditional sojourn time to become stochastically smaller, it makes the system more
complicated to analyze.

The first results of the PS queue with finite system limit have appeared very recently.
Borst, Boxma, and Hegde [2] obtain a Laplace–Stieltjes transform of the distribution
of the conditional sojourn time, denoted it as WN(n), for a M/M/1/N PS queue with
state-dependent service rates.

Having a finite number of recursive equations, they use a matrix representation for the
transforms, and then invert the transform to get a phase-type distribution of WN(n) as

P{WN(n) > t} =
N∑

j=1

An,j

−ωj
eωjt, (2)

where ωj , j = 1, . . . , N, are the N roots of the determinant of matrix M that is, composed
of coefficients of a set of linear equations, and An,j are the residues of the partial fraction
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expansion of

ψn(ω) =
det Mi

det M

for the given roots. The matrix Mi is equal to M with the nth column replaced by a
particular vector.

To reduce the computational effort involved in finding the appropriate roots, [2] also
provides two approximations for the distribution.

In a sequel, Boxma, Hegde, and Nunez-Queija [3] extends the approach to multi-class
discriminatory processor-sharing (DPS) queue, that is, customers of distinct classes have
different service rates.

To compute the moments of WN(n) by (2), the only available closed form in the lit-
erature, one has to find the roots of the determinant of an N ×N matrix, and deals with
possible round-off errors. Hence, the need of accessible closed forms for the moments remains
to be met which motivates our present study.

To that end, we start with the same conditional argument as [2], [3], and [10] that is,
both intuitive and simple, then take a different approach from there. We show that the
recursive nature of the conditional argument leads to an iterative formula for moments of
WN(n).

This formula not only unifies the expression for the moments of the conditional sojourn
time for standard PS queue, PS queue with state-dependent service rate considered in
[2] and multi-class DPS queue in [3], it also takes less computational effort in deriving
moments than from the matrix-form distribution. With the formula, we further obtain an
approximation of E[WN(n)] for the standard PS queue complementary to those proposed
in [2] and [3].

The conditional sojourn time on the service time of the tagged customer for the PS queue
has a relatively earlier development. For the M/M/1 PS queue, Kleinrock [7] obtained the
nice and simple closed form for the conditional expectation. Within a short time, Coffman,
Muntz Jr., and Trotter [5] extended the results to conditioning on both the service time
and the number in system. It is worth mentioning that a corresponding result with a finite
system limit has not yet been obtained.

The structure of this paper is as follows. In Section 2, we consider the finite-capacity
PS queue with homogeneous customers and state-dependent service rate. We derive an iter-
ative formula for any moment of the conditional sojourn time, and establish the increase
and concavity of the first moment both in the number seen and in the system limit by the
coupling argument. In Section 3, we consider the service rate being state independent, and
simplify the formula for E[WN(n)]. By the formula, we recover (1) and show the necessary
and sufficient condition of convergence. The monotonic property helps us to obtain simple
approximations of E[WN(n)]. The quality of the approximation is demonstrated by numer-
ical experiments. In the final section, we extend the approach to queues with multiple-class
customers, where each class has its own arrival rate, service rate, and system limit.

2. AN ITERATIVE FORMULA

Consider an M/M/1/N PS queue with homogeneous customers, arrival rate λ, and
state-dependent service rate μi when there are i customers in the system.

A special case of state-dependent service rate is for μi = μ× min{i, c}, which is the
service rate of an M/M/c/N PS queue. It operates as FIFO when i ≤ c and allocates full
service capacity equally to all present customers in the system when i > c.

https://doi.org/10.1017/S0269964812000320 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964812000320


102 W-Y Lee and C-L Wang

Let WN(n) denote the conditional sojourn time of an entering (tagged) customer who
sees n− 1 < N customers in the queue upon arrival. In the associated queueing process,
there are three events that will trigger the change of state, which are an arrival joining the
queue, the departure by other customers, and by the tagged customer. By conditioning on
the next occurring event, we have the following recursive relation for 1 ≤ n ≤ N − 1:

WN(n) =

⎧⎪⎨
⎪⎩

exp(λ+ μn) +WN (n+ 1), w.p.λ/(λ+ μn);
exp(λ+ μn) +WN (n− 1), w.p. (n− 1)μn/n(λ+ μn);
exp(λ+ μn), w.p. μn/n(λ+ μn),

where “exp(a)” denotes an exponential random variable with rate a and “w.p.” stands for
“with probability”, and for n = N :

WN (N) =

{
exp(μN ), w.p. 1/N ;
exp(μN ) +WN (N − 1), w.p. (N − 1)/N.

With the memoryless property of the exponential distribution, WN (n) can be represented
as a convolution of a random number of independent exponential random variables. That
will lead to an expression of the distribution function in an exponential-matrix form as
derived in [2]. We take a different approach from here to deriving formulae for the moments
of WN (n).

We begin by showing a recursive relation of exponential moments. Let X be an expo-
nential random variable with rate a, independent of another random variable Y . For any
m ≥ 1,

E[(X + Y )m] =
m∑

n=0

(
m

n

)
E(Xn)E(Y m−n)

=
m−1∑
n=0

(
m

n+ 1

)
E(Xn+1)E(Y m−1−n) + E(Y m)

=
m

a

m−1∑
n=0

(
m− 1
n

)
E(Xn)E(Y m−1−n) + E(Y m)

=
m

a
E[(X + Y )m−1] + E(Y m), (3)

where the third equality is due to the fact that E(Xn+1) = (n+ 1)E(Xn)/a.
Now, let E[Wm

N (n)] be the mth moment of the conditional sojourn time, m ≥ 1. By
conditioning on the next event occurred, we obtain from (3) that

E[Wm
N (n)] =

m

λ+ μn
E[Wm−1

N (n)] +
λ

λ+ μn
E[Wm

N (n+ 1)]

+
n− 1
n

μn

λ+ μn
E[Wm

N (n− 1)] (4)

for 1 ≤ n ≤ N − 1, and

E[Wm
N (N)] =

m

μN
E[Wm−1

N (N)] +
N − 1
N

E[Wm
N (N − 1)]. (5)
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Let ρi = λ/μi, a1 = ρ1/(1 + ρ1), bm,1 = a1E[Wm−1
N (1)]/(μ1ρ1), and

an =
ρn

1 + ρn − (n− 1)an−1/n
, bm,n =

an

ρn

[
E[Wm−1

N (n)]
μn

+
n− 1
n

bm,n−1

]
.

for 2 ≤ n ≤ N − 1. We have a recursive formula below which is useful in proving the main
result.

Lemma 1: For 1 ≤ n ≤ N − 1 and m ≥ 1,

E[Wm
N (n)] = mbm,n + anE[Wm

N (n+ 1)]. (6)

Proof: The proof is by induction. For n = 1, we have from (4),

E[Wm
N (1)] =

m

μ1(1 + ρ1)
E[Wm−1

N (1)] +
ρ1

1 + ρ1
E[Wm

N (2)]

= mbm,1 + a1E[Wm
N (2)].

Assume that it holds for n = k − 1 ≥ 1. For n = k, it follows from (4) and the induction
step that

E[Wm
N (k)] =

m

1 + ρk

[
E[Wm−1

N (k)]
μk

+
k − 1
k

bm,k−1

]
+

ρk

1 + ρk
E[Wm

N (k + 1)]

+
k − 1
k

1
1 + ρk

ak−1E[Wm
N (k)]

= mbm,k + akE[Wm
N (k + 1)]. �

By further letting

aN =
ρN

1 − (N − 1)aN−1/N
, bm,N =

aN

ρN

[
E[Wm−1

N (N)]
μN

+
N − 1
N

bm,N−1

]
,

and
∏n−1

i=n ai = 1 for any n ≥ 0, we have the main result below:

Theorem 1: For 1 ≤ n ≤ N and 1 ≤ m,

E[Wm
N (n)] = m

N∑
j=n

bm,j

j−1∏
k=n

ak. (7)

Proof: It is easy to see that (7) holds when N = 1. For N > 1 and n = N , substituting
(6) into (5) yields

E[Wm
N (N)] = m

[
E[Wm−1

N (N)]
μN

+
N − 1
N

bm,N−1

]
+
N − 1
N

aN−1E[Wm
N (N)]

= mbm,N .

We then substitute the above back into (6) to get E[Wm
N (N − 1)]. Repeating the

substitution, we get

E[Wm
N (n)] = m

⎛
⎝bm,n + bm,n+1an + · · · + bm,N

N−1∏
j=n

aj

⎞
⎠ ,

for any n ∈ {1, . . . , N − 1}, and the desired result. �
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We note that to compute E[Wm
N (n)] by (7) one needs to first compute E[W k

N (i)] for
k = 1, . . . ,m− 1 and i = 1, . . . , N , the price to pay for deriving higher moments without
using the distribution. In particular, the computing procedure is:

1. Compute recursive sequences {ai} and {b1,i}.
2. Input {ai} and {b1,i} into (7) to get {E[WN (i)]}.
3. If m > 1, derive {b2,i} via {ai} and {E[WN (i)]}.
4. Input {ai} and {b2,i} into (7) again to get {E[W 2

N (i)]}, and so on, until E[Wm
N (n)]

is obtained.

Remark: While (2) is the distribution of Wn and the only available closed form in the liter-
ature, if one resorts to it for deriving moments, he has to find the roots of the determinant
of an N ×N matrix, and deals with possible round-off errors. Alternatively, the calcula-
tion needed by (7) is for 2m recursive sequences, namely, {ai}, {bk,i : k = 1, . . . ,m} and
{E[W k

N (i)] : k = 1, . . . ,m− 1}, with complexity O(mN) in contrast to O(N3) for finding
the roots of the determinant.

2.1. Monotonicity and Concavity

In this subsection, we will study stochastic properties of WN (n) via the coupling argument.
These properties are useful when one concerns the queueing control as in [9].

For a sequence of positive numbers {cn, n ≥ 1}, we say that it is proportional decreasing
and convex if for all n ≥ 1, ncn+1 − (n+ 1)cn is negative and increasing in n.

The assumption of proportional decreasing and convex on μn is not restrictive and is
satisfied by most practical systems. For examples, μn = μ, μn = nμ and μn = μ× min{i, c}
all meet the condition.

Consider a G/M/1/N PS queue with state-dependent service rate μn that is, propor-
tional decreasing and convex. Suppose that the tagged customer joins the queue at time
0 and finds n in system, n ≥ 1. Because the exponential service time is Markovian, the
number in system determines the state of the system at any time.

We take WN (n) as a function of n and let Nn(t) denote the number of customers in
system at time t, starting with n at time 0. Then, the tagged customer receives service at
rate μNn+1(t)/Nn+1(t) at t, provided Nn+1(t) > 0, and has sojourn time WN (n+ 1).

Now, suppose that we randomly choose a customer among the n seen by the tagged
customer and freeze his service from time 0 until the tagged customer departs. With the
freezing, the service rate received by the tagged customer changes to μNn(t)/Nn(t) at t, and
the sojourn time becomes WN (n).

Let T1 = inft>0{t : Nn(t) = Nn+1(t)}. At T1, we let remaining service times associated
toNn(T1) be the same as those ofNn+1(T1) such thatNn(t) andNn+1(t) couple from T1. Let

N ′
n(t) =

{
Nn(t), t < T1;
Nn+1(t), t ≥ T1.

Then, Nn+1(t) ≥ N ′
n(t) for all t a.s., and, because nμn+1 ≤ (n+ 1)μn,

μN ′
n(t)

N ′
n(t)

≥ μNn+1(t)

Nn+1(t)
.
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Consequently, for

W ′
N (n) =

{
WN (n), if min{WN (n+ 1),WN (n)} < T1;
WN (n+ 1), otherwise,

W ′
N (n) ≤WN (n+ 1) for all t a.s. Combining this inequality with the facts of N ′

n(t) st= Nn(t)
and W ′

N (n) st= WN (n), we have shown that WN (n) is stochastically increasing in n.
Next, for n ≥ 2, suppose that we freeze one more customer among the n at time 0 so that

the service rate becomes μNn−1(t)/Nn−1(t). Similarly, let T2 = inft>0{t : Nn−1(t) = N ′
n(t)}

and couple Nn−1(t) and N ′
n(t) at time T2 like before. Define

N ′
n−1(t) =

{
Nn−1(t), t < T2;
N ′

n(t), t ≥ T2,

and corresponding copy W ′
N (n− 1) of WN (n− 1). We get

Nn+1(t) ≥ N ′
n(t) ≥ N ′

n−1(t) for all t a.s.,

and, with nμn+1 − (n+ 1)μn increasing in n,

μN ′
n(t)

N ′
n(t)

− μNn+1(t)

Nn+1(t)
≤
μN ′

n−1(t)

N ′
n−1(t)

− μN ′
n(t)

N ′
n(t)

.

Therefore, WN (n+ 1) −W ′
N (n) ≤W ′

N (n) −W ′
N (n− 1), which implies

WN (n+ 1) −WN (n) ≤st WN (n) −WN (n− 1),

that is, E[WN (n)] is concave in n.
To conclude, we have shown:

Theorem 2: Consider the G/M/1/N PS queue with state-dependent service rate μn. If
μn is proportional decreasing and convex, then WN (n) is stochastically increasing and
E[WN (n)] is concave in n for all ρ.

We now study the property of WN (n) in N .
Let LN (t) denote the number of customers in the system at time t with limit N such

that the tagged customer receives service at rate μLN (t)/LN (t) at t. Note that the system
limit will affect Wn only if there are rejected arrivals due to the limit in the sojourn of the
tagged customer.

Suppose N ≥ 2 and we do not serve any customer who enters at t > 0 with LN (t−) =
N − 1 when the tagged customer is in system. As a consequence, the service rate received
by the tagged customer changes to μLN−1(t)/LN−1(t) at time t.

By the same coupling argument, we have LN (t) ≥ L′
N−1(t), which, together with

nμn+1 ≤ (n+ 1)μn, imply W ′
N−1(n) ≤WN (n) for all t a.s. Because W ′

N−1(n) st= WN−1(n),
WN (n) increases stochastically in N .

Furthermore, for N ≥ 3, if any customer who enters at t > 0 with LN (t−) = N − 2 will
neither be served, then by the coupling

LN (t) ≥ L′
N−1(t) ≥ L′

N−2(t)

for all t a.s. This order and nμn+1 − (n+ 1)μn increasing in n yield WN (t) −W ′
N−1(t) ≤

W ′
N−1(t) −W ′

N−2(t), and the concavity of E[WN (n)] in N follows.
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Theorem 3: Consider the GI/M/1/N PS queue with state-dependent service rate μn.
If μn is proportional decreasing and convex, then WN (n) is stochastically increasing and
E[WN (n)] is concave in N for all ρ.

3. STATE-INDEPENDENT SERVICE RATE

When the service rate is state independent, that is, μi = μ for all i = 1, . . . , N , (7) can be
substantially simplified. In this section, we will demonstrate that for E[WN (n)], and discuss
its properties.

First of all, with

an =
ρ

1 + ρ− (n− 1)an−1/n
,

b1,n =
an

ρ

[
1
μ

+
n− 1
n

b1,n−1

]
=

1
nμ

n
an

ρ
+

1
n

(n− 1)
an

ρ
b1,n−1

...

=
1
nμ

n∑
k=1

k
n∏

i=k

ai

ρ
. (8)

Alternatively, we can rewrite b1,1 as (2 − 3a1)/μ(2 − ρ), and, inductively,

b1,n =
n+ 1 − (n+ 2)an

μ(2 − ρ)
, 2 ≤ n ≤ N − 1, and b1,N =

N + 1 − aN

μ(2 − ρ)
. (9)

Then, for 1 ≤ n ≤ N − 1, (6) becomes

E[WN (n)] =
n+ 1 − (n+ 2)an

μ(2 − ρ)
+ anE[WN (n+ 1)]. (10)

We note that, from (8), 2 − ρ in the denominator will not cause any problem to (10), nor
to the second main result below.

Theorem 4: For all N ≥ 1 and 1 ≤ n ≤ N ,

E[WN (n)] =
1

μ(2 − ρ)

(
n+ 1 −

N∏
i=n

ai

)
. (11)

Proof: It is easy to see that (11) holds when N = 1. For N > 1 and n = N , substituting
(10) into (5) yields

E[WN (N)] =
1
μ

(
1 +

(N − 1)[N − (N + 1)aN−1]
N(2 − ρ)

)
+
N − 1
N

aN−1E[WN (N)]

=
1

μ(2 − ρ)
N + 1 − (N + 1)(N − 1)aN−1/N − ρ

1 − (N − 1)aN−1/N

=
1

μ(2 − ρ)
[N + 1 − aN ].
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We then substitute the above back into (10) to get E[WN (N − 1)]. Repeating the
substitution, we obtain

E[WN (n)] =
1

μ(2 − ρ)
{[n+ 1 − (n+ 2)an] + an[n+ 2 − (n+ 3)an+1] + · · ·

+ an · · · aN−1[N + 1 − aN ]}

=
1

μ(2 − ρ)

⎡
⎣N−1∑

j=n

[j + 1 − (j + 2)aj ]
j−1∏
i=n

ai + (N + 1 − aN )
N−1∏
i=n

ai

⎤
⎦ .

Consequently, the desired result follows by rearranging the terms. �

The simple expression of (11) makes it computationally efficient: to get the first moment
of WN (n) one only needs to compute the recursive sequence of {an}.

Furthermore, its resemblance to (1), like the mean waiting time of an M/M/1/k FIFO
queue to that of one without the capacity limit, allows us to gain insights into its asymptotic
property. In particular, by letting N → ∞, we can recover (1) and its stability condition
via (11) with the following result (the proof is in the Appendix):

Lemma 2: For the queue with state-independent service rate,

lim
N→∞

N∏
i=n

ai = 0 iff ρ < 2.

Remark: The increasing property in Theorem 3 can also be shown by (A.1): For ρ ≤ 2,
n+ 1 −∏N

i=n is positive and increasing in N ; for ρ > 2, n+ 1 −∏N
i=n is negative and

decreasing in N . So, we can see from (11) that E[WN (n)] is increasing in N .

3.1. Bounds and Approximation

Although (11) is more computationally accessible, it still involves an iterative formula and
its calculation relies on a programmed procedure. Hence, it would be nice to have a good
approximation of E[WN (n)] that can be computed quickly by hand or, at most, a calculator.
For that purpose, we start with the monotonicity and bounds of {an} (the proof is in the
Appendix).

Lemma 3: The sequence {an} is strictly increasing in n. In addition,

an ≤ 2ρ
1 + ρ+

√
(1 − ρ)2 + 4ρ/n

, 1 ≤ n ≤ N − 1, and

aN ≤ ρ

(
1 − N − 1

N

2ρ
1 + ρ+

√
(1 − ρ)2 + 4ρ/(N − 1)

)−1

.

Denote the bound of aN by a∗N . We substitute it in (11) to form the approximation

E[WN (N)] ≈ 1
μ(2 − ρ)

(n+ 1 − a∗N ). (12)

The advantage of having (12) is that one does not need to compute from a1 all the way
to an just for an estimation of E[WN (N)]. Besides, it is very accurate. Table 1 shows the
relative error of (12) to the exact value.
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Table 1. Absolute Relative Errors of (12) for μ = 1

N ρ = 0.3 ρ = 0.7 ρ = 1.5 ρ = 2 ρ = 10

3 2.17E − 4 3.63E − 3 4.22E − 2 3.53E − 2 3.94E − 3
10 2.30E − 5 2.11E − 3 5.61E − 2 4.24E − 2 1.32E − 3
50 2.51E − 7 1.08E − 4 2.10E − 2 2.25E − 2 2.53E − 4
100 3.25E − 8 1.94E − 5 1.17E − 2 1.29E − 2 1.26E − 4

Table 2. Absolute Relative Errors of (13) for N = 30 and μ = 1

n ρ = 0.3 ρ = 0.7 ρ = 1.5 ρ = 3 ρ = 10

5 0.000 0.000 0.094 0.392 0.100
15 0.000 0.000 0.018 0.013 0.005
25 0.000 0.009 0.038 0.012 0.000

Clearly, E[W (n)] in (1) is an upper bound of E[WN (n)] for ρ ≤ 2. It is very tight when
ρ ≤ 1, and can also serve as an approximation of E[WN (n)].

Another upper bound of E[WN (N)] that is, both simple and tight for ρ > 2 is N/μ. To
perceive it, let W ∗

N (N) denote the sojourn time in the queue with the infinite arrival rate.
Then, it is not hard to see that

WN (N) ≤st W
∗
N (N) =

M∑
i=1

Ei,

where random variables M ∼ Geo(1/N) and Ei’s are i.i.d. and ∼ exp(μ). Respective
expectations are ordered in the same direction.

For ρ > 1, we use the increasing property of {an} and approximate

N−1∏
i=n

ai ≈
(∑N−1

i=n ai

N − n

)N−n

≈
(
an + aN−1

2

)N−n

.

Substituting the above into (11), we obtain the following approximation for ρ > 1.

Lemma 4: For 1 ≤ n ≤ N − 1,

E[WN (n)] ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
μ(2 − ρ)

(n+ 1), for ρ ≤ 1;

1
μ(2 − ρ)

{
n+ 1 − a∗N

(
a∗n + a∗N−1

2

)N−n
}
, for ρ ≥ 1.

(13)

We provide numerical comparisons between the approximation and the exact values in
Table 2.

In Table 2, one can see that the approximation is quite accurate, except when ρ is
slightly larger than 2 and n is small. That is because when the curvature of E[WN (n)]
is sharp and N − n is large, using (an + aN−1)/2 to approximate the geometric mean of
{an, . . . , aN−1} is a long shot. It does better as either ρ or n gets larger.
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One can see from Figure 4 in [2] that (13) would outperform the approximations pro-
posed there for approximating E[WN (n)] of PS queue with state-independent service rate.
But, one has to bear in mind that those approximations are for the distribution, whereas
(13) is only for the moments.

4. MULTIPLE-CLASS QUEUES

For the PS queue with state-independent service rate, we now consider that customers are
heterogeneous.

Suppose there are k classes of customers joining the queue for service. A class-i customer
arrives by a Poisson process with rate λi, and is assigned a service weight ri so that when
there are nj of class-j customers in the system, j = 1, 2, . . . , k, he is served at rate

ri∑k
j=1 njrj

μ =
ri

n · r μ,

where n · r is the dot product of n = (n1, n2, . . . , nk) and r = (r1, r2, . . . , rk).
Suppose further that the queue has a system limit Ni on class-i customers, and let

N = (N1, N2, . . . , Nk).
Heterogeneous customers with different service allocation of this queue is called DPS.

The setup of the multiple class DPS queue has applications in admission control and pricing
of the Internet system when users of the system have various purposes of using the Internet.
We refer interested readers to Altman, Avrachenkov, and Ayesta [1] for a complete survey
and existing results on the DPS queue.

Under this consideration, using vectors for states and matrices for transitions are
unavoidable.

Let WN(i,n) denote the conditional sojourn time of a class-i customer in a multiple
class M/M/1/N PS queue given the state of the system n − δi upon arrival, where δji is
the Kronecker delta and δi = (δ1i, δ2i, . . . , δki).

In [3], an exponential matrix expression is derived for the exact distribution of WN (1,n)
that is, similar to (2). The main function of the expression is for investigating the
appropriateness of the approximated distribution obtained therein.

By the same reasoning for the derivation of (4), we first let ρi =λi/μ and
ρ= ρ1 + · · · + ρk, then, for 0 ≤ nj < Nj , j 	= i, we obtain that when 1 ≤ ni < Ni,

E[Wm
N (i,n)] =

1
1 + ρ

⎧⎨
⎩mE[Wm−1

N (i,n)]
μ

+
k∑

j=1

ρjE[Wm
N (i,n + δj)]

+
k∑

j=1

(nj − δji)rj
n · r E[Wm

N (i,n − δj)]

⎫⎬
⎭ , (14)

and when ni = Ni,

E[Wm
N (i,n)] =

1
1 +

∑
j �=i ρj

⎧⎨
⎩mE[Wm−1

N (i,n)]
μ

+
∑
j �=i

ρjE[Wm
N (i,n + δj)]

+
k∑

j=1

(nj − δji)rj
n · r E[Wm

N (i,n − δj)]

⎫⎬
⎭ .
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Consequently, by letting

an(i) =

⎧⎪⎨
⎪⎩

ρi

1 + ρ− an−δi
(i)(ni − 1)ri/(n · r) , 1 ≤ ni < Ni;

ρi

1 +
∑

j �=i ρj − an−δi
(i)(ni − 1)ri/(n · r) , ni = Ni,

(15)

and for 1 ≤ ni ≤ Ni

bm,n(i) =
an(i)
ρi

⎧⎨
⎩mE[Wm−1

N (i,n)]
μ

+
∑
j �=i

ρjE[Wm
N (i,n + δj)]

+
∑
j �=i

njrj
n · rE[Wm

N (i,n − δj)] +
(ni − 1)ri

n · r bm,n−δi
(i)

⎫⎬
⎭ , (16)

we obtain the corresponding recursive formula

E[WN(i,n)] = bm,n(i) + an(i)E[WN(i,n + δi)].

Regarding the boundary condition, that is, for some nl, l 	= i, in n such that nl = Nl, we
just replace every ρl in the above equations by 0. For n lying outside the feasible region,
that is, ni /∈ {1, . . . , Ni}, and/or some nj /∈ {0, 1, . . . , Nj}, define E[WN(i,n)] = 0.

Consequently, we derive the iterative formula below:

Theorem 5: For the multiple-class DPS queue with service weight vector r and system
limit N, the expected conditional sojourn time of a class-i customer given system state
n − δi upon arrival is

E[WN(i,n)] =
Ni−ni∑

j=0

bm,n+jδi
(i)

j−1∏
l=0

an+lδi
(i), (17)

where an(i) and bm,n(i) are defined as (15) and (16), respectively.

We note that an(i), for some fixed i, is independent of E[Wm
N (i,n)] for all m and can

be treated as coefficients when solving the set of linear equations (17). Furthermore, by the
recursive formula (16), we obtain

bm,n(i) =
an(i)
ρi

n1−1∑
l=0

⎧⎨
⎩mE[Wm−1

N (i,n − lδi)]
μ

+
∑
j �=i

ρjE[Wm
N (i,n − lδi + δj)]

+
∑
j �=i

njrj
(n − lδi) · rE[Wm

N (i,n − lδi − δj)]

⎫⎬
⎭

l∏
n=1

an−nδi
(i)(ni − n)ri

ρi(n − (n− 1)δi) · r (18)

From (17) and (18), one can see that E[Wm
N (i,n)], with the (m− 1)th moment

known, depends on E[Wm
N (i,n − (ni − n)δi ± δj)], n = 1, 2, . . . , Ni, for any 1 ≤ ni ≤ Ni.

That means the vector (E[Wm
N (i,n)];ni = 1, . . . , Ni) is a linear combination of vectors

(E[Wm
N (i,n − δj)];ni = 1, . . . , Ni) and (E[Wm

N (i,n + δj)];ni = 1, . . . , Ni) for j 	= i, which
allows us to transform the linear equations (14) into vector equations.
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In the rest of the section, we focus on the 2-class DPS queue, and demonstrate the
derivation of exact E[WN (1,n)] via (17), whereas E[WN (2,n)] can be similarly derived.

We first recall that for matrix M ∈ Rm×n, write M = [M∗1 M∗2 · · ·M∗n], where M∗j ∈
Rm×1, j = 1, 2, . . . , n. Then ⎡

⎢⎢⎢⎣
M∗1
M∗2

...
M∗n

⎤
⎥⎥⎥⎦ ∈ Rmn×1

is said to be the vec-function of M, and is written vec(M).
Let W = [E[WN (1,n)]] and B = [b1,n(1)] be two N1 × (N2 + 1) matrices, and A =

diag[A0,A1, . . . ,AN2 ] be an N1(N2 + 1) ×N1(N2 + 1) matrix with

Aj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a(1,j)(1) a(1,j)(1)a(2,j)(1) · · ·
N1−1∏
l=1

a(l,j)(1)

0 1 a(2,j)(1) · · ·
N1−1∏
l=2

a(l,j)(1)

...
...

...
...

...
0 · · · · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N1×N1

.

We can express (17) in a matrix form as

vec(W) = Avec(B). (19)

Moreover, we have from (18) that

b1,n(1) =
an(1)
ρ1

n1−1∑
l=0

{
1
μ

+ ρ2E[WN (1, (n1 − l, n2 + 1))]

+
n2r2

(n1 − l, n2) · r E[WN (1, (n1 − l, n2 − 1))]
} l∏

n=1

an−nδ1(1)(n1 − n)r1
ρ1(n1 + 1 − n, n2) · r (20)

Thus, we can let

Cj =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(1,j)(1) 0 · · · 0

a(2,j)(1)
a1(1, j)r1
ρ1(2, j) · r a(2,j)(1) · · · 0

a(3,j)(1)
2∏

n=1

a1(n, j)nr1
ρ1(n+ 1, j) · r a(3,j)(1)

a1(2, j)2r1
ρ1(3, j) · r · · · 0

...
...

...
...

a(N1,j)(1)
N1−1∏
n=1

a1(n, j)nr1
ρ1(n+ 1, j) · r a(N1,j)(1)

N1−1∏
n=2

a1(n, j)nr1
ρ1(n+ 1, j) · r · · · a(N1,j)(1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Dj = diag
[

1
(1, j) · r ,

1
(2, j) · r , · · · ,

1
(N1, j) · r

]
,
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both be of size N1 ×N1, and E be an N1 × (N2 + 1) matrix with all entries being 1. With
C = diag[C0,C1, . . . ,CN2 ] and

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 ρ2I 0 · · · 0

r2D1 0 ρ2I · · · 0

0 2r2D2 0 · · · 0
...

...
...

...
...

0 0 · · · N2r2DN2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where I is a square identity matrix, we then express (20) as

vec(B) =
1
ρ1

C
(

1
μ

vec(E) + Dvec(W)
)
. (21)

Plugging (21) into (19), we get(
I − 1

ρ1
ACD

)
vec(W) =

1
ρ1μ

ACvec(E).

Finally, we conclude the derivation by Cramer’s rule and state the last main result below:

Theorem 6: For the 2-class DPS queue, the solution of E[WN (1,n)] is

E[WN (1, (i, j))] =
det(Fi,j)
det(F)

(22)

for i = 1, . . . , N1, j = 0, 1, . . . , N2, where

F =
1
ρ1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ1I −ρ2A0C0 0 · · · 0

−r2A1C1D1 ρ1I −ρ2A1C1 · · · 0

0 −2r2A2C2D2 ρ1I · · · 0
...

...
...

...
...

0 0 · · · −N2r2AN2CN2DN2 ρ1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and Fi,j is the matrix obtained by replacing the (jN1 + i)th column of F by

1
ρ1μ

diag[A0C0 A1C1 · · · AN2CN2 ]vec(E).

The computing procedure of (22) is:

1. Derive {an(1)} by (15).
2. Form block matrices A and C.
3. Construct block matrix D and, consequently, matrices F and Fi,j .
4. Compute det(F) and det(Fi,j).
5. Input associated determinants into (22) to get E[WN (1, (i, j))].

The procedure for corresponding expectation of class-2 customers is the same.
Regarding the implementation, we first note that Aj ,Cj and Dj are all triangular

matrices whose determinants are just the products of the diagonal entries. Secondly, F is
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a block tridiagonal matrix that appears in many scientific and engineering applications. It
can be found in the literature the analytic formulae of its inverse and determinant, see, for
example, Huang and McColl [6] and Molinari [8], as well as efficient algorithms and even
the source code in the C language [4] for solving the associated system.
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APPENDIX
Proof of Lemma 2: It suffices to show that ρ < 2 is the necessary and sufficient condition for

∏N+1
i=n aN+1(i)∏N

i=n aN (i)
< 1, (A.1)

where aM (i) denote ai with queue limit M . Since aN+1(i) = aN (i) for i = n, . . . , N − 1, we will omit the
queue limit when there is no ambiguity.

With some algebraic manipulation, we have

∏N+1
i=n aN+1(i)∏N

i=n aN (i)
=

aN+1(N + 1)aN+1(N)

aN (N)

=
ρ[1 − (N − 1)aN−1/N ]

1 − (N − 1)aN−1/N + ρ/(N + 1)

= 1 − 2 − ρ − (ρ − 1)[N − (N + 1)aN−1](N − 1)/N

(N + 1)[1 − (N − 1)aN−1/N ] + ρ
. (A.2)

Now, from (8) and (9), the above numerator becomes

(2 − ρ)

[
1 − (ρ − 1)

N−1∑
k=1

k

N

N−1∏
i=k

ai

ρ

]
. (A.3)
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The term in the bracket is positive when ρ ≤ 1. When ρ > 1, because an < 1 for n = 1, . . . , N − 1 (which
can be seen from the recursion of an),

(ρ − 1)

N−1∑
k=1

k

N

N−1∏
i=k

ai

ρ
≤ (ρ − 1)

aN−1/ρ

1 − 1/ρ
≤ 1

so that the term in the bracket is positive too. Therefore, the sign of (A.3) is determined by 2 − ρ, and
(A.2) is smaller than 1 iff 2 − ρ > 0. �

Proof of Lemma 3: Firstly, it is easy to see that a2 − a1 > 0. Then, the monotonicity can be shown by
writing

an+1 − an =
ρ

1 + ρ − nan/(n + 1)
− ρ

1 + ρ − (n − 1)an−1/n

=
ρ[nan/(n + 1) − (n − 1)an−1/n]

(1 + ρ − nan/(n + 1))(1 + ρ − (n − 1)an−1/n)

and arguing inductively that the numerator is positive.
To derive the upper bound, we use the increasing property of {an} to get

an <
ρ

1 + ρ − (n − 1)an/n
.

This inequality holds if either

an <
1 + ρ −√

(1 − ρ)2 + 4ρ/n

2(n − 1)/n
or an >

1 + ρ +
√

(1 − ρ)2 + 4ρ/n

2(n − 1)/n
,

but the later is impossible because an < 1. Then, multiplying both the numerator and denominator by
1 + ρ +

√
(1 − ρ)2 + 4ρ/n yields the upper bounds. �
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