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1. Introduction

Boundary triple techniques are nowadays a widely used abstract tool in extension
theory and spectral analysis of symmetric and self-adjoint operators. These meth-
ods are inspired by, and can be viewed as, abstract counterparts of trace maps for
ordinary or partial differential operators. The Titchmarsh–Weyl m-function in sin-
gular Sturm–Liouville theory and the Dirichlet-to-Neumann map in the analysis of
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elliptic differential operators correspond to the Weyl function associated with such a
boundary triple. We refer the reader to [12,13,21,40] for ordinary boundary triples,
typical applications and further references, to [25, ch. 13] and [11, 20, 22, 33, 36, 37]
for extension theory of partial differential operators, and to [4–7] for the more gen-
eral notion of quasi boundary triples and their use in the spectral analysis of partial
differential operators.

The usual starting point is a densely defined, closed, symmetric operator S with
equal deficiency indices n±(S) in a Hilbert space H and its adjoint S∗. An ordinary
boundary triple {G, Γ0, Γ1} for S∗ consists of a Hilbert space G with dimG = n±(S)
and two boundary mappings Γ0, Γ1 : dom S∗ → G that satisfy an abstract Lagrange
or Green identity

(S∗f, g)H − (f, S∗g)H = (Γ1f, Γ0g)G − (Γ0f, Γ1g)G , f, g ∈ dom S∗, (1.1)

and a maximality condition. With the help of a boundary triple the self-adjoint
extensions of S in H can be parametrized in an efficient way via abstract boundary
conditions in the boundary space G. More precisely, the restriction

A[B]f := S∗f, dom A[B] = {f ∈ dom S∗ : Γ0f = BΓ1f}, (1.2)

of S∗ is self-adjoint in H if and only if B is a self-adjoint operator or relation in the
boundary space G. The spectral properties of the self-adjoint extensions A[B] can
be investigated with the help of the Weyl function M associated with the boundary
triple {G, Γ0, Γ1}. The values M(λ) of the Weyl function are linear operators in G
defined by

M(λ) : G → G, Γ0f �→ Γ1f, f ∈ ker(S∗ − λ), (1.3)

where λ ∈ C does not belong to the spectrum of the self-adjoint extension A0 :=
S∗ � ker Γ0. It turns out that M belongs to the class of operator-valued Nevanlinna
or Riesz–Herglotz functions, and, very roughly speaking, the spectral properties of
a self-adjoint extension A[B] of S in (1.2) are encoded in the singularities of the
function λ �→ (B−1 − M(λ))−1.

For many purposes and applications the notion of boundary triples and their
Weyl functions is an efficient and most suitable tool, in particular, for ordinary
differential operators and all other extension problems where the deficiency indices
of the underlying symmetric operator are finite. However, if one tries to apply
the boundary triple method to elliptic partial differential equations (PDEs) on
bounded or unbounded domains with the usual Dirichlet and Neumann trace as
boundary maps and the Dirichlet-to-Neumann map as Weyl function, one gets into
very serious trouble since Green’s second identity does not extend to all functions in
the maximal domain. There are various ways to overcome this technical difficulty;
see [4,5,11,20,33,36,37,39] and the classical contributions [22,41] for more details.
One possible solution is the concept of quasi boundary triples, which is a slight
generalization of the notion of boundary triples that was proposed in [4] and further
developed and applied in, for example, [5–7]. The key idea is to define the boundary
maps only on a suitable core of the adjoint operator S∗ and to require (1.1) to hold
only for elements in this core. The notion of the Weyl function in (1.3) remains
almost the same: instead of all defect elements f ∈ ker(S∗−λ), only those belonging
to the core are allowed; see § 2. However, it is important to note that for quasi
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boundary triples some of the striking properties of ordinary boundary triples fail:
for example, self-adjointness of B does not imply, in general, self-adjointness of
the extension A[B] in (1.2). Therefore, it is desirable to find sufficient conditions
for the boundary parameters B to induce self-adjoint extensions A[B] via (1.2).
There are some useful sufficient conditions in the literature, most of which rely on
compactness properties of the Weyl function; see, for example, [5, theorems 6.20
and 6.21] or [4, 6, 7].

One of the main aims of the present paper is to provide new sufficient conditions
for the boundary parameter B to induce a self-adjoint extension A[B] via (1.2) in
the framework of quasi boundary triples. In theorems 2.4 and 2.6 and corollaries 2.5
and 2.7 we drop the above mentioned compactness assumptions and replace them by
a set of abstract conditions. In the special but important case when A0 is bounded
from below and M(λ) → 0 in the operator norm as λ → −∞, these conditions
simplify further; see theorem 2.8. We emphasize that in the present setting also
unbounded self-adjoint operators B are allowed in (1.2).

Our second main objective is to relate decay properties of the Weyl function
associated with an ordinary or quasi boundary triple to the lower bounds of the
spectra of the self-adjoint extensions A[B]. More precisely, since M is a Nevanlinna
function, it behaves similarly to the resolvent of the self-adjoint operator A0. If A0
is bounded from below, the decay of the Weyl function λ �→ M(λ) for λ → −∞
may be like

‖M(λ)‖ = O
(

1
(µ − λ)α

)
as λ → −∞ (1.4)

for some α ∈ (0, 1] and a certain µ � min σ(A0). This leads to an estimate for the
lower bound of the self-adjoint extensions A[B] when the norm of the parameter B
tends to ∞; see theorem 2.8 and corollary 2.9.

Our general considerations and results in § 2 are partly inspired by possible appli-
cations to elliptic PDEs on unbounded domains with non-compact boundaries. In
§ 3 we illustrate our methods with uniformly elliptic second-order differential expres-
sions with smooth variable coefficients. The boundary maps Γ0 and Γ1 are chosen
to be the Neumann and Dirichlet trace, respectively, defined on H2(Ω), which is a
core for the maximal operator. In that case the Weyl function M is the Neumann-
to-Dirichlet map, and it is shown in proposition 3.2 that the norms of the closures
M(λ) satisfy (1.4) with α = 1

2 . As a consequence, the abstract results in § 2 yield
self-adjointness and an estimate for the lower bounds of the spectra of the self-
adjoint realizations A[B] in terms of the boundary parameter B in theorem 3.5.
Here the parameter B in the local or non-local Robin boundary condition may
also be an unbounded operator. We mention that in certain cases similar esti-
mates can also be obtained via standard techniques involving quadratic forms; see
remark 3.8. Finally, we refer the reader to [18, 19, 26–28] for a small selection of
other recent contributions on spectral properties of elliptic differential operators
and especially to [1,24,32,38,43] and the monographs [23,42] for elliptic operators
on domains with non-compact boundaries. For further recent contributions to the
literature on asymptotics of lower bounds and more explicit spectral asymptotics for
elliptic differential operators with Robin boundary conditions, we refer the reader
to [17,29–31,35] and the references therein.
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2. Quasi boundary triples, Weyl functions and self-adjoint extensions

Throughout this section we assume that S is a densely defined, closed, symmetric
operator in a Hilbert space H. We start by recalling the notion of quasi boundary
triples, which was introduced in [4] as a generalization of the concepts of ordinary
and generalized boundary triples; for the latter see, for example, [13, 14].

In the following we denote all appearing inner products by (·, ·); the respective
Hilbert space will be clear from the context.

Definition 2.1. Let T ⊂ S∗ be a linear operator in H such that T = S∗. A triple
{G, Γ0, Γ1} is called a quasi boundary triple for T ⊂ S∗ if G is a Hilbert space and
Γ0, Γ1 : dom T → G are linear mappings such that

(i) the abstract Green identity

(Tf, g) − (f, Tg) = (Γ1f, Γ0g) − (Γ0f, Γ1g) (2.1)

holds for all f, g ∈ dom T ,

(ii) the map Γ := (Γ0, Γ1)T : dom T → G × G has dense range,

(iii) A0 := T � ker Γ0 is a self-adjoint operator in H.

We recall from [4, 5] that a quasi boundary triple exists if and only if S admits
self-adjoint extensions in H, that is, the deficiency indices of S are equal. Moreover,
if {G, Γ0, Γ1} is a quasi boundary triple for T ⊂ S∗, then one has T = S∗ if and
only if ranΓ = G × G, in which case Γ = (Γ0, Γ1)T : dom S∗ → G × G is onto
and continuous with respect to the graph norm of S∗, the abstract Green identity
holds for all f, g ∈ dom S∗, and the restriction A0 = S∗ � ker Γ0 is automatically
self-adjoint. In this situation the notion of quasi boundary triples coincides with
the notion of ordinary boundary triples. In particular, this is the case when the
deficiency indices of S are finite (and equal). For later use let us also introduce the
notation A1 := T � ker Γ1. In contrast to the case of an ordinary boundary triple,
this extension of S is not necessarily self-adjoint.

With each quasi boundary triple {G, Γ0, Γ1} one associates a so-called γ-field and
a Weyl function. Before we recall their definitions, note that for each λ ∈ ρ(A0) one
has the direct sum decomposition

dom T = dom A0+̇ ker(T − λ) = kerΓ0+̇ ker(T − λ).

Thus, the restriction of the boundary map Γ0 to ker(T − λ) is injective, and its
range coincides with ranΓ0. The definitions of the γ-field and the Weyl function
are now formally the same as for ordinary and generalized boundary triples.

Definition 2.2. The γ-field γ and the Weyl function M corresponding to the
quasi boundary triple {G, Γ0, Γ1} are defined by

λ �→ γ(λ) := (Γ0 � ker(T − λ))−1, λ ∈ ρ(A0),

and
λ �→ M(λ) := Γ1γ(λ), λ ∈ ρ(A0),

respectively.
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Observe that γ(λ) is a mapping from ranΓ0 ⊂ G onto ker(T − λ) ⊂ H and that
the values M(λ) of the Weyl function are operators in G mapping ranΓ0 into ranΓ1.
Note that ranΓ0 and ranΓ1 are both dense subspaces of G; this is a consequence of
the density of the range of Γ = (Γ0, Γ1)T. Various useful and important properties
of the γ-field and the Weyl function can be found in [4, proposition 2.6] or [5,
propositions 6.13 and 6.14]. For later purposes we recall that the adjoint γ(λ)∗ is a
bounded, everywhere-defined operator from H to G, which satisfies

γ(λ)∗ = Γ1(A0 − λ)−1, λ ∈ ρ(A0). (2.2)

Furthermore, the values of the Weyl function have the property M(λ) ⊂ M(λ)∗,
λ ∈ ρ(A0), and, in particular, the operators M(λ) are closable. We point out that
the operators M(λ) and their closures M(λ) are in general not bounded. However,
if M(λ0) is bounded for one λ0 ∈ ρ(A0), then M(λ) is bounded for all λ ∈ ρ(A0);
see [7, proposition 3.3(viii)]. The next lemma, which contains further properties of
the Weyl function, is used later.

Lemma 2.3. Let {G, Γ0, Γ1} be a quasi boundary triple for T ⊂ S∗ with correspond-
ing Weyl function M .

(i) For every ϕ ∈ (ranΓ0) \ {0} the function

λ �→ (M(λ)ϕ, ϕ)

is strictly increasing on each interval in ρ(A0) ∩ R.

(ii) If A0 is bounded from below and

(M(λ)ϕ, ϕ) → 0 as λ → −∞ (2.3)

for all ϕ ∈ ranΓ0, then

(M(λ)ϕ, ϕ) > 0, ϕ ∈ (ranΓ0) \ {0}, λ < min σ(A0). (2.4)

Proof. (i) For ϕ ∈ (ranΓ0) \ {0} and λ ∈ ρ(A0) ∩ R we obtain from [7, proposi-
tion 3.3(vii)] that

d
dλ

(M(λ)ϕ, ϕ) = (γ(λ)∗γ(λ)ϕ, ϕ) = ‖γ(λ)ϕ‖2 > 0,

where the last inequality is true since γ(λ) is injective.

(ii) Relation (2.4) follows directly from (2.3) and (i).

In contrast to ordinary boundary triples there is no one-to-one correspondence
between self-adjoint relations Θ or B in G and self-adjoint extensions of S in H of the
form AΘ = S∗ � ker(Γ1−ΘΓ0) or A[B] = S∗ � ker(BΓ1−Γ0), respectively. However,
various sufficient conditions for self-adjointness in terms of the parameters Θ or B
were obtained in, for example, [5, theorems 6.20 and 6.21] and [7, theorem 3.11],
and, in connection with PDEs on domains with compact boundaries, also in [4,
proposition 4.3 and theorem 4.8] and [7, theorem 4.5]. In the next theorem we
provide a new very useful sufficient condition, which is formulated for the parameter
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B = Θ−1. In contrast to earlier results no compactness assumption on the values
of the Weyl function is imposed. In particular, this allows us to apply the abstract
results to elliptic PDEs on domains with non-compact boundaries; see § 3. We
remark that in the application the conditions on B simplify substantially.

Theorem 2.4. Let {G, Γ0, Γ1} be a quasi boundary triple for T ⊂ S∗ with cor-
responding γ-field γ and Weyl function M . Let B be a linear operator in G and
assume that there exist λ± ∈ C

± such that the following conditions are satisfied:

(i) B is symmetric,

(ii) 1 ∈ ρ(BM(λ±)),

(iii) B(ranM(λ±) ∩ dom B) ⊂ ranΓ0,

(iv) ranΓ1 ⊂ dom B,

(v) B(ranΓ1) ⊂ ranΓ0 or A1 is self-adjoint.

Then the operator

A[B]f = Tf, dom A[B] = {f ∈ dom T : Γ0f = BΓ1f}, (2.5)

is a self-adjoint extension of S and

(A[B] − λ)−1 = (A0 − λ)−1 + γ(λ)(I − BM(λ))−1Bγ(λ)∗ (2.6)

holds for all λ ∈ ρ(A[B]) ∩ ρ(A0).

Note that if {G, Γ0, Γ1} is a generalized boundary triple, i.e. if ranΓ0 = G, then
(iii) and (v) are automatically satisfied.

Before we prove theorem 2.4, we state a corollary for bounded B, which follows
immediately from theorem 2.4.

Corollary 2.5. Let {G, Γ0, Γ1} be a quasi boundary triple for T ⊂ S∗ with corre-
sponding γ-field γ and Weyl function M . Let B be a bounded self-adjoint operator
in G and assume that there exist λ± ∈ C

± such that the following conditions are
satisfied:

(i) 1 ∈ ρ(BM(λ±)),

(ii) B(ranM(λ±)) ⊂ ranΓ0,

(iii) B(ranΓ1) ⊂ ranΓ0 or A1 is self-adjoint.

Then the operator A[B] in (2.5) is a self-adjoint extension of S, and the resolvent
formula (2.6) holds for all λ ∈ ρ(A[B]) ∩ ρ(A0).

Proof of theorem 2.4. The proof of theorem 2.4 consists of several steps. In the first
four steps we assume that the first condition in (v) is satisfied.
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Step 1. First we show that A[B] is symmetric, which is essentially a simple con-
sequence of the abstract Green identity (2.1). In fact, by assumption (iv), for
f, g ∈ dom A[B] we have Γ1f, Γ1g ∈ dom B,

BΓ1f = Γ0f and BΓ1g = Γ0g,

which implies that

(A[B]f, g) − (f, A[B]g) = (Tf, g) − (f, Tg)
= (Γ1f, Γ0g) − (Γ0f, Γ1g)
= (Γ1f, BΓ1g) − (BΓ1f, Γ1g)
= 0,

where assumption (i) on the symmetry of the operator B was used in the last step.
This shows that A[B] is a symmetric operator in H.

Step 2. In this step we show the inclusions

ran(Bγ(λ±)∗) ⊂ ran(I − BM(λ±)). (2.7)

We consider only λ+ ∈ C
+; the proof for λ− ∈ C

− is the same. Note first that it fol-
lows from (2.2) and condition (iv) that the product Bγ(λ±)∗ is everywhere defined.
Let g ∈ ran(Bγ(λ+)∗). Then there exists an f ∈ H such that g = Bγ(λ+)∗f . By
(2.2) we have γ(λ+)∗f = Γ1(A0 − λ+)−1f ∈ ranΓ1, and hence assumption (v)
implies that

Bγ(λ+)∗f ∈ ranΓ0. (2.8)

We set
ϕ := (I − BM(λ+))−1Bγ(λ+)∗f, (2.9)

which is well defined by assumption (ii). We can rewrite (2.9) in the form

ϕ = BM(λ+)ϕ + Bγ(λ+)∗f. (2.10)

Since M(λ+)ϕ ∈ ranM(λ+)∩dom B, assumption (iii) and relations (2.8) and (2.10)
imply that ϕ ∈ ranΓ0 = dom M(λ+). Together with (2.10) this yields

(I − BM(λ+))ϕ = Bγ(λ+)∗f = g,

and hence g ∈ ran(I − BM(λ+)), i.e. the inclusion (2.7) is shown for λ+ ∈ C
+.

Step 3. We claim that ran(A[B] − λ±) = H holds. Again we show the assertion
only for λ+ ∈ C

+; the arguments for λ− ∈ C
− are the same. Let f ∈ H and consider

the element

h := (A0 − λ+)−1f + γ(λ+)(I − BM(λ+))−1Bγ(λ+)∗f. (2.11)

Note that by assumption (ii) the inverse (I − BM(λ+))−1 exists. It maps into
dom M(λ+) = ranΓ0, so the product with γ(λ+) is well defined. Observe also that
the product of (I −BM(λ+))−1 and Bγ(λ̄+)∗ is well defined by (2.7). We now show
that h ∈ dom A[B]. Clearly, h ∈ dom T since

(A0 − λ+)−1f ∈ dom A0 ⊂ dom T
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and
ran γ(λ+) = ker(T − λ+) ⊂ dom T.

Furthermore, using (2.2) and the definition of M(λ+) we have

BΓ1h = BΓ1(A0 − λ+)−1f + BΓ1γ(λ+)(I − BM(λ+))−1Bγ(λ+)∗f

= Bγ(λ+)∗f + BM(λ+)(I − BM(λ+))−1Bγ(λ+)∗f

= [(I − BM(λ+)) + BM(λ+)](I − BM(λ+))−1Bγ(λ+)∗f

= (I − BM(λ+))−1Bγ(λ+)∗f ;

the relation domA0 = ker Γ0 and the definition of γ(λ+) yield

Γ0h = Γ0(A0 − λ+)−1f + Γ0γ(λ+)(I − BM(λ+))−1Bγ(λ+)∗f

= (I − BM(λ+))−1Bγ(λ+)∗f.

Hence, the element h in (2.11) satisfies the boundary condition Γ0h = BΓ1h. This
shows that h ∈ dom A[B]. Finally, we obtain from (2.11) that

(A[B] − λ+)h = (T − λ+)h = (T − λ+)(A0 − λ+)−1f = f, (2.12)

where again ran γ(λ+) = ker(T − λ+) was used. Hence, ran(A[B] − λ+) = H holds.

Step 4. It follows from the symmetry of A[B] shown in step 1 and the range condi-
tion in step 3 that the operator A[B] is self-adjoint in H. The resolvent formula fol-
lows for λ = λ± immediately from the identities (2.11) and (2.12) in step 3. Assume
now that λ ∈ ρ(A[B])∩ρ(A0) is arbitrary. We claim that the operator I −BM(λ) is
injective. Indeed, if ϕ ∈ ker(I − BM(λ)), then ϕ ∈ dom M(λ) = ranΓ0 and hence
f := γ(λ)ϕ ∈ ker(T − λ), so that Γ0f = ϕ. From

BΓ1f = BM(λ)Γ0f = BM(λ)ϕ = ϕ = Γ0f

we conclude that f ∈ dom A[B] and hence f ∈ ker(A[B] − λ). Since λ ∈ ρ(A[B]), we
obtain f = 0 and ϕ = Γ0f = 0. Thus, I − BM(λ) is injective.

Next we show the inclusion

ran(Bγ(λ)∗) ⊂ ran(I − BM(λ)). (2.13)

To this end, let ψ ∈ ran(Bγ(λ)∗). Then there exists an f ∈ H such that ψ =
Bγ(λ)∗f . Set

g :=(A[B] − λ)−1f − (A0 − λ)−1f ∈ ker(T − λ),

k :=(A[B] − λ)−1f ∈ dom A[B].

From

Γ0g = Γ0k,

Γ1g = Γ1k − Γ1(A0 − λ)−1f = Γ1k − γ(λ)∗f

we conclude that

(I − BM(λ))Γ0k = Γ0k − BM(λ)Γ0g = BΓ1k − BΓ1g = Bγ(λ)∗f = ψ.
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This shows the inclusion in (2.13). Now it follows in exactly the same way as in
step 3 that for λ ∈ ρ(A[B]) ∩ ρ(A0) the resolvent (A[B] − λ)−1 is given by the
right-hand side of (2.6).

Step 5. Finally, assume that the second condition in (v) is satisfied, i.e. that A1
is self-adjoint. Then ranM(λ±) = ranΓ1 by [4, proposition 2.6(iii)]. Hence, if g ∈
ranΓ1, then g ∈ dom B by (iv) and g ∈ ranM(λ±) ⊂ ran(M(λ±)). Now (iii) implies
that Bg ∈ ranΓ0. This shows that the first condition in (v) is satisfied, and we can
apply steps 1–4 of the proof.

For the case when the spectrum of the self-adjoint operator A0 does not cover
the whole real line a useful variant of theorem 2.4 is formulated below. Its proof
is almost the same as the proof of theorem 2.4; here the range condition in step 3
of the proof needs only to be verified for some real point in ρ(A0), which then
automatically belongs to ρ(A[B]).

Theorem 2.6. Let {G, Γ0, Γ1} be a quasi boundary triple for T ⊂ S∗ with cor-
responding γ-field γ and Weyl function M . Let B be a linear operator in G and
assume that there exists a λ0 ∈ ρ(A0) ∩ R such that the following conditions are
satisfied:

(i) B is symmetric,

(ii) 1 ∈ ρ(BM(λ0)),

(iii) B(ranM(λ0) ∩ dom B) ⊂ ranΓ0,

(iv) ranΓ1 ⊂ dom B,

(v) B(ranΓ1) ⊂ ranΓ0 or λ0 ∈ ρ(A1).

Then the operator

A[B]f = Tf, dom A[B] = {f ∈ dom T : Γ0f = BΓ1f}, (2.14)

is a self-adjoint extension of S such that λ0 ∈ ρ(A[B]), and

(A[B] − λ)−1 = (A0 − λ)−1 + γ(λ)(I − BM(λ))−1Bγ(λ)∗ (2.15)

holds for all λ ∈ ρ(A[B]) ∩ ρ(A0).

For completeness the corresponding version of corollary 2.5 is also stated.

Corollary 2.7. Let {G, Γ0, Γ1} be a quasi boundary triple for T ⊂ S∗ with corre-
sponding γ-field γ and Weyl function M . Let B be a bounded self-adjoint operator in
G and assume that there exists a λ0 ∈ ρ(A0) ∩ R such that the following conditions
are satisfied:

(i) 1 ∈ ρ(BM(λ0)),

(ii) B(ranM(λ0)) ⊂ ranΓ0,

(iii) B(ranΓ1) ⊂ ranΓ0 or λ0 ∈ ρ(A1).

Then the operator A[B] in (2.14) is a self-adjoint extension of S such that λ0 ∈
ρ(A[B]), and the resolvent formula (2.15) holds for all λ ∈ ρ(A[B]) ∩ ρ(A0).
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In the following theorem we consider the situation in which the values of the
Weyl function are bounded operators that tend to zero as λ → −∞. In order to
formulate this theorem, let us introduce the following notation. For a self-adjoint
operator B with spectral measure EB(·) we define its positive and negative parts
by

B± := ±
∫

R±

λ dEB(λ), (2.16)

respectively, so that B± � 0 and B = B+ − B−. If A0 is bounded from below, the
assumption M(λ) → 0 as λ → −∞ implies that (M(λ)ϕ, ϕ) → 0 as λ → −∞ for
each ϕ ∈ ranΓ0. Recall from lemma 2.3 that this implies non-negativity of M(λ)
for λ < min σ(A0); in particular, under these conditions M(λ)

1/2
is well defined for

such λ.

Theorem 2.8. Let {G, Γ0, Γ1} be a quasi boundary triple for T ⊂ S∗ with corre-
sponding γ-field γ and Weyl function M . Assume that A0 is bounded from below and
that M(λ) is bounded for one (and hence for all) λ ∈ ρ(A0). Let B be a self-adjoint
operator in G that is bounded from above and assume that the following conditions
are satisfied:

(i) ‖M(λ)‖ → 0 as λ → −∞,

(ii) ranM(λ)
1/2 ⊂ dom B for all λ < min σ(A0),

(iii) B(ranM(λ)) ⊂ ranΓ0 for all λ < min σ(A0),

(iv) ranΓ1 ⊂ dom B,

(v) B(ranΓ1) ⊂ ranΓ0 or A1 is self-adjoint and bounded from below.

Then the operator

A[B]f = Tf, dom A[B] = {f ∈ dom T : Γ0f = BΓ1f},

is a self-adjoint extension of S, which is bounded from below, and the resolvent
formula (2.15) holds for all λ ∈ ρ(A[B]) ∩ ρ(A0).

Moreover, the following statements are true.

(a) If B � 0, then min σ(A[B]) � min σ(A0).

(b) If there exist α ∈ (0, 1], µ � min σ(A0) and C > 0 such that

‖M(λ)‖ � C

(µ − λ)α
for λ < µ, (2.17)

then the lower bound of A[B] satisfies

min σ(A[B]) � µ − (C‖B+‖)1/α. (2.18)

Proof. Assumption (i) and the boundedness of B+ imply that there exists a µ0 <
min σ(A0) such that

‖B+M(λ)‖ < 1 (2.19)
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for all λ � µ0. In the following let λ � µ0. Since

σ(M(λ)
1/2

B+M(λ)
1/2

) \ {0} = σ(B+M(λ)) \ {0},

relation (2.19) yields that

σ(M(λ)
1/2

B+M(λ)
1/2

) ⊂ [−β, β] (2.20)

for some β ∈ (0, 1). It follows from assumption (ii), the relation domB− = dom B
and the closed graph theorem that

B−M(λ)
1/2

is a bounded, everywhere-defined operator. Hence,

M(λ)
1/2

B−M(λ)
1/2

is a bounded, non-negative operator. This, together with (2.20), shows that

σ(M(λ)
1/2

BM(λ)
1/2

) ⊂ (−∞, β];

see, for example, [9, lemma 3 in § 9.4]. In particular, we have

1 ∈ ρ(M(λ)
1/2

BM(λ)
1/2

). (2.21)

Since by the closed graph theorem the operator BM(λ)
1/2

is bounded, it follows
from

σ(M(λ)
1/2

BM(λ)
1/2

) \ {0} = σ(BM(λ)) \ {0}

and (2.21) that 1 ∈ ρ(BM(λ)), i.e. theorem 2.6(ii) is satisfied for λ0 = λ. Moreover,
conditions (ii)–(v) of the current theorem imply conditions (iii)–(v) of theorem 2.6.
The latter theorem yields that A[B] is a self-adjoint extension of S and that λ ∈
ρ(A[B]) for all λ � µ0, which shows that A[B] is bounded from below.

(a) Assume that B � 0 and let λ < min σ(A0). Then

M(λ)
1/2

BM(λ)
1/2 � 0

and hence (2.21) is satisfied. Therefore, 1 ∈ ρ(BM(λ)) and, as above, one concludes
that λ ∈ ρ(A[B]). Hence, min σ(A[B]) � min σ(A0).

(b) Now assume that (2.17) is satisfied and let

λ < µ − (C‖B+‖)1/α.

Then

‖B+M(λ)‖ � ‖B+‖‖M(λ)‖ <
(µ − λ)α

C

C

(µ − λ)α
= 1,

i.e. (2.19) is satisfied. The first part of the proof shows that λ ∈ ρ(A[B]), which
proves (2.18).
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Theorem 2.8 implies the following asymptotic estimates on the lower bound of
the extensions A[ωB] of S with ω ∈ R+ as ω → +∞ and ω → 0+.

Corollary 2.9. Let B be a self-adjoint operator in G that is bounded from above
and let assumptions (i)–(v) and (2.17) from theorem 2.8 be satisfied. Then the
operators

A[ωB]f = Tf, dom A[ωB] = {f ∈ dom T : Γ0f = ωBΓ1f}, ω � 0,

are self-adjoint extensions of S, which are bounded from below. Define the function
F (ω) := minσ(A0)−min σ(A[ωB]) and let F+ be its positive part. Then the following
asymptotic estimates are satisfied:

(a) |min σ(A[ωB])| = O(|ω|1/α) as ω → +∞;

(b) if the bound (2.17) holds for µ = minσ(A0), then F+(ω) = O(|ω|1/α) as
ω → 0+.

Proof. The asymptotic estimate in (a) follows directly from (2.18) and from the fact
that minσ(A[ωB]) � min σ(AF) < ∞, where AF is the Friedrichs extension of S.
The asymptotic estimate in (b) is again a straightforward consequence of (2.18).

3. Elliptic differential operators on domains with
non-compact boundaries

In this section we apply the abstract results from § 2 to second-order elliptic dif-
ferential operators on unbounded domains with non-compact boundaries. We refer
the reader to [4, 5] and [6, 7] for related results for bounded and exterior domains,
respectively. Here we shall rely on classical results on the H2-regularity of the corre-
sponding Dirichlet and Neumann realizations, and make use of a set of assumptions
that can be found in a more general context in [3].

Let Ω be a domain in R
n that is uniformly regular in the sense of [16, p. 72];

see also [3,10]. This means that ∂Ω is C∞-smooth and that there exists a covering
of Ω by open sets Ωj , j ∈ N, and n0 ∈ N such that at most n0 of the Ωj have a
non-empty intersection, and a family of C∞-homeomorphisms

ϕj : Ωj ∩ Ω → B1 ∩ {xn > 0}, where Br = {x ∈ R
n : ‖x‖ < r},

such that ϕj : Ωj ∩ ∂Ω → B1 ∩ {xn = 0}, the derivatives of ϕj , j ∈ N, and their
inverses are uniformly bounded, and

⋃
j ϕ−1

j (B1/2) covers a uniform neighbourhood
of ∂Ω. Note that these assumptions are automatically fulfilled, for example, for
domains with compact C∞-smooth boundaries or for compact, smooth perturba-
tions of half-spaces. Let

L = −
n∑

j,k=1

∂

∂xj
ajk

∂

∂xk
+ a

be a differential expression on Ω with bounded coefficients ajk ∈ C∞(Ω) satisfying
ajk(x) = akj(x) for all x ∈ Ω, and having bounded, uniformly continuous deriva-
tives on Ω; cf. [3, (S1)–(S5) in ch. 4]. Moreover, it is assumed that a ∈ L∞(Ω) is
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real-valued and that L is uniformly elliptic, i.e. there exists an E > 0 such that

n∑
j,k=1

ajk(x)ξjξk � E

n∑
k=1

ξ2
k, ξ = (ξ1, . . . , ξn)T ∈ R

n, x ∈ Ω. (3.1)

In the following we denote by Hs(Ω) and Hs(∂Ω) the Sobolev spaces of order
s � 0 on Ω and ∂Ω, respectively. For f ∈ C∞

0 (Ω) := {g|Ω : g ∈ C∞
0 (Rn)} let

∂f

∂νL

∣∣∣∣
∂Ω

:=
n∑

j,k=1

ajkνj
∂f

∂xk

∣∣∣∣
∂Ω

be the co-normal derivative of f at ∂Ω with respect to L, where ν = (ν1, . . . , νn)T

is the unit normal vector field at ∂Ω pointing outwards. Then Green’s identity

(Lf, g) − (f,Lg) =
(

f |∂Ω ,
∂g

∂νL

∣∣∣∣
∂Ω

)
−

(
∂f

∂νL

∣∣∣∣
∂Ω

, g|∂Ω

)
(3.2)

holds for all f, g ∈ C∞
0 (Ω) (see, for example, [16, theorem 4.4]); here the inner

products on the left-hand side are in L2(Ω) and the inner products on the right-
hand side are in L2(∂Ω). Recall that the mapping

f �→
{

f |∂Ω ,
∂f

∂νL

∣∣∣∣
∂Ω

}
, f ∈ C∞

0 (Ω),

extends by continuity to a bounded, surjective map from H2(Ω) to H3/2(∂Ω) ×
H1/2(∂Ω), and that Green’s identity (3.2) extends to all f, g ∈ H2(Ω); see, for
example, [16, theorem 3.9]. For the extended trace and normal derivative we write
again f |∂Ω and (∂f/∂νL)|∂Ω , respectively.

In order to construct a quasi boundary triple, consider the operators S and T in
L2(Ω) given by

Sf = Lf, dom S =
{

f ∈ H2(Ω) : f |∂Ω =
∂f

∂νL

∣∣∣∣
∂Ω

= 0
}

, (3.3)

and

Tf = Lf, dom T = H2(Ω). (3.4)

The proof of the following proposition is similar to the proof of [4, proposition 4.6]
and is omitted. We only mention that the self-adjointness of AN in (ii) follows
from [3, theorem 7.1(a) and theorem 7.2].

Proposition 3.1. The operator S in (3.3) is closed, symmetric and densely defined
with T = S∗, and the triple {L2(∂Ω), Γ0, Γ1} with

Γ0f =
∂f

∂νL

∣∣∣∣
∂Ω

, Γ1f = f |∂Ω , f ∈ dom T,
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is a quasi boundary triple for T ⊂ S∗ with the following properties:

(i) ran(Γ0, Γ1)T = H1/2(∂Ω) × H3/2(∂Ω);

(ii) A0 = T � ker Γ0 coincides with the self-adjoint Neumann operator

ANf = Lf, dom AN =
{

f ∈ H2(Ω) :
∂f

∂νL

∣∣∣∣
∂Ω

= 0
}

,

and A1 = T � ker Γ1 coincides with the self-adjoint Dirichlet operator

ADf = Lf, dom AD = {f ∈ H2(Ω) : f |∂Ω = 0};

in particular, A0 and A1 are bounded from below by ess inf a.

In the next proposition we prove a couple of properties of the Weyl function,
which turns out to be the Neumann-to-Dirichlet map. These properties are needed
in order to apply the results from § 2. In particular, in (iv) we prove a decay estimate
for the Weyl function, whose proof is based on an argument due to Agmon [2, § 2];
related methods were also used in the proof of [1, theorem 4.1]. This estimate
can also be shown using the calculus of parameter-dependent pseudo-differential
operators provided in, for example, [23, ch. 2].

Proposition 3.2. Let {L2(∂Ω), Γ0, Γ1} be the quasi boundary triple from proposi-
tion 3.1 and let M be the corresponding Weyl function.

(i) The function M is given by the Neumann-to-Dirichlet map, i.e. it satisfies

M(λ)
∂f

∂νL

∣∣∣∣
∂Ω

= f |∂Ω , f ∈ ker(T − λ), λ ∈ ρ(AN).

Moreover,

dom M(λ) = H1/2(∂Ω) and ranM(λ) ⊂ H3/2(∂Ω) (3.5)

for each λ ∈ ρ(AN). If λ < min σ(AN), then ranM(λ) = H3/2(∂Ω) and
ker M(λ) = {0}.

(ii) For all λ ∈ ρ(AN) the operator M(λ) is bounded and non-closed in L2(∂Ω),
and its closure satisfies ranM(λ) ⊂ H1(∂Ω).

(iii) For λ < min σ(AN) the operator M(λ) is non-negative and satisfies

ranM(λ)
1/2

= H1/2(∂Ω). (3.6)

(iv) For each µ < min σ(AN) there exists a constant C = C(L, Ω, µ) such that

‖M(λ)‖ � C

(µ − λ)1/2 , λ < µ. (3.7)

Proof. (i) The representation of the Weyl function and assertion (3.5) follow directly
from the definition of the boundary maps and the Weyl function. Since AD is
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the Friedrichs extension of S, each λ < min σ(AN) belongs to ρ(AD). Thus, the
Dirichlet-to-Neumann map

f |∂Ω �→ ∂f

∂νL

∣∣∣∣
∂Ω

, f ∈ ker(T − λ),

is well defined with domain equal to H3/2(∂Ω). Since its inverse is given by M(λ),
we have ran M(λ) = H3/2(∂Ω) and kerM(λ) = {0}.

(ii) These properties can be shown in the same way as in [7, lemma 4.4].

(iii) Let a be the quadratic form corresponding to the Neumann operator, i.e.

a[f ] := a1[f ] + (af, f)

:=
∫

Ω

( n∑
j,k=1

ajk
∂f

∂xk
· ∂f̄

∂xj

)
dx + (af, f), f ∈ dom a := H1(Ω), (3.8)

where (·, ·) is the inner product in L2(Ω). Let λ < min σ(AN), ϕ ∈ H1/2(∂Ω) and
let f ∈ ker(T − λ) such that ϕ = (∂f/∂νL)|∂Ω , i.e. f = γ(λ)ϕ. Then Green’s first
identity yields

(M(λ)ϕ, ϕ) =
(

f |∂Ω ,
∂f

∂νL

∣∣∣∣
∂Ω

)

= −(f,Lf) + a[f ]

� (−λ + minσ(AN))‖f‖2
L2(Ω)

� 0, (3.9)

which shows that M(λ) is a non-negative operator.
Next we show (3.6). Let λ < min σ(AN) and consider the quadratic form in

L2(∂Ω) defined by

tλ[ϕ] := (M(λ)−1ϕ, ϕ), dom tλ = H3/2(∂Ω),

which is well defined by item (i). The form tλ is densely defined, symmetric and
non-negative by (3.9). There exist constants c̃1, c̃2 > 0 such that

c̃1‖f‖2
H1(Ω) � a[f ] − λ‖f‖2

L2(Ω) � c̃2‖f‖2
H1(Ω), f ∈ H1(Ω); (3.10)

to see the first inequality, set a0 := ess inf a, σ0 := minσ(AN) and let ε > 0. Then
(where we write ‖ · ‖ for L2-norms and use E from (3.1))

a[f ] − λ‖f‖2 = εa1[f ] + ε(af, f) + (1 − ε)a[f ] − λ‖f‖2

� εE‖∇f‖2 + εa0‖f‖2 + (1 − ε)σ0‖f‖2 − λ‖f‖2

� min{εE, εa0 + (1 − ε)σ0 − λ}‖f‖2
H1(Ω).

If ε is small enough, then the last minimum is a positive number. Hence, the first
inequality in (3.10) is shown. The second inequality follows easily from the bound-
edness of the coefficients.
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For each ϕ ∈ H3/2(∂Ω) there exists f ∈ ker(T −λ) such that f |∂Ω = ϕ. Similarly
to (3.9) one obtains

tλ[ϕ] = (M(λ)−1ϕ, ϕ) =
(

∂f

∂νL

∣∣∣∣
∂Ω

, f |∂Ω

)

= −(Lf, f) + a[f ]

= a[f ] − λ‖f‖2
L2(Ω), ϕ ∈ H3/2(∂Ω).

Together with (3.10) this yields

c̃1‖f‖2
H1(Ω) � tλ[ϕ] � c̃2‖f‖2

H1(Ω)

for all ϕ ∈ H3/2(∂Ω) and corresponding f ∈ ker(T − λ) with f |∂Ω = ϕ. Since the
trace map provides an isomorphism from {g ∈ H1(Ω) : Lg = λg} onto H1/2(∂Ω),
it follows that there exist c, C > 0 such that

c‖ϕ‖2
H1/2(∂Ω) � tλ[ϕ] � C‖ϕ‖2

H1/2(∂Ω), ϕ ∈ H3/2(∂Ω).

Hence the domain of the closure of tλ equals H1/2(∂Ω). From this we obtain (3.6)
because M(λ)

−1
is the self-adjoint operator that corresponds to the closure of tλ.

(iv) Let S
1 = R/(2πZ) be the one-dimensional torus and consider the product

Ω × S
1. On this manifold we consider the elliptic differential expression

LS = L − ∂2

∂t2
,

where t denotes the variable in S
1 and L acts with respect to the variable x ∈ Ω.

The manifold ∂Ω × S
1 is the boundary of Ω × S

1. For s � 0 let Hs(Ω × S
1) and

Hs(∂Ω × S
1) be the Sobolev spaces on Ω × S

1 and ∂Ω × S
1, respectively. On

H2(Ω × S
1) we can define traces f |∂Ω×S1 and normal derivatives (∂f/∂νLS

)|∂Ω×S1 .
Note that, for functions of the form f(x, t) = g(x)h(t) with g ∈ H2(Ω) and h ∈
C∞(S1), we have

f |∂Ω×S1 = h · g|∂Ω and
∂f

∂νLS

∣∣∣∣
∂Ω×S1

= h · ∂g

∂νL

∣∣∣∣
∂Ω

. (3.11)

Next let us introduce the operator

TSf = LSf, dom TS = H2(Ω × S
1),

in the space L2(Ω × S
1) and the triple {L2(∂Ω × S

1), Γ S
0 , Γ S

1 }, where

Γ S

0 f =
∂f

∂νLS

∣∣∣∣
∂Ω×S1

and Γ S

1 f = f |∂Ω×S1 .

Similarly to proposition 3.1 one verifies that {L2(∂Ω×S
1), Γ S

0 , Γ S
1 } is a quasi bound-

ary triple for TS ⊂ S∗
S
, where SS = TS � (ker Γ S

0 ∩ ker Γ S
1 ) and AS

N := TS � ker Γ S
0 . It

follows from (3.11) that for f(x, t) = g(x)h(t) with g ∈ H2(Ω) and h ∈ C∞(S1) we
have

Γ S

j f = hΓjg, j = 0, 1.
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By the trace theorem we have

ranΓ S

0 = H1/2(∂Ω × S
1) and ranΓ S

1 = H3/2(∂Ω × S
1),

and, as for proposition 3.1, one shows that the values of the Weyl function MS

corresponding to the quasi boundary triple {L2(∂Ω × S
1), Γ S

0 , Γ S
1 } are bounded

(non-closed) operators in L2(∂Ω × S
1) with ranMS(λ) ⊂ H1(∂Ω × S

1); hence,
MS(λ) can be regarded as a bounded operator from L2(∂Ω × S

1) to H1(∂Ω × S
1)

for λ ∈ ρ(AS

N) by the closed graph theorem.
It is not difficult to see that the operator AS

N is bounded from below with
min σ(AS

N) = minσ(AN). Let µ < min σ(AN). In the following we consider the
case in which

λ < µ − 1 < µ < λ0 < min σ(AN), (3.12)

where λ0 is some fixed constant, and we set

m := sup
λ�µ−1

√
µ − λ√

λ0 − λ − 1
< ∞. (3.13)

By the above considerations there exists C ′ > 0, depending on λ0, Ω and L, with

‖MS(λ0)ψ‖H1(∂Ω×S1) � C ′‖ψ‖L2(∂Ω×S1), ψ ∈ H1/2(∂Ω × S
1). (3.14)

For an arbitrary ϕ ∈ H1/2(∂Ω) and k ∈ N let us define

f(x, t) := eikt(γ(λ0 − k2)ϕ)(x), x ∈ Ω, t ∈ S
1.

Then f ∈ dom TS and

LSf = (λ0 − k2)f + k2f = λ0f,

that is, f ∈ ker(TS − λ0). Moreover,

(Γ S

0 f)(x, t) = eikt(Γ0γ(λ0 − k2)ϕ)(x) = eiktϕ(x).

Hence, setting ψk,ϕ(x, t) := eiktϕ(x) for t ∈ S
1 and x ∈ ∂Ω we have

(MS(λ0)ψk,ϕ)(x, t) = (MS(λ0)Γ S

0 f)(x, t)

= (Γ S

1 f)(x, t)

= eikt(Γ1γ(λ0 − k2)ϕ)(x)

= eikt(M(λ0 − k2)ϕ)(x).

It follows that

‖MS(λ0)ψk,ϕ‖2
H1(∂Ω×S1) �

∥∥∥∥ ∂

∂t
eiktM(λ0 − k2)ϕ

∥∥∥∥
2

L2(∂Ω×S1)

= 2πk2‖M(λ0 − k2)ϕ‖2
L2(∂Ω).
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Combining this estimate with (3.14) we obtain

‖M(λ0 − k2)ϕ‖L2(∂Ω) � 1√
2πk

‖MS(λ0)ψk,ϕ‖H1(∂Ω×S1)

� 1√
2πk

C ′‖ψk,ϕ‖L2(∂Ω×S1)

=
C ′

k
‖ϕ‖L2(∂Ω)

for all ϕ ∈ H1/2(∂Ω) and all k ∈ N. As λ < λ0 − 1 by (3.12), there exists k ∈ N

such that λ0 − (k + 1)2 � λ < λ0 − k2. Since λ �→ (M(λ)ϕ, ϕ) is non-decreasing on
(−∞, min σ(AN)) for every ϕ ∈ H1/2(∂Ω) by lemma 2.3(i), and M(λ) � 0 by item
(ii), also λ �→ ‖M(λ)‖ is non-decreasing on the same interval. Hence,

‖M(λ)‖ � ‖M(λ0 − k2)‖ � C ′

k
� C ′

√
λ0 − λ − 1

� mC ′
√

µ − λ

for all λ < µ − 1, where the constant m in (3.13) was used in the last estimate. It
remains to show the estimate in (3.7) for λ ∈ [µ − 1, µ). Here the monotonicity of
M yields

‖M(λ)‖ � ‖M(µ)‖ � 1√
µ − λ

‖M(µ)‖, λ ∈ [µ − 1, µ),

and hence we have shown (3.7) with C := max{mC ′, ‖M(µ)‖}.

Remark 3.3. A possible choice of the constant C = C(L, Ω, µ) can be read off
from the proof of the preceding proposition, namely,

C = max
{

sup
λ�µ−1

√
µ − λ√

λ0 − λ − 1
‖MS(λ0)‖, ‖M(µ)‖

}

with λ0 ∈ (µ,min σ(AN)), where MS(λ0) is the Neumann-to-Dirichlet map for the
differential expression L − ∂2/∂t2 − λ0 on Ω × S

1, considered as an operator from
the space L2(∂Ω × S

1) to H1(∂Ω × S
1).

Remark 3.4. In general the assertion of proposition 3.2(iv) does not extend to the
case in which µ = minσ(AN). In fact, if minσ(AN) is an eigenvalue of AN, then
min σ(AN) is a (generalized) pole of order 1 of the analytic (Nevanlinna) function
λ �→ M(λ), and thus

‖M(λ)‖ ∼ K

min σ(AN) − λ
as λ ↗ min σ(AN)

for some K > 0.
Nevertheless, in some cases estimate (3.7) holds even for µ = minσ(AN). For

instance, in the case of the Laplacian L = −∆ on the half-space

Ω = R
n
+ = {(x′, xn)T ∈ R

n : x′ ∈ R
n−1, xn > 0}

with boundary ∂Ω = R
n−1, one has σ(AN) = [0,∞) and the Neumann-to-Dirichlet

map can be calculated explicitly, namely,

M(λ) = (−∆Rn−1 − λ)−1/2, λ < 0,
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where −∆Rn−1 is the self-adjoint Laplacian in L2(Rn−1); see, for example, [25,
(9.65)]. From this representation it follows that

‖M(λ)‖ =
1√
−λ

, λ < 0.

We remark that the asymptotic behaviour of the Neumann-to-Dirichlet map for
the Laplacian on a half-space was also used in the context of spectral theory in, for
example, [32].

The following theorem shows the self-adjointness of elliptic differential operators
with generalized Robin boundary conditions and yields a bound for the minima of
their spectra. Note that the γ-field corresponding to the quasi boundary triple in
proposition 3.1 is the mapping ϕ �→ γ(λ)ϕ = f , where f ∈ dom T is the unique
solution of the boundary-value problem Lf = λf , Γ0f = (∂f/∂νL)|∂Ω = ϕ ∈
H1/2(∂Ω).

Theorem 3.5. Let B be a self-adjoint operator in L2(∂Ω) that is bounded from
above and assume that H1/2(∂Ω) ⊂ dom B and B(H1(∂Ω)) ⊂ H1/2(∂Ω). Then
the operator

A[B]f = Lf, dom A[B] =
{

f ∈ H2(Ω) :
∂f

∂νL

∣∣∣∣
∂Ω

= Bf |∂Ω

}
,

is self-adjoint in L2(Ω) and

(A[B] − λ)−1 = (AN − λ)−1 + γ(λ)(I − BM(λ))−1Bγ(λ)∗

holds for all λ ∈ ρ(A[B]) ∩ ρ(AN), where γ is the γ-field corresponding to the quasi
boundary triple in proposition 3.1 and M is the Neumann-to-Dirichlet map. More-
over, the self-adjoint operator A[B] is bounded from below with lower bound satisfy-
ing

min σ(A[B]) � µ − (C‖B+‖)2

for each µ < min σ(AN), where C = C(Ω, L, µ) is given in remark 3.3 and B+ is the
positive part of B; see (2.16). Moreover, if B � 0, then min σ(A[B]) � min σ(AN).

Proof. Propositions 3.1 and 3.2 show that all assumptions of theorem 2.8 are sat-
isfied. Hence, the latter yields all assertions of the current theorem.

Remark 3.6. The boundary conditions discussed in theorem 3.5 contain classical
Robin boundary conditions. Here one chooses Bf = bf , f ∈ L2(∂Ω), for some
suitable function b : ∂Ω → R satisfying the assumptions in the theorem; in this
case

B+f = b+f, f ∈ dom B,

where b+ is the positive part of the function b. Note also that not every Robin
boundary condition with a real-valued function b leads to a self-adjoint realization.
An example with an unbounded b and its physical motivation were discussed in [15,
section 3]; see also [8, 34] for related problems.
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Let us formulate a consequence of the previous theorem: under the assumptions
of theorem 3.5 the operators

A[ωB]f = Lf, dom A[ωB] =
{

f ∈ H2(Ω) :
∂f

∂νL

∣∣∣∣
∂Ω

= ωBf |∂Ω

}
,

with ω � 0 are self-adjoint in L2(Ω) and bounded from below, and as in corol-
lary 2.9(a) one can derive the following asymptotic estimate for the lower bound of
σ(A[ωB]) when the coupling constant ω tends to +∞.

Corollary 3.7. Let the assumptions of theorem 3.5 be satisfied. Then

|min σ(A[ωB])| = O(|ω|2) as ω → +∞.

Remark 3.8. We point out that the operator A[B] in theorem 3.5 can also be
defined as the self-adjoint operator representing the closed, densely defined, sym-
metric and lower-semi-bounded sesquilinear form

aB [f, g] := a[f, g] − (Bf |∂Ω , g|∂Ω), dom aB := H1(Ω),

where a is defined as in (3.8) and (·, ·) denotes the inner product in L2(∂Ω). With
this approach additional arguments are needed to show H2-regularity of the func-
tions in domA[B]. Note that the decomposition B = B+ − B− yields the estimate

aB [f ] � a[f ] − (B+f |∂Ω , f |∂Ω), f ∈ H1(Ω). (3.15)

Moreover, for any ε > 0 there exists a constant β(ε) > 0 such that

‖f |∂Ω‖2 � ε‖∇f‖2 + β(ε)‖f‖2, f ∈ H1(Ω);

see, for example, [16, lemma 3.1]. According to this estimate we have

(B+f |∂Ω , f |∂Ω)∂Ω � ‖B+‖‖f |∂Ω‖2 � ε‖B+‖‖∇f‖2 + β(ε)‖B+‖‖f‖2

for all f ∈ H1(Ω). The ellipticity of L yields E‖∇f‖2 � a1[f ] for all f ∈ H1(Ω),
where E is chosen as in (3.1). Thus, if B+ �= 0, then for ε = E/‖B+‖ and any
f ∈ H1(Ω) we obtain the relation

aB [f ] � E‖∇f‖2 + ess inf a‖f‖2 − E‖∇f‖2 − β

(
E

‖B+‖

)
‖B+‖‖f‖2

=
(

ess inf a − β

(
E

‖B+‖

)
‖B+‖

)
‖f‖2,

where we used (3.15). In particular,

min σ(A[B]) � ess inf a − β

(
E

‖B+‖

)
‖B+‖. (3.16)

The possible choice of the constant β(ε) depends on the domain Ω and has been
investigated for certain classes of domains. For instance, if Ω is a bounded domain
(with Lipschitz boundary), then one can choose β such that β(ε) = c/ε for suffi-
ciently small ε and some c > 0; see [18, lemma 2.5]. In this case (3.16) reads

min σ(A[B]) � ess inf a − c

E
‖B+‖2

when ‖B+‖ is sufficiently large.
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12 J. Brüning, V. Geyler and K. Pankrashkin. Spectra of self-adjoint extensions and applica-
tions to solvable Schrödinger operators. Rev. Math. Phys. 20 (2008), 1–70.

13 V. A. Derkach and M. M. Malamud. Generalized resolvents and the boundary value prob-
lems for Hermitian operators with gaps. J. Funct. Analysis 95 (1991), 1–95.

14 V. A. Derkach and M. M. Malamud. The extension theory of Hermitian operators and the
moment problem. J. Math. Sci. 73 (1995), 141–242.
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