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We propose an optimal test procedure for testing the marginal density functions
of a class of nonlinear diffusion processes+ The proposed test is not only an opti-
mal one but also avoids undersmoothing+ An adaptive test is constructed, and its
asymptotic properties are investigated+ To show the asymptotic properties, we estab-
lish some general results for moment inequalities and asymptotic distributions for
strictly stationary processes under thea-mixing condition+ These results are appli-
cable to some other estimation and testing of strictly stationary processes with
the a-mixing condition+ An example of implementation is given to demonstrate
that the proposed model specification procedure is applicable to economic and
financial model specification and can be implemented in practice+ To ensure the
applicability and implementation, we propose a computer-intensive simulation
scheme for the choice of a suitable bandwidth involved in the kernel estimation
and also a simulated critical value for the proposed adaptive test+ Our finite sam-
ple studies support both the proposed theory and the simulation procedure+

1. INTRODUCTION AND MOTIVATION

Continuous-time diffusion processes arise in many applications in economet-
rics, but perhaps nowhere do they play as large a role as in finance+ Following
the pathbreaking work of Black and Scholes~1973!, the use of continuous-time
diffusion processes has become a common feature of many applications, espe-
cially asset pricing models+ This is probably due to the following two reasons+
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The first one is that continuous-time diffusion processes are able to mimic some
important macroeconomic and financial phenomena~see Sundaresan, 2001!+ The
second reason is that various parametric diffusion processes have already been
used nicely to model financial data+ In both theory and practice, however, one
needs to specify whether a parametric diffusion process is appropriate for a
given set of financial data+ In other words, one needs to determine whether it is
appropriate to use a diffusion process with both the drift and the volatility
assumed to be parametric for a given set of financial data+ To justify whether
the use of parametric diffusion processes is appropriate or not for a given set of
financial data, empirical researchers have recently shown a preference for non-
parametric alternatives+ Aït-Sahalia~1996a, 1996b! was among the first to pio-
neer the nonparametric approach+ Other related studies include Jiang and Knight
~1997!, Stanton~1997!, Chapman and Pearson~2000!, Gao and King~2001!,
Hong and Li~2004!, and Fan and Zhang~2003!+ Aït-Sahalia~1996a! considers
testing the marginal density functions of a class of diffusion processes under
the b-mixing condition+ Pritsker~1998! conducts a finite sample simulation of
a nonparametric kernel test proposed in Aït-Sahalia~1996a!+ The principal result
of Pritsker~1998! is that the test rejects true models much too often when asymp-
totic critical values are used+ This suggests that the use of an asymptotic criti-
cal value may not be suitable in the finite sample analysis of a test power+ In
addition, the use of an estimation-based bandwidth in the nonparametric kernel
test may also contribute to the poor performance of the test in finite sample
studies, because an estimation-based optimal bandwidth may not necessarily
imply that the corresponding test is optimal+ We have been motivated by these
two aspects to establish a simulation procedure for the choice of both an appro-
priate critical value and a test optimum bandwidth to improve the test proposed
in Aït-Sahalia~1996b!+

Recently, Horowitz and Spokoiny~2001! have developed a new test of a para-
metric model of a conditional mean function against a nonparametric alterna-
tive+ The test adapts to the unknown smoothness of the alternative model and is
uniformly consistent against alternatives whose distance from the parametric
model converges to zero at the fastest possible rate+ This rate is slower than
T2102, whereT is the number of observations+ To the best of our knowledge,
the problem of extending the approach of Horowitz and Spokoiny~2001! to
construct an adaptive and optimal test for marginal density functions has not
been considered+ This paper then proposes an adaptive test for testing marginal
density functions+ The proposed test has an optimal-rate property+ In theory,
the proposed test is consistent against some local alternatives with an optimal
rate as stated in Section 3+ In practice, we demonstrate how to apply the test in
Section 4 through using a simulated example+ Our studies show that the pro-
posed test has some advantages over the test proposed in Aït-Sahalia~1996a!+

The rest of the paper is organized as follows+ Section 2 discusses the testing
of the marginal density+ An adaptive test procedure is proposed in Section 3+
Section 4 provides an example of implementation+ Section 5 concludes the paper
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with some remarks on extensions+ Mathematical assumptions and proofs are
relegated to Appendixes A–C+

2. TESTING MARGINAL DENSITY FUNCTIONS

Consider a continuous-time diffusion process of the form

drt 5 m~rt ,u! dt 1 s~rt ,u! dBt , (2.1)

wherem~{! and s~{! . 0 are, respectively, the univariate drift and volatility
functions of the process indexed byu andBt is standard Brownian motion+

Let $rt % satisfy model~2+1! andf ~{,u! be a parametric form of the marginal
density function of$rt % +Within the diffusion process, f ~{,u! is completely deter-
mined by the corresponding driftm~{,u! and the diffusions~{,u! ~see Aït-
Sahalia, 1996a, expression~6!! given by

f ~x,u! 5
j~u!

s2~x,u!
expHE

x0

x 2m~u,u!

s2~u,u!
duJ , (2.2)

where$rt % is distributed onD 5 ~xmin, xmax! with 2`# xmin , xmax #`, both
the lower boundx0 andj~u! can be chosen to ensure thatf ~x,u! is a probabil-
ity density, and u is an unknown parameter vector+ Let Q denote a parameter
space inRq andu0 [ Q denote the true value ofu+

Let f ~x! be a nonparametric form of the density function+ The null and alter-
native hypotheses are

H0 : f ~x! 5 f ~x,u0! versusH1 : f ~x! 5 f ~x,u1! 1 CT DT~x!, u1 [ Q,

(2.3)

where 0# CT # 1, limTr`CT 5 0, andDT~x! is a continuous function satisfy-
ing *DT~x! dx 5 0 and f ~x! $ 0 underH1+ Theoretically, this requires that
underH1, the alternative function is still a probability density+ In practice, the
form of DT~x! needs to be constructed+ The simple and natural choice ofDT~x!
is DT~x! 5 f1~x,u1! 2 f ~x,u1!, wheref1~x,u! is another specified density func-
tion andu1 [ Q+ For example, f ~x,u! is the marginal density of$rt % satisfying
the CIR model proposed in Cox, Ingersoll, and Ross~1985!, andf1~x,u! is the
marginal density of$rt % satisfying the AG model proposed in Ahn and Gao
~1999!+

For this case, the hypothesis structure~2+3! can be written as

H0 : f ~x! 5 f ~x,u0! versusH1 : f ~x! 5 f ~x,u1! 1 CT ~ f1~x,u1! 2 f ~x,u1!!+

This is equivalent to

H0 : f ~x! 5 f ~x,u0! versusH1 : f ~x! 5 ~12 CT ! f ~x,u1! 1 CT f1~x,u1!+
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This basically requires us to test whether$rt % is sampled fromf ~x,u0! or
from f ~x,u1! with probability 12 CT and from f1~x,u1! with probability CT +
Obviously, such a structure of the null hypothesis versus a sequence of local
alternatives naturally extends the usual structure of the null hypothesis against
a global alternative of the form

H0
' : f ~x! 5 f ~x,u0! versusH1

' : f ~x! 5 f1~x,u1!, u1 [ Q+

For the diffusion process, we observe the process at dates$tD6 t 5 0,1, + + + ,% ,
whereD . 0 is generally small but fixed+ Let Xt 5 r~t21!D for t $ 1 throughout
this section+ Let k~{! be a kernel function, kh~{! 5 h21k~{0h!, and Zf ~x! 5
~10T !(t51

T kh~x 2 Xt ! be the standard kernel density estimator off ~x!+ Intu-
itively, it is natural to compareZf ~x! and f ~x,u! directly+

In a seminal paper, Aït-Sahalia~1996a! uses a test statistic of the form

ZMT~h! 5
Th

T (
t51

T

~ Zf ~Xt ! 2 f ~Xt , ZuM !!2 5 h (
t51

T

~ Zf ~Xt ! 2 f ~Xt , ZuM !!2,

where ZuM 5 arg minu[Q~10T !(t51
T ~ Zf ~Xt ! 2 f ~Xt ,u!!2+

It then follows from~13! of Aït-Sahalia~1996a! that asT r `

ZL0T~h! 5
ZMT~h! 2 [mT~h!

Mh [sT~h!
rD N~0,1! (2.4)

under theb-mixing and some other conditions, where

[mT~h! 5 R~k!{S 1

T (
t51

T

Zf ~Xt !D and [sT
2~h! 5 2k~4! ~0!{S 1

T (
t51

T

Zf 3~Xt !D,
in which R~k! 5 *k2~u! du , ` and k~ j !~0! denotes thej-times convolution
product ofk~{! given by

k~4! ~0! 5E
2`

`

L2~x! dx with L~x! 5E
2`

`

k~ y!k~x 1 y! dy+ (2.5)

The preceding test statistic is based onZf ~x! 2 f ~x, ZuM !, which measures
directly the difference betweenZf ~x! and f ~x, ZuM !+ It can be shown that
underH0,

E @ Zf ~x! 2 f ~x, ZuM !# 2 5 O~h4!+

This implies that it has the same order as the mean square error ofZf ~x! if h
is chosen to beO~T2105!+ Thus, to obtain an asymptotically normal distribu-
tion with zero mean, h has to satisfy limTr`Th4+5 5 0 as required in Assump-
tion A5 of Aït-Sahalia~1996a!+ This implies undersmoothing+
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To reduce the bias and avoid undersmoothing, we propose a nonparametric
estimator, Df ~x, Du!, of f ~x,u! of the form

Df ~x, Du! 5 (
t51

T

wt ~x! f ~Xt , Du!, (2.6)

where Du is a consistent estimator ofu, wt~x! 5 wt~x, h! 5 ~10T !kh~x 2 Xt ! 3
@~s2~x! 2 s1~x!~x 2 Xt !!0~s2~x!s0~x! 2 s1

2~x!!# , and sr ~x! 5 ~10T !(s51
T

kh~x 2 Xs!~x 2 Xs!
r for r 5 0,1,2+

We also define

Df ~x! 5 (
t51

T

wt ~x! f ~Xt !+

If Du is aMT -consistent estimator ofu, then we have

E$ Df ~x, Du! 2 Df ~x,u!%2 5 OS 1

T
D+

It follows from Fan and Gijbels~1996! that

E @ Zf ~x! 2 f ~x!# 5
1

2
h2sk

2 f ~2! ~x! 1 ck f ~3! ~j1!h3

and

E @ Df ~x! 2 f ~x!# 5
1

2
h2sk

2 f ~2! ~x! 1 dk f ~3! ~j2!h3,

provided that the first three derivatives off ~x! exist, wherej1 andj2 lie between
x and h and x, ck, and dk are constants depending on functionals ofk~{!, and
sk

2 5 *x2k~x! dx+
This implies that asT r `

E @ Zf ~x! 2 Df ~x!# 5 ~ck f ~3! ~j1! 2 dk f ~3! ~j2!!h3+ (2.7)

As can be seen from~2+7!, the use of the differenceZf ~x! 2 Df ~x, Du! can avoid
undersmoothing+ In other words, we can still assume lim supTr`Th5 , `+

Let us now establish our test statistic+ We first have a look at the following
distance function:

D~ f,u! 5E~ f ~x! 2 f ~x,u!!2f ~x! dx+

This naturally suggests estimatingD~ f,u! by

D~ Zf, Du! 5E~ Zf ~x! 2 Df ~x, Du!!2 Zf ~x! dx+
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We then propose using a test statistic of the form

ZNT 5 ZNT~h! 5 Th E~ Zf ~x! 2 Df ~x, Du!!2 Zf ~x! dx+ (2.8)

We now state the main results of this section+ Their proofs are relegated to
Appendix A+

THEOREM 2+1+ (i) Suppose that Assumptions A.1–A.5 in Appendix A hold.
Then underH0 in (2.3) we have

LT~h! 5
ZNT~h! 2 m0

Mhs0

rD N~0,1! as Tr `,

wherem0 5 R~k!*2`
` f 2~x! dx ands0

2 5 2k~4!~0!* f 4~x! dx.
(ii) Assume that the conditions of (i) hold. In addition, assume that there is a

random data-driven Zh such that~ Zh0h! 2 1 rp 0 as Tr `. Then underH0 in
(2.3) we have

LT~ Zh! 5
ZNT~ Zh! 2 m0

M Zhs0

rD N~0,1! as Tr `+

THEOREM 2+2+ (i) Suppose that Assumptions A.1–A.5 in Appendix A hold.
Then underH0 in (2.3) we have

ZLT~h! 5
ZNT~h! 2 [mT~h!

Mh [sT~h!
rD N~0,1! as Tr `,

where [mT~h! and [sT~h! are as defined in (2.4).
(ii) Assume that the conditions of (i) hold. In addition, assume that there is a

random data-driven Zh such that~ Zh0h! 2 1 rp 0 as Tr `. Then underH0 in
(2.3) we have

ZLT~ Zh! 5
ZNT~ Zh! 2 [mT~ Zh!

M Zh [sT~ Zh!
rD N~0,1! as Tr `+

Remark 2+1+ ~i! Similar to ZL0T of ~2+4!, one may replaceZNT~h! by

ENT~h! 5
Th

T (
t51

T

~ Zf ~Xt ! 2 Df ~Xt , Du!!2 5 h (
t51

T

~ Zf ~Xt ! 2 Df ~Xt , Du!!2+

~ii ! As can be seen from Theorem 2+2~i!, we need to estimate both the asymp-
totic mean and variance ofZNT~h! involved in practice+ It is possible to avoid
estimating this kind of unknown quantity by introducing a weight function into
ZNT~h!+ In both theory and practice, however, the asymptotic power of the test

may depend on the choice of such a weight function+ We therefore follow a
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suggestion made by two of the referees and use the natural formZNT~h! to con-
struct an adaptive test in Section 3+

~iii ! Theorem 2+2~i! establishes an asymptotic normality test statistic+ Theo-
rem 2+2~ii ! shows that the asymptotic normality remains unchanged whenh is
replaced with the random data-drivenZh, which is known as the plug-in method+
Fan and Gijbels~1996, pp+ 152–154! have shown that the plug-in method has
some advantages in applications+ Whether the proposed test statisticZLT~h! is
optimal has not been discussed+ A modified form of the test statistic is shown
to be optimal, and the detailed discussion is given in Section 3+

3. AN ADAPTIVE TEST PROCEDURE

Section 2 establishes the asymptotic normality of the test statistic for testing
the marginal densities+ The test statistic has nontrivial power only ifCT con-
verges more slowly thanT2102+ To improve the asymptotic power properties of
the test, we consider extending the approach of Horowitz and Spokoiny~2001!
for testing nonparametric regression functions+ It is assumed that a marginal
density functiong belongs to a class ofs-times ~s $ 2! differentiable density
functions onR1, such as a Hölder, Sobolev, or Besov class, G, which is sepa-
rated from the null hypothesis by some distanceCT that converges to zero as
T r `+ The objective of this section is to find the fastest rate at whichCT can
approach zero while permitting consistent testing uniformly overG+ This rate is
called the optimal rate of testing+ A test is consistent uniformly overG if

lim
Tr`

inf
g[G

P~H0 is rejected againstg! 5 1+ (3.1)

Thus, the optimal rate of testing is the fastest rate at whichCT can approach
zero while maintaining~3+1!+

3.1. Asymptotic Behavior of the Test Statistic
under the Null Hypothesis

As can be seen in Section 2, the proposed test statistic depends on the band-
width+ This section then suggests using

L* 5 max
h[HT

ZLT~h! 5 max
h[HT

ZNT~h! 2 [mT~h!

Mh [sT~h!
, (3.2)

whereHT 5 $h 5 hmaxa
k : h $ hmin, k 5 0,1,2, + + + % , in which 0 , hmin , hmax

and 0, a , 1+ Let JT denote the number of elements ofHT + In this case, JT #
log10a~hmax0hmin!+ Detailed conditions onhmin andhmax will be given in Assump-
tion B+3 in Appendix B+
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Simulation Scheme.We discuss how to obtain a critical value forL*+ The
exacta-level critical value, la

* ~0 , a , 1!, is the 12 a quantile of the exact
finite sample distribution ofL*+ Becauseu0 is unknown, la

* cannot be evaluated
in practice+ We therefore suggest choosing a simulateda-level critical value,
la, by using the following simulation procedure+

1+ For the simulation, we either use resamples of the sampled dataXt or
generate the dataXt from the marginal densityf ~x,u0! or the correspond-
ing transition density with an initial value ofu0 underH0+

2+ The true valueu0 is estimated based on the simulated$Xt % , and the result-
ing estimate is denoted byZu+

3+ We chooseHT as specified following~3+2! with hmin andhmax satisfying
Assumption B+3 in Appendix B and then computeL* of ~3+2! using the
simulated$Xt % and Zu+

4+ Repeat the preceding stepsM times and produceM versions ofL*, Lm
* for

m 5 1,2+ + + ,M+ The simulated critical valuela is then the~1 2 a!% per-
centile of theM values, Lm

* for m 5 1,2+ + + ,M, of L*+

We now state the following result, and its proof is relegated to Appendix B+

THEOREM 3+1+ Assume that Assumptions A.1, A.3, and A.4 in Appendix A
and B.1–B.3 listed in Appendix B hold. Then underH0

lim
Tr`

P~L* . la! 5 a+

The main result on the behavior of the test statisticL* underH0 is that la is
an asymptotically correcta-level critical value under any model inH0+

3.2. Consistency against a Fixed Alternative

We now show thatL* is consistent against a fixed alternative model+ Assume
that model~1+1! holds+ Let the parameter setQ be an open subset ofRq+ Let
F 5 $ f ~{,u! : u [ Q% satisfy Assumption B+1 in Appendix B+ For convenience,
let

F~u! 5 ~ f ~X1,u!, + + + , f ~XT ,u!!t and Nf 5 ~ f ~X1!, + + + , f ~XT !!t+

Measure the distance betweenf andF by the normalizedl2 distance

r~ f,F ! 5 F inf
u[Q

S 1

T
7 Nf 2 F~u!72DG102

,

where7{7 denotes the euclidean norm+ If H0 is false, thenr~ f,F ! $ Cr for all
sufficiently largeT and someCr . 0+ A consistent test will reject a falseH0

with probability approaching one asT r `+
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The following theorem establishes a consistency result, and its proof is rel-
egated to Appendix B+

THEOREM 3+2+ Assume that the conditions of Theorem 3.1 hold. In addi-
tion, if there is a Cr . 0 such thatlimTr`P~r~ f,F ! $ Cr! 5 1 holds then

lim
Tr`

P~L* . la! 5 1+

3.3. Consistency against a Sequence of Local Alternatives

In this section, we consider the consistency ofL* under local alternatives of the
form

fT~x! 5 f ~x,u1! 1 CT DT~x! (3.3)

with CT $ C0T2102M log logT for some constantC0 . 0 andu1 [ Q+
Let

NfT 5 ~ fT~X1!, + + + , fT~XT !!t and ODT 5 ~DT~X1!, + + + ,DT~XT !!t+

We now have that

1

T
7 NfT 2 F~u1!72 5

CT
2

T
7 ODT72 5

CT
2

T (
t51

T

6DT~Xt !62+ (3.4)

To ensure that the rate of convergence ofNfT to the parametric modelF~u1! is
the same as the rate of convergence ofCT to zero, in view of ~3+4!, we need to
assume thatDT~x! is a continuous function that is normalized so that

lim
Tr`

PS 1

T (
t51

T

6DT~Xt !62 $ dD5 1 (3.5)

for somed . 0+ When DT~{! does not depend onT, condition ~3+5! can be
replaced byE @D2~X1!# . 0, which holds automatically whenD~{! Þ 0+

We now state the following consistency result, and its proof is relegated to
Appendix B+

THEOREM 3+3+ Assume that Assumptions A.1, A.3, and A.4 in Appendix A
and B.1–B.3 with hmax5 cmax~ log logT !21 for some constant cmax . 0 in Appen-
dix B hold. Let Du be aMT -consistent estimator ofu. Let fT satisfy (3.3) with
CT $ CT2102M log logT for some constant C. 0. In addition, let condition
(3.5) hold. Then

lim
Tr`

P~L* . la! 5 1+
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The result shows that the power of the adaptive, rate-optimal test approaches
one asT r ` for any functionDT~{! and sequence$CT% that satisfy the con-
ditions of Theorem 3+3+

3.4. Consistency against a Sequence of Smooth Alternatives

This section establishes thatL* is consistent uniformly over alternatives in a
Hölder smoothness class whose distance from the parametric model approaches
zero at the fastest possible rate+ It can be shown that we can extend the results
to Sobolev and Besov classes under more technical conditions+

Before specifying our smoothness classes, we introduce the following nota-
tion+ Define the Hölder norm

7 f 7H,s 5 sup
x[Sf

(
1#j#s

* d j f ~x!

dx j *, (3.6)

whereSf 5 $x [ R1 : f ~x! . 0% +
The smoothness classes that we consider consist of functionsf [ S~H,s! [

$ f : 7 f 7H,s # cH % for some~unknown! s $ 2 andcH , `+
For somes $ 2 and all sufficiently largeCf , `, define

BH,T 5 Hf [ S~H,s! : lim
Tr`

P~r~ f,F ! $ Cf ~T21M log logT !2s0~4s11! ! 5 1J,
(3.7)

wherer~ f,F ! is as defined in Section 3+2+
We now state the following consistency result, and its proof is relegated to

Appendix B+

THEOREM 3+4+ Assume that Assumptions A.1, A.3, and A.4 in Appendix A
and B.1–B.3 in Appendix B hold. Then for0 , a , 1 and BH,T as defined in
(3.7)

lim
Tr`

inf
f[BH,T

P~L* . la! 5 1+

Remark 3+1+ Theorems 3+1–3+4 show that we have established some consis-
tency results for the proposed test given in~3+2!+ Such consistency results cor-
respond to Theorems 1–4 of Horowitz and Spokoiny~2001! for a fixed design
regression case+ In our case, we deal with the case where the observations are
stationary anda-mixing time series+ In addition, the optimum versionL* is
asymptotically consistent as established in Theorem 3+2+ This is one of the advan-
tages of our test over existing ones, such as the natural competitor proposed in
Aït-Sahalia~1996a!+ In Section 4, we show that our test also outperforms the
natural competitor in the finite sample case+
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4. EXAMPLE OF IMPLEMENTATION AND APPLICATION
IN DIFFUSION MODELS

This section illustrates the proposed adaptive test by the following example+ As
the bootstrap simulation procedure for selecting both the bandwidth and simu-
lated critical values is extremely computationally demanding, especially for large
numbers of data, we only consider using the CIR model proposed by Cox et al+
~1985! and show how to implement the adaptive test statisticL* of ~3+2! in
practice through using a simulated example+ The main reason for choosing the
model is not only because both the marginal and transition density functions
have closed forms but also because the model has been studied extensively in
the literature+ See, for example, Aït-Sahalia~1999! and Hong and Li~2004!+

Example 4.1

We consider using the CIR model given by

drt 5 k~b 2 rt ! dt 1 sMrt dBt , (4.1)

wherek . 0, b . 0, and s . 0 are unknown parameters andBt is standard
Brownian motion+ It can be shown that$rt % is distributed onR1 5 ~0,`! if
2kb0s2 $ 1+ Furthermore, it follows from Lemma 3+1 of Masry and Tjøstheim
~1995! that the process$rt % satisfies Assumption A+1~i!+ Alternatively, one may
apply Assumption A+3' of Aït-Sahalia~1996b, p+ 552! to verify that$rt % is strictly
stationary anda-mixing+

As a result of~2+2!, the marginal density function of$rt % satisfying model
~4+1! is

f ~x,u! 5
~2k!n11

G~n 1 1!s2~n11! {xn{expS2
2k

s2 xD, x [ R1 5 ~0,`!, (4.2)

whereu 5 ~b,k,s!, n 5 2kb0s2 2 1, andG~{! is the usual gamma function+
Let u0 be the true value ofu+

To construct a sequence of local alternatives, we also consider using a mar-
ginal density of the form

f1~x,u! 5
1

G~2 1 n1!
~n1b!21n1{x2~31n1!{exp~2n1bx21!, x [ R1, (4.3)

where n1 5 2k0s2+ It is known that f1~x,u! is the marginal density of$rt %
satisfying the AG model proposed in Ahn and Gao~1999!

drt 5 k~b 2 rt !rt dt 1 srt
1+5 dBt , t 5 1,2, + + + , (4.4)

with parameter valuesk . 0, b . 0, ands . 0+ The necessary and sufficient
conditions for stationarity and unattainability of 0 and̀in finite expected time
are the pairsk . 0 andb . 0 ~see Ahn and Gao, 1999!+ To show that$rt % is
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strictly stationary anda-mixing, as explained in Appendix A of Ahn and Gao
~1999, pp+ 755–756!, one needs only to verify Assumption A+39 of Aït-Sahalia
~1996b, p+ 552!+ It is easy to see that such an assumption holds for the marginal
density, drift, and diffusion functions given in~4+3! and~4+4!+

The corresponding structure of the test problem~2+3! for this example can be
constructed as

H0 : f ~x! 5 f ~x,u0! versusH1 : fT~x! 5 f ~x,u1! 1 CT DT~x!, (4.5)

where

CT 5 ~T21M log logT !409 and DT~x! 5 f1~x,u1! 2 f ~x,u1!, (4.6)

in which u1 [ Q+ The reason for choosing suchDT~{! as the local shift function
is to ensure that the models underH1 fluctuate closely around those underH0+
The choice of~4+5! and~4+6! ensures that~3+7! holds withs 5 2+ This implies
that the adaptive test is consistent against the sequence with an optimal rate+
Note that Assumptions B+1 and B+2 hold+

In the following simulation, we consider using a class of alternatives of the
form

fc~x,u1! 5 f ~x,u1! 1 c{~ f1~x,u1! 2 f ~x,u1!! 5 ~12 c! f ~x,u1! 1 cf1~x,u1!,

(4.7)

whereu1 [ Q and 0, c , 1 is defined as the truncation parameter to be
chosen+

To compute the nonparametric estimators involved, we choose the normal
kernel function given by

k~x! 5
1

M2p
e2~x202! (4.8)

throughout the simulation+ Observe that Assumptions A+1–A+4 hold+ For the
CIR and AG models, we simulate the data from their marginal density and tran-
sitional functions, which all have closed forms+

In the detailed simulation, we simulate the data from~4+2! for the CIR model,
~4+3! for the AG model, and then~4+7! underH1+ Using the simulated data, we
compute

L* 5 max
h[HT

ZLT~h! 5 sup
h[HT

ZNT~h! 2 [mT~h!

Mh [sT~h!
, (4.9)

in which R~k! 5 102Mp and k~4!~0! 5 102M2p are used after the choice of
~4+8! and HT is as defined following~3+2! with hmin 5 T2~11036!, hmax 5
2~ log logT !21, anda 5 35

36
_+ Note that Assumption B+3 holds+

ADAPTIVE TESTING IN CONTINUOUS-TIME DIFFUSION MODELS 855

https://doi.org/10.1017/S0266466604205023 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604205023


To compareL* with ZL0T~h! in ~2+4!, we construct a test statistic of the form

L0
* 5 ZL0T~h* ! 5

ZMT~h* ! 2 [mT~h* !

Mh* [sT~h* !
, (4.10)

whereh* is chosen by using the following procedure+

• We simulateXt with probability 12 c from the CIR model and with prob-
ability c from the AG model with an initial value ofu1 underH1+

• Use the simulated data$Xt : t 5 1,2, + + + ,T % to estimateu1+
• Compute the resulting function ofh given by

ZL0T~h! 5
ZMT~h! 2 [mT~h!

Mh [sT~h!
+

• Repeat the preceding stepsQ 5 1,000 times and produceQ versions of
ZL0T~h! denoted by ZL0T,m~h! for m 5 1,2, + + + ,Q+ Use theQ functions ofh,
ZL0T,m~h! for m5 1,2, + + + ,Q, to construct their empirical bootstrap distribu-

tion function, that is,

Fh~u! 5
1

Q (
m51

Q

I ~ ZL0T,m~h! # u!,

whereI ~U # u! is the usual indicator function+

• For a given asymptotic critical value ecva at the levela ~e+g+, ecv0+005 5
1+645 at the 5% level!, we then calculate the following power function:

c~h! 5 12 Fh~ecva!+

• Find approximately at whichh value the power functionc~h! is maxi-
mized+ Denote the maximizer byh*+

We then consider using the same choice of the parameter values as in~17! of
Pritsker ~1998!+ This means that the baseline model is model~4+1! with k 5
0+89218, b 5 0+090495, ands 5 M0+032742+ In this example, the same param-
eter values were also used asu1 in computing the power of the testsL* andL0

*+
The truncation parameter was chosen asc 5 0 underH0, whereas the trunca-
tion parameter was chosen asc 5 1

33
_ underH1+ Three different sizes of sample

T 5 1,000, 2,755, or 5,500 were then considered+ The corresponding simulated
critical values, la and l0a, of L* andL0

* at thea level are then found by using
the simulation scheme proposed in Section 3+1+ The sizes of the tests were then
computed based on the data simulated underH0, and the power values of the
tests were calculated based on the data generated underH1+ In implementing
the simulation procedure, we usedM 5 1,000 involved in the simulation
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scheme proposed in Section 3+1+ The number of simulations in producing Table 1
was also 1,000+ Both the size and the power ofL* andL0

* are given in Table 1+

Remark 4+1+ ~i! As can be seen from Table 1, the power values of bothL*

andL0
* look reasonable whenc 5 1

33
_, or about 3%+ This may show that bothL*

andL0
* are practically applicable to the medium sample case, because the dif-

ference between the null hypothesis and its alternative was made deliberately
close+ We also computed the power of the tests for the case wherec 5 1

20
_, or

5%+ Our small sample results showed that the power ofL* was already 100%
even whenT51,000+ In general, it is true that the power increases asc increases
for each case+ Observe thatL* is slightly more powerful thanL0

* , althoughh*
involved in L0

* 5 ZL0T~h*! has been chosen based on the assessment of its
power+ We observe that the sizes of the two tests are also close to either 5% in
the first half of Table 1 or 1% in the second half of Table 1+

~ii ! We also examined the dependence of the power on the choice of the ini-
tial parameter values+ Our experience suggests that the power of the tests mainly
depends on the choice of the truncation parameterc+ This is both understand-
able and expected, because the test statistics finally depend only on the estima-
tion and reestimation procedure of the vector of the initial parameters rather
than the initial parameter values themselves+ This is probably why artificial
values or parameter values estimated from a set of real data are used as initial
values for starting a simulation procedure+ For example, Hong and Li~2004!
use the parameter values estimated from the U+S+ interest rate series for their
simulation procedure+

~iii ! Compared with existing results~see Pritsker, 1998!, both the size and
power ofL0

* have been significantly improved+ This is probably because~a! the
choice ofh involved in ZL0T~h! is based on the assessment of the power ofZL0T~h!
rather than using an estimation-based optimal value and~b! to avoid using the

Table 1. Rejection rates for the marginal density tests

Observation Null hypothesis is true Null hypothesis is false

T L* L0
* L* L0

*

The 5% level
1,000 0+044 0+039 0+721 0+618
2,755 0+055 0+058 0+874 0+712
5,500 0+052 0+042 0+992 0+887

The 1% level
1,000 0+007 0+017 0+526 0+497
2,755 0+014 0+019 0+673 0+532
5,500 0+009 0+006 0+869 0+795
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asymptotic distribution ofZL0T~h! and then an asymptotic critical value of 1+645
at the 5% or 2+33 at the 1% level, we have used the bootstrap-based simulated
critical value, l0a, at the levela+ We also computed both the power and size
values for the case whereh was chosen by using a cross-validation criterion,
and the resulting sizes and power values were similar to those obtained by
Pritsker ~1998!, althoughL* always performed better thanL0

*+ This further
demonstrates that the asymptotic distribution of eitherZLT~h! or ZL0T~h! can only
provide some kind of idea about the asymptotic behavior+ In practice, we strongly
suggest using the proposed bootstrap simulation procedure for choosing a sim-
ulated critical value rather than an asymptotic critical value+

5. CONCLUSION

In this paper, we have considered testing the general continuous-time diffusion
model~1+1! under thea-mixing condition+ The results for continuous-time mod-
els under thea-mixing condition complement some existing results under the
b-mixing condition+ See, for example, Aït-Sahalia~1996a!+ Moreover, an adap-
tive and optimal test procedure has been established+ This extension corre-
sponds to Horowitz and Spokoiny~2001! for the fixed design nonparametric
regression and then to Chen, Gao, and Li ~2001! for a nonparametric time series
regression model+ To deal with thea-mixing condition, we have established
some novel results for moment inequalities~see Lemma C+2! and limit theo-
rems~see Lemma A+1! for degenerateU-statistics of strongly dependent pro-
cesses+ Both Lemmas A+1 and C+2 are applicable to some other estimation and
testing of diffusion processes with thea-mixing condition~for more about var-
ious mixing conditions, see Doukhan, 1995!+ In addition, we have demon-
strated how to implement the proposed test procedure in practice through using
a simulated example+

The results given in this paper can be extended in a number of directions+
First, it is possible to consider testing for both the marginal and transition den-
sity functions simultaneously, because the transition density can capture the full
dynamics of a diffusion process and, in particular, can distinguish the diffusion
processes that have the same marginal density but different transition densities+
Second, the results of this paper for the short-range dependent continuous-time
case can be extended to the long-range dependent continuous-time case+ Third,
one probably can relax the strict stationarity and the mixing condition, as the
recent work by Aït-Sahalia~1999! and Karlsen and Tjøstheim~2001! indicates
that it is possible to do such work without the stationarity and the mixing con-
dition+ This part is particularly important for two reasons: ~i! for the long-
range dependent case one needs to avoid assuming both the long-range
dependence and the mixing condition, as they contradict each other; and ~ii !
some important models are nonstationary+ These are some issues left for future
research+
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APPENDIX A

This Appendix lists the necessary assumptions for the establishment and the proof of
the main results given in Section 2+

A.1. Assumptions. Let the parameter setQ be an open subset ofRq+ Let F5 $ f ~{,u! :
u [ Q% + Define,u f ~x,u! 5 ]f ~x,u!0]u, ,u

2 f ~x,u! 5 ]2f ~x,u!0]u]u ' , and,u
3 f ~x,u! 5

]3f ~x, u!0]u]u ']u '' whenever these derivatives exist+ For any q 3 q matrix D,
define

7D7` 5 sup
v[Rq

7Dv7

7v7
,

where7v72 5 (i51
q vi2 for v 5 ~v1, + + + , vq!t +

Assumption A.1. ~i! Assume that the process$rt % is strictly stationary anda-mixing
with the mixing coefficienta~t ! 5 Caa t defined by

a~t ! 5 sup$6P~A ù B! 2 P~A!P~B!6 :A [ V1
s ,B [ Vs1t

` %

for all s, t $ 1, where 0, Ca , ` and 0, a , 1 are constants andVi
j denotes the

s-field generated by$rt : i # t # j % +
~ii ! Assume that the univariate kernel functionk~{! is nonnegative, symmetric,

and four-times differentiable onR1 5 ~2`,`!+ In addition, *2`
` x2k~x! dx , ` and

*2`
` k2~x! dx , `+

Assumption A.2. ~i! The parameter spaceQ , Rq is compact+ In a neighborhood of
the true parameteru0, f ~x, u! is twice continuously differentiable inu; E @~]f ~x, u!0
]u!~]f ~x,u!0]u!t# is of full rank+ In addition, assume thatG~x! is a positive and inte-
grable function withE @G~Xt !# , ` uniformly in t $ 1 such that supu[Q6 f ~Xt ,u!62 #
G~Xt ! and supu[Q7,u

j f ~Xt ,u!72 # G~Xt ! for j 5 1,2,3, where for B 5 $bij %1#i, j#q,
7B72 5 (i51

q (j51
q bij

2+
~ii ! Assume that Du is aMT -consistent estimator ofu0+

Assumption A.3. For everyu [ Q:
~i! The drift and the diffusion functions are three times continuously differentiable in

x [ R1 5 ~0,`!, ands . 0 on R1+
~ii ! The integral of Tm~v,u! 5 @10s2~v,u!# exp~2*v

Sv 2@m~x,u!0s2~x,u!# dx! con-
verges at both boundaries ofD, where Sv is fixed in D+

~iii ! The integral ofs~v,u! 5 exp~*v
Sv 2@m~x,u!0s2~x,u!# dx! diverges at both bound-

aries ofD+

Assumption A.4. ~i! Assume that the first three derivatives off ~x! are continuous
on D and thatf ~x! . cf . 0 on the interior ofD for somecf . 0+ In addition, both f ~x!
and f 2~x! are integrable onD+

~ii ! The initial random variabler0 is distributed asf ~x!+
~iii ! The true drift and diffusion functions satisfy Assumption A+3+
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Assumption A.5. The bandwidth parameterh satisfies that

lim
Tr`

h 5 0, lim
Tr`

Th2 5`, and lim sup
Tr`

Th5 , `+

Remark A.1. Assumptions A+1–A+4 are quite natural in this kind of problem+Assump-
tions A+2–A+4 correspond to Assumptions A0,A1, and A3 of Aït-Sahalia~1996a!+Assump-
tion A+1 is the exception+ Assumption A+1~i! assumes thea-mixing condition, which is
weaker than theb-mixing condition+ Assumption A+1~ii ! is quite general, allowing the
use of the standard normal kernel+ Assumption A+5 ensures that the theoretically opti-
mum value ofhoptimal 5 CT2105 can be included+ This is important, because there may
be cases in whichhoptimal is also optimal for testing purposes+

A.2. Technical Lemmas. The following lemmas are necessary for the proof of the
main results stated in Section 2+

LEMMA A +1+ Let jt be an r-dimensional strictly stationary and strong mixing
~a-mixing) stochastic process. Letf~{,{! be a symmetric Borel function defined on
Rr 3 Rr. Assume that for any fixed x[ Rr, E@f~j1, x!# 5 0 and E@f~ji ,jj !6V0

j21# 5 0
for any i , j, where Vi

j denotes thes-field generated by$js: i # s # j %. Let fst 5
f~js,jt !, sst

2 5 var~fst!, andsT
2 5 (1#s,t#T sst

2. For some small constant0 , d , 1,
let

MT1 5 max
1#i,j,k#T

maxHE6fik fjk 611d,E6fik fjk 611d dP~ji ! dP~jj ,jk!J ,
MT21 5 max

1#i,j,k#T
maxHE6fik fjk 62~11d!,E6fik fjk 62~11d! dP~ji ! dP~jj ,jk!J ,

MT22 5 max
1#i,j,k#T

maxHE6fik fjk 62~11d! dP~ji ,jj ! dP~jk!,

E6fik fjk 62~11d! dP~ji ! dP~jj ! dP~jk!J ,
MT3 5 max

1#i,j,k#T
E6fik fjk 62, MT4 5 max

1,i, j, k#2T
i, j, k different

Hmax
P
E6f1i fjk 62~11d! dPJ ,

where the maximization over P in the equation for MT4 is taken over the four
probability measures P~j1,ji ,jj ,jk!, P~j1!P~ji ,jj ,jk!, P~j1!P~ji1!P~ji2,ji3!, and
P~j1!P~ji !P~jj !P~jk!, where~i1, i2, i3! is the permutation of~i, j, k! in ascending order;

MT51 5 max
1#i,j,k#T

maxHE*Efik fjk fik fjk dP~ji !*
2~11d!J ,

MT52 5 max
1#i,j,k#T

maxHE *Efik fjk fik fjk dP~ji !*
2~11d!

dP~jj ! dP~jk!J ,
MT6 5 max

1#i,j,k#T
E*Efik fjk dP~ji !*

2

+
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Assume that all the MT
' s are finite. Let

MT 5 max$T 2MT1
10~11d! ,T 2MT51

10@2~11d!# ,T 2MT52
10@2~11d!# ,T 2MT6

102% ,

NT 5 max$T 302MT21
10@2~11d!# ,T 302MT22

10@2~11d!# ,T 302MT3
102,T 302 MT4

10@2~11d!#% ,

If limTr`~max$MT ,NT %0sT
2! 5 0, then

1

sT
(

1#s,t#T

f~js,jt ! rD N~0,1! as Tr `+

Remark A.2. Lemma A+1 establishes central limit theorems for degenerateU-statistics
of strongly dependent processes+ It should be pointed out that the conclusion of Lemma
A+1 remains true when the martingale assumption thatE @f~ji ,jj !6V0

j21# 5 0 for any
i , j is removed+ Such a martingale assumption is used only for a direct application of
an existing central limit theorem~CLT! for martingales+ Without such a condition, one
needs only to decompose

f~ji ,jj ! 5 f~ji ,jj ! 2 E @f~ji ,jj !6V0
j21# 1 E @f~ji ,jj !6V0

j2k#

[ Ef~ji ,jj ! 1 E @f~ji ,jj !6V0
j21#

and then apply the martingale CLT toEf~j,jj !+ Using the condition thatE @f~j1, x!# 5 0
for each givenx, one can show that the terms involvingE @f~ji ,jj !6V0

j21# are negligi-
ble ~see Roussas and Ioannides, 1987, Theorem 5+5!+ Thus, as assumed in Lemma 3+2 of
Hjellvik , Yao, and Tjøstheim~1996! and Theorem 2+1 of Fan and Li~1998!, the condi-
tion thatE @f~j1, x!# 5 0 for each givenx is the key assumption+

Proof. Let

UT 5 (
1#s,t#T

f~js,jt !, Vt 5 (
s51

t21

f~js,jt !,

var~UT ! 5 (
t52

T

var~Vt ! 5 (
t52

T

E @Vt
2# 5 (

1#s,t#T

sst
2 1 2 (

1#i,j,k#T

E @fik fjk # +

To prove Lemma A+1, it suffices to show that asT r `

sT
22 (

t52

T

Vt
2 rp 1 (A.1)

and

sT
24 (

t52

T

E @Vt
4# r 0+ (A.2)

By Lemma C+1 ~with h1 5 fik, h2 5 fjk, l 5 2, pi 5 2~1 1 d!, andQ 5 10~1 1 d!!,

E6fik fjk 6 # 10MT1
10~11d! ad0~11d!~ j 2 i !+
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Therefore,

(
1#i,j,k#T

E6fik fjk 6 # 10T 2MT1
10~11d! (

i51

T S12
i

T
Dad0~11d! ~i ! # CT2MT1

10~11d!,

because(i51
` ad0~11d!~i ! , `+

Observe that

EF(
t52

T

Vt
2 2 sT

2G2

5 EH (
1#s,t#T

@fst
2 2 sst

2# 1 2 (
1#i,j,k#T

fik fjkJ2

# 2EH (
1#s,t#T

@fst
2 2 sst

2#J2
1 8EH (

1#i,j,k#T

fik fjkJ2
+ (A.3)

Let hijk 5 1
3
_~fikfjk 1 fij fkj 1 fji fki ! andhij 5 1

3
_ *fikfjk dP~jk!+

Then by Lemma C+2~i! in Appendix C,

EH (
1#i,j,k#T

fik fjkJ2
5 EH (

1#i,j,k#T

hijkJ2

# 2EH (
1#i,j,k#T

@hijk 2 hij 2 hik 2 hjk #J2

1 8T2EH (
1#s,t#T

hstJ2

# C$T 3MT21
10~11d! 1 T 3MT21

10~11d! 1 T 3MT3 1 T 4MT51
10~11d!

1 T 4MT52
10~11d! 1 T 4MT6% 5 o~sT

4!+ (A.4)

Let Cf 5 *f12
2 f34

2 dP~j1! dP~j2! dP~j3! dP~j4!, whereP~j! denotes the probability
measure ofj+

Using Lemma C+1 repeatedly, we have that for differenti, j, k, l

6E @fij
2fkl

2 # 2 Cf 6 # 10$a~D~i, j, k, l !!%12@10~11d!#MT4
10~11d!

5 10MT4
10~11d! $a~D~i, j, k, l !!%d0~11d!, (A.5)

whereD~i, j, k, l ! is the minimum increment in the sequence that is the permutation of
i, j, k, l in ascending order+

Similar to ~A+5!, one can have for all differenti, j, k, l

6sij
2skl

2 2 Cf 6 # 10MT4
10~11d! $a~D~i, j, k, l !!%d0~11d!+

Therefore,

EH (
1#i,j#T

~fij
2 2 sij

2!J2
5 (

i,j, k,l, i, j, k, l different
6E~fij

2fkl
2 ! 2 sij

2skl
261 O~T 3MT3

10~11d!!

# 2H (
i,j,k,l

1 (
i,k,l,j

1 (
i,k,j,l

J
3 @6E @fij

2fkl
2 # 2 Cf 61 6sij

2skl
2 2 Cf 6# 1 O~T 3MT3!

# C1T 3MT4
10~11d! 1 O~T 3MT3! 5 o~sT

4!+ (A.6)
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It now follows from ~A+3!–~A+5! that for anye . 0

PH* 1

sT
2 (

k52

T

Vk
2 2 1* $ eJ #

1

sT
4e2 EF(

k52

T

Vk
2 2 sT

2Gr 0+

Thus, ~A+1! holds+
Note that for 2# k # T,

E @Vk
4# 5 EH(

i51

k21

fik
2 1 2 (

1#i,j,k

fik fjkJ2

5 EH(
i51

k

fik
4 1 6 (

1#i,j,k

fik
2 fjk

2 1 4 (
l51

k21

(
1#i,j,k

flk
2 fik fjkJ

1 4EH (
1#i,j,k,1#s,t,k, ~i, j !Þ~s, t !

fik fjk fskftkJ

5 4 (
l51

k21

(
1#i,j,k

E @flk
2 fik fjk # 1 4 (

1#i,j,k,1#s,t,k, ~i, j !Þ~s, t !
E @fik fjk fskftk#

1 O~T 2MT3!+ (A.7)

It is easy to see that

E6fik fjk fskftk611d dP # HE6fik fjk 62~11d! dPE6fskftk62~11d! dPJ102

# MT4+

Similar to ~A+5!, one can have for any~i, j ! Þ ~s, t !,

6E @fik fjk fskftk#6 # 10MT4
10~11d! $a~D~i, j,s, t !!%d0~11d!,

whereD~{! is as defined in~A+5!+
Consequently, the first two terms on the right-hand side of~A +7! are of order

O~T 3MT4
10~11d!!, because(k51

` k2$a~k!%d0~11d! , `+
Thus, ~A+2! follows from

(
k52

T

E @Vk
4# 5 O~T 3MT4

10~11d!! 5 o~sT
4!+ (A.8)

This finishes the proof+ n
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Before stating the following lemmas, we define the following notation+

et ~x! 5 k~~x 2 Xt !0h! 2 E @k~~x 2 Xt !0h!# ,

fst 5 ~Th!21Ees~x!et ~x! f ~x! dx,

wt ~x! 5
1

T
kh~x 2 Xt !

s2~x! 2 s1~x!~x 2 Xt !

s2~x!s0~x! 2 s1
2~x!

,

sr ~x! 5
1

T (
s51

T

kh~x 2 Xs!~x 2 Xs!
r, r 5 0,1,2,

lt ~u! 5 l~Xt ,u! 5 f ~Xt ! 2 f ~Xt ,u! 5 f ~Xt ,u0! 2 f ~Xt ,u!,

l~u! 5 ~l1~u!, + + + ,lT~u!!t,

ast 5 ThEws~x!wt ~x! f ~x! dx, bst 5Ees~x!wt ~x! f ~x! dx,

N0T 5 N0T~h! 5 (
s51

T

(
t51

T

fst,

NT~h! 5 NT~h,u! 5 ~Th!E$ Zf ~x! 2 Df ~x,u!%2f ~x! dx

5 N0T~h! 1 QT~u! 1 PT~u! 1 P1T 1 P2T 1 RT~u!,

using

Zf ~x! 2 Df ~x,u! 5 Zf ~x! 2 E @ Zf ~x!# 1 E @ Zf ~x!# 2 E @ Df ~x!#

1 E @ Df ~x!# 2 Df ~x! 1 Df ~x! 2 Df ~x,u!,

where

QT~u! 5 l~u!tAl~u! 5 (
s51

T

(
t51

T

astls~u!lt ~u!,

PT~u! 5 (
s51

T

(
t51

T

bstlt ~u!,

P1T 5E~E @ Zf ~x! 2 Df ~x!# !2f ~x! dx,

P2T 5E~ Df ~x! 2 E @ Df ~x!# !2f ~x! dx,

in which A is theT 3 T matrix with $ast% as its~s, t ! element+
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We assume without loss of generality throughout the rest of this paper that

Ek~x! dx 5Ek2~x! dx5 R~k! [ 1+

LEMMA A +2+ Under the conditions of Theorem 2.1, we have as Tr `

E @N0T~h!# 5E f 2~x! dx and var@N0T~h!# 5 2h k~4! ~0!E f 4~x! dx~11 o~1!!+ (A.9)

Proof. We now prove~A+9!+ It follows from Assumptions A+2 and A+3 that asT r `

E @ftt # 5 ~Th!21EE @et
2~x!# f ~x! dx

5
1

Th
EHEFk2S x 2 Xt

h
DG2 E2FkS x 2 Xt

h
DGJ f ~x! dx

5
1

T
~11 o~1!!Ek2~u! du{E f 2~x! dx+

This completes the proof of the first part of~A+9!+ For the proof of the second part of
~A+9!, let

sst
2 5 E@fst

2 # and sT
2 5 2 (

1#s, t#T

sst
2+

Then

sT
2 5 2 (

1#s, t#T

sst
2 5 2 (

t51

T

(
s51

T

E @fst
2 # +

We first look at the main component ofsT
2+ We now have

f1st
2 5EE 1

~Th!2 kS x 2 Xs

h
DkS y 2 Xs

h
DkS x 2 Xt

h
DkS y 2 Xt

h
D f ~x! f ~ y! dxdy+

Using Assumptions A+1–A+4, we have asT r `

ast~x, y! [ EFkS x 2 Xs

h
DkS y 2 Xs

h
DkS x 2 Xt

h
DkS y 2 Xt

h
DG

5EEkS x 2 u

h
DkS y 2 u

h
DkS x 2 v

h
DkS y 2 v

h
D f ~u, v! dudv

5EEkS x 2 y

h
1

y 2 u

h
DkS y 2 u

h
DkS x 2 v

h
DkS x 2 v

h
2

x 2 y

h
D f ~u, v! dudv

5 h2LS x 2 y

h
DLS y 2 x

h
D f ~x, y!~11 o~1!!,

whereL~x! 5 *k~x 1 y!k~ y! dy is as defined in~2+5!+
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Therefore, asT r `

(
1#s, t#T

E @f1st
2 # 5

1

~Th!2 (
1#s, t#T

EE f ~x! f ~ y!ast~x, y! dxdy

5 hk~4! ~0!SE f 4~x! dxD~11 o~1!!, (A.10)

wherek~4!~{! is as defined in~2+5!+
Similarly, one can show that asT r `

(
1#s, t#T

E @fst
2 2 f1st

2 # 5 o~h!+ (A.11)

We now deal with the remainder term of var@N0T~h!# + By Lemma C+1 ~with h1 5
fik, h2 5 fjk, l 5 2, pi 5 2~1 1 d!, andQ 5 10~1 1 d!!,

E6fik fjk 6 # 10MT1
10~11d! ad0~11d!~ j 2 i !,

whereMT1 is as defined in Lemma A+1+
Therefore, using the fact that(i51

` ad0~11d!~i ! , `,

(
1#i,j,k#T

E6fik fjk 6 # 10T 2MT1
10~11d! (

i51

T S12
i

T
Dad0~11d! ~i ! # CT2MT1

10~11d! 5 o~sT
2!,

(A.12)

whose proof is similar to that of~A+17!, which follows+
Equations~A+10!–~A+12! imply

var@L0T~h!# 5 2F (
1#s, t#T

var~fst! 1 2 (
1#i,j,k#T

E~fik fjk !G
5 2hk~4! ~0!SE f 4~x! dxD~11 o~1!!+

This finishes the proof of the second part of~A+9!+ n

LEMMA A +3+ Under the conditions of Theorem 2.1, we have as Tr `

E @ Zf ~x! 2 f ~x!# 5
1

2
h2sk

2 f ~2! ~x! 1 ck f ~3! ~x!h3~11 o~1!!,

E @ Df ~x! 2 f ~x!# 5
1

2
h2sk

2 f ~2! ~x! 1 dk f ~3! ~x!h3~11 o~1!!, (A.13)

and

var@ Df ~x!# 5 E~ Df ~x! 2 E @ Df ~x!# !2 5 C1

h2

Th
~11 o~1!!, (A.14)

where C1 is a constant andZf ~x!, Df ~x!, ck, and dk are as defined in Section 2.
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Proof. We now give only the proof of~A+14! in some detail, as the proofs of~A+13!
and ~A+14! are similar and quite standard and the details follow similarly from some
existing results+ See, for example, Fan and Gijbels~1996!+

In view of the definition ofwt~x! and the second equation of~A+13!, to prove~A+14!,
it suffices to show that asT r `

EH 1

Th (
t51

T

kS x 2 u

h D~s2~x! 2 s1~x!~x 2 Xt !!@ f ~x! 2 f ~Xt !#J2

5
T

~Th!2 Ek2S x 2 u

h
D~s2~x! 2 s1~x!~x 2 u!!2 @ f ~x! 2 f ~u!# 2f ~u! du

5
Th

~Th!2 Ek2~v!~s2~x! 2 s1~x!~vh!!2 @ f ~x! 2 f ~x 2 vh!# 2f ~x 2 vh! dv

5 C
h2

Th
~11 o~1!!

using a Taylor expansion tof ~x! 2 f ~x 2 vh!+ This finishes the proof of~A+14!+ n

A.3. Proof of Theorem 2.1.

Proof of Theorem 2.1(i). To prove Theorem 2+1~i!, in view of Remark A+2 and Lemma
A+3, it suffices to show that

N0T~h! 2 m0

Mhs0

r N~0,1! asT r `+

To apply Lemma A+1, let jt 5 Xt andf~js,jt ! 5 fst defined previously+ Let MT and
NT be defined as in Lemma A+1+ We now verify only the following condition listed in
Lemma A+1:

max$MT ,NT %

sh
2 r 0 asT r ` (A.15)

for MT1, MT21, MT3, MT51, MT52, and MT6, where sh
2 5 hs0

2+ The others follow
similarly+

For theMT part, one justifies only

T 2MT1
10~11d!

sh
2 r 0 asT r `+

The others follow similarly+
Let cst 5 ~10Th!*k~~x 2 Xs!0h!k~~x 2 Xt !0h!p~x! dx+ We now have

cik cjk 5 ~Th!22EEkS x 2 Xi

h
DkS x 2 Xk

h
DkS y 2 Xj

h
DkS y 2 Xk

h
D f ~x! f ~ y! dxdy

5 T22EEk~u!kSu 1
Xi 2 Xk

h
Dk~v!kSv1

Xj 2 Xk

h
D f ~Xi 1 uh! f ~Xj 1 vh! dudv

5 T22f ~Xi ! f ~Xj !LS Xi 2 Xk

h
DLS Xj 2 Xk

h
D~11 o~1!!,

whereL~{! is as defined previously+
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For any given 1, z , 2 andT sufficiently large, we obtain

MT11 5 E6cik cjk 6z

5 T22zEEE6 f ~u! f ~v!6z*LSu 2 w

h
D*z

*LS v2 w

h
D*z

f ~u, v,w! dudvdw

5 T22zh2EEE6 f ~z1 xh! f ~z1 yh!6z2 6L~x!L~ y!6z f ~z1 xh, z1 yh, z! dxdydz

5 cpT22zh2, (A.16)

using Assumption A+1~ii !, wheref ~x, y, z! denotes the joint density of~Xi ,Xj ,Xk! and
Cp is a constant+

Thus, asT r `

T 2MT11
10~11d!

sh
2 5 C

T 2~T22zh2!10z

h
5 h~22z!0z r 0+ (A.17)

Hence, ~A+17! shows that~A+15! holds for the first part ofMT1+ The proof for the
second part ofMT1 follows in a similar way+ Similarly, we have that asT r `

MT3 5 E6cik cjk 62 5 ~Th!24h4EFf 2~Xi ! f 2~Xj !L
2S Xi 2 Xk

h
DL2S Xj 2 Xk

h
DG

5 T24EEE f 2~x! f 2~ y!L2S x 2 z

h
DL2S y 2 z

h
D f ~x, y, z! dxdydz

5 T24h2EEE f 2~uh1 w! f 2~vh 1 w!L2~u!L2~v! dudvdw5 CT24h2,

using Assumption A+1~ii !+
This implies that asT r `

T 302MT3
102

sh
2 5 C

T 302T22h

h
5 CT2102 r 0+ (A.18)

Thus, ~A+18! now shows that~A+15! holds forMT3+ It follows from the structure of
$cij % that ~A+15! holds automatically forMT51, MT52, andMT6, becauseE @fst# 5 0 for
s Þ t+

We now prove that~A+15! holds forMT21+ For some 0, d , 1 and 1# i , j , k #
T, let MT21 5 E @6cikcjk62~11d! # + Similar to ~A+16! and~A+17!, we obtain that asT r `

T 302MT21
102~11d!

sh
2 r 0

using the fact that limTr`Th 5 `+
This completes the proof of~A+15! for MT21, and thus~A+15! holds for the first part

of $fst% + Similarly, one can show that~A+15! holds for the other parts of$fst% + Thus, we
have shown that underH0
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N0T 2 m0

sh

r N~0,1! asT r `+

The proof of Theorem 2+1~i! is therefore finished+ n

Proof of Theorem 2.1(ii). Note that asT r `

ZLT~ Zh! 5
ZNT~ Zh! 2 m0

M Zhs0

5

ZNT~ Zh!

ZNT~h!
@ ZNT~h! 2 m0# 1 F ZNT~ Zh!

ZNT~h!
2 m0G

FM ZhMh
2 1Gsh 1 sh

5
ZNT~h! 2 m0

sh

~11 op~1!!

using the continuity of ZNT~h! in h+ This completes the proof of Theorem 2+1~ii !+ n

Proof of Theorem 2.2. The proof follows from Theorem 2+1 and the following stan-
dard result:

1

T (
t51

T

Zf i ~Xt ! 5 E @ f i ~Xt !# 1 OpS 1

MTh
D1 O~h2! for i 5 1,3+ n

APPENDIX B

This Appendix lists the necessary assumptions for the establishment and the proof of
the main results given in Section 3+

B.1. Assumptions.

Assumption B.1. The parameter setQ is an open subset ofRq for someq $ 1+ The
parametric familyF 5 $ f ~{,u! : u [ Q% satisfies the following conditions+

~i! Assumption A+2~i! holds+
~ii ! For eachu [ Q, f ~x,u! is continuous with respect tox [ D+

~iii ! Assume that there is a finiteCI . 0 such that for every« . 0

inf
u,u ' [ Q : 7u 2 u ' 7 $ «

@ f ~X1,u! 2 f ~X1,u ' !# 2 $ CI «2

holds with probability one~almost surely!+

Assumption B.2. ~i! Let H0 be true+ Thenu0 [ Q and

lim
Tr`

P~MT 7 Du 2 u07 . CL ! , «

for any « . 0 and all sufficiently largeCL+
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~ii ! Let H0 be false+ Then there is au* [ Q such that

lim
Tr`

P~MT 7 Du 2 u* 7 . CL ! , «

for any « . 0 and all sufficiently largeCL+

Assumption B.3. ~i! Assume that the setHT has the structure of~3+2! with cminT2g 5
hmin , hmax 5 cmax~log logT !21, whereg, cmin, andcmax are some constants satisfying
0 , g , 1 and 0, cmin,cmax , `+

~ii ! Assume thatDT~x! is continuous inx [ D and satisfies*2`
` DT~x! dx5 0 for all

T $ 1+

Remark B.1. Assumptions B+1~i! and B+1~ii ! are quite standard in this kind of prob-
lem+ See Assumptions 1~i! and~ii ! of Horowitz and Spokoiny~2001!+Assumption B+1~iii !
is required to ensure that the marginal density function is identifiable+ A similar condi-
tion is used in Assumption 1~iii ! of Horowitz and Spokoiny~2001!+ It can be shown that
Assumption B+1~iii ! holds whenf ~x,u! belongs to classes of simple linear and certain
nonlinear functions inu+ The identifiability assumption is imposed to exclude the case
where f ~x,u! is flat as a function ofu over certain range ofu and some value ofx,
because such a function may be neither identifiable nor a probability density+ Assump-
tion B+2 is needed to ensure that the true version ofu underH0 or H1 can be estimated
by aMT -consistent estimator+ Assumption B+3~i! imposes some conditions on bothhmin

and hmax+ The theoretical condition onhmin is quite general+ In practice, we would
suggest usingg 5 1

5
_ to include the estimation-based optimal bandwidthhoptimal 5

Cn2@10~2s11!# , because the estimation-based optimal value may also be optimal for test-
ing purposes in some cases+ The restriction onhmax is required only for the proof of
Theorem 3+3+ It should be noted thathmax is not necessarily the optimal bandwidth such
that the power of the resulting test is maximized+ As explained at the beginning of Sec-
tion 2, both the existence and reasonableness of Assumption B+3~ii ! can be justified+
Unlike the regression setting discussed in Horowitz and Spokoiny~2001!, we need to
assume*xmin

xmaxDT~x! dx5 0 to ensure that the alternative is also a probability density+ As
the main results in Section 2 are only concerned with the null hypothesis, we do not
need to assume such a rigorous condition for the main results+

This paper considers using only a set of discrete bandwidths for constructing the adap-
tive test+ It is believed that some corresponding results of Theorems 3+1–3+4 can be estab-
lished for the case whereHT is an interval of continuous bandwidth values+ As HT is
always chosen as a set of discrete bandwidths in practice, we therefore think that such
an extension from a set of discrete bandwidths to an interval of continuous bandwidth
values may just be for theoretical and technical consideration+ As such an extension also
involves much more tedious and technical details, we do not discuss this issue in detail
in this paper+

B.2. Technical Lemmas. Before stating the necessary lemmas for the proof of the
results given in Section 3, we introduce the following notation+
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LEMMA B +1+ Suppose that the conditions of Theorem 2.1 hold.

(i) For everyd . 0

max
h[HT

h21 sup
7u2u07#d

QT~u! # CTd2

in probability, where C. 0 is a constant.

(ii) For each u [ Q and sufficiently large T

QT~u! $ Ch{l~u!tl~u! in probability.

Proof. ~i! It follows from the definition ofQT~u! that

QT~u! # 7A7`7l~u!72+ (B.1)

To prove Lemma B+1~i!, one first needs to show that

7A7` # Ch (B.2)

in probability for some constantC . 0+
Using the conditions of Lemma B+1, we now have

7A7` # max
1#t#T

(
s51

T

ast 5 C~11 op~1!! max
1#t#T

EkS x 2 Xt

h
D @s2~x! 2 s1~x!~x 2 Xt !# dx

5 C~11 op~1!!h max
1#t#T

Ek~u!@s2~Xt 1 uh! 2 s1~Xt 1 uh!uh# du

5 C~11 op~1!!hFs2~Xt !Ek~u! du2 s1~Xt !hEuk~u! duG # Ch

in probability+
In view of ~B+2!, to prove Lemma B+1~i!, it suffices to show that

sup
7u2u07#d

7l~u!72 # CTd2 (B.3)

in probability+
A Taylor series expansion tof ~Xt ,u! 2 f ~Xt ,u0! and an application of Assumption

B+1~i! imply ~B+3!+ This finishes the proof of Lemma B+1~i!+
~ii ! Let lmin~A! andlmax~A! denote the smallest and largest eigenvalues ofA, respec-

tively+ In view of

lmin~A!{7l~u!72 # QT~u! # lmax~A!{7l~u!72, (B.4)

to prove Lemma B+1~ii !, it suffices to show that forn large enough

lmin~A! $ Ch~11 op~1!! in probability (B.5)

for someC . 0+ Similar to the proof of Lemma A+2 of Gao, Tong, and Wolff ~2002!,
one can easily finish the proof of~B+5!+ n
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Without loss of generality, we consider the case ofq 5 1 in the following lemmas and
their proofs+ Define

ci ~Xt ,u! 5 f ~i ! ~Xt ,u! 5
di f ~Xt ,u!

du i for i 5 1,2,3+

LEMMA B +2+ Under the conditions of Theorem 3.1, we have for any givenu [ Q
and i 5 1,2

JT
2102 max

h[HT

h2102*(
s51

T

(
t51

T

bstci ~Xt ,u!* 5 Op~1!+ (B.6)

Proof. It suffices to show that for any large constantC0 . 0

PFJT
2102 max

h[HT

h2102*(
s51

T

(
t51

T

bstci ~Xt ,u!* . C0G
# (

h[HT

PF*(
s51

T

(
t51

T

bstci ~Xt ,u!* . C0JT
102h102G

# (
h[HT

1

C0
2JT h

EF(
s51

T

(
t51

T

bstci ~Xt ,u!G2

# (
h[HT

1

C0
2JT h H(

s51

T

(
t51

T

E @bstci ~Xt ,u!# 2 1 L iT ~u!J , (B.7)

where

L iT ~u! 5 EF(
s51

T

(
t51

T

bstci ~Xt ,u!G2

2 (
s51

T

(
t51

T

E @bstci ~Xt ,u!# 2+

Similar to the proof of~A+1!, one can show that asT r `

(
s51

T

(
t51

T

E @bstci ~Xt ,u!# 2 5 C~u!h~11 o~1!! (B.8)

for some functionC~u!+
Using Lemmas C+1 and C+2 in Appendix C and the fact thatE @et~x!# 5 0 for x [ D,

one can show that asT r `

L iT ~u! 5 o~h! for i 5 1,2,3+ (B.9)

Thus, equations~B+7!–~B+9! complete the proof+ n

LEMMA B +3+ Under the conditions of Theorem 3.1, we have as Tr `

JT
2102 max

h[HT

h2102 max
1#s#T*(t51

T

bst* 5 Op~1!+ (B.10)
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Proof. Similar to ~B+7!, we have for large constantC0 . 0

PFJT
2102 max

h[HT

h2102 max
1#s#T*(t51

T

bst* . C0G
# (

h[HT

(
s51

T

PFJT
2102h2102*(

t51

T

bst* . C0G #
1

C0
2JT

(
h[HT

h21 (
s51

T

EF(
t51

T

bstG2

5
1

C0
2JT

(
h[HT

h21H(
s51

T

(
t51

T

E @bst
2 # 1 (

s51

T

(
t1Þt2

E @bst1 bst2#J + (B.11)

Similar to ~B+8!, we can have asT r `

(
s51

T

(
t51

T

E @bst
2 # 5 Ch~11 o~1!!+ (B.12)

Analogous to~B+9!, one can show that asT r `

(
s51

T

(
t1Þt2

E @bst1 bst2jt1jt2# 5 o~h!+ (B.13)

Thus, equations~B+11!–~B+13! complete the proof of~B+10!+ n

LEMMA B +4+ Under the conditions of Theorem 3.1, we have for each u. 0,

max
h[HT

sup
6u2u06#T2102u

h2102*(
s51

T

(
t51

T

bstlt ~u!* 5 Op~JT
102T2102! (B.14)

underH0.

Proof. We now prove~B+14!+ Using a Taylor series expansion tof ~Xt ,u! 2 f ~Xt ,u0!
and Assumption B+1, we have foru ' betweenu andu0

*(
s51

T

(
t51

T

bstlt ~u!* 5 *(
s51

T

(
t51

T

bst @ f ~Xt ,u! 2 f ~Xt ,u0!#*
# *(

s51

T

(
t51

T

bstc1~Xt ,u0!*6u 2 u061
1

2 *(
s51

T

(
t51

T

bstc2~Xt ,u0!*
3 6u 2 u062 1

1

6 *(
s51

T

(
t51

T

bstc3~Xt ,u ' !*6u 2 u063

# *(
s51

T

(
t51

T

bstc1~Xt ,u0!*6u 2 u061
1

2
T 6u 2 u062*(

s51

T

bstc2~Xt ,u0!*
1

1

6
T 6u 2 u063 max

1#t#T*(
s51

T

bst*{ max
1#t#T

6c3~Xt ,u ' !6+ (B.15)

874 JITI GAO AND MAXWELL KING

https://doi.org/10.1017/S0266466604205023 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604205023


Hence, ~B+4!, ~B+10!, ~B+15!, and Assumption B+1~i! imply

max
h[HT

sup
6u2u06#T2102u

h2102*(
s51

T

(
t51

T

bstlt ~u!* # Op~JT
102T2102!+ (B.16)

The proof of~B+14! follows from ~B+15! and~B+16!+ n

LEMMA B +5+ Suppose that the conditions of Theorem 3.1 hold. Then for every
u . 0, some h[ HT, and as Tr `

sup
6u2u* 6 # T2102u

*(
s51

T

(
t51

T

bstl~Xt ,u!*5 op~QT~u* !! (B.17)

underH1.

Proof. In view of the definition ofQn~u!, to prove~B+17!, it suffices to show that as
T r `

sup
6u2u* 6 # T2102u

*(
s51

T

(
t51

T

bstl~Xt ,u!*5 op~qT !,

whereqT 5 E @QT~u*!# +
Note that

*(
s51

T

(
t51

T

bstl~Xt ,u!* # *(
s51

T

(
t51

T

bstl~Xt ,u* !*
1 *(

s51

T

(
t51

T

bstc1~Xt ,u* !*6u 2 u* 6

1
1

2
T 6u 2 u* 62*(

s51

T

bstc2~Xt ,u* !*
1

1

6
T 6u 2 u* 62 max

1#t#T*(
s51

T

bst*{ max
1#t#T

6c3~Xt ,u ' !6, (B.18)

whereu ' lies betweenu andu*+
In view of ~B+6!, ~B+10!, ~B+18!, and Assumptions B+1~i! and B+2~ii !, to prove~B+17!,

it suffices to show that for anyd . 0,

PF*(
s51

T

(
t51

T

bstl~Xt ,u* !* . dTqTGr 0 (B.19)

asT r `+
Similar to ~B+8! and~B+9!, one can show that asT r `

EF(
s51

T

(
t51

T

bstl~Xt ,u* !G 2

5 Ch~11 o~1!!+ (B.20)
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Thus, equations~B+19! and~B+20! imply that asT r `

PF*(
s51

T

(
t51

T

bstl~Xt ,u* !* . dqTG #
1

d2qT
2 EF(

s51

T

(
t51

T

bstl~Xt ,u* !G2

5
Ch

qT
2 r 0

(B.21)

usingqT 5 CTh~1 1 o~1!! given in the proof of Lemma B+1~ii !, whereC is a constant
independent ofT+ Lemma B+5 therefore follows from~B+21!+ n

Recall the notation introduced in~A+9!+ We assume without loss of generality that
k~4!~0! 5 1 in Lemma A+2+ Define

L0~h! 5
N0T~h! 2 m0

M2h
and LT~h! 5

NT~h! 2 m0

M2h
+ (B.22)

LEMMA B +6+ Suppose that the conditions of Theorem 3.1 hold. Then as Tr `

ZLT~h! 5 LT~h! 1 op~1! (B.23)

uniformly over h[ HT.

Proof. The proof of~B+23! follows from ~2+7! and~2+8! immediately+ n

LEMMA B +7+ Suppose that the conditions of Theorem 3.1 hold. Then
maxh[HT

L0~h! and maxh[HT
LT~h! have identical asymptotic distributions underH0.

Proof. Note thatQT~u0! 5 0 underH0 and that Lemmas A+3 and B+1–B+5 imply as
T r `

max
h[HT

PT~u0!

M2h
5 op~1!, max

h[HT

P1T 1 P2T

M2h
5 op~1!, max

h[HT

RT~u0!

M2h
5 op~1!+ (B.24)

Therefore, equations~B+21!, ~B+22!, and ~B+24! complete the proof of Lemma B+7+
n

LEMMA B +8+ Suppose that the conditions of Theorem 3.1 hold. Then for any x$ 0,
h [ HT, and all sufficiently large T

P~L0~h! . x! # expS2
x2

4
D+

Proof. It follows from the beginning of the proof of Theorem 2+1~i! that for any
small d . 0 there exists a large integerT0 $ 1 such that forT $ T0

6P~L0~h! # x! 2 F~x!6 , d,

whereF~x! 5 ~1YM2p!*2`
x e2~u202! du+
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This implies for anyT $ T0 andx $ 0

P~L0~h! . x! # 1 2 F~x! 1 d

5
1

M2p
E

x

`

e2~u202! du1 d 5
1

M2p
E

x

`

e2~u204!e2~u204! du1 d

# e2~x204!
1

M2p
E

x

`

e2~u204! du1 d # e2~x204!
1

M2p
E

0

`

e2~u204! du1 d

5 e2~x204!
M2

M2p
E

0

`

e2~v202! dv1 d 5
M2

2
e2~x204! 1 d

using~1YM2p!*0
` e2~v202! dv 5 1

2
_ +

The proof follows by letting 0, d # ~1 2 M202!e2~x204! for any x $ 0+ n

For 0 , a , 1, define Dla to be the 12 a quantile of maxh[HT
L0~h!+

LEMMA B +9+ Suppose that the conditions of Theorem 3.1 hold. Then for large
enough T

Dla # 2M log~JT ! 2 log~a!+

Proof. The proof is trivial+

LEMMA B +10+ Suppose that the conditions of Theorem 3.1 hold. Suppose that

lim
Tr`

PSQT~u* !

M2h
$ 2 Dla*D5 1 (B.25)

for some h[ HT, where

Dla* 5 maxS Dla ,M2 log~JT ! 1M2 log~JT !D+
Then

lim
Tr`

P~L* . la! 5 1+

Proof. To prove Lemma B+10, in view of Lemmas B+6 and B+7, it suffices to show
that

lim
Tr`

PSmax
h[HT

LT~h! . DlaD5 1,

which holds if

lim
Tr`

P~LT~h! . Dla! 5 1
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for someh [ HT + For anyh [ HT , using~B+21! and then~B+17! we have

LT~h! 5 L0~h! 1
QT~u* ! 1 RT~u* ! 1 P1T 1 P2T

M2h

5 L0~h! 1
QT~u* !~11 op~1!!

M2h
+ (B.26)

On the other hand, condition~B+25! implies that asT r `

PSQT~u* !

M2h
, 2 Dla*Dr 0+ (B.27)

Observe that

P~LT~h! . Dla! 5 PSLT~h! . Dla ,
QT~u* !

M2h
$ 2 Dla*D1 PSLT~h! . Dla ,

QT~u* !

M2h
, 2 Dla*D

[ I1T 1 I2T +

Thus, it follows from ~B+26! that asT r `

I1T 5 P1L0~h! 1

QT~u* ! 1 PT~u* ! 1 RT~u* ! 1 (
i51

2

PiT

M2h
. Dla* QT~u* !

M2h
$ 2 Dla*2

3 PSQT~u* !

M2h
$ 2 Dla*D

$ PSL0~h! . Dla 2 2 Dla* * QT~u* !

M2h
$ 2 Dla*DPSQT~u* !

2hd02 $ 2 Dla*Dr 1

becauseL0~h! is asymptotically normal and therefore bounded in probability and
Dla 2 2 Dla* r 2` asT r `+

Because of~B+27!, asT r `

I2T # PSQT~u* !

M2h
, 2 Dla*Dr 0+

This finishes the proof+ n

B.3. Proofs of Theorems 3.1–3.4.

Proof of Theorem 3.1. The proof follows from Lemmas B+6 and B+7+

Proof of Theorem 3.2. This proof is similar to that of Theorem 3+3, which follows,
using Lemma B+1~ii !+ Alternatively, one can follow the corresponding proof of Theo-
rem 2 of Horowitz and Spokoiny~2001! by using Lemma B+1~ii ! and the condition that

lim
Tr`

P~r~ f,F ! $ Cr! 5 1+

to verify ~B+25!+ n
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Proof of Theorem 3.3. Condition~3+5! ensures that the rate of convergence offT to
the parametric modelF~u1! is the same as the rate of convergence ofCT to zero+ In
particular, when~3+5! holds,

lim
Tr`

PS inf
u[Q

~7 NfT 2 F~u!72! $ TdCT
2D5 1+ (B.28)

In view of Lemma B+10, to complete the proof of Theorem 3+3, it suffices to verify
~B+25!+ This verification follows from Lemma B+1~ii ! and~B+28!+ n

Proof of Theorem 3.4. For the proof of Theorem 3+4, one needs to use the condi-
tions of Theorem 3+4 to finish the proof+ In our proof, we mainly use Lemma B+1~ii !
and the condition of Theorem 3+4 that

lim
Tr`

P~r~ f,F ! $ Cm~T21M log logT !2s0~4s11! ! 5 1

to verify ~B+25!+ n

APPENDIX C

The following two technical lemmas have already been used in the proofs of Lemma
A+1 and Theorem 2+1+ The two lemmas are of general interest in themselves and can be
used for other nonparametric estimation and testing problems associated with thea-mixing
condition+

LEMMA C +1+ Suppose that Mm
n are thes-fields generated by a stationarya-mixing

processji with the mixing coefficienta~i !. For some positive integers m lethi [ Msi

ti

where s1 , t1 , s2 , t2 , {{{ , tm and suppose ti 2 si . t for all i. Assume further
that

7hi 7pi

pi 5 E6hi 6 pi , `

for some pi . 1 for which

Q 5 (
i51

l 1

pi

, 1+

Then

*EF)
i51

l

hiG2 )
i51

l

E @hi #* # 10~l 2 1!a~t!~12Q! )
i51

l

7hi 7pi
+

Proof. See Roussas and Ioannides~1987!+

LEMMA C +2+ (i) Let c~{,{,{! be a symmetric Borel function defined on Rr 3
Rr 3 Rr. Let the processji be defined as in Lemma A.1. Assume that for any fixed
x, y [ Rr, E@c~j1, x, y!# 5 0. Then

EH (
1#i,j,k#T

c~ji ,jj ,jk!J2
# CT3M 10~11d!,
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where0 , d , 1 is a small constant, C. 0 is a constant independent of T and the
functionc, M 5 max$M1,M2,M3%, and

M1 5 max
1,i,j#T

maxHE6c~j1,ji ,jj !62~11d!,E6c~j1,ji ,jj !62~11d! dP~j1! dP~ji ,jj !J ,
M2 5 max

1,i,j#T
maxHE6c~j1,ji ,jj !62~11d! dP~jj ! dP~j1,ji !J ,

M3 5 max
1,i,j#T

maxHE6c~j1,ji ,jj !62~11d! dP~j1! dP~ji ! dP~jj !J + (C.1)

(ii) Let f~{,{! be a symmetric Borel function defined on Rr 3 Rr. Let the processji

be defined as in Lemma A.1. Assume that for any fixed x[ Rr, E@f~j1, x!# 5 0. Then

EH (
1#i,j#T

f~ji ,jj !J2
# CT2M4

10~11d! ,

whered . 0 is a constant, C. 0 is a constant independent of T and the functionf, and

M4 5 max
1,i,j#T

maxHE6f~j1,ji !62~11d!,E6f~j1,ji !62~11d! dP~j1! dP~ji !J + (C.2)

Proof. As the proof of~ii ! is similar to that of~i!, one proves only~i!+ Let i1, + + + , i6
be distinct integers and 1# i j # T, let 1 # k1 , {{{ , k6 # T be the permutation of
i1, + + + , i6 in ascending order, and letdc be thecth largest difference amongkj11 2 kj ,
j 5 1, + + + ,5+ Let

H~k1, + + + , k6! 5 c~ji1,ji2,ji3!c~ji4,ji5,ji6!+

By Lemma C+1 ~with h1 5 c~ji1,ji2,ji3!, h2 5 c~ji4,ji5,ji6!, l 5 2, pi 5 2~1 1 d! and
Q 5 10~1 1 d!!,

6E @H~k1, + + + , k6!#6 # H10M 10~11d!ad0~11d!~k6 2 k5! if k6 2 k5 5 d1

10M 10~11d!ad0~11d!~k2 2 k1! if k2 2 k1 5 d1+

Thus,

(
1#k1,{{{,k6#T

k22k15d1

6E @H~k1, + + + , k6!#6

# (
k151

T25

(
k25k11maxj$3$kj2kj21%

(
k35k211

T23

{{{ (
k65k511

T

$10M10~11d!ad0~11d!~k2 2 k1!%

# 10M10~11d! (
k151

T25

(
k25k111

T24

~k2 2 k1!2ad0~11d!~k2 2 k1!

# 10TM10~11d! (
k51

T

k4ad0~11d!~k! # CTM10~11d!+ (C.3)
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Similarly,

(
1#k1,{{{,k6#T

k22k15d1

6E@H~k1, + + + ,k6!#6 # CTM10~11d!+ (C.4)

Analogously, it can be shown in a similar way that

(
1#k1,{{{,k6#T

k62k55d2 or k22k15d2

6E@H~k1, + + + ,k6!#6 # CT2M10~11d!, (C.5)

(
1#k1,{{{,k6#T

k62k55d3 or k22k15d3

6E@H~k1, + + + ,k6!#6 # CTM10~11d!+ (C.6)

On the other hand, if $k6 2 k5, k2 2 k1% 5 $d4,d5% , by using Lemma C+1 three times
we have the inequality

6E @H~k1, + + + , k6!#6 # 10M 10~11d! (
i51

3

ad0~11d!~di !+

Hence,

(
1#k1,{{{,k6#T

$k62k5, k22k1%5$d4,d5%

6E @H~k1, + + + , k6!#6

# (
1#k1,{{{,k6#T

max$k62k5, k22k1%

# min
2#j#4

$kj112kj %

$10M 10~11d! @ad0~11d!~k3 2 k2!

1 ad0~11d!~k4 2 k3! 1 ad0~11d!~k5 2 k4!#%

# 30M 10~11d! (
1#k1,{{{,k6#T

max$k62k5, k22k1%#d3

a10~11d!~d3! # 30CT3M 10~11d!+ (C.7)

It follows from ~C+3!–~C+7! that

(
1#i, j, k, r,s, t#T

i, j, k, r,s, t different

6E @c~ji ,jj ,jk!c~jr ,js,jt !#6 # CT3M 10~11d!+ (C.8)

Similar to ~C+8!, one can show that

(
1#i, j, k, r,s, t#T
i, j, k,s, t different

6E @c~ji ,jj ,jk!c~ji ,js,jt !#6 # CT3M 10~11d!, (C.9)
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(
1#i, j, k, l#T

i, j, k, l different

6E @c~ji ,jj ,jk!c~ji ,jj ,jl !#6 # CT3M 10~11d!+ (C.10)

Finally, it is easy to see that

(
1#i,j,k#T

E @c~ji ,jj ,jk!2# # T 3 max
1,i,j

E @c~j1,ji ,jj !
2# + (C.11)

The conclusion of Lemma C+2~i! follows immediately from~C+8!–~C+11!+ n
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