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The paper studies large time behaviour of solutions to the Keller–Segel system with
quadratic degradation in a liquid environment, as given by

ut + U · ∇u = ∆u − ∇ · (u∇v) − µu2, x ∈ Ω, t > 0,

vt + U · ∇v = ∆v − v + u, x ∈ Ω, t > 0,

}
(�)

under Neumann boundary conditions in a bounded domain Ω ⊂ R
n, where n � 1 is

arbitrary. It is shown that whenever U : Ω × (0, ∞) → R
n is a bounded and

sufficiently regular solenoidal vector field any non-trivial global bounded solution of
(�) approaches the trivial equilibrium at a rate that, with respect to the norm in
either of the spaces L1(Ω) and L∞(Ω), can be controlled from above and below by
appropriate multiples of 1/(t + 1). This underlines that, even up to this quantitative
level of accuracy, the large time behaviour in (�) is essentially independent not only
of the particular fluid flow, but also of any effect originating from chemotactic
cross-diffusion. The latter is in contrast to the corresponding Cauchy problem, for
which known results show that in the n = 2 case the presence of chemotaxis can
significantly enhance biomixing by reducing the respective spatial L1 norms of
solutions.
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1. Introduction

We consider non-negative solutions of the boundary-value problem

ut + U · ∇u = ∆u − χ∇ · (u∇v) − µu2, x ∈ Ω, t > 0,

vt + U · ∇v = ∆v − v + u, x ∈ Ω, t > 0,

∇ · U ≡ 0, x ∈ Ω, t > 0,

∂u

∂ν
=

∂v

∂ν
= 0, u ≡ 0, x ∈ ∂Ω, t > 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.1)
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in a bounded domain Ω ⊂ R
n with smooth boundary, where n � 1, where χ > 0

and µ are positive parameters and where U : Ω × (0,∞) → R
n is a prescribed

solenoidal vector field. Systems of this type arise in the macroscopic modelling of
chemotactic migration under the influence of a liquid environment by transport
through a given fluid, and in the presence of quadratic degradation such as appears
in logistic-type cell kinetics. Here we focus on situations in which cell proliferation
in logistic models represented by linear production terms either can be neglected
on the timescales considered, or is absent in principle. A prototypical example for
the latter arises in the context of coral broadcast spawning processes [2, 6], during
which eggs release a chemical signal, with concentration v = v(x, t), which attracts
sperms, where both eggs and sperms jointly constitute a population with density
u = u(x, t), and where the transporting incompressible ocean flow is represented
through its velocity field U = U(x, t).

In the fluid-free case when U ≡ 0, a variety of previous results indicate the cross-
diffusive mechanism in (1.1) has a quite substantial effect that goes far beyond well-
established knowledge on the ability of the classical Keller–Segel system obtained
on letting µ = 0, i.e. of

ut = ∆u − χ∇ · (u∇v),
vt = ∆v − v + u,

}
(1.2)

to generate singularities in the sense of finite-time blow-up of some solutions in two-
and higher-dimensional settings [5, 18]. Indeed, also in situations when µ > 0 in

ut = ∆u − χ∇ · (u∇v) − µu2,

vt = ∆v − v + u,

}
(1.3)

and related systems, the destabilizing action of cross-diffusion may still enforce
quite complex solution behaviour in comparison to the respective scalar absorp-
tive parabolic equation, as indicated by numerical experiments [11] and rigorously
confirmed by results on the spontaneous emergence of large population densities
at intermediate timescales (see [20]; see also [8, 19] for similar findings on asso-
ciated parabolic–elliptic simplifications). In fact, even the drastic phenomenon of
finite-time blow-up has been shown to be suppressed by the presence of quadratic
degradation only when either n � 2 [9,10] or n � 3 and µ is suitably large (see [16];
see also [14] for a precedent). The question of how far such systems are globally solv-
able when n � 3 and µ > 0 is small has so far only been partially been answered by
a statement on the global existence of weak solutions, possibly unbounded but, at
least in the n = 3 case, eventually bounded and smooth and asymptotically decay-
ing in both components [8]. Strong cross-diffusive effects also manifest in blow-up
examples despite certain subquadratic but superlinear degradation terms in some
appropriately high-dimensional chemotaxis systems [17].

In the light of these premises, for the investigation of common large-scale quali-
tative features of solutions to (1.1) in general n-dimensional frameworks, it seems
adequate to resort explicitly to situations when solutions are globally regular. With
a time shift if necessary, this will in fact cover widely arbitrary solutions to (1.3) in
all physically relevant n � 3 cases, but will also capture more complex frameworks
in which the fluid evolution itself is unknown, affected, for example by the cell pop-
ulation, and governed by appropriate equations from fluid mechanics (see [1] for
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corresponding modelling aspects), at least in situations when the chemotaxis–fluid
system obtained is globally solvable by suitably regular functions [12, 13]. Accord-
ingly, the aim of this work is to describe the large time behaviour of arbitrary
global bounded solutions to (1.1) in bounded domains for any n � 1, ignoring the
question of whether such solutions exist under particular assumptions on suppos-
edly prescribed initial data (u0, v0) ≡ (u(·, 0), v(·, 0)). Hence, assuming a sufficiently
smooth vector field U and a non-trivial global bounded classical solution (u, v) of
(1.1) as given, we shall focus on deriving optimal estimates for the decay rate of
u(·, t) with respect to the norms both in L∞(Ω) and in L1(Ω), bearing in mind the
particular biological relevance of the latter as representing the total mass of the
population considered.

Previous work in this direction addresses the Cauchy problem in Ω = R
2 for a

simplified parabolic–elliptic variant of (1.1) that can be rewritten in the form of a
scalar non-local parabolic equation:

ut + U · ∇u = ∆u + χ∇ · (u∇(∆)−1u) − µuq, (1.4)

with an additional parameter q � 2. For this problem with initial condition u(·, 0) =
u0 ∈ L1(R2), in the q > 2 case any sufficiently regular non-negative global solution
u is known to satisfy ∫

R2
u(·, t) → m∞(χ, u0, U) as t → ∞

with some m∞(χ, u0, U) > 0 satisfying m∞(χ, u0, U) → 0 as χ → ∞ [6]. In the
critical case q = 2, the influence of chemotaxis on the evolution of the total mass
functional, which then decays to zero when χ > 0 and χ = 0, has been shown
to exist but to be more subtle in character, and mainly relevant on finite time
intervals [7].

1.1. Main results

We shall show that in our considered framework of bounded domains, unlike in
the latter Cauchy problem, the solution behaviour in (1.1) is essentially unaffected
by chemotaxis, at least on large timescales. Indeed, throughout the paper, assuming
for simplicity that

U ∈ C1,0(Ω̄ × [0,∞); Rn) ∩ L∞(Ω × (0,∞); Rn)
is such that ∇ · U ≡ 0 in Ω × (0,∞) and U ≡ 0 on δΩ × (0,∞), (1.5)

we shall see that, for any given non-trivial and sufficiently regular bounded solution
of (1.1), with respect to the norms in either X := L1(Ω) or L∞(Ω), the quantity
‖u(·, t)‖X can be estimated from above and below by positive multiples, possibly
depending on the solution, e.g. through its norm in L∞(Ω × (0,∞)), of 1/(t + 1).
More precisely, our main results read as follows.

Theorem 1.1. Let n � 1 and let Ω ⊂ R
n be a bounded domain with smooth

boundary. Assume that µ > 0 and that U satisfies (1.5), and suppose that (u, v) ∈
(C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)))2 is a classical solution of (1.1) for which both
u and v are non-negative, and which is bounded in the sense that u belongs to
L∞(Ω × (0,∞)).
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(i) There exists C1 > 0 with the property that

1
|Ω| ‖u(·, t)‖L1(Ω) � ‖u(·, t)‖L∞(Ω) � C1

t + 1
for all t > 0. (1.6)

(ii) If, furthermore, u 	≡ 0, then one can find C2 > 0 such that

‖u(·, t)‖L∞(Ω) � 1
|Ω| ‖u(·, t)‖L1(Ω) � C2

t + 1
for all t > 0. (1.7)

Note that here we do not explore how the constants in the above statements
depend on χ and µ, but not on the function U , thus leaving open the question of
whether chemotactic cross-diffusion may influence a fine structure in the large time
asymptotics of solutions.

In corresponding chemotaxis–fluid systems in which the fluid evolution itself is
affected by the presence of the other quantities, e.g. through buoyant forces, the
above results can be directly applied to solutions known a priori to enjoy the above
regularity and boundedness properties; for two- and three-dimensional examples of
situations when the latter is in fact guaranteed for all reasonably regular initial data,
we refer the reader to [12,13]. However, theorem 1.1 is actually more general, as it
considers widely arbitrary fluid fields that do not necessarily receive any feedback
from the taxis components.

1.2. Plan of the paper

The main idea underlying our approach is directly motivated by the ultimate
result: our analysis aims to show appropriate negligibility of the cross-diffusive
action in (1.1) in comparison to the further mechanisms therein. After establishing
preliminary but fundamental decay information on solutions in L1(Ω) × L1(Ω) in
§ 2, we show appropriate negligibility in § 3 on the basis of the fundamental decay
information using a series of arguments that rely on the smoothing action of the
heat semigroup in the second equation in (1.1). In § 4 a primary application of the
outcome in will yield the estimate from theorem 1.1(i). A second application in § 5
will show that in the inequality

d
dt

∫
Ω

lnu � −χ2

4

∫
Ω

|∇v|2 − µ

∫
Ω

u, t > 0,

which constitutes the key step in our proof of theorem 1.1(ii), the summand origi-
nating from the taxis term in (1.1) decays quickly enough that it is asymptotically
irrelevant.

2. Upper decay estimates for u and v in L1(Ω)

The following basic one-sided decay estimates for the spatial L1 norms of both
solution components can be gained in a quite simple way, and similar observations
have been made in [12, lemma 5.1]. Since these estimates will be fundamental to
our analysis, and since, in particular, they quantitatively underline the difference
between the bounded Ω and Ω = R

n cases, we include a short proof here.
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Lemma 2.1. Let (u, v) be a non-negative global classical solution of (1.1). Then∫
Ω

u(·, t) � |Ω|
µ

1
t + γ

for all t > 0 (2.1)

and ∫
Ω

v(·, t) � K

t + 2
for all t > 0, (2.2)

where

γ :=
|Ω|

µ
∫

Ω
u(·, 0)

(2.3)

and

K := max
{

2
∫

Ω

v(·, 0), 4
∫

Ω

u(·, 0),
2|Ω|
µ

}
. (2.4)

Proof. We only need to consider the case when u(·, 0) 	≡ 0, in which, according to
(1.1) and the Cauchy–Schwarz inequality,

d
dt

∫
Ω

u = −µ

∫
Ω

u2 � − µ

|Ω|

{ ∫
Ω

u

}2

for all t > 0,

which on integration readily implies (2.1) with γ as in (2.3).
Since from (1.1) we see that

d
dt

∫
Ω

v = −
∫

Ω

v +
∫

Ω

u for all t > 0,

we obtain
d
dt

∫
Ω

v � −
∫

Ω

v +
|Ω|

µ(t + γ)
for all t > 0. (2.5)

Now, with K as given by (2.4), ȳ(t) := K/(t + 2), t � 0, satisfies

ȳ(0) =
K

2
�

∫
Ω

v(·, 0)

by (2.4), and therefore

ȳ′(t) + ȳ(t) − |Ω|
µ(t + γ)

= − K

(t + 2)2
+

K

t + 2
− |Ω|

µ(t + γ)

=
K

t + 2

{
1 − 1

t + 2
− |Ω|

Kµ

t + 2
t + γ

}

� K

t + 2

{
1 − 1

2
− |Ω|

Kµ
max

{
2
γ

, 1
}}

=
K

2(t + 2)

{
1 − 1

K
max

{
4

∫
Ω

u(·, 0),
2|Ω|
µ

}}
� 0 for all t > 0,

due to (2.3) and the second and third restrictions in (2.4). By an ordinary differential
equation comparison, we thus conclude from (2.5) that

∫
Ω

v(·, t) � ȳ(t) for all t > 0,
and that (2.2) indeed holds.
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3. Boundedness and decay properties of ∇v

A crucial step towards both parts of theorem 1.1 is to identify the cross-diffusive
term in (1.1) as being asymptotically negligible relative to the diffusive action
in (1.1), by deriving appropriate quantitative bounds for the chemotactic gradi-
ent ∇v. This will be done in this section by making use of the L1 decay property
of u from lemma 2.1 to obtain the decay of ∇v at an apparently optimal rate in an
unfavourable topology, and then establishing an assumption on the boundedness of
u to establish boundedness of v in certain higher norms without any decay infor-
mation. Interpolating these two extremal results will yield a decay result for ∇v in
arbitrary Lp spaces at a rate that is probably far from optimal but is sufficient for
our purposes.

For what follows, recall that for p ∈ (1,∞) the realization A = Ap of −∆ + 1
under homogeneous Neumann boundary conditions, i.e. the operator defined by
letting Apϕ := −∆ϕ + ϕ for ϕ ∈ D(Ap) := {ϕ ∈ W 2,p(Ω) | ∂ϕ/∂ν = 0 on ∂Ω},
is sectorial in the space Lp(Ω), with its spectrum contained in the half-line [1,∞).
Accordingly, A possesses closed and densely defined fractional powers Aβ for all
β ∈ R, and Aβ is bounded whenever β < 0 [4, theorem 1.4.2].

Now, the space L1(Ω) is continuously embedded into a suitable space D(A−β)
obtained analogously, an explicit definition of which is unnecessary and thus omitted
here. We focus rather on an associated embedding inequality.

Lemma 3.1. Let p > 1 and β > n(p − 1)/2p. Then there exists C > 0 such that

‖A−βϕ‖Lp(Ω) � C‖ϕ‖L1(Ω) for all ϕ ∈ L1(Ω). (3.1)

Proof. Since β > n(p − 1)/2p implies that p′ := p/(p − 1) satisfies 2β − n/p′ > 0,
it follows from known embedding results [4, theorem 1.6.1] that D(Aβ

p′) ↪→ L∞(Ω),
whence there exists c1 > 0 such that

‖φ‖L∞(Ω) � c1‖Aβφ‖Lp′ (Ω) for all φ ∈ D(Aβ
p′). (3.2)

Thus, given any ϕ ∈ C∞
0 (Ω) and ψ ∈ C∞

0 (Ω), using the self-adjointness of A−β in
L2(Ω) we can estimate∣∣∣∣
∫

Ω

A−βϕ · ψ

∣∣∣∣ =
∣∣∣∣
∫

Ω

ϕ · A−βψ

∣∣∣∣ � ‖ϕ‖L1(Ω)‖A−βψ‖L∞(Ω) � c1‖ϕ‖L1(Ω)‖ψ‖Lp′ (Ω).

Therefore,

‖A−βϕ‖Lp(Ω) = sup
ϕ∈C∞

0 (Ω),‖ψ‖
Lp′ (Ω)

�1

∣∣∣∣
∫

Ω

A−βϕψ

∣∣∣∣ � c1‖ϕ‖L1(Ω),

as claimed.

By appropriately making use of lemma 3.1 in the course of an argument based on
a variation-of-constants representation of v, we see that, with respect to the norm
in Lp(Ω) for suitably small p > 1, ∇v inherits the decay rate of the mass functional∫

Ω
u from lemma 2.1.
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Lemma 3.2. Let (u, v) be a non-negative global classical solution of (1.1). Then,
for all p ∈ (1, n/(n − 1)), one can find C(p) > 0 such that

‖∇v(·, t)‖Lp(Ω) � C(p)
t

for all t � 2. (3.3)

Proof. Since
n

n − 2(1 − α)
→ n

n − 1
> p as α ↘ 1

2
,

it is possible to fix α ∈ ( 1
2 , 1) such that p < n/(n − 2(1 − α)), which means that

α +
n

2

(
1 − 1

p

)
< 1. (3.4)

We choose an arbitrary ε ∈ (0, α − 1
2 ) and pick β > n(p − 1)/2p, so that, since

D(A1/2+ε
p ) ↪→ W 1,p(Ω) [4, theorem 1.6.1], by employing a well-known interpolation

argument [3, theorem 14.1] we can find c1 > 0 and c2 > 0 such that

‖∇v(·, t)‖Lp(Ω) � c1‖A1/2+εv(·, t)‖Lp(Ω)

� c2‖Aαv(·, t)‖a
Lp(Ω)‖A−βv(·, t)‖1−a

Lp(Ω) for all t > 0, (3.5)

where

a :=
1
2 + ε + β

α + β
∈ (0, 1).

Here the fact that β > n(p − 1)/2p enables us to invoke lemma 3.1 and then apply
lemma 2.1 to find c3 > 0 and c4 > 0 such that

‖A−βv(·, t)‖Lp(Ω) � c3‖v(·, t)‖L1(Ω) � c3c4

t
for all t > 0. (3.6)

Now, in order to derive (3.3), by means of a variation-of-constants representation
of v we write

v(·, t) = e−Av(·, t − 1) +
∫ t

t−1
e−(t−s)Au(·, s) ds

+
∫ t

t−1
e−(t−s)AU(·, s) · ∇v(·, s) ds, t � 1,

and apply Aα to both sides to see that

‖Aαv(·, t)‖Lp(Ω) � ‖Aαe−Av(·, t − 1)‖Lp(Ω)

+
∫ t

t−1
‖Aαe−(t−s)Au(·, s)‖Lp(Ω) ds

+
∫ t

t−1
‖Aαe−(t−s)AU(·, s) · ∇v(·, s)‖Lp(Ω) ds for all t � 1.

(3.7)
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Here, according to the known smoothing properties of (e−τA)τ�0 and by lemma 2.1,
there exist c5 > 0 and c6 > 0 satisfying

‖Aαe−Av(·, t − 1)‖Lp(Ω) � c5‖v(·, t − 1)‖L1(Ω) � c6

t − 1
for all t � 2. (3.8)

Making use of lemma 2.1 and (3.4), we can find c7 > 0 and c8 > 0, again using a
standard semigroup estimate such that∫ t

t−1
‖Aαe−(t−s)Au(·, s)‖Lp(Ω) ds � c7

∫ t

t−1
(t − s)−α−n(1−1/p)/2‖u(·, s)‖L1(Ω) ds

� c8

∫ t

t−1
(t − s)−α−n(1−1/p)/2 1

s
ds

� c8
1

t − 1

∫ t

t−1
(t − s)−α−n(1−1/p)/2 ds

=
c8

1 − α − n(1 − 1/p)/2
1

t − 1
for all t � 2.

(3.9)

Finally, to treat the last summand in (3.7) appropriately, we introduce the numbers

M(T ) := sup
t∈(1,T )

{t‖Aαv(·, t)‖Lp(Ω)}, T > 2,

which are all finite due to our overall assumption that v ∈ C2,1(Ω̄ × (0,∞)). In
terms of M(T ), by the boundedness of U , (3.5) and (3.6), with some c9 > 0 and
c10 > 0, the integral in question can be estimated according to∫ t

t−1
‖Aαe−(t−s)AU(·, s) · ∇v(·, s)‖Lp(Ω) ds

� c9

∫ t

t−1
(t − s)−α‖U(·, s) · ∇v(·, s)‖Lp(Ω) ds

� c10

∫ t

t−1
(t − s)−α‖∇v(·, s)‖Lp(Ω) ds

� c2c10

∫ t

t−1
(t − s)−α

{
M(T )

s

}a{
c3c4

s

}1−a

ds

= c2c3c4c10M
a(T )

∫ t

t−1
(t − s)−α 1

s
ds

� c2(c3c4)1−ac10M
a(T )

1
t − 1

∫ t

t−1
(t − s)−α ds

=
c2(c3c4)1−ac10

1 − α
Ma(T )

1
t − 1

for all t ∈ [2, T ].

Combined with (3.7)–(3.9), in view of the fact that 1/(t − 1) � 2/t for all t � 2,
this shows that there exists c11 > 0 such that, for each T > 2,

t‖Aαv(·, t)‖Lp(Ω) � c11 + c11M
a(T ) for all t ∈ [2, T ].
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Hence, with the number

c12 := max
{

c11, sup
t∈(1,2)

{t‖Aαv(·, t)‖Lp(Ω)}
}

finite, again by the inclusion v ∈ C2,1(Ω̄ × (0,∞)) and the fact that α < 1, we also
have

M(T ) � c12 + c12M
a(T ) for all T > 2.

As a < 1, by an elementary argument this implies that

M(T ) � c13 := max{1, (2c12)1/(1−a)} for all T > 2

and thus proves (3.3), because, for example, by (3.5) and (3.6) it yields the inequal-
ity

‖∇v(·, t)‖Lp(Ω) � c2

{
c13

t

}a{
c3c4

t

}1−a

for arbitrary t � 1.

We next modify the above argument but make use of different ingredients (in
particular, the boundedness of u) to derive the following higher-order boundedness
property of v.

Lemma 3.3. Let (u, v) be a non-negative global classical solution of (1.1) with the
property that u is bounded in Ω × (0,∞). Then, for all p > 1 and each α ∈ ( 1

2 , 1),
there exists C(p, α) > 0 such that

‖Aαv(·, t)‖Lp(Ω) � C(α, p) for all t � 1. (3.10)

Proof. Following a variant of the strategy pursued in lemma 3.2, we let

M(T ) := sup
t∈(1,T )

‖Aαv(·, t)‖Lp(Ω), T > 2,

and note that, since α < 1, the inclusion v ∈ C2,1(Ω̄ × (0,∞)) again warrants that
M(T ) < ∞ for all T > 2.

To prepare an adequate estimation of M(T ) on the basis of a Duhamel formula
associated with the second equation in (1.1), we once more invoke standard smooth-
ing estimates for (e−τA)τ�0 to find c1 > 0 and c2 > 0 such that

‖Aαe−Av(·, t − 1)‖Lp(Ω) � c1‖v(·, t − 1)‖L1(Ω) � c2 for all t � 1, (3.11)

as lemma 2.1 in particular warrants that (v(·, t))t�0 is bounded in L1(Ω). Next, as
u is assumed to be bounded in Ω × (0,∞), there exist c3 > 0 and c4 > 0 such that∫ t

t−1
‖Aαe−(t−s)Au(·, s)‖Lp(Ω) ds � c3

∫ t

t−1
(t − s)−α‖u(·, s)‖Lp(Ω) ds

� c3c4

∫ t

t−1
(t − s)−α ds

=
c3c4

1 − α
for all t � 1, (3.12)
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because α < 1. Moreover, once more fixing any ε ∈ (0, α − 1
2 ) and β > n(p − 1)/2p,

we may apply known embedding and interpolation estimates along with lemma 3.1
to gain positive constants c5, c6, c7, c8, c9 and c10 such that with a := ( 1

2 + ε +
β)/(α + β) ∈ (0, 1) we have∫ t

t−1
‖Aαe−(t−s)AU · ∇v(·, s)‖Lp(Ω) ds

� c5

∫ t

t−1
(t − s)−α‖U(·, s)‖L∞(Ω)‖∇v(·, s)‖Lp(Ω) ds

� c6

∫ t

t−1
(t − s)−α‖∇v(·, s)‖Lp(Ω) ds

� c7

∫ t

t−1
(t − s)−α‖A1/2+εv(·, s)‖Lp(Ω) ds

� c8

∫ t

t−1
(t − s)−α‖Aαv(·, s)‖a

Lp(Ω)‖A−βv(·, s)‖1−a
Lp(Ω) ds

� c9

∫ t

t−1
(t − s)−αMa(T )‖v(·, s)‖1−a

L1(Ω) ds

� c10M
a(T )

∫ t

t−1
(t − s)−α ds

� c10

1 − a
Ma(T ) for all t ∈ [1, T ], (3.13)

again due to the fact that v belongs to L∞((0,∞); L1(Ω)) by lemma 2.1.
Now, using (3.11)–(3.13), we can estimate

‖Aαv(·, t)‖Lp(Ω) � ‖Aαe−Av(·, t − 1)‖Lp(Ω)

+
∫ t

t−1
‖Aαe−(t−s)Au(·, s)‖Lp(Ω) ds

+
∫ t

t−1
‖Aαe−(t−s)AU(·, s) · ∇v(·, s)‖Lp(Ω) ds

� c2 +
c3c4

1 − α
+ c8M

a(T ) for all t ∈ [2, T ],

so that with the evidently finite constant

c11 := max
{

c2 +
c3c4

1 − α
,

c10

1 − α
, sup
t∈(1,2)

‖Aαv(·, t)‖Lp(Ω)

}

we have

M(T ) � c11 + c11M
a(T ) for all T > 1,

and therefore

M(T ) � max{1, (2c11)1/(1−a)} for all T > 1,

which proves the lemma.
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A straightforward interpolation shows that the two lemmata above imply decay
of ∇v in Lebesgue spaces with high summability powers, but at rates slower than
that in lemma 3.2. The following statement on this will be applied to some large
value of p and κ := 0 in proving the upper estimate claimed in theorem 1.1(i), and
to p := 2 with some κ > 1

2 in corollary 5.1, preparing the proof of the lower bound
for

∫
Ω

u in theorem 1.1(ii).

Lemma 3.4. Let (u, v) be a non-negative global classical solution of (1.1) such that
u is bounded, and let p > 1. Then for all κ < min{1, n/(n − 1)p} there exists
C(p, κ) > 0 such that

‖∇v(·, t)‖Lp(Ω) � C(p, κ)
tκ

for all t � 2. (3.14)

Proof. If p < n/(n − 1), the claim immediately results from lemma 3.2. In the case
p � n/(n − 1), our assumption ensures that κ < n/(n − 1)p, so that we can fix
r ∈ [1, n/(n − 1)) such that κ is still less than r/p. Thus, writing

q :=
(1 − κ)pr

r − pκ
,

we can easily verify that q > p > r, and that(
1
r

− 1
p

)(
1
r

− 1
q

)−1

= 1 − κ.

Therefore, the Hölder inequality says that

‖∇v(·, t)‖Lp(Ω) � ‖∇v(·, t)‖1−κ
Lq(Ω)‖∇v(·, t)‖κ

Lr(Ω) for all t > 0, (3.15)

where, picking any α ∈ ( 1
2 , 1), we infer from the continuity of the embedding

D(Aα
q ) ↪→ W 1,q(Ω) [4] and from lemma 3.3 that

‖∇v(·, t)‖Lq(Ω) � c1‖Aαv(·, t)‖Lq(Ω) � c2 for all t � 2

with some c1 > 0 and c2 > 0. Moreover, as the inequality r < n/(n − 1) along with
lemma 3.2 yields c3 > 0 satisfying

‖∇v(·, t)‖Lr(Ω) � c3

t
for all t � 2,

we readily derive (3.14) from (3.15).

4. An upper bound for u in L∞(Ω): the proof of theorem 1.1(i)

On the basis of the Duhamel formula now associated with the first equation in (1.1),
and knowing that the cross-diffusive gradient ∇v is bounded in L∞((0,∞); Lp(Ω))
for any finite p > 1, we can now turn the L1 decay information on u from lemma 2.1
into a corresponding estimate in L∞(Ω).

Proof of theorem 1.1(i). We fix an arbitrary p > n and recall that, by standard
regularization properties of the Neumann heat semigroup (eτ∆)τ�0 on Ω [15], one
can pick c1 > 0 and c2 > 0 such that for all τ ∈ (0, 1) we have

‖eτ∆ϕ‖L∞(Ω) � c1τ
−n/2‖ϕ‖L1(Ω) for all ϕ ∈ L1(Ω) (4.1)
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and

‖eτ∆∇ · ϕ‖L∞(Ω) � c2τ
−1/2−n/2p‖ϕ‖Lp(Ω) for all ϕ ∈ C1(Ω̄; Rn)

such that ϕν = 0 on ∂Ω. (4.2)

Now, in order to estimate the numbers

M(T ) := sup
t∈(0,T )

{(t + 1)‖u(·, t)‖L∞(Ω)}, T > 2,

we use that ∇ · U ≡ 0 in representing u(·, t) according to

u(·, t) = e∆u(·, t − 1) − χ

∫ t

t−1
e(t−s)∆∇ · (u(·, s)∇v(·, s)) ds

− µ

∫ t

t−1
e(t−s)∆u2(·, s) ds −

∫ t

t−1
e(t−s)∆∇(U(·, s)u(·, s)) ds for all t � 1.

Since e(t−s)∆u2(·, s) is non-negative in Ω for all t > 0 and s ∈ (0, t) due to the
maximum principle, by the non-negativity of u we therefore see that

‖u(·, t)‖L∞(Ω) � ‖e∆u(·, t − 1)‖L∞(Ω)

+ χ

∫ t

t−1
‖e(t−s)∆∇ · (u(·, s)∇v(·, s))‖L∞(Ω) ds

+
∫ t

t−1
‖e(t−s)∆∇ · (U(·, s)u(·, s))‖L∞(Ω) ds for all t � 1, (4.3)

where, combining (4.1) with lemma 2.1, we can find c3 > 0 such that

‖e∆u(·, t − 1)‖L∞(Ω) � c1‖u(·, t)‖L1(Ω) � c3

t − 1
� 2c3

t
for all t � 2. (4.4)

To relate the two integrals in (4.3) to M(T ), we first invoke (4.2) to obtain

χ

∫ t

t−1
‖e(t−s)∆∇ · (u(·, s)∇v(·, s))‖L∞(Ω) ds

� c2χ

∫ t

t−1
(t − s)−1/2−n/2p‖u(·, s)∇v(·, s)‖Lp(Ω) ds for all t � 1,

and then use the Hölder inequality twice to infer that, again due to lemma 2.1,
and as a consequence of the boundedness of ∇v in Ω × (1, 2) and lemma 3.4 when
applied to κ := 0, with some c4 > 0 and c5 > 0 and a := 1 − 1/2p, we have

‖u(·, s)∇v(·, s)‖Lp(Ω)

� ‖u(·, s)‖L2p(Ω)‖∇v(·, s)‖L2p(Ω) � ‖u(·, s)‖a
L∞(Ω)‖u(·, s)‖1−a

L1(Ω)‖∇v(·, s)‖L2p(Ω)

�
{

M(T )
s + 1

}a{
c4

s + 1

}1−a

c5 = c1−a
4 c5M

a(T )
1

s + 1
for all s ∈ (1, T )
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and hence

χ

∫ t

t−1
‖e(t−s)∆∇ · (u(·, s)∇v(·, s))‖L∞(Ω) ds

� c2c
1−a
4 c5χMa(T )

∫ t

t−1
(t − s)−1/2−n/2p 1

s + 1
ds

� c2c
1−a
4 c5χMa(T )

1
t

∫ t

t−1
(t − s)−1/2−n/2p ds

= (c2c
1−a
4 c5χ)

(
1
2

− n

2p

)−1

Ma(T )
1
t

for all t ∈ [2, T ], (4.5)

because p > n.
Likewise, combining (4.2) with the boundedness of U we obtain c6 > 0 such that∫ t

t−1
‖e(t−s)∆∇ · (U(·, s)u(·, s))‖L∞(Ω) ds

� c2

∫ t

t−1
(t − s)−1/2−n/2p‖U(·, s)u(·, s)‖Lp(Ω) ds

� c6

∫ t

t−1
(t − s)−1/2−n/2p‖u(·, s)‖Lp(Ω) ds for all t � 1, (4.6)

where, again by the Hölder inequality and lemma 2.1, there exists c7 > 0 such that

‖u(·, s)‖Lp(Ω) � ‖u(·, s)‖b
L∞(Ω)‖u(·, s)‖1−b

L1(Ω)

�
{

M(T )
s + 1

}b{
c7

s + 1

}1−b

=
c1−b
7 M b(T )

s + 1
for all s ∈ (1, T )

with b := 1 − 1/p. Therefore, (4.6) implies that∫ t

t−1
‖e(t−s)∆∇ · (U(·, s)u(·, s))‖L∞(Ω) ds

� c6c
1−b
7 M b(T )

∫ t

t−1
(t − s)−1/2−n/2p 1

s + 1
ds

� c6c
1−b
7 M b(T )

1
t

∫ t

t−1
(t − s)−1/2−n/2p ds

= (c6c
1−b
7 )

(
1
2

− n

2p

)−1

M b(T )
1
t

for all t ∈ [2, T ],

so that summarizing (4.3), (4.4) and (4.5) and using Young’s inequality yields c8 > 0
and c9 > 0 such that

t‖u(·, t)‖L∞(Ω) � c8 + c8M
a(T ) + c8M

b(T )
� c9 + c9M

a(T ) for all t ∈ [2, T ],
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because b < a. Since u is bounded in Ω × (0, 2), this entails that for some c10 > 0
we have

M(T ) � c10 + c10M
a(T ) for all T > 2

and thus

M(T ) � max{1, (2c10)1/(1−a)} for all T > 2,

which readily yields (1.6), as T > 2 was arbitrary.

5. A lower bound for u in L1(Ω): proof of theorem 1.1(ii)

In deriving the lower bound for
∫

Ω
u claimed in theorem 1.1(ii), we shall make use

of the following consequence of lemma 3.4, which relies strongly on the fact that
the decay exponent κ appearing therein can be chosen to be favourably large, at
least in the p = 2 case.

Corollary 5.1. There exist λ > 1 and C > 0 such that∫
Ω

|∇v(·, t)|2 � C

tλ
for all t � 2. (5.1)

Proof. This immediately results from an application of lemma 3.4 to any κ > 1
2

satisfying κ < min{1, n/2(n − 1)}.

Now the fact that the function on the right of (5.1) is integrable over t ∈ (2,∞)
enables us to make sure that the taxis term in (1.1) becomes asymptotically negli-
gible in the framework of the following testing procedure.

Lemma 5.2. There exists C > 0 such that∫
Ω

lnu(·, t) � −|Ω| ln(t + γ) − C for all t � 2, (5.2)

where γ > 0 is the constant defined in (2.3).

Proof. As u is positive in Ω̄ × (0,∞) according to the strong maximum principle,
we may test the first equation in (1.1) against 1/u in order to see that

d
dt

∫
Ω

lnu =
∫

Ω

1
u

ut

=
∫

Ω

1
u

∆u − χ

∫
Ω

1
u

∇ · (u∇v) − µ

∫
Ω

u

=
∫

Ω

|∇u|2
u2 − χ

∫
Ω

∇u

u
· ∇v − µ

∫
Ω

u for all t > 0, (5.3)

where, by Young’s inequality,

−χ

∫
Ω

∇u

u
· ∇v � −

∫
Ω

|∇u|2
u2 − χ2

4

∫
Ω

|∇v|2 for all t > 0. (5.4)
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Now, from lemma 2.1 we know that

µ

∫
Ω

u � |Ω|
t + γ

for all t > 0,

whereas corollary 5.1 provides λ > 1 and c1 > 0 satisfying

χ2

4

∫
Ω

|∇v|2 � c1

tλ
for all t � 2.

From (5.3) and (5.4) we therefore obtain the inequality

d
dt

∫
Ω

lnu � − |Ω|
t + γ

− c1

tλ
for all t � 2,

which on direct integration shows that∫
Ω

lnu(·, t) −
∫

Ω

lnu(·, 2)

� −|Ω|
∫ t

2

ds

s + γ
− c1

∫ t

2

ds

sλ

= −|Ω| ln(t + γ) + |Ω| ln(2 + γ) − c1

2λ−1(λ − 1)
+

c1

(λ − 1)tλ−1

� −|Ω| ln(t + γ) − c1

2λ−1(λ − 1)
for all t � 2.

As
∫

Ω
lnu(·, 2) is finite by the strict positivity of u(·, 2) throughout Ω̄, this estab-

lishes (5.2).

Thanks to the precise information on the multiple of ln(t+γ) appearing in (5.2),
upon a simple application of Jensen’s inequality we can turn this into a lower
estimate for

∫
Ω

u that involves exactly the desired decay rate.

Lemma 5.3. There exists C > 0 such that∫
Ω

u(·, t) � C

t + 1
for all t > 0. (5.5)

Proof. From lemma 5.2 we know that, with γ > 0 from (2.3), for some c1 > 0 we
have ∫

Ω

lnu � −|Ω| ln(t + γ) − c1 for all t � 2.

Since by Jensen’s inequality we can estimate∫
Ω

lnu = |Ω|
{

1
|Ω|

∫
Ω

lnu

}
� |Ω| ln

{
1

|Ω|

∫
Ω

u

}

= |Ω| ln
{ ∫

Ω

u

}
− |Ω| ln |Ω| for all t > 0,
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this implies that∫
Ω

u � |Ω| exp
(

1
|Ω|

∫
Ω

lnu

)

� |Ω| exp
(

1
|Ω| {−|Ω| ln(t + γ) − c1}

)

= |Ω|e−c1/|Ω| 1
t + γ

� |Ω|e−c1/|Ω| min
{

1
γ

, 1
}

1
t + 1

for all t � 2.

Therefore, the proof is completed upon the observation that

min
t∈[0,2]

{
(t + 1)

∫
Ω

u(·, t)
}

must be positive by continuity of u and the fact that u 	≡ 0.

We can now complete the proof of our main results.

Proof of theorem 1.1(ii). For appropriately large C > 0, the second inequality
in (1.7) is precisely asserted by lemma 5.3, whereas the first is obvious.
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